
Policy gradient learning methods for stochastic control with

exit time and applications to share repurchase pricing

Mohamed HAMDOUCHE∗ Pierre HENRY-LABORDERE† Huyên PHAM‡

Abstract

We develop policy gradients methods for stochastic control with exit time in a
model-free setting. We propose two types of algorithms for learning either directly
the optimal policy or by learning alternately the value function (critic) and the opti-
mal control (actor). The use of randomized policies is crucial for overcoming notably
the issue related to the exit time in the gradient computation. We demonstrate the
effectiveness of our approach by implementing our numerical schemes in the applica-
tion to the problem of share repurchase pricing. Our results show that the proposed
policy gradient methods outperform PDE or other neural networks techniques in a
model-based setting. Furthermore, our algorithms are flexible enough to incorporate
realistic market conditions like e.g. price impact or transaction costs.

1 Introduction

Let us consider a controlled Markov state process X = (Xα)t valued in X ⊂ Rd with a
control process α = (αt) valued in A ⊂ Rm. Given an open set O of X , we denote by τ
= τα the exit time of the domain O before a terminal horizon T < ∞, i.e.,

τ = inf{t ≥ 0 : Xt /∈ O} ∧ T,

with the usual convention that inf ∅ =∞. The objective is then to maximize over control
process α a criterion in the form

J(α) = E
[
g(Xα

τ)
]
, → V0 = sup

α
J(α), (1.1)

for some terminal reward function g on Rd. In typical examples, X is modelled by a
controlled diffusion process as

dXt = µ(Xt, αt)dt+ σ(Xt, αt)dWt, (1.2)

and we can also consider jump-diffusion processes, which is in particular relevant for
insurance/reinsurance problem with minimization of the ruin probability in finite time.

∗LPSM, Université Paris Cité, hamdouche at lpsm.paris
†Qube Research and Technologies, pierre.henrylabordere at qube-rt.com
‡LPSM, Université Paris Cité, pham at lpsm.paris

1

ar
X

iv
:2

30
2.

07
32

0v
1

 [
q-

fi
n.

C
P]

 1
4

Fe
b

20
23

Remark 1.1. Notice that there is no loss of generality to focus on the above Mayer form,
as the case of Bolza criterion with running reward:

J(α) = E
[∫ τ

0
f(Xα

t , αt)dt+ g(Xα
τ)
]
,

can be reduced to the Mayer form by considering as usual the additional component (Yt)t
of the state process, driven by

dYt = f(Xt, αt)dt,

and the corresponding terminal reward function g̃(x, y) = y + g(x).

The control problem (1.1) with exit time can be solved in a model-based setting,
e.g. when the coefficients µ, σ in (1.2), and the analytical form of g are known, by PDE
methods with splitting scheme as described in appendix B, and eventually by backward
SDE methods, see [4]. In the last years, there has been an important literature about the
use of deep learning techniques in the numerical resolution of stochastic control problems
and PDEs, which have shown success for notably overcoming the curse of dimensionality,
and we refer the reader to the recent surveys by [3] and [6]. However, these methods
do not work well for our class of control problem with exit time. Indeed, for example,
when trying to apply the global method of [9] by approximating the policy by a neural
network with parameters θ, the differentiation of the associated gain function would
lead to a Dirac function due to the presence of an indicator function related to the exit
time, hence the gradient is ill-posed, which prevents an efficient implementation of the
stochastic gradient ascent algorithm.

In this paper, we propose two types of algorithms based on reinforcement learning for
estimating the solution to the control problem (1.1) in a model-free setting, i.e., without
a priori knowledge of the model coefficients. We develop policy gradient methods for
learning approximate optimal control and value function based on samples of state and
rewards. A key feature is to consider parametrized randomized policies, notably for
overcoming the issue related to exit time in the policy gradient representation. Our first
algorithm learns directly the optimal policy, while the second type of algorithm is of
actor-critic nature by learning alternately the policy and the value function. This can
be done either in an offline setting with updates rules based on the whole trajectories
of the state, or in an online setting with update rules in real-time incrementally. Our
algorithms can be viewed as extensions to controlled processes with exit time of policy
gradients in reinforcement learning usually designed for infinite or finite horizon, see [12].

The main application that we develop in this paper for stochastic control in the
form (1.1) concerns the pricing of buyback options in Stock Repurchase Programs (in
short SRPs). Those are defined as transactions initiated by companies to re-buy their
proper stocks for various reasons including the raising of the debt-to-equity ratio or the
improvement of earnings per share by reducing the number of outstanding shares. SRPs
are also an alternative way to distribute the dividends to the shareholders, see [11]. For
more details about SRPs and its regulatory issues and associated tools, the reader can
consult this report [1].

2

There exist several mechanisms for SRPs with complex contracts involving invest-
ment banks, where the company mandates a bank to repurchase its shares through a
derivative product. A well-known example often used by practitioners is Accelerated
Share Repurchases (ASRs), where at time t = 0 the bank borrows a quantity B of
shares required by the company from shareholders, and then purchases progressively
from the open market the quantity B to give it back to shareholders. In addition, the
bank becomes in a long position of an American option where at some exercise time τ ,
the company should pay the bank the average price between 0 and τ for each share.

The valuation of ASRs has recently attracted attention in the literature. Guéant et
al. [8] consider in a discrete time/space model the pricing of ASRs, which leads to a
tree based algorithm. Jaimungal et al. [10] investigate the same problem in continuous
time/space setting by additionally taking into consideration temporary and long-term
market impact, and characterize the execution frontier. Guéant et al. [7] use deep
learning algorithms in the spirit of [5] and [2] for the pricing of ASRs contracts and
buyback contract called VWAP-minus profit-sharing. In such contract, the exercise
time τ is chosen by the bank once the amount of shares requested by the company is
redeemed. In this paper, we consider a buyback contract where the exercise time τ is
entirely characterized by the execution strategy and can not be chosen by any party. We
shall call such a buyback product as Barrier VWAP-minus. Actually, one can show (see
Appendix A) that in absence of market impact, the price of the Barrier VWAP-minus
is equal to the price of the VWAP-minus.

The pricing of barrier VWAP-minus leads to a stochastic control formulation as
in (1.1) where the exit time is defined as the first stopping time when the controlled
inventory exceeds the quantity of shares to be purchased by the bank within a finite
time interval. We implement our algorithms to this pricing problem: since they are
model-free, they are robust to model misspecifications, and are valid notably for general
model for the stock price including market impact and transaction costs.

We first compare our numerical results with those obtained by PDE methods with
splitting scheme as detailed in Appendix B. Our validation test consists in approximating
the optimal policy and then computing the price using Monte Carlo: it provides then
by definition a lower bound to the true price of the constrained VWAP-minus contract.
We show that our model-free policy gradient algorithms yield accurate results similar to
PDE schemes designed in a specific model-based setting. It is also less costly and more
stable than methods performed in [7] in a model-based setting, where the control and the
stopping time are parametrized by two distinct neural networks. Moreover, it has the
advantage to be easily implemented in general factor models including market impact.
We illustrate notably the impact of market impact on the optimal trading policies.

The rest of the paper is structured as follows. We develop in Section 2 the policy
gradient approach with randomized policies, and present our two types of algorithms.
Section 3 is devoted to the application to valuation of SRP, including the case with
market impact and transaction costs, with numerical results illustrating the convergence
and accuracy of our algorithms, and comparison with other methods.

3

2 Policy gradient methods

We consider a time discretization of the stochastic control problem (1.1). Let T =
{t0 = 0 < . . . < ti < . . . < tN = T} be a subdivision of [0, T] of size N with time steps
∆ti = ti+1 − ti, i = 0, . . . , N − 1. By misuse of notation, we denote by (Xti)i∈J0,NK the
Markov decision process (MDP) arising from the time discretization of the controlled
state process (Xt)t, and it is characterized by an initial distribution p0 for Xt0 , and the
transition kernel function p(.|ti, xi, a) representing the probability of the next state Xti+1

given the current state Xti = xi ∈ X , and an action a ∈ A at time ti. Notice that in a
model-free setting, this transition kernel is unknown.

A randomized policy in this discretized time setting is a measurable transition kernel
function π : (ti, xi) ∈ T×X 7→ π(.|ti, xi) ∈ P(A) (the set of probability measures on A),
and we say that α = (αti)i∈J0,N−1K is a randomized feedback control generated from the
stochastic policy π, written as α ∼ π, when αti is drawn from π(.|ti, Xti) at any time ti.

The exit time of the Markov decision process (Xti)i∈J0,NK is given by

τ = inf{ti ∈ T : Xti /∈ O} ∧ tN ,

and the gain functional associated to the Markov decision process with exit time and
randomized feedback control α ∼ π is given by

J(π) = Eα∼π
[
g(Xτ)

]
.

Here the notation Eα∼π[.] means that the expectation is taken when the Markov decision
process (Xti) is controlled by the randomized feedback control α generated from the
stochastic policy π.

We now consider stochastic policies π = πθ with parameters θ ∈ RD, and which
admit densities with respect to some measure ν on A: πθ(da|ti, xi) = ρθ(ti, xi, a)ν(da),
for some parametrized measurable functions ρθ : T×X ×A → (0,∞).

• when A is a finite space, say A = {a1, . . . , aM}, we take ν as the counting measure,
and choose softmax policies, i.e.,

ρθ(ti, xi, am) =
exp

(
φθm(ti, xi)

)∑M
`=1 exp

(
φθ`(ti, xi)

) , m = 1, . . . ,M, (2.1)

where φθm are neural networks on [0, T]×Rd, and θ = (θ1, . . . , θM) gathers all the
parameters of the M neural networks. In this case, the score function is given by

∇θ` log ρθ(ti, xi, am) =
(
δm` − ρθ(ti, xi, a`)

)
∇θ`φθ`(ti, xi).

• whenA is a continuous space of Rm, we can choose typically a Gaussian distribution
on Rm for the stochastic policy, with mean parametrized by neural network µθ(t, x)
valued on A, and variance a positive definite matrix Σ on Rm×m to encourage

4

exploration, e.g. Σ = εIm. In this case, ν is the Lebesgue measure on Rm, and the
density is

ρθ(ti, xi, a) =
1

(2π)m/2det(Σ)
1
2

exp
(
− 1

2

(
a− µθ(ti, xi)

)ᵀ
Σ−1

(
a− µθ(ti, xi)

))
.

In this case, the score function is given by

∇θ log ρθ(ti, xi, a) = ∇θµθ(ti, xi)ᵀΣ−1(a− µθ(ti, xi)).

We then denote, by abuse of notation, J(θ) = J(πθ), the performance function viewed
as a function of the parameter θ of the stochastic policy, and the principle of policy gra-
dient method is to maximize over θ this function by stochastic gradient ascent algorithm.
In a model-free setting, the purpose is then to derive a suitable expectation representa-
tion of the gradient function ∇θJ(θ) that does not involve unknown model coefficients
and transition kernel p(.|t, x, a) of the state process, but only sample observations of the
states Xti , i = 0, . . . , N , hence of the exit time τ , when taking decisions α ∼ πθ, with
known chosen family of densities ρθ.

2.1 Policy gradient representation

Our first main result is to provide a stochastic policy gradient representation for the
performance function J by adapting arguments in the infinite or finite horizon case.

Theorem 2.1. We have

∇θJ(θ) = Eα∼πθ
[
g(Xτ)

N−1∑
i=0

∇θ log ρθ(ti, Xti , αti)1ti<τ

]
. (2.2)

Proof. For a path (x0, . . . , xN) ∈ XN+1, we denote by

ι(x0, . . . , xN) = inf{i ∈ J0, NK : xi /∈ O} ∧N,

so that the exit time of (Xti)i∈J0,NK is written as τ = tι(Xt0 ,...,XtN). Let us then introduce

the function G defined on XN+1 by G(x0, . . . , xN) = g(xι(x0,...,xN)), so that

J(θ) = Eα∼πθ
[
G(Xt0 , . . . , XtN)

]
=

∫
XN+1

∫
AN

G(x0, . . . , xN)p0(dx0)
N−1∏
i=0

πθ(dai|ti, xi)p(dxi+1|ti, xi, ai)

=

∫
XN+1

∫
AN

G(x)p0(dx0)ρNθ (x,a)
N−1∏
i=0

p(dxi+1|ti, xi, ai)ν(dai), (2.3)

where we set x = (x0, . . . , xN), a = (a0, . . . , aN−1), and

ρNθ (x,a) =
N−1∏
i=0

ρθ(ti, xi, ai).

5

By using the classical log-likelihood trick: ∇θρNθ (x,a) =
(
∇θ logρNθ (x,a)

)
ρNθ (x,a),

and noting that

∇θ logρNθ (x,a) =
N−1∑
i=0

∇θ log ρθ(ti, xi, ai),

we deduce by differentiating (2.3) that

∇θJ(θ) =

∫
XN+1

∫
AN

G(x)∇θ logρNθ (x,a)p0(dx0)

N−1∏
i=0

πθ(dai|ti, xi)p(dxi+1|ti, xi, ai)

= Eα∼πθ
[
G(Xt0 , . . . , XtN)

N−1∑
i=0

∇θ log ρθ(ti, Xti , αti)
]
.

Finally, observe that for any i ∈ J0, N − 1K, we have

Eα∼πθ
[
G(Xt0 , . . . , XtN)1ti≥τ∇θ log ρθ(ti, Xti , αti)

]
= Eα∼πθ

[
g(Xτ)1ti≥τ∇θ log ρθ(ti, Xti , αti)

]
= Eα∼πθ

[
g(Xτ)1ti≥τEα∼πθ

[
∇θ log ρθ(ti, Xti , αti)

∣∣Xti

]]
= Eα∼πθ

[
g(Xτ)1ti≥τ ∇θ

(∫
A
ρθ(ti, Xti , a)ν(da)

)
︸ ︷︷ ︸

= 0

]
= 0, (2.4)

which yields the required result.

Alternately, we now provide a second representation formula for the gradient of the
performance function by exploiting the dynamic programming. Let us introduce the
dynamic version of J. For i ∈ J0, NK, and x ∈ X , we define the value (performance)
function associated to the policy πθ

V θ
i (x) := Eα∼πθ

[
g(Xτi)|Xti = x

]
,

where τi = inf{tj ∈ T, tj ≥ ti : Xtj /∈ O} ∧ tN , so that J(θ) = E[V θ
0 (X0)]. We notice

that V θ
N (x) = g(x), for all x ∈ X , and V θ

i (x) = g(x), for all i ∈ J0, N − 1K, and x /∈
O. Moreover, by the dynamic programming (which is here simply reduced to the law of
conditional expectations), we have for i ∈ J0, N − 1K:

V θ
i (x) = Eα∼πθ

[
V θ
i+1(Xti+1)|Xti = x

]
, for x ∈ O. (2.5)

Theorem 2.2. We have

∇θJ(θ) = Eα∼πθ
[N−1∑
i=0

V θ
i+1(Xti+1)∇θ log ρθ(ti, Xti , αti)1ti<τ

]
. (2.6)

6

Proof. From (2.5), we have for (i, xi) ∈ J0, N − 1K×O

V θ
i (xi) =

∫
X

∫
A
V θ
i+1(xi+1)ρθ(ti, x, a)ν(da)p(dxi+1|ti, xi, a).

By differentiating with respect to θ, and using again the log-likelihood trick, we get

∇θV θ
i (xi) =

∫
X

∫
A
∇θ
[
V θ
i+1(xi+1)

]
ρθ(ti, xi, a)ν(da)p(dxi+1|ti, xi, a)

+

∫
X

∫
A
V θ
i+1(xi+1)∇θ[log ρθ(ti, xi, a)]ρθ(ti, xi, a)ν(da)p(dxi+1|ti, xi, a)

=

∫
O

∫
A
∇θ
[
V θ
i+1(xi+1)

]
πθ(da|ti, xi)p(dxi+1|ti, xi, a)

+ Eα∼πθ
[
V θ
i+1(Xti+1)∇θ log ρθ(ti, Xti , αti)|Xti = xi

]
, i ∈ J0, N − 1K,

for all xi ∈ O, by noting that ∇θV θ
i+1(x) = 0 for x /∈ O, and V θ

i+1(x) = V θ
i+1(x) for x ∈

O. By iterating over i, and noting that ∇θV θ
N (.) ≡ 0, we deduce that for all x0 ∈ O

∇θV θ
0 (x0) = Eα∼πθ

[N−1∑
i=0

V θ
i+1(Xti+1)∇θ log ρθ(ti, Xti , αti)

i∏
j=1

1Xtj∈O
∣∣Xt0 = x0

]
Since

∏i
j=1 1Xtj∈O = 1ti<τ and ∇θV θ

0 (.) = 0 on X \O, we get the required representation
formula.

Remark 2.3. It is known that stochastic gradient policy algorithms suffer from high vari-
ance, and a good alternative is to use a baseline. For instance, in the representation
(2.6), we can substract to V θ

i+1(Xti+1) the term V θ
i (Xti) without biaising the gradient,

i.e.

∇θJ(θ) = Eα∼πθ
[N−1∑
i=0

(
V θ
i+1(Xti+1)− V θ

i (Xti)
)
∇θ log ρθ(ti, Xti , αti)1ti<τ

]
, (2.7)

by the same trick as in (2.4):

Eα∼πθ
[
V θ
i (Xti)∇θ log ρθ(ti, Xti , αti)1ti<τ

]
= Eα∼πθ

[
V θ
i (Xti)1ti<τEα∼πθ

[
∇θ log ρθ(ti, Xti , αti)) | Xti

]]
= Eα∼πθ

[
V θ
i (Xti)1ti<τ ∇θ

(∫
A
ρθ(ti, Xti , a)ν(da)

)
︸ ︷︷ ︸

= 0

]
= 0.

2.2 Algorithms

We now propose policy gradient algorithms which are based on the representation of the
previous section. They do not require necessarily the knowledge of model coefficients

7

and transition kernel p(.|t, x, a) of the state process, but only sample observations of
the states Xti , i = 0, . . . , N , when taking decisions α according to the chosen family
of randomized policies, via e.g. an environment simulator (blackbox), hence of the exit
time τ . They do neither require the knowledge of the analytical form of the reward
function g, and instead, we can consider that given an input/observation of a state x,
the associated output/reward g(x) is evaluated via e.g. a blackbox simulator.

Our first algorithm (see pseudo-code in Algorithm 1) is based on the gradient repre-
sentation (2.2).

Algorithm 1: Stochastic gradient policy

Input data: Number of episodes E, mini-batch size K, learning rate η for policy
gradient estimation; Parametrized family of randomized policies πθ with
densities ρθ;
Initialization: parameter θ;
for each episode e = 1, . . . , E do

select a random path k = 1, . . . ,K;

Initialize state X
(k)
0 ∈ O;

for i = 0, . . . , N − 1 do

Generate action α
(k)
ti
∼ πθ(.|ti, X

(k)
ti

)

Simulate by a model or observe (e.g. by blackbox) state X
(k)
ti+1

If X
(k)
ti+1

/∈ O or ti+1 = T , store the exit time τ (k) = ti+1, compute or

observe by blackbox G(k) := g(X
(k)

τ (k)), and close the loop;
Otherwise i ← i+ 1;

end
Compute for path k

Γ
(k)
θ := G(k)

∑
ti<τ (k)

∇θ log ρθ(ti, X
(k)
ti
, α

(k)
ti

)

Update parameters of the policies: θ ← θ + η 1
K

∑K
k=1 Γ

(k)
θ ;

end
Return: πθ

Our second type of algorithm is based on the gradient representation (2.7), and is of
actor-critic type: it consists in estimating simultaneously via fixed-point iterations the
randomized optimal policy (the actor) by policy gradient (PG), and the value function
(critic) by performance evaluation relying on the martingale property relation (2.5).
More precisely, in addition to the parametrized family πθ of randomized policies, we are
given a family of functions Vφ on [0, T] × X , with parameter φ, e.g. neural network,
aiming to approximate the value function. The parameters (θ, φ) are then updated
alternately as follows: given a current estimation (θ(n), φ(n)), the parameter θ is updated

8

according to the PG (2.7) by replacing V by Vφ(n) :

θ(n+1) = θ(n) + ηEα∼π
θ(n)

[∑
ti<τ

(
Vφ(n)(ti+1, Xti+1)− Vφ(n)(ti, Xti)

)
∇θ log ρθ(n)(ti, Xti , αti)

]

while φ is updated by minimizing the square regression error:

E
[∣∣∣Vφ(n)(ti+1, Xti+1)− Vφ(ti, Xti)

∣∣∣21Xti∈O

]
.

Notice that we only need to learn the value function on the domain O by sampling the
state process until the exit time τ , as it is extended on X \ O by the reward g.

The pseudo-code of our Actor-Critic algorithm is described in Algorithm 2.

Algorithm 2: Actor-Critic (offline)

Input data: Number of episodes E, mini-batch size K, learning rates ηG, ηV for
policy and value function estimation; Parametrized family πθ with densities ρθ
for randomized policies, and Vφ for value function;
Initialization: parameter θ, φ;
for each episode e = 1, . . . , E do

select a random path k = 1, . . . ,K;

Initialize state X
(k)
0 ∈ O;

for i = 0, . . . , N − 1 do

Generate action α
(k)
ti
∼ πθ(.|ti, X

(k)
ti

)

Simulate by a model or observe (e.g. by blackbox) state X
(k)
ti+1

If X
(k)
ti+1

/∈ O or ti+1 = T , set τ (k) = ti+1, Vφ(ti+1, X
(k)
ti+1

) = g(X
(k)
ti+1

)
computed e.g. by blackbox, and close the loop;

Otherwise i ← i+ 1;
end
Compute for path k

Γ
(k)
θ :=

∑
ti<τ (k)

(
Vφ(ti+1, X

(k)
ti+1

)− Vφ(ti, X
(k)
ti

)
)
∇θ log ρθ(ti, X

(k)
ti
, α

(k)
ti

)

∆
(k)
φ :=

∑
ti<τ (k)

(
Vφ(ti+1, X

(k)
ti+1

)− Vφ(ti, X
(k)
ti

)
)
∇φVφ(ti, X

(k)
ti

)

Actor update: θ ← θ + ηG 1
K

∑K
k=1 Γ

(k)
θ ;

Critic update: φ ← φ + ηV 1
K

∑K
k=1 ∆

(k)
φ ;

end
Return: πθ, Vφ.

In the above actor-critic algorithm, the parameters are updated once the whole state
trajectories are sampled. We can design an online version where the parameters are
updated in real-time incrementally, see pseudo-code in Algorithm 3.

9

Algorithm 3: Actor-Critic (online)

Input data: Number of episodes E, mini-batch size K, learning rates ηG, ηV for
policy and value function estimation; Parametrized family πθ with densities ρθ
for randomized policies, and Vφ for value function;
Initialization: parameter θ, φ;
for each episode e = 1, . . . , E do

select a random path k = 1, . . . ,K;

Initialize state X
(k)
0 ∈ O;

for i = 0, . . . , N − 1 do

Generate action α
(k)
ti
∼ πθ(.|ti, X

(k)
ti

)

Simulate by a model or observe (e.g. by blackbox) state X
(k)
ti+1

If X
(k)
ti+1

/∈ O or ti+1 = T , set τ (k) = ti+1, Vφ(ti+1, X
(k)
ti+1

) = g(X
(k)
ti+1

)
computed e.g. by blackbox

Actor update:

θ ← θ + ηG
(
Vφ(ti+1, X

(k)
ti+1

)− Vφ(ti, X
(k)
ti

)
)
∇θ log ρθ(ti, X

(k)
ti
, α

(k)
ti

)

Critic update:

φ← φ+ ηV
(
Vφ(ti+1, X

(k)
ti+1

)− Vφ(ti, X
(k)
ti

)
)
∇φVφ(ti, X

(k)
ti

)

If X
(k)
ti+1

/∈ O or ti+1 = T , close the loop; Otherwise i ← i+ 1;

end

end
Return: πθ, Vφ.

3 Application to Share Repurchase Programs Pricing

3.1 Problem formulation

We consider a company/client with stock price S. This client mandates a bank to buy
a quantity B of shares of stock within a period [0, T]. At early termination date τ or at
maturity T if no early termination has appeared, the client pays to the bank the Volume
Weighted Average Price (in short VWAP) defined as Vτ := 1

τ

∫ τ
0 Stdt, discounted by the

number of shares, i.e., the amount B Vτ . The bank gives to the client the quantity B of
shares, and its value at τ is BSτ . From the bank perspective, it is equivalent to being
long an option with payoff B(Vτ − Sτ) at τ . If the bank fails to collect the quantity B
before T for the company, it must pay a penalty to the client. For the sake of simplicity,
we have not included rate, dividends and repo, although this can be easily incorporated.

We denote by (Qt)t∈[0,T] the quantity of shares (inventory) hold by the trader of the
bank, and governed by

dQt = αtdt,

10

where α represents the trading speed, valued in [0, a], for some constant a ∈ (0,∞).
The underlying stock price S is a continuous time process, possibly controlled by α in
presence of permanent market impact. The dynamics of the VWAP process (Vt)t and of
the cumulated cost process (Ct)t are given by

dVt =
(St − Vt

t

)
dt, 0 < t ≤ T, V0 = S0, dCt = αtStdt, C0 = 0.

The profit and loss (PnL) of the bank at execution time τ ≤ T is then given by

PnLατ = B(Vτ − Sτ)− λ(B −Qτ)+ − βBCτ ,

where λ > 0 is a penalization parameter, effective when τ = T , and QT < B, and β
≥ 0 is a transaction cost parameter. The price of the barrier VWAP-minus contract is
determined by the following stochastic control problem

PBV := sup
α∈A

E
[
PnLατα

]
,

where A is the set of admissible trading strategies, and τα := inf{t > 0 | Qt ≥ B} ∧ T is
the early termination time of the contract, defined as the first time when the inventory
exceeds the required quantity B of shares. This fits into the form (1.1) with state
variables X = (S, V,Q,C).

Remark 3.1. In this context, the price of the ASR is given by

PASR := sup
α∈A

sup
τ̄∈T0,T

E
[
PnLατ̄

]
,

while the price of the VWAP-minus contract as considered in [7] is given by

PV := sup
α∈A

sup
τ̄∈Tτα,T

E
[
PnLατ̄

]
,

where Tt,T is the set of stopping times valued in [t, T]. The prices of these contracts have
been computed in [7] by using two distinct neural networks for approximating the policy α
and the stopping time τ̄ , and by definition, we should have PASR ≥ PV ≥ PBV . Actually,
one can show that PV = PBV in absence of market impact and transaction costs, see
Appendix A. In other words, the pricing problem for the VWAP-minus can be reduced
to a stochastic control with exit time, and there is no need to consider an additional
optimization over stopping times τ̄ , which is quite advantageous from a numerical point
of view.

The algorithm proposed in [7] considers two neural networks: pθ for the randomized
stopping time and aξ for trading rate to estimate the optimal strategy leading to PV .
The optimisation is performed by a stochastic gradient ascent with the loss function

L(θ, ξ) = E
[N−1∑
i=0

i−1∏
j=0

(
1− pθ(tj , Xtj)

)
pθ(ti, Xti)PnLti +

N−1∏
j=0

(
1− pθ(tj , Xtj)

)
PnLtN

]
.

11

Here
∏i−1
j=0

(
1− pθ(tj , Xtj)

)
pθ(ti, Xti) represents the probability to exercise at ti, for a

given path of the state variables. For the profit and loss PnL, (B −Qti)+ is replaced by
|B −Qti | to prevent the agent from buying once the barrier is reached. Notice that the
computation of the gradient of L with respect to θ and ξ is extremely costly. Furthermore,
the numerical experiments show highly unstable results. Instead, our policy gradient
algorithms is less costly and show stable results.

3.2 Numerical results

For the numerical results and comparison with other methods, we consider a price process
with linear permanent price impact, governed by

dSt = St
(
γαtdt+ σdWt), 0 ≤ t ≤ T,

where γ ≥ 0 is a constant market impact parameter. The value function P (t, x) with t
∈ [0, T], x = (s, v, q, c) ∈ R∗+ × R∗+ × R+ × R+, is solution to the Bellman equation:

∂tP + a
(
γs∂sP + s∂cP + ∂qP

)+
(3.1)

+
s− v
t

∂vP +
1

2
σ2s2∂2

sP = 0, t ∈ (0, T), (s, v, q, c) ∈ R∗+ × R∗+ × [0, B)× R+,

with the boundary conditions:{
P (t, x) = B(v − s)− βBc, t ∈ [0, T], (s, v, q, c) ∈ R∗+ × R∗+ × [B,∞)× R+,
P (T, x) = B(v − s)− λ(B − q)+ − βBc, (s, v, q, c) ∈ R∗+ × R∗+ × R+ × R+.

Notice that the optimal feedback control is of bang-bang type, namely:

â(t, x) =

{
0 if γs∂sP + s∂cP + ∂qP ≤ 0,
a otherwise,

and therefore, we shall consider a softmax randomized policy as in (2.1) with two possible
values in {0, a}.

For numerical experiments of our algorithms to the pricing of Barrier VWAP-minus,
we neglect transaction costs β = 0, and take the following parameters: T = 60 days,
S0 = 1, B = 1, and a ranging from 5.04 to 25.2, λ = 5, ∆t = 1/252, number of
Monte-Carlo simulations: NMC = 105.

For the architecture of the neural networks for the randomized policies and the value
function (for the actor-critic AC algorithm), we have used neural networks with 2 hidden
layers of dimension 8 (linear ouput and Relu as intermediate activation function). The
SGD is an Adam algorithm with standard hyper-parameters and 64 as mini-batch size
for SGP and 32 for AC1. We first compute the price PBV × 104 in absence of market
impact γ = 0, and compare with the results obtained by HJB solver2 (see Appendix B).
We fix σ = 0.2, and vary the maximal trading rate a, and display the associated prices

1The algorithm has been written from scratch in C++.
2We thank A. Conze and J. Adrien for their contributions to the PDE implementation of this project.

12

in Figure 1. By construction, as we compute the expectation for a sub-optimal control,
we obtain a lower bound. In particular, as the underlying price process is a martingale,
note that using a constant control, we get 0 bp. The graph of convergence in terms of
the number of episodes of the algorithm for two pairs of parameters of (a, σ), is reported
in Figure 2.

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
a

20

40

60

80

100

120

140

160

P
×

10
4

SGP
SGP Std
AC Offline
AC Offline Std
Splitting Scheme

Figure 1: PBV ×104 in absence of market impact and transaction costs for different values
of a computed with stochastic gradient policy and actor critic compared to splitting
scheme (HJB solver).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
episode 1e6

0

20

40

60

80

100

120

140

160

P×
10

4

AC Offline
SGP

0.0 0.5 1.0 1.5 2.0 2.5 3.0
episode 1e6

0

20

40

60

80

100

120

P×
10

4

AC Offline
SGP

Figure 2: Convergence as a function of iterations for PBV × 104 (without market impact
and transaction costs) for a = 36.5, σ = 0.2 (left) and a = 9, σ = 0.25 (right)

The two algorithms (SGP and AC) produce results that are similar to those obtained
using splitting scheme in terms of price. Furthermore, the execution time of these algo-
rithms is also found to be comparable to that of HJB solver, with both methods taking
about two minutes to converge, indicating that they are computationally efficient and

13

capable of solving the problem in a timely manner. However, when the number of state
variables increases, the PDE method becomes computationally very costly in compari-
son to our proposed methods. This means that for problems involving a large number
of state variables, our method becomes the only viable option. Overall, the results of
this study demonstrate that our proposed algorithms are a reliable and cost-effective
alternative to the PDE method for solving this class of problems.

Next, we display the surface of the optimal randomized policy for fixed spot price
S, for two different values of t (t = T/2 and t near maturity T), and as a function of
the VWAP and inventory. Figure 3 shows the results in absence of market impact while
Figure 4 considers the case with market impact. We observe that when we are close to
the maturity, the probability of choosing the maximal trading rate is equal to one for
almost all states of the VWAP and inventory with or without market impact: this is
due to the fact that the trader has to achieve the goal of repurchasing the requested
quantity of shares as he would be penalized otherwise. When we are in the midterm of
the program, the optimal policy consists in choosing the maximal trading rate only when
the VWAP is larger than some threshold, say V ∗, as he has enough time to complete
his repurchasing goal. In absence of market impact, this threshold V ∗ is approximately
equal to the spot price, while in presence of market impact, this threshold decreases with
the market impact and also with the inventory. In other words, the trader will buy more
quickly some fraction of the total shares B as the market impact is more penalizing when
approaching maturity.

Q0.1 0.3 0.5 0.7 0.9
V

0.2
0.6

1.0
1.4

1.8

(t, x,a)

0.0

0.2

0.4

0.6

0.8

1.0

Q0.1 0.3 0.5 0.7 0.9
V

0.2
0.6

1.0
1.4

1.8

(t, x,a)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Optimal policy ρθ(t, x, a) in absence of market impact and transaction costs
for Q ∈ [0, 1], V ∈ [0.1, 2], S = 1, σ = 0.2, t = T − dt (left) and t = T

2 (right).

14

Q0.1 0.3 0.5 0.7 0.9
V

0.2
0.6

1.0
1.4

1.8

(t, x,a)

0.0

0.2

0.4

0.6

0.8

1.0

Q0.1 0.3 0.5 0.7 0.9
V

0.2
0.6

1.0
1.4

1.8

(t, x,a)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Optimal policy ρθ(t, x, a) when market impact is included (γ = 0.1) for Q ∈
[0, 1], V ∈ [0.1, 2], S = 1, σ = 0.2, t = T − dt (left) and t = T

2 (right).

Finally, we represent the evolution of the optimal inventory for two price realizations,
in the case without market impact (see Figure 5) and with market impact (see Figure
6) The trader starts by purchasing some fraction of the total shares B (and this is done
more quickly and with a higher fraction in presence of market impact), then do not trade
for a while until the time when the spot price falls below the VWAP, where he purchases
the remaining shared to complete the buy-back programme.

0.0

0.2

0.4

0.6

0.8

1.0

In
ve

nt
or

y

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60
Time

1.00

1.02

1.04

1.06

1.08

Sp
ot

S
V

0 10 20 30 40 50 60
Time

0.975

1.000

1.025

1.050

1.075

1.100

1.125 S
V

Figure 5: Optimal repurchase strategy evolution for two price realizations (σ = 0.2) in
absence of market impact and transaction costs.

15

0.0

0.2

0.4

0.6

0.8

1.0

In
ve

nt
or

y

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50 60
Time

1.00

1.02

1.04

1.06

1.08

Sp
ot

S
V

0 10 20 30 40 50 60
Time

1.000

1.025

1.050

1.075

1.100

1.125 S
V

Figure 6: Optimal repurchase strategy evolution for two price realizations (σ = 0.2) with
market impact (γ = 0.1)

A Barrier VWAP-minus vs VWAP-minus

Given a trading strategy α ∈ A, valued in A = [0, a], we denote by τα the first time when
the inventory Qαt =

∫ t
0 αsds reaches B, and we consider the price of the VWAP-minus

and Barrier VWAP-minus given by

PV = sup
α∈A

sup
τ̄∈Tτα,T

E
[
PNLατ̄

]
PBV = sup

α∈A
E
[
PNLατα

]
,

where the PNL, in absence of transaction costs, is given by

PNLαt = B
(1

t

∫ t

0
Ssds− St

)
− λ(B −Qαt)+, 0 ≤ t ≤ T.

The price process S is a general continuous semimartingale process without market
impact, and satisfying

E
[

max
t∈[0,T]

|St|
]
< ∞. (A.1)

Notice that by Doob’s inequality, such condition (A.1) is satisfied whenever the drift and
the volatility of the asset price S are bounded.

Proposition A.1. Under (A.1), and in absence of market impact and transaction costs,
we have PBV = PV .

Proof. Fix some arbitrary α ∈ A, and τ̄ ∈ Tτα,T . For ε > 0, denote by ταε = inf{t ≥ 0 :
Qαt = B − ε} ∧ T , which is smaller than τα, and converges a.s. to τα when ε goes to

16

zero. Let us then define trading strategy αε ∈ A by

αεt =

αt for 0 ≤ t ≤ ταε
0 for ταε < t ≤ τ̄
a for τ̄ < t ≤ T,

which leads to an associated inventory Qα
ε

given by

Qα
ε

t =

Qαt for 0 ≤ t ≤ ταε
B − ε for ταε < t ≤ τ̄

B − ε+ a(t− τ̄) for τ̄ < t ≤ T.

Notice that τα
ε

(the first time when Qα
ε

reaches B) is lower-bounded by τ̄ , decreases
with ε, and converges a.s. to τ̄ when ε goes to zero.

By definition, we have PBV ≥ E
[
PNLα

ε

ταε
]
. Let us check that PNLα

ε

ταε
converges a.s.

to PNLατ̄ when ε goes to zero. We distinguish two cases:

• If τα < T . Then, Qατα = B ≤ Qατ̄ , and Qα
ε

ταε
= B − ε + a(τα

ε − τ̄) converges to B
when ε goes to zero. It follows that

PNLα
ε

ταε = B
(1

ταε

∫ τα
ε

0
Ssds− Sταε

)
− λ(B −Qαεταε)+

→ B
(1

τ̄

∫ τ̄

0
Ssds− Sτ̄

)
= PNLατ̄ ,

as ε goes to zero.

• If τα = T . Then τ̄ = T = τα
ε
, and αεt converges to αt, for 0 ≤ t < T , when ε goes

to zero. It follows that Qα
ε

T converges to QαT . Therefore,

PNLα
ε

ταε = B
(1

T

∫ T

0
Ssds− ST

)
− λ(B −QαεT)+

→ B
(1

T

∫ T

0
Ssds− ST

)
− λ(B −QαT)+ = PNLατ̄ ,

as ε goes to zero.

Moreover, by noting that
∣∣PnLα

ε

ταε
∣∣ ≤ B(2 maxt∈[0,T] |St| + λ), and under (A.1), we can

apply dominated convergence theorem to deduce that

E
[
PNLα

ε

ταε
]
→ E

[
PNLατ̄

]
, when ε goes to zero,

and so PBV ≥ E
[
PNLατ̄

]
. Since this holds true for any α ∈ A, and τ̄ ∈ Tτα,T , we conclude

that PBV ≥ PV , hence the equality since it is clear that PV ≥ PBV .

17

B PDE Implementation by splitting scheme

We solve the Bellman (HJB) equation (3.1) by backward induction. We know P at T
(Terminal condition). Now, we assume that we know P at t and we want to compute P
at a previous date t−∆t. We use the approximation:

a1{(γs∂s+s∂c+∂q)P (t−∆t,x)≥0} ≈ a1{(γs∂s+s∂c+∂q)P (t,x)≥0} := ã∗(t, x)

for all x = (s, v, q, c) ∈ O = R∗+ × R∗+ × (0, B)× R+. The HJB equation becomes

∂tP|O + LP|O +DP|O = 0 (B.1)

where P|O is the restriction of P to O, L is a diffusion operator and D is a transport
operator defined over O as

L· = 1

2
σ2s2∂2

ss·

D· = s− v
t

∂v · −ã∗(t, x)∂q·

where x = (s, v, q, c) ∈ O. One can verify that L, D and L+D generate a C0 semi-groups,
thus, the solution of (B.1) at t−∆t can be represented as

P (t−∆t, x) = e∆t(L+D)P (t, x)

where e∆t(L+D) denotes the semi-group associated to the parabolic linear PDE (B.1). A
first order approximation of the solution operator is obtained using Baker–Campbell–Hausdorff
formula and Lie-Trotter splitting (see [13])

e∆t(L+D)P (t, x) = e∆tDe∆tLP (t, x) +O(∆t) (B.2)

One can also use Strang splitting e
∆t
2
De∆tLe

∆t
2
D to get a second order approximation.

The splitting (B.2) corresponds to solving the parabolic PDE first with generator L
and then the first-order transport PDE corresponding to the operator D. By using the
method of characteristics, the solution corresponding to D is explicitly given by

e∆tDQ(t, x) = Q(t, s, v +
s− v
t

∆t, q + ã∗(t, x)∆t, c+ ã∗(t, x)s∆t)

where x = (s, v, q, c) ∈ O and Q(t, x) = e∆tLP (t, x). Finally, we extend P (t, ·) to
R∗+ × R∗+ × R× R using boundary conditions.

References

[1] Technical committee of the international organization of securities commissions.
Technical report, Report On Stock Repurchase Programs, 2004.

18

[2] C. Beck, P. Cheridito, and A. Jentzen. Deep optimal stopping. Journal of Machine
Learning Research, 74(1):1–25, 2019.

[3] C. Beck, M. Hutzenthaler, A. Jentzen, and B. Kuckuck. An overview on deep
learning-based approximation methods for partial differential equations. arXiv
preprint: 2012.12348, 2020.

[4] B. Bouchard and S. Menozzi. Strong approximations of BSDE in a domain.
Bernoulli, 15(4):1117–1147, 2009.

[5] H. Buehler, L. Gonon, J. Teichmann, and B. Wood. Deep hedging. Quantitative
Finance, 19(8), 2019.

[6] M. Germain, H. Pham, and X. Warin. Neural networks-based algorithms for stochas-
tic control and PDEs in finance, 2021.

[7] O. Guéant, I. Manziuk, and J. Pu. Accelerated share repurchase and other buyback
programs: what neural networks can bring. Quantitative Finance, 20(8), 2020.

[8] O. Guéant, J. Pu, and G. Royer. Accelerated share repurchase: pricing and exe-
cution strategy. International Journal of Theoretical and Applied Finance, 18(3),
2015.

[9] J. Han and W. E. Deep learning approximation for stochastic control problems.
NIPS, 2016.

[10] S. Jaimungal, D. Kinzebulatov, and D. Rubisov. Optimal accelerated share repur-
chase. Applied Mathematical Finance, 24(3), 2017.

[11] M. Miller and F. Modigliani. Dividend policy, growth, and the valuation of shares.
Journal of Business, 34(411), 1961.

[12] R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT Press,
2018, 2nd edition.

[13] H. F. Trotter. On the product of semi-groups of operators. Amer. Math. Soc.,
10:545–551, 1959.

19

	1 Introduction
	2 Policy gradient methods
	2.1 Policy gradient representation
	2.2 Algorithms

	3 Application to Share Repurchase Programs Pricing
	3.1 Problem formulation
	3.2 Numerical results

	A Barrier VWAP-minus vs VWAP-minus
	B PDE Implementation by splitting scheme

