
ar
X

iv
:2

30
2.

06
17

7v
1 

 [
m

at
h.

C
O

] 
 1

3 
Fe

b 
20

23

Arc-disjoint out-branchings and in-branchings in semicomplete

digraphs
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Abstract

An out-branching B+
u

(in-branching B−

u
) in a digraph D is a connected spanning subdigraph

of D in which every vertex except the vertex u, called the root, has in-degree (out-degree) one. It
is well-known that there exists a polynomial algorithm for deciding whether a given digraph has
k arc-disjoint out-branchings with prescribed roots (k is part of the input). In sharp contrast to
this, it is already NP-complete to decide if a digraph has one out-branching which is arc-disjoint
from some in-branching. A digraph is semicomplete if it has no pair of non adjacent vertices. A
tournament is a semicomplete digraph without directed cycles of length 2. In this paper we give
a complete classification of semicomplete digraphs which have an out-branching B+

u
which is arc-

disjoint from some in-branching B−

v
where u, v are prescribed vertices of D. Our characterization,

which is surprisingly simple, generalizes a complicated characterization for tournaments from 1991
by the first author and our proof implies the existence of a polynomial algorithm for checking
whether a given semicomplete digraph has such a pair of branchings for prescribed vertices u, v

and construct a solution if one exists. This confirms a conjecture of Bang-Jensen for the case of
semicomplete digraphs.

Keywords: arc-disjoint subdigraphs; in-branchings; out-branchings; semicomplete digraph;

polynomial algorithm

1 Introduction

Notation follows [3] so we only repeat a few definitions here (see also Section 2). Let D = (V,A) be a
digraph. An out-tree (in-tree) is an oriented tree in which every vertex except one, called the root,
has in-degree (out-degree) one. An out-branching (in-branching) of D is a spanning out-tree (in-
tree) in D. For a subdigraph H of D and a vertex s of H we denote by B+

s,H , (resp., B−
s,H) an arbitrary

out-branching (resp., in-branching) rooted at s in H . To simplify the notation, we set B+
s = B+

s,D and

B−
s = B−

s,D.
A digraph D is strong if there exists a path from x to y in D for every ordered pair of distinct

vertices x, y of D and D is k-arc-strong if D \ A′ is strong for every subset A′ ⊆ A of size at most
k − 1. For a subset X of V , we denote by D 〈X〉 the subdigraph of D induced by X .

The following well-known theorem, due to Edmonds, provides a characterization for the existence of
k arc-disjoint out-branchings rooted at the same vertex.

Theorem 1.1 (Edmonds’ Branching Theorem) A directed multigraph D = (V,A) with a special
vertex s has k arc-disjoint out-branchings rooted at s if and only if

d−(X) ≥ k, ∀ ∅ 6= X ⊆ V − s. (1)

Note that, by Menger’s Theorem, (1) is equivalent to the existence of k arc-disjoint (s, v)-paths for
every v ∈ V − s. Hence (1) can be checked in polynomial time via maximum flow calculations, see e.g.,
[3, Section 5.4]. Lovász [12] gave a constructive proof of Theorem 1.1 which implies the existence of a
polynomial algorithm for constructing a set of k arc-disjoint branchings from a given root when (1) is
satisfied.

A natural related problem is to ask for a characterization of digraphs having an out-branching and
an in-branching which are arc-disjoint. Such pair will be called a good pair in this paper and more
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precisely we call it a good (u, v)-pair if the roots u and v are specified. Thomassen showed (see [1]
and [2]) that for general digraphs it is NP-complete to decide if a given digraph has a good pair. This
makes it interesting to study classes of digraphs for which we can find a good pair or decide that none
exists in polynomial time.

For acyclic digraphs there can only be one choice for the vertices u, v as u must be able to reach all
other vertices by a directed path and v must be reachable by all other vertices by a directed paths. A
characterization of acyclic digraphs with a good pair and a polynomial algorithm for finding a good pair
when it exists was given in [6]. A polynomial algorithm was also given in [9]. In [1] the first author gave a
complete characterization of tournaments with no good (u, v)-pair and gave a polynomial algorithm for
either producing a good (u, v)-pair for a given tournament T and two vertices u, v of T or providing a cer-
tificate for the non-existence of such a pair in T . Bang-Jensen and Huang characterized quasi-transitive
digraphs with a good (u, u)-pair [5]. A digraph is quasi-transitive if the presence of arcs uv and vw
implies an arc between u and w. It is easy to see that every semicomplete digraph is quasi-transitive.
Gutin and Sun [11] generalized this result to digraphs of the form D = T [H1, H2, . . . , H|V (T )|], where T
is a semicomplete digraph. Such a digraph is called a composition of T and the precise definition is
not important here (see e.g. [3, Page 9]).

The following conjecture, due to Thomassen, is wide open and it is not even known whether already
K = 3 suffices for all digraphs.

Conjecture 1.1 [14] There exists an integer K such that every K-arc-strong digraph D has a good
(u, v)-pair for every choice of vertices u, v of D.

Bang-Jensen, Bessy, Havet and Yeo [2] showed that every digraph of independence number at most 2
and arc-connectivity at least 2 has a good (u, v)-pair for at least one choice of vertices u, v and they
showed that the same condition is not sufficient to guarantee a good (u, v)-pair for every choice of u
and v. Hence K in Conjecture 1.1 must be at least 3. To the best of our knowledge it is open whether
K = 3 would suffice for all digraphs.

The following conjecture due to Bang-Jensen and Yeo would imply Conjecture 1.1.

Conjecture 1.2 [8] There exists an integer K such that every K-arc-strong digraph D = (V,A) has
an arc-partition A = A1 ∪ A2 such that each of the subdigraphs D1 = (V,A1) and D2 = (V,A2) are
spanning and strong.

The next result implies that the Conjecture 1.2 holds with K = 3 for the case of semicomplete
digraphs.

Theorem 1.2 [8] Let D = (V,A) be a 2-arc-strong semicomplete digraph. Then D has an arc-partition
A = A1 ∪A2 such that each of the subdigraphs D1 = (V,A1) and D2 = (V,A2) are spanning and strong
except if D is isomorphic to the digraph S4 on vertices {v1, v2, v3, v4} and arc set
{v1v2, v2v3, v3v4, v4v1, v2v4, v4v2, v1v3, v3v1}.

It is not difficult to check that S4 has a good (u, v)-pair for all possible choices of u, v ∈ V (S4).
Hence every 2-arc-strong semicomplete digraph has a good pair for every possible choice of u, v. So
Conjecture 1.1 holds for semicomplete digraphs with K = 2. In [4] Theorem 1.2 was generalized to
semicomplete compositions, that is, digraphs of the form S[H1, . . . , H|V (S)|]. From that result a complete
characterization for the existence of good (u, v)-pairs in 2-arc-strong semicomplete compositions can be
obtained.

Bang-Jensen and Huang considered the case that u = v for strong semicomplete digraphs by proving
Theorem 1.3.

Theorem 1.3 [5] Let D be a strong semicomplete digraph and let u ∈ V (D) be arbitrary vertex. Suppose
that D does not contain a good pair with the same root u. Then the following holds, where A,B,C form
a partition of V (D) − u such that N+

D (u) = A ∪ C and N−
D (u) = B ∪ C. There is precisely one arc

e leaving the terminal component of D 〈A〉 and precisely one arc e′ entering the initial component of
D 〈B〉 and e = e′.

For two vertices x, y of a digraph D we use Px,y to denote a path from x to y. Such a path is
also called an (x, y)-path. Bang-Jensen’s characterization of tournaments with good (u, v)-pairs in [1]
is quite complicated and does not extend to semicomplete digraphs so we will not describe it here. In
this paper, we prove the following a surprisingly simple characterization for the existence of a good
(u, v)-pair in semicomplete digraphs.
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Figure 1: Semicomplete digraphs that have no good (u, v)-pair. The digraph in (e) is isomorphic to the
digraph in (f).

Theorem 1.4 Let D = (V,A) be a semicomplete digraph with u, v ∈ V (possibly u = v). Then D has
a good (u, v)-pair if and only if it satisfies (i) and (ii) below.

(i) For every choice of z, w ∈ V there are arc-disjoint paths Pu,z, Pw,v in D

(ii) D is not one of the digraphs in Figure 1(b)-(f).

It is easy to see that (i) must hold if D has a good (u, v)-pair and when D has at least 5 vertices the
theorem says that (i) is also sufficient.

The rest of the paper is organized as follows: We start out with Section 2 which contains
some extra definitions and results that will be used in the paper. In Section 3 we unify results from [1]
on arc-disjoint paths in semicomplete digraphs in order to use these when we assume condition (i) of
Theorem 1.4 holds. In Section 4 we prove some important lemmas on how to extend special arc-disjoint
in- and out-trees to larger ones. Then in Section 5 we study the problem of finding an out-branching
rooted at a specific vertex which is arc-disjoint from a path with prescribed end vertices. Finally we
prove Theorem 1.4 in Section 6. We also give an alternative, semingly more involved characterization
of semicomplete digraphs without a good (u, v)-pair for specified vertices u, v. This characterization is
used heavily in [7].

2 Further terminology and Preliminaries

If a digraph is not strong, then we can label its strong components D1, . . . , Dp such that there is no arc
from Dj to Di when j > i. We call such an ordering an acyclic ordering of the strong components of
D. For a non-strong semicomplete digraph D it is easy to see that the ordering D1, . . . , Dp is unique
and we call D1 (resp., Dp) the initial (resp., terminal) strong component of D.

The set of vertices of a digraph D = (V,A) which can reach (resp., can be reached from) every other
vertex in V by a directed path is denoted by Out(D) (resp., In(D)). Note that a vertex v belongs to
Out(D) (resp., In(D)) if and only if it is the root of some out-branching (resp., in-branching) of D.
Hence Out(D) = In(D) if and only if D is strong.

Lemma 2.1 [2] Let D be a digraph. Then the induced subdigraphs D 〈Out(D)〉 and D 〈In(D)〉 are
strong.

We will use the following classical result by Camion. It was originally proved only for tournaments
but almost the same proof works for semicomplete digraphs (one can also use the easy fact that every
strong semicomplete digraphD = (V,A) on at least 3 vertices contains a spanning strong subtournament
T = (V,A′) where A′ ⊆ A).

Theorem 2.2 [10] Every strong semicomplete digraph of order at least 2 has a hamiltonian cycle.

The following extension of Redei’s Theorem [13] is easy to prove from Theorem 2.2 and the fact that
if D is not strong and D1, . . . , Dp, p ≥ 2 is the unique ordering of the strong components of D then
every vertex of V (Di) dominates every vertex of V (Dj) when 1 ≤ i < j ≤ p.

Lemma 2.3 Every strong semicomplete digraph D has a hamiltonian path starting at any prescribed
vertex x. If D is a non-strong semicomplete digraph and D1, . . . , Dp, p ≥ 2 is the unique ordering of its
strong components, then D has an (x, y)-hamiltonian path for every choice of vertices x ∈ V (D1) and
y ∈ V (Dp).
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Theorem 2.4 [2] Let D be a semicomplete digraph of order at least 4 and let v be arbitrary vertex of
In(D). There is a pair of arc-disjoint out- and in-branchings in D such that the in-branching is rooted
at v if and only if D is not a digraph such that both v and its in-neighbor has in-degree one.

Lemma 2.5 [2] Every non-strong semicomplete digraph of order at least 4 has a good (u, v)-pair for
every choice of u ∈ Out(D) and v ∈ In(D).

Lemma 2.6 Let D be a digraph and let u, v be two vertices of D such that u ∈ Out(D). Suppose that
D has no out-branching B+

u which is arc-disjoint from some (u, v)-path. Then there exists a partition
V1, V2 of V (D) such that v ∈ V1, u ∈ V2 and d+D(V2) = 1.

Proof. By the assumption, there are no two arc-disjoint out-branchings rooted at u in D. It follows
by Edmonds’ branching theorem (Theorem 1.1) that there exists a partition U1, U2 of V (D) such that
u ∈ U2 and d−D(U1) = d+D(U2) ≤ 1. Since D contains an out-branching with root u and u ∈ U2, we have
d+D(U2) = 1, moreover, let xy be the only arc leaving U2, then y dominates all vertices of U2 − x and it
can reach all vertices of U1.

If v ∈ U1, then U1, U2 is the desired partition. So we may assume that v belongs to U2. By
the assumption of the lemma, there can be no pair of arc-disjoint (u, x)- and (u, v)-paths in D 〈U2〉.
Otherwise, using that y dominates all of U2−x, it is easily seen that D has an out-branching B+

u which
is arc-disjoint from some (u, v)-path, contradiction. Thus by Menger’s theorem, there exists a proper
subset U of U2 such that u ∈ U, {v, x} ⊆ U2 − U and d+D(U) = 1. Then V2 = U and V1 = V (D)− U is
the desired partition. �

3 Arc-disjoint paths in semicomplete digraphs

In this section we unify and slightly generalize results on arc-disjoint paths from [1] in order to use these
in the next sections.

Definition 3.1 Let D = (V,A) be a semicomplete digraph and let u,w, v be three vertices of D. The
4-tuple (D, u,w, v) is said to be of

type A, if there exists a partition V1, V2 of V such that v ∈ V1, u,w ∈ V2 and there is exactly one
arc from V2 to V1. (Note that in this type D may be non-strong.)

type B, if there exists a partition V1, V2, V3 of V such that u, v ∈ V2, w ∈ V3 and all arcs between Vi

and Vj with i < j go from Vi to Vj except for precisely one arc which goes from the terminal component
of D 〈V3〉 to the initial component of D 〈V1〉.

type 2α + 2, for some α ≥ 1 if there exists a partition V1, . . . , V2α+2 of V such that v ∈ V2, w ∈
V2α+1, u ∈ V2α+2 and all arcs between Vi and Vj with i < j go from Vi to Vj with the following exceptions.
There exists precisely one arc from Vi+2 to Vi for all i ∈ [2α] and it goes from the terminal component
of D 〈Vi+2〉 to the initial component of D 〈Vi〉.

type 2α + 3, for some α ≥ 1 if there exists a partition V1, . . . , V2α+3 of V such that v ∈ V2, u ∈
V2α+2, w ∈ V2α+3 and all arcs between Vi and Vj with i < j go from Vi to Vj with the following exceptions.
There exists precisely one arc from Vi+2 to Vi for all i ∈ [2α+1] and it goes from the terminal component
of D 〈Vi+2〉 to the initial component of D 〈Vi〉.

u w

v

Type A

u v

w

Type B

u

v

w

Type 2α+ 2

u

v

w

Type 2α+ 3

Figure 2: Illustration of Definition 3.1. The vertex sets V1, V2 . . . are labeled from top to bottom. The
bold arcs indicate that all arcs not shown going up in the figure are present in the shown direction. The
third and fourth digraphs are of type 2α+ 2 and 2α+ 3 with α = 1, respectively.
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Lemma 3.1 Let D be a semicomplete digraph let u,w, v be three vertices of D. Suppose that (D, u,w, v)
is one of the types in Definition 3.1, then for any vertex z ∈ V1, there is no pair of arc-disjoint (u, z)-
and (w, v)-paths in D.

Proof. It is not difficult to check that if (D, u,w, v) is of the type A or B, then D cannot contain
arc-disjoint (u, z)- and (w, v)-paths as both of the paths must use the arc entering V1.

For the case that (D, u,w, v) is of type 2α+2 for some α ≥ 1, we use xi+2yi to denote the arc from the
terminal component of D 〈Vi+2〉 to the initial component of D 〈Vi〉. Let P be an arbitrary (u, z)-path.
Note that the path P must use the arc x2α+2y2α and at least one of the arcs of kind x2k+1y2k−1, k ∈ [α].
Let x2j+1y2j−1, j ∈ [α] be the first arc of the kind x2k+1y2k−1 as we go along P from u. In D − A(P )
there is no path from w to

⋃
i<2j+1 Vi, because there are only two arcs, i.e., x2j+2y2j and x2j+1y2j−1,

entering
⋃

i<2j+1 Vi and these two arcs are in A(P ). Note that v ∈ V2 ⊆
⋃

i<2j+1 Vi as j ∈ [α], so there
is no (w, v)-path in D −A(P ) and then D has no arc-disjoint (u, z)- and (w, v)-paths.

Similarly, it is not difficult to prove that if (D, u,w, v) is of type 2α+3 for some α ≥ 1, there cannot
exist arc-disjoint (u, z)- and (w, v)-paths in D. �

The next two results from [1] were only stated and proved for tournaments but it is easy to check
that the proofs are also valid for semicomplete digraphs.

Theorem 3.2 [1] Let D be a semicomplete digraph and let x1, y1, x2, y2 be distinct vertices such that
D contains an (xi, yi)-path for all i ∈ [2]. Then D has a pair of arc-disjoint (x1, y1)- and (x2, y2)-
paths unless x1, y1, x2, y2 all belong to the same strong component Dj of D and for some i ∈ [2],
(Dj , xi, x3−i, y3−i) is one of the types in Definition 3.1 and the vertex yi belongs to V1.

Theorem 3.3 [1] Let D be a semicomplete digraph and x, y, z ∈ V (D) three distinct vertices such that
there exist an (x, y)- and a (y, z)-path in D. There exists a pair of arc-disjoint (x, y)- and (y, z)-paths
in D if and only if for every arc e there exists either an (x, y)-path or a (y, z)-path in D − e.

Now we prove the following common generalization of Theorems 3.2 and 3.3.

Theorem 3.4 Let D be a semicomplete digraph and let x1, y2, x2, y2 be four vertices (not necessarily
distinct) such that D contains an (xi, yi)-path for all i ∈ [2]. Then D has a pair of arc-disjoint (x1, y1)-
and (x2, y2)-paths unless one of the following statements holds.

(i) D is non-strong, x1 = x2, y1 = y2 and {x1}, {y1} are two consecutive components in the acyclic
ordering of the strong components of D.

(ii) The four vertices all belong to the same strong component Dj and for some i, (Dj , xi, x3−i, y3−i)
is one of the types in Definition 3.1 and the vertex yi belongs to V1.

Proof. There is clearly no arc-disjoint (x1, y1)- and (x2, y2)-paths in D when (i) holds. If (ii) holds, by
Lemma 3.1, there is no arc-disjoint (x1, y1)- and (x2, y2)-paths in Dj and consequently no such pair in
D.

Next we suppose that none of (i) and (ii) holds and show that D has a pair of arc-disjoint (x1, y1)-
and (x2, y2)-paths. Suppose first that x1, y2, x2, y2 do not all belong to the same strong component.
In particular D is non-strong. Let D1, . . . , Dl (l ≥ 2) be the unique acyclic ordering of the strong
components of D. If xi and yi belong to the same component of D for all i ∈ [2], then D clearly has
the desired paths. So we may assume that x1 and y1 belong to components Dp and Dq with q > p,
respectively. Then x1y1 ∈ A(D) and D has the desired paths when x2 /∈ Dp or y2 /∈ Dq. Therefore
we may assume that x1, x2 ∈ Dp and y1, y2 ∈ Dq. Let D′ = D 〈V (Dp ∪ · · · ∪Dq)〉. If there is a good
(x1, y2)-pair in D′, then D′ (and consequently, D) has the desired paths. We may assume that |D′| ≤ 3
by Lemma 2.5. It is not difficult to check that D has the desired paths if |D′| = 3. Hence, |D′| = 2,
which implies that (i) holds, a contradiction with our assumption.

Therefore we may assume that x1, y2, x2, y2 all belong to the same strong componentDj . By Theorem
3.2, we may assume that |{x1} ∪ {y1} ∪ {x2} ∪ {y2}| < 4. By the assumption in the lemma Dj has an
(xi, yi)-path for all i ∈ [2], so we can assume that xi 6= yi for all i ∈ [2]. If y1 = y2, then it follows from
by Menger’s theorem and the fact that (Dj , x1, x2, y2) is not of the type A that the desired paths exist.
So we may assume that y1 6= y2 and by symmetry we have x1 6= x2.

The only remaining case is xi = y3−i for some i ∈ [2]. Assume without loss of generality that
x1 = y2. If Dj has a good (x1, x1)-pair, then Dj clearly has the desired paths. So we may assume that
Dj has the structure given in Theorem 1.3. Let e = e′ = ab and let A1, . . . , Al be the acyclic ordering
of the strong components of D 〈A〉. Clearly, {x1r : r ∈ A ∪ C} ∪ {ab} ∪ B+

b,B is an out-branching B+
x1

with root x1 in Dj, where B+
b,B exists as b ∈ Out(B). If Dj −A(B+

x1
) has an (x2, x1)-path, then we are

done so we may assume that x2 can not reach any vertex of {x1} ∪B ∪C in Dj −A(B+
x1
). This means

that x2 ∈ At for some t. Let V3 be the set of vertices which x2 can reach in Dj − A(B+
x1
). Clearly,
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x2 ∈
⋃l

i=t Ai ⊆ V3 ⊆ A and there is only one arc ab leaving V3. By symmetry, one can construct an
in-branching B−

x1
rooted at x1 in Dj and let V1 be the set of vertices which can reach y1 in Dj−A(B−

x1
).

Then y1 ∈ V1 ⊆ B and there is only one arc ab entering V1. Set V2 = V −V1 −V3. Then (Dj , x1, x2, y2)
is of type B with partition V1, V2, V3 and y1 ∈ V1, which contradicts our assumption. This completes
the proof. �

4 Extending arc-disjoint in- and out-trees in semicomplete di-

graphs

Lemma 4.1 Let D be a semicomplete digraph and let H ⊆ D be a subdigraph. For any oriented tree T
in D, if all arcs in H not in A(T ) are adjacent to some (fixed) vertex h of H, then the digraph H − h
is either a single vertex or two vertices joined by one arc. In particular, |V (H)| ≤ 3.

Proof. The lemma follows by the fact that H − h is semicomplete and all arcs in H − h are used in T .
Hence H − h has at most two vertices and if it has such vertices u, v then there is only one arc between
these. �

Let D be a semicomplete digraph and let X,Y be two disjoint subsets of V (D) such that all vertices
in X (resp., in Y ) are covered by an out-tree T+

u rooted at u (resp., an in-tree T−
v rooted at v) in D

and assume that T+
u and T−

v are arc-disjoint. Let X ′ ⊆ X (resp., Y ′ ⊆ Y ) be the set of vertices covered
by T−

v (resp., T+
u ) (possibly X ′ or Y ′ is empty).

We say that the pair (T+
u , T−

v ) is extendable (on X ∪ Y ) if D has an out-tree T̂+
u and an in-tree

T̂−
v which are arc-disjoint and such that each of them covers all vertices in X ∪ Y . Note that it is not

required that all arcs of T+
u (T−

v ) are arcs of T̂+
u (T̂−

v ). The following lemmas are used to describe
non-extendable pairs (T+

u , T−
v ). Note that X and Y are always the same below.

Lemma 4.2 Suppose that X dominates Y and no arc between X and Y is used in T+
u or T−

v . If
(T+

u , T−
v ) is non-extendable, then X ′ = Y ′ = ∅, |X ∪Y | ≤ 3 and D 〈X〉 (resp., D 〈Y 〉) is a single vertex

or an arc covered by T+
u (resp., by T−

v ).

Proof. Suppose thatX ′ 6= ∅ or there is an arc ab inD 〈X〉 not used in T+
u , let x ∈ X ′∪{a}, then (T+

u , T−
v )

can be extended as follows: T+
u ∪{xr : r ∈ Y −Y ′}, T−

v ∪{ry : r ∈ X−X ′} or T−
v ∪{ab}∪{ry : r ∈ X−a},

where y is any vertex of Y . By our assumption we may assume that X ′ = ∅ and all arcs in D 〈X〉 are
used in T+

u . By symmetry, we have Y ′ = ∅ and all arcs in D 〈Y 〉 are used in T−
v . This means that

|X | ≤ 2 and |Y | ≤ 2. If |X | = |Y | = 2, say X = {x1, x2}, Y = {y1, y2}, then (T+
u , T−

v ) can be extended
by adding arcs xiyi, i ∈ [2] to T+

u and arcs xiy3−i, i ∈ [2] to T−
v . So the lemma holds by assumption. �

Lemma 4.3 Let a ∈ Y, b ∈ X be two vertices. Suppose that the arc between a and b belongs to T−
v and

all other arcs between X and Y go from X to Y and none of these arcs are used in T+
u and T−

v . If
(T+

u , T−
v ) is non-extendable, then X ′ = {b} and one of the following statements holds:

(i) X = X ′, a /∈ Y ′ and all in-arcs of a in D 〈X ∪ Y 〉 are used in T−
v .

(ii) |(X− b)∪Y | ≤ 3 and D 〈X − b〉 (resp., D 〈Y 〉) is a single vertex or an arc covered by T+
u (resp.,

by T−
v ). Moreover, all arcs in D 〈X〉 which not covered by T+

u are out-arcs of b.

Proof. As the arc between a and b is used in T−
v , the vertex b clearly belongs to X ′. If there exists an

x ∈ X ′−b, then (T+
u , T−

v ) can be extended as follows: T+
u ∪{xr : r ∈ Y −Y ′} and T−

v ∪{ra : r ∈ X−X ′}.
It follows by the assumption that x does not exist and then X ′ = {b}.

First we consider the case X = X ′ = {b}. Note that in this case, T−
v covers all vertices of X ∪ Y .

If a ∈ Y ′, that is, a ∈ T+
u , or there is an in-arc aIa of a in D 〈X ∪ Y 〉 not used in T−

v , then T+
u ∪ {br :

r ∈ Y − Y ′} or T+
u ∪ {aIa} ∪ {br : r ∈ Y − Y ′ − a} extends T+

u , a contradiction. So (i) follows by the
assumption.

For the case that X − b 6= ∅, the first statement of (ii) follows from Lemma 4.2 when we consider
X − b and Y . Suppose that there is an arc wz with w 6= b in D 〈X〉 which is not in T+

u . Then (T+
u , T−

v )
can be extended in the following way: T+

u ∪ {wr : r ∈ Y − Y ′} and T−
v ∪ {wz} ∪ {ra : r ∈ X − b− w},

which contradicts our assumption. So all arcs in D 〈X〉 which not covered by T+
u are out-arcs of b and

then (ii) holds. �

Lemma 4.4 Let ab be an arc from Y to X. Suppose that all arcs between X and Y go from X to
Y except for the arc ab. If X ′ = Y ′ = ∅ and (T+

u , T−
v ) is non-extendable, then one of the following

statements holds:
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(i) X = {b, x}, Y = {a, y}, A(D 〈X〉) = {bx} and A(D 〈Y 〉) = {ya} and either bx ∈ T+
u or ya ∈ T−

v ;
(ii) Y = {a} and either all out-arcs of b in D 〈X〉 are used in T+

u or all arcs not covered by T+
u in

D 〈X〉 are out-arcs of b.
(iii) X = {b} and either all in-arcs of a in D 〈Y 〉 are used in T−

v or all arcs not covered by T−
v in

D 〈Y 〉 are in-arcs of a.

Proof. First observe that no arc between X and Y is used in T+
u and T−

v as X ′ = Y ′ = ∅. Suppose
that |X | ≥ 3 and |Y | ≥ 2, say x1, x2, b ∈ X and y, a ∈ Y . Then T+

u ∪ {x1y, x2a} ∪ {br : r ∈ Y − a− y}
extends T+

u and T−
v ∪ {x1a} ∪ {ry : r ∈ X − x1} extends T−

v , a contradiction. So we may assume that
either |X | ≤ 2 or |Y | = 1. By symmetry we have that either |Y | ≤ 2 or |X | = 1.

Next we show that if |Y | ≥ 2 and D 〈X〉 has an arc wz with w 6= b not in T+
u , then (T+

u , T−
v ) is

extendable. Let y be a vertex in Y − a. Then (T+
u , T−

v ) can be extended as follows: T+
u ∪ {wr : r ∈ Y }

and T−
v ∪ {wz} ∪ {ry : r ∈ X − w}. By assumption, we may assume that either |Y | = 1 or all arcs in

D 〈X〉 which not in T+
u are out-arcs of b. By symmetry, we have that either |X | = 1 or all arcs in D 〈Y 〉

which not in T−
v are in-arcs of a.

Suppose that |X | = |Y | = 2, say X = {x, b} and Y = {y, a}. If x dominates b, then xb belongs to
T+
u by the argument above and hence xab ∪ xy and T−

v ∪ xby extend T+
u and T−

v , respectively1. So we
assume that D 〈X〉 consists of arc bx. By symmetry, we have D 〈X〉 = ya. Moreover, either bx ∈ T+

u or
ya ∈ T−

v , otherwise, (bya, bxa) extends (T+
u , T−

v ). This implies that (i) holds.
Now it suffices to consider the case that |X | = 1 or |Y | = 1. Suppose that |Y | = 1. If D 〈X〉 has an

out-arc bbo of b and an arc wz with w 6= b such that none of the arcs bb0 and wz are used in T+
u , then

(T+
u , T−

v ) can be extended in the following way: T+
u ∪ {wa} and T−

v ∪ {wz, bbo} ∪ {ra : r ∈ X − b−w},
which contradicts our assumption. So (ii) holds and by symmetry (iii) holds if |X | = 1. �

5 Arc-disjoint branchings and paths in semicomplete digraphs

If D has a good (u, v)-pair, then for every vertex w of D it is the case that D has a (w, v)-path which
is arc-disjoint from some out-branching B+

u rooted at u. It turns out that this partial problem also has
a simple and very natural characterization for semicomplete digraphs.

Theorem 5.1 Let D = (V,A) be a semicomplete digraph and let u,w, v be three vertices (not necessarily
distinct) such that D has an out-branching rooted at u and a (w, v)-path. Then D has an out-branching
rooted at u which is arc-disjoint from some (w, v)-path if and only if D has a pair of arc-disjoint (u, z)-
and (w, v)-paths for every vertex z ∈ V .

Proof. The necessity is trivial. To see the sufficiency, observe that for the case u = w, by Lemma 2.6, we
may assume that there exists a partition V1, V2 of V such that v ∈ V1, u ∈ V2 and d+D(V2) = 1. Then for
any vertex z ∈ V1, D has no pair of arc-disjoint (u, z)- and (w, v)-paths, contradicting our assumption.
So it suffices to consider the case u 6= w.

Let D′ be an auxiliary digraph obtained from D by adding a new vertex s together with arcs su, sw.
If there are two arc-disjoint out-branchings with root s in D′, then it is clear that D has the desired
branching and path. Hence by Theorem 1.1, we may assume that there is a subset V1 ⊆ V (D′) − {s}
such that d−D′(V1) ≤ 1. Let V2 = V − V1. Clearly, s ∈ V2. By the construction and the fact that
d−D′(V1) ≤ 1, we have either u /∈ V1 or w /∈ V1. Furthermore, since D has an out-branching rooted at u,
we have either u ∈ V1, w ∈ V2 or u,w ∈ V2.

If u ∈ V1, w ∈ V2, then the arc su is the only arc entering V1 in D′ and hence V1 has in-degree zero
in D. Since there is a (w, v)-path in D, the vertex v belongs to V2 and D 〈V2〉 contains a (w, v)-path
P . Now the desired pair can be obtained by taking P and an out-branching in D consisting of an
out-branching with root u in D′ 〈V1〉 and all arcs {ur : r ∈ V2 − s}. So we may assume that both u and
w belong to V2 and moreover, d−D′(V1) = d−D(V1) = 1 as D has an out-branching rooted at u. Let xy
be the arc entering D 〈V1〉. By the assumption, there is a pair of arc-disjoint (u, y)- and (w, v)-paths
Pu,y and Pw,v in D. Thus we must have v ∈ V2. Now we construct an out-branching B+

u in D which is
arc-disjoint with Pw,v as follows: B+

u = B+
y,D〈V1〉

∪Pu,y ∪ {yr : r ∈ V2 −{s}− V (Pu,y)}, where B
+
y,D〈V1〉

exists as D has an out-branching rooted at u. This completes the proof. �

1Note that in this case the new out-tree does not use all arcs of the old out-tree T
+
u .
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Theorem 5.2 Let D be a semicomplete digraph and let u,w, v be three vertices (not necessarily distinct)
such that D contains an out-branching rooted at u and a (w, v)-path. Then D has an out-branching with
root u which is arc-disjoint from some (w, v)-path unless one of the following statements holds.

(i) Out(D) = {u} = {w} and u is the only in-neighbour of v in D. In particular, (D, u,w, v) is of
type A with V1 = {v} in Definition 3.1.

(ii) The vertices u,w, v belong to the same component of D, i.e., D 〈Out(D)〉, and (D 〈Out(D)〉 , u, w, v)
is one of the types in Definition 3.1.

Proof. Observe that u ∈ Out(D) as there is an out-branching rooted at u in D. Then the theorem
follows by Theorem 5.1 and Theorem 3.4. It should be noted that if (D 〈Out(D)〉 , w, u, z) is one of the
types in Definition 3.1 and v ∈ V1, then (D 〈Out(D)〉 , u, w, v) is of type A. �

6 Arc-disjoint in- and out-branchings in semicomplete digraphs

Now we are ready to prove Theorem 1.4. We first state the following result that will be used in the
proof. An arc xy of a strong digraph D is a cut-arc if D \ xy is not strong.

Theorem 6.1 Let D be a strong semicomplete digraph of order at least 4 with a cut-arc xy and let
u ∈ Out(D − xy), v ∈ In(D − xy) be two vertices. Suppose that D contains no good (u, v)-pair. Then
either D is isomorphic to one of the digraphs shown in Figure 1 (d)-(f) or D−xy has exactly two strong
components and one of the following statements holds.

(i) In(D − xy) = {v} = {x} and d+D(y) = 1. Say N+
D(y) = {z}. There is no (u, z)-path in D − yz.

(ii) Out(D−xy) = {u} = {y} and d−D(x) = 1. Say N−
D (x) = {z}. There is no (z, v)-path in D− zx.

Note that if (i) holds, then we have z ∈ V1, Vl−1 = {x} = {v}, Vl = {y} and u /∈ V1 ∪ Vl−1 (possibly
u = y) where D1, . . . , Dl (l ≥ 3) is acyclic ordering of the strong components of D−yz and Vi = V (Di).

Proof. Let Y = In(D − xy) and X = V (D) − Y . As u belongs to Out(D − xy) = Out(D 〈X〉) and
v ∈ Y = In(D − xy), D has an out-branching rooted at u in D 〈X〉 and an in-branching rooted at v
in D 〈Y 〉. Let T+

u and T−
v be any such out- and in-branchings, respectively. As D 〈Y 〉 is strong, by

symmetry, we may assume that the second statement of Lemma 4.4 holds. That is, Y = {x} = {v}
and either all out-arcs of y in D 〈X〉 are used in T+

u or all arcs of D 〈X〉 which are not used by T+
u are

adjacent to y.
Suppose that d+D(y) ≥ 2. Let T+

u be a hamitonian path starting at u in D 〈X〉. Then there is an
out-arc of y not used in T+

u and hence, by the remark above, all arcs not covered by T+
u in D 〈X〉

are adjacent to y. It follows by Lemma 4.1 and the fact |V (D)| ≥ 4 that |X | = 3. Suppose that
T+
u = u1u2u3 with u1 = u is the hamiltonian path in D 〈X〉. Then y ∈ {u1, u3}. First consider the case

y = u1 = u. If u1u3 /∈ A(D), then y dominates x as d+D(y) ≥ 2. Then T+
u ∪ {u3v} and u3yv ∪ {u2v}

is a good (u, v)-pair, which contradicts our assumption. So u1u3 ∈ A(D). If u2 dominates u1, then
T+
u ∪ {u2v} and u2u1u3v form a good (u, v)-pair, a contradiction again. Then D is isomorphic to the

digraph shown in Figure 1 (d) if u3u1 /∈ A(D) (resp., in Figure 1 (f) if u3u1 ∈ A(D). For the case that
y = u3, the vertex u3 dominates u1 as d+D(y) ≥ 2 and then u1u2vu3 and u2u3u1v form a good (u, v)-pair,
a contradiction again.

It remains to consider the case d+D(y) = 1. Say N+
D (y) = {z}. This means that yz is a cut-arc of

D. Let V1, . . . , Vl be the acyclic ordering of the strong components of D − yz. It follows by d+D(y) = 1
that |Vl| = |{y}| = 1. Since there is only one (x, y)-path in D (recall that xy is a cut-arc), we have
Vl−1 = {x} = {v}. As u ∈ Out(D − xy) and v ∈ In(D − xy), we have u 6= v and then u /∈ Vl−1.

Note that if u /∈ V1, then the statement (i) holds so we may assume that u ∈ V1. Next we claim that
there is a good (u, v)-pair, which contradicts our assumption. Recall that X = V1 ∪ · · · ∪ Vl−2 ∪ {y}.
As |V (D)| ≥ 4 we have that |V1 ∪ · · · ∪ Vl−2| ≥ 2. Moreover, there is a spanning out-tree (that is, an
out-branching) T+

u in D 〈X〉 such that yz does not belong to T+
u . By the argument in the first paragraph

of the proof, all arcs not covered by T+
u in D 〈X〉 are adjacent to y. Thus all arcs in D 〈V1 ∪ · · · ∪ Vl−2〉

are used in T+
u , which means that |V1 ∪· · ·∪Vl−2| ≤ 2. It follows by |V (D)| ≥ 4 that equality holds, say

D 〈V1 ∪ · · · ∪ Vl−2〉 = uw, then uwvy and wyuv form the desired pair, which completes the proof. �

Lemma 6.2 Let D be a semicomplete digraph and u, v two distinct vertices. If D is isomorphic to one
of digraphs shown in Figure 1, then there is no good (u, v)-pair in D.
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Proof. If D has a good (u, v)-pair, then the size of D must be at least 2(|V (D)| − 1), moreover, if v
dominates u, then |A(D)| ≥ 2|V (D)| − 1 since the arc vu cannot be used in any (u, v)-pair. This shows
that D has no good (u, v)-pair if it is isomorphic to one of digraphs in Figure 1 (a)-(d).

For the case that D is isomorphic to the digraph in Figure 1 (e), suppose that D has a good (u, v)-
pair (B+

u , B−
v ). Then every arc except for vu either belongs to B+

u or B−
v as |A(D− vu)| = 2|V (D)|− 2.

Let V (D)− {u, v} = {w, z} such that w dominates z. The only out-arc zv of z must belong to B−
v and

vw must belong to B+
u . By the definitions of out- and in-branchings, we have wv, uw ∈ A(B−

v ) and
then B+

u = uz ∪ vwz. However, B+
u is not an out-branching rooted at u, a contradiction. By a similar

argument, D has no good (u, v)-pair when it is not isomorphic to the digraph shown in Figure 1 (f). �

Proof of Theorem 1.4:

Proof. Observe that if there is a good (u, v)-pair, then clearly there are arc-disjoint (u, z)- and (w, v)-
paths for every choice of vertices z and w. Hence the necessity follows by Lemma 6.2. Next we show the
sufficiency. If u = v, then it follows from Theorem 1.3 that the desired branchings exist since if there
was an arc e = pq as in the theorem, then D would have no pair of arc-disjoint (u, q)- and (p, x)-paths.
Hence we can assume that u 6= v.

Suppose first that D is non-strong. Since there is a (u, z)-path and a (w, v)-path for any z, w,
we have that u belongs to Out(D) and v belongs to In(D). By Lemma 2.5, we may assume that
|V (D)| ≤ 3. Since D is not isomorphic to one of digraphs shown in Figure 1 (a)-(b), either |Out(D)| = 2
or |In(D)| = 2 and then there is a good (u, v)-pair in D.

It remains to consider the case that D is strong. Further, by Theorem 1.2, we may assume that D is
not 2-arc-strong, implying that it has a cut-arc. Let xy be a cut-arc of D and let U1, . . . , Ul (l ≥ 2) be
the acyclic ordering of the strong components of D− xy. Note that y ∈ U1 and x ∈ Ul. Suppose that u
belongs to Ui and v belongs to Uj . Since there exist arc-disjoint (u, y)- and (x, v)-paths in D, either u
belongs to U1 or v belongs to Ul (or both), that is, either i = 1 or j = l.

Note that |V (D)| ≥ 3 as it has two arc-disjoint (u, v)-paths. If |V (D)| = 3, say V (D) = {u, v, w},
then u dominates w, v and w dominates v. It can be checked easily that there is a good (u, v)-pair if
v dominates w or w dominates u. Hence we can assume that v dominates u and then D is isomorphic
to the digraph shown in Figure 1 (c), contradicting our assumption. Therefore, we may assume that
|V (D)| ≥ 4.

Suppose first that u ∈ U1 and v ∈ Ul, that is, i = 1, j = l. By Theorem 6.1 we are done, unless
either (i) or (ii) in the theorem holds. By symmetry, we may assume that the statement (i) of Theorem
6.1 holds. However, then there is no pair of arc-disjoint (u, z)- and (y, v)-paths in D, which contradicts
our assumption.

Consider next the case i = 1 and j 6= l. Let X = U1 ∪ · · · ∪ Uj and Y = V (D) −X . If D 〈X〉 does
not have an out-branching rooted at u which is arc-disjoint from some (y, v)-path, then by Lemma 5.2,
(D, u, y, v) is one of the types in Definition 3.1. It follows by Lemma 3.1 that D has no arc-disjoint
(u, z)- and (y, v)-paths for any vertex z ∈ V1, contradicting our assumption. So we may assume that
D 〈X〉 has an out-branching T+

u rooted at u and a (y, v)-path Py,v which are arc-disjoint.
Let Px be a hamiltonian path ending in x in D 〈Y 〉. Such path Px exists as x belongs to In(D−xy).

Let T−
v = Px ∪ {xy} ∪ Py,v. Clearly, all vertices of Py,v are covered by T−

v , that is, X ′ = V (Py,v). Now
Lemma 4.3 implies that we are done unless |X ′| = |V (Py,v)| = 1. This means that v = y ∈ Out(D−xy)
and then X = Out(D − xy). Moreover, |X | ≥ 2 as u 6= v. Hence, we may assume that the second
statement of Lemma 4.3 holds. That is, |(X − y) ∪ Y | ≤ 3 and D 〈X − y〉 (resp., D 〈Y 〉) is a single
vertex or an arc covered by T+

u (resp., by T−
v ). Moreover, all arcs in D 〈X〉 which not covered by T+

u

are out-arcs of y.
On the other hand, as |V (D)| ≥ 4, we have |(X − y) ∪ Y | ≥ 3 and then the equality holds. Suppose

that |Y | = 2, say Y = {x, x′}, then |X | = 2 and X = {u, v} with v = y as u 6= v. In this case, uvx′ ∪ux
and ux′xv form a good (u, v)-pair. Thus it remains to consider the case that |Y | = 1 and |X | = 3, say
X = {u, v, w} with v = y. Recall that D 〈X〉 is strong as X = Out(D − xy). Since D 〈X − y〉 is an arc
covered by T+

u (as we are in Case (ii) of Lemma 4.3) and all arcs in D 〈X〉 which are not used by T+
u

are out-arcs of y (i.e., v), we may assume that uwvu is a hamitonian cycle in D 〈X〉 and T+
u = uwv.

Then D is isomorphic to the digraph in Figure 1 (d) or (e), contradicting our assumption.
Finally assume that that i 6= 1 and j = l. By applying similar arguments as above to the digraph

obtained from D by reversing all arcs, we either find that D has the desired branchings or it would be
isomorphic to one of the digraphs in Figure 1 (d) or (f), a contradiction again. This completes the proof
of Theorem 1.4. �

All our arguments leading to the proof of Theorem 1.4 are constructive and can be converted to
polynomial algorithms. Hence we have the following corollary.

9



Corollary 6.3 There exists a polynomial algorithm which given a semicomplete digraph D = (V,A)
and vertices u, v of D either constructs a good (u, v)-pair or produces a certificate that D has no such
pair.

The following equivalent structural characterization of semicomplete digraphs with good (u, v)-pairs
is often easier to use when one wishes to study digraphs that are more general than semicomplete
digraphs. In particular we use it in [7] to study good (u, v)-pairs in so-called semicomplete compositions.

Theorem 6.4 Let D be a semicomplete digraph and u, v be arbitrary chosen vertices (possibly u = v).
Then D has a good (u, v)-pair if and only if (D, u, v) satisfies none of the following conditions.

(i) D is isomorphic to one of the digraphs in Figure 1.
(ii) D is non-strong and either u is not in the initial component of D or v is not in the terminal

component of D.
(iii) D is strong and there exists an arc e ∈ A(D) such that u is not in the initial component of

D − e and v is not in the terminal component of D − e.
(iv) D is strong and there exists a partition V1, . . . , V2α+3 of V (D) for some α ≥ 1 such that

v ∈ V2, u ∈ V2α+2 and all arcs between Vi and Vj with i < j from Vi to Vj with the following exceptions.
There exists precisely one arc from Vi+2 to Vi for all i ∈ [2α+1] and it goes from the terminal component
of D 〈Vi+2〉 to the initial component of D 〈Vi〉.

Proof. We first prove the necessity. Lemma 6.2 shows that D has no such pair if (i) holds. It is not
difficult to check that when (ii) or (iii) holds, there is no good (u, v)-pair in D as no such pair can cover
the vertices in the initial and terminal components in the same time. If (iv) holds, let z and w be two
vertices of V1 and V2α+3, respectively. Then there is no pair of arc-disjoint (u, z)- and (w, v)-paths (due
to Lemma 3.1). By Theorem 1.4, D has no good (u, v)-pair.

Now suppose that (D, u, v) satisfies none of the conditions (i)-(iv). We prove that then there exists
a good (u, v)-pair. If D is non-strong, since (D, u, v) does not satisfy condition (ii), we have u ∈ Out(D)
and v ∈ In(D). From Lemma 2.5, we may assume that D has order at most three. Since D is not
isomorphic to one of digraphs shown in Figure 1 (a)-(b), either |Out(D)| = 2 or |In(D)| = 2 and then
there is a good (u, v)-pair in D.

For the case that D is strong, suppose for contradiction that there is no good (u, v)-pair. Then by
Theorem 1.4, there exist z, w such that there is no pair of arc-disjoint (u, z)- and (w, v)-paths in D.
Clearly, D has a (u, z)-path and a (w, v)-path as D is strong. By Theorem 3.4, either (D, u,w, v) is
one of the types in Definition 3.1, or (D,w, u, z) is one of the types in Definition 3.1 and the vertex v
belongs to V1. It is not difficult to check that (D, u, v) satisfies condition (iii) or (iv), which contradicts
our assumption. This completes the proof. �
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[9] K. Bérczi, S. Fujishige, and N. Kamiyama. A linear-time algorithm to find a pair of arc-disjoint
spanning in-arborescence and out-arborescence in a directed acyclic graph. Inform. Process. Lett.,
109(23-24):1227–1231, 2009.

[10] P. Camion. Chemins et circuits hamiltoniens des graphes complets. C. R. Acad. Sci. Paris,
249:2151–2152, 1959.

[11] G. Z. Gutin and Y. Sun. Arc-disjoint in- and out-branchings rooted at the same vertex in compo-
sitions of digraphs. Discret. Math., 343(5):111816, 2020.

[12] L. Lovász. On two min–max theorems in graph theory. J. Combin. Theory Ser. B, 21:96–103, 1976.
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