
Two-sided convexity testing with certificates ∗

Adrian Dumitrescu†

May 9, 2023

Abstract

We revisit the problem of property testing for convex position for point sets in Rd. Our results
draw from previous ideas of Czumaj, Sohler, and Ziegler (ESA 2000). First, the algorithm is
redesigned and its analysis is revised for correctness. Second, its functionality is expanded by
(i) exhibiting both negative and positive certificates along with the convexity determination,
and (ii) significantly extending the input range for moderate and higher dimensions.

The behavior of the randomized tester is as follows: (i) if P is in convex position, it accepts;
(ii) if P is far from convex position, with probability at least 2/3, it rejects and outputs a (d+2)-
point witness of non-convexity as a negative certificate; (iii) if P is close to convex position, with
probability at least 2/3, it accepts and outputs an approximation of the largest subset in convex
position. The algorithm examines a sublinear number of points and runs in subquadratic time
for every fixed dimension d.

Keywords: property testing, convex position, approximation algorithm, randomized algo-
rithm.

1 Introduction

A set of points in the d-dimensional space Rd is said to be: (i) in general position if any at most
d + 1 points are affinely independent ; and (ii) in convex position if none of the points lies in the
convex hull of the other points. It is known that every set of n points in general position in the
plane contains (1− o(1)) log n points in convex position, and this bound is tight up to lower-order
terms [12, 26]. For d ≥ 3, by the Erdős–Szekeres theorem, every set of n points in general position
in Rd contains Ω(log n) points in convex position: it suffices to find points whose projections onto
a generic plane are in convex position. On the other hand, for every fixed d ≥ 2, Károlyi and
Valtr [17] and Valtr [27] constructed n-element sets in general position in Rd in which no more than
O(logd−1 n) points are in convex position. A recent result of Pohoata and Zakharov [23] shows that
a set of n points in Rd, d ≥ 3, already contains a subset of ω(log n) points in convex position.

Given a point set in general position in Rd, the problem of computing a maximum-size subset in
convex position can be solved in polynomial time for d = 2 by the dynamic programming algorithm
of Chvátal and Klincsek [6]; their algorithm runs in O(n3) time. In contrast, the general problem
in Rd was shown to be NP-complete for every d ≥ 3 by Giannopoulos, Knauer, and Werner [14],
and moreover, no approximation algorithm is known.

∗A preliminary version appears in Proceedings of the 12th Japanese-Hungarian Symposium on Discrete Mathemat-
ics and Its Applications, March 2023, Budapest, Hungary. The current expanded version corrects some inaccuracies
present there.

†Algoresearch L.L.C., Milwaukee, WI, USA. Email ad.dumitrescu@algoresearch.org.

1

ar
X

iv
:2

30
2.

07
42

3v
2

 [
cs

.C
G

]
 7

 M
ay

 2
02

3

Throughout this paper we assume (in a standard fashion) that the input set is in general position.
For Theorems 1 and 2 and Corollary 1, let P be a set of n points in Rd, where d is considered
constant.

The complexity of computing the convex hull of n points in Rd is summarized in the following
result of Chazelle; see also [1, 25].

Theorem 1. (Chazelle [5]) Given P , the convex hull of P can be computed in O(n log n+ nbd/2c)
time using O(nbd/2c) space, which is asymptotically worst-case optimal.

It is known that the number of faces, f , of the output polytope is Θ(nbd/2c) in the worst case [21],
i.e., exponential in d. On the other hand, a result of Chan shows that the set of extreme points
of a set of n points in Rd can be computed in subquadratic time and essentially faster when their
number h is small.

Theorem 2. (Chan [4]) Given P , the h extreme points of P can be computed in time

T (n, h) = O

(
n logO(1) h+ (nh)

bd/2c
bd/2c+1 logO(1) n

)
. (1)

Taking n = h in the above expression yields a time that suffices for testing whether a set of n
points is in convex position. From the other direction, it is conjectured that the problem of testing
whether a set P is in convex position is asymptotically as hard as the problem of computing all
extreme points of P [7].

Corollary 1. (Chan [4]) Given P , determining whether P is in convex position can be done in

time T (n, n) = O

(
n

2bd/2c
bd/2c+1 logO(1) n

)
.

For instance, the running time in Corollary 1 is O
(
n logO(1) n

)
for d = 2, 3, O

(
n4/3 logO(1) n

)
for d = 4, 5, O

(
n3/2 logO(1) n

)
for d = 6, 7, and subquadratic in any fixed dimension d.

Similarly, the following holds (see Corollary 3.4 in [4]).

Corollary 2. (Chan [4]) Given P and S ⊂ P , where s = |S|, determining whether all points in S

are extreme in P can be done in time T (n, s) = O

(
n logO(1) s+ (ns)

bd/2c
bd/2c+1 logO(1) n

)
.

In property testing one is concerned with the design of faster algorithms for approximate decision
making [15]. In this scenario, instead of determining whether an input has a specific property, one
determines if the input is far or perhaps close from satisfying that property. Such approximate
decisions, usually involving random sampling or shortcuts in the computation, may be valuable in
settings in which an exact decision is infeasible or just more expensive. For example, one may be
interested in determining, given an input point set, how far it stands from being in convex position
without needing to spend all resources that would be required for computing the convex hull of the
respective set. Such a tool is obviously useful in the general area of testing properties of geometric
objects and visual images for distinguishing a convex shape among other shapes.

The goal of property testing is to develop efficient property testers. Ideally, such a tester makes
a sublinear number of queries of the input set, i.e., it does not look at the entire input. However,
this does not mean — even for the ideal case — that the tester runs in time that is sublinear in
the size of the input; in fact, it often doesn’t. Moreover, if the tester is also required to return a
possibly large subset of the input set (depending on the outcome) as a certificate, then its time
requirements may be further increased.

2

Here we focus on the testing of convex position. As in the context of randomized algorithms,
approximately deciding means returning the correct answer with some confidence, specifically with
probability at least 2/3 as described below, see, e.g., [20]; however, the 2/3 threshold is not set in
stone.

Testing algorithms may use samples of different sizes. Some intuition is as follows. Suppose
that the input is far from convex position; the algorithm is likely to reject on large samples (the
larger the sample, the easier it will be to find that out), and is likely to accept on small samples
(the smaller the sample, the easier the algorithm will be fooled). On the other hand, if the input
is close to convex position, the smaller the sample, the easier it will be for the algorithm to accept.

A key distinction with regard to the action (accept or reject) is that closeness must fit the goal,
i.e., far and close need to be quantified appropriately. As it turns out, rejecting an input that is far
from convex position is relatively insensitive to the distance from convex position. However, when
accepting an input that is close to convex position, the input must be really close.

1.1 Preliminaries

Definitions and notation. Let 0 < ε < 1/2. A set P of n points is ε-far from convex position
if there is no set X ⊂ P of size at most εn such that P \X is in convex position. Otherwise, i.e.,
if there is a set X ⊂ P of size at most εn such that P \ X is in convex position, P is ε-close to
convex position. See Fig. 1. For a set point P , let Ext(P) denote the set of extreme points of P .

Figure 1: A 12-point set that is 1/4-close to convex position (left), and a 9-point set that is 2/9-close to
convex position (right). Both sets are 1/5-far from convex position.

Here we use the convention that the approximation ratio of an algorithm is smaller than 1 for
a maximization problem and larger than 1 for a minimization problem; see [28]. Unless specified
otherwise, all logarithms are in base 2. For a set W ⊂ Rd, its interior is denoted by W̊ .

Nonconvexity certificates. By the well-known Carathéodory’s Theorem, see, e.g., [19, p. 6], if
X is finite point set in Rd, every point of X can be expressed as a convex combination of at most
d+ 1 points in X. This implies that every point set that is not in convex position contains a subset
of d + 2 points that are not in convex position, i.e., a short certificate of non-convexity. We will
further assume that Chan’s algorithm for testing of convex position outputs such a tuple when the
input is not in convex position.

The convex position tester of Czumaj, Sohler, and Ziegler. The convex position tester
of Czumaj et al. [7] draws a random sample of the input set and makes a decision based on the
convexity of this sample. The algorithm is set up to work in Rd, for any fixed dimension d. Given
ε > 0, the tester accepts every point set in convex position, and rejects every point set that is ε-far
from convex position with probability at least 2/3. If the input is not in convex position and is
not ε-far from convex position, the outcome of the algorithm can go either way, i.e., there is no

3

specified action for the situation in-between. Most of the technical justification is unpublished; for
the present time, it can be found online [8]. The authors present two testers for convex position:
Convex-A and Convex-B, see [7, p. 161]:

Algorithm Convex-A

Step 1: Choose a subset S ⊂ P of size s = 36 · n
d

d+1 ε−
1

d+1 uniformly at random.

Step 2: Compute all h extreme points of S.

Step 3: If h < n then reject else accept.

Algorithm Convex-B

Step 1: Choose a subset S ⊂ P of size s = 4/ε uniformly at random.

Step 2: For each p ∈ S [simultaneously] check whether p is extreme for conv(P). If p is not
extreme for conv(P) then exit loop and reject.

Step 3: If all checks complete, accept.

The query complexity, i.e., the number of points requested from an oracle to perform the testing,
is O(nd/(d+1)ε−1/(d+1)), which is claimed by the authors to be optimal (no proof is provided) [7]. The
corresponding running time follows from Corollary 1 and is subquadratic in any fixed dimension d.

The correctness proof for Convex-A is only sketched in [7]. It is however similar in nature to the
revised argument we give here based on Lemmata 2, 3 and 4. The correctness proof for Convex-B,
also omitted in [7], is implied from the following.

Lemma 1. Let P ⊂ Rd be ε-far from convex position. Then |P \ Ext(P)| > ε|P |.

Proof. Assume for contradiction that |P \Ext(P)| ≤ ε|P |. Removing all points in P \Ext(P) yields
a convex set and thus P is ε-close to convex position, a contradiction.

In fact the sample size in Convex-B can be reduced in half; i.e., one can set s = 2/ε, see below.
If the input P ⊂ Rd is ε-far from convex position, then the set Q = P \ Ext(P) is large enough and
the tester would reject P if at least one sample point is in Q. Since |Q| ≥ ε|P |, we have

Prob(S ∩Q = ∅) ≤ (1− ε)2/ε ≤ e−2 ≤ 1

3
,

by applying the standard inequality 1 − x ≤ e−x for 0 ≤ x ≤ 1/2. Thus P is rejected with
probability at least 2/3, as required. Note that an input in convex position is accepted by either
tester. In summary, by Corollary 1 and Corollary 2, negative testing (via Convex-A or Convex-B)
can be accomplished in time

O
(

min
{
T
(
n

d
d+1 ε−

1
d+1 , n

d
d+1 ε−

1
d+1

)
, T
(
n, ε−1

)})
. (2)

Unfortunately, the convex position tester of Czumaj et al. [7] suffers from structural and perfor-
mance issues as explained below. One issue is an unreasonable dependence of the tester Convex-A
of the input parameter ε; a second concerns a technical lemma that needs correction. Moreover,
as mentioned earlier, most of the claims made in [7] are unverifiable since most proofs are omitted.
Here we fix these problems and obtain a more performant negative tester. Further, its functionality

4

is expanded by including positive certificates. Our paper is self-contained with all needed proofs
included.

(i) The sample size used by tester Convex-A is

s = 36 · n
d

d+1 ε−
1

d+1 .

Since s ≤ n is a prerequisite for using the tester, this imposes the restriction 36d+1 ≤ εn; equiv-
alently, ε ≥ 36d+1/n. Since ε < 1, this implies n > 36d+1. This requirement makes the tester
impractical even for moderate values of d. For instance, if d = 20, tester Convex-A can only test
sets with n > 4.8 · 1032 points. Similarly, if d = 50, tester Convex-A can only test sets with
n > 2.3 · 1079 points, which is approximately the number of atoms in the observable universe. Ar-
guably, such applications, if any, are rare. As such, the tester isn’t functional in the range d ≥ 50.
In contrast, our Algorithm Convex- in Subsection 2.1 is only subject to the very modest restric-
tion ε ≥ (d + 1)/n. Similarly, our Algorithm Convex+ in Subsection 2.2 is subject to very modest
restrictions.

(ii) Another issue is the correctness of Lemma 3.4 in [8], discussed in Section A. Our Lemma 4
is proposed as a replacement.

Our results. We revisit the problem of property testing for convex position for point sets in
Rd. Our results draw from previous design and ideas of Czumaj, Sohler, and Ziegler (ESA 2000).
First, the algorithm is redesigned and its analysis is revised for correctness. Second, its func-
tionality is expanded by (i) exhibiting both negative and positive certificates along with the con-
vexity determination, and (ii) significantly extending the input range for moderate and higher
dimensions. The tester is implemented by two procedures: Convex- and Convex+. Both run in

O

(
n

2bd/2c
bd/2c+1 logO(1) n

)
= o(n2) time, for every n and ε.

The behavior of Algorithm Convex- can be summarized as follows. Let 0 < ε < 1 be an input
parameter.

1. If P is in convex position, the algorithm accepts P .

2. If P is ε-far from convex position, with probability at least 2/3 the algorithm rejects P and
outputs a (d+ 2)-point witness of non-convexity (as a negative certificate).

The behavior of Algorithm Convex+ can be summarized as follows. Let 0 < ε < 1 be an input
parameter, and 0 < δ ≤ 1/2 be an adjustable parameter.

1. If P is in convex position, the algorithm accepts P .

2. If P is ε-close to convex position for some ε > 0 that satisfies n−1 ≤ ε ≤ nδ−1, with probability
at least 2/3 the algorithm accepts P and outputs a 1/(6nδ)-approximation of the largest subset
in convex position as a positive certificate.

Related work. Two early articles in the area of property testing are due to Blum et al. [3] and
Ergün et al. [13]. Besides testing for convex position, testing for other geometric properties has
been considered in [7]: pairwise disjointness of a set of generic bodies, disjointness of two polytopes,
and Euclidean minimum spanning tree verification. A continuation of the work in [7] appears in [9].
A more recent article on property testing for point sets in the plane is due to Han et al. [16]. Two
recent monographs dedicated to the general subject of property testing are [2] and [15]. The topic
of property testing, including testing for convex position, is also addressed in a recent book by
Eppstein [11]. A question from that book is discussed in Section 3.

5

2 An enhanced functionality tester for convex position

The tester is implemented by two procedures: Algorithm Convex- (in Subsection 2.1) and Algorithm
Convex+ (in Subsection 2.2). The two procedures may be run independently of each other. The
goal of Algorithm Convex- is rejecting point sets that are far from convex position; whereas that of
Algorithm Convex+ is accepting point sets that are close to convex position. Each algorithm exhibits
a suitable certificate along with its probabilistic determination. While the decision is randomized,
the certificates produced are indisputable, i.e., a negative certificate is always a (d + 2)-point set
that is not in convex position, and a positive certificate output by Algorithm Convex+ is always a
1/(6nδ)-approximation of the largest subset in convex position.

Common tools. A randomized algorithm for generating a random s-set for a given s, 1 ≤ s ≤ n,
in O(s log s) time (and O(s) expected time) from [22, Ch. 4], can be used to implement random
sample selection. Alternatively, a linear-time algorithm for the same task from [24, Sec 5.2] can
also be used.

2.1 Negative testing: Algorithm Convex-

Several constraints among the input parameters need to be respected usually for technical reasons.
In particular, it is assumed that (note that these constraints are very mild):

• n ≥ 210, this is needed in the proof of Lemma 4.

• n ≥ 32(d+ 1), this ensures that ` ≤ n/32 when using Lemma 4.

• ε ≥ 10(d+1)
n , this ensures that k ≥ 10 in Step 1; compare this to the constraint ε ≥ 36d+1/n

in tester Convex-A that restricts its use to low dimensions.

• ε ≤ d−1
2d , this ensures (1−ε)

d+1 ≥
1
2d in the analysis.

Algorithm Convex-

Step 1: Let k = b εnd+1c, ` = d+ 1, s0 = `+ n−`
(2k)1/`

, and s = ds0e. Repeat Step 2 and Step 3 in

succession up to 22 times.

Step 2: Randomly select a subset S ⊂ P of size s, with all s-subsets being equally likely.

Step 3: Test S for convex position using Chan’s algorithm. If S is not in convex position,
output a (d+ 2)-point witness of non-convexity and reject P . Otherwise go to Step 2 for the
next repetition.

Step 4: If all 22 samples were determined to be in convex position, accept P .

Time analysis. It is easily verified that the setting for s in Step 1 yields

s = Θ
(
n

d
d+1 ε−

1
d+1

)
.

This is in accordance with the choice of the sample size for Algorithm Convex-A in [7]. As such,
the runtime of Algorithm Convex- is

T (s, s) = O
(
T
(
n

d
d+1 ε−

1
d+1 , n

d
d+1 ε−

1
d+1

))
= O

(
n

d
d+1
· 2bd/2c
bd/2c+1 · ε−

1
d+1
· 2bd/2c
bd/2c+1 · logO(1) (n/ε)

)
.

6

Since ε = Ω(1/n), the above expression becomes

T (s, s) = O (T (n, n)) = O

(
n

2bd/2c
bd/2c+1 logO(1) n

)
= o(n2), for every n and ε.

This can be also seen directly: since s ≤ n, T (s, s) ≤ T (n, n) = o(n2).

Rejecting the input with probability ≥ 2/3. Assume that P is ε-far from convex position.
We show that with probability at least 2/3, Algorithm Convex- rejects the input in step 3 and
outputs a suitable (d+ 2)-point witness. We first recall the following lemmas (analogous to Lemma
3.1 and 3.2 from [8]), slightly rewritten here for convenience.

Lemma 2. (An earlier version in [8]). Let P ⊂ Rd be a set of n points that is not in convex position
and p ∈ P be an interior point. Then there exist points p1, . . . , pd ∈ P and U ⊂ P \ {p1, . . . , pd, p}
with |U | ≥ n−1

d+1 such that {p1, . . . , pd, p} ∪ {q} is not in convex position for every q ∈ U ; more
precisely, p is an interior point in the simplex ∆(p1, . . . , pd, q) for every q ∈ U .

Proof. Since p ∈ P is an interior point, by Carathéodory’s Theorem and by the general position
assumption, there exists a set W ⊂ P of size d+ 1 such that p ∈ W̊ . See Fig. 2.

p

Figure 2: P is a set of 9 points in the plane. The cone determined by the two red points contains 4 ≥ 8/3
points in P .

Denote by Wi, i = 1, . . . , d+1, the d+1 subsets of W of size d. We show that one of the subsets
Wi of W satisfies the requirement in the lemma. We may assume without loss of generality that
p = (0, . . . , 0). We partition Rd into d + 1 cones as follows. Let W−i , i = 1, . . . , d + 1, denote the
set of points {(−x1, . . . ,−xd) : (x1, . . . , xd) ∈ Wi}. The conic combination of the point vectors in
the set W−i defines a cone Ci, i = 1, . . . , d+ 1. The union of these cones cover Rd. Thus there is a
cone Cj , 1 ≤ j ≤ d+ 1, that contains at least n−1

d+1 points in P . Observe that for every q ∈ P ∩ Cj
we have p ∈ ˚(Wj ∪ {q}). Consequently, one can set {p1, . . . , pd} = Wj to conclude the proof.

The following lemma applies to point sets that are far from convex position. The sets Wi and
Ui constructed in the lemma are fixed before the samplings and are only used in the algorithm
analysis.

Lemma 3. (An earlier version in [8]). Let P ⊂ Rd be a set of n points that is ε-far from convex
position and let k = b εnd+1c. Then there exist sets Wi, Ui ⊂ P for 1 ≤ i ≤ k, such that the following
conditions are satisfied:

(i) |Wi| = d+ 1 for 1 ≤ i ≤ k,

(ii) Wi ∩Wj = ∅ for all 1 ≤ i < j ≤ k,

7

(iii) Wi ∩ Ui = ∅ for 1 ≤ i ≤ k,

(iv) Wi ∪ {q} is not in convex position for every q ∈ Ui, and

(v) |Ui| ≥ n
d+1 − k for 1 ≤ i ≤ k. In particular, |Ui| ≥ (1−ε)n

d+1 .

Proof. We construct point sets P1, P2, . . . , Pk iteratively. We initially set P1 := P and then iter-
atively find Wi ⊂ Pi and set Pi+1 := Pi \Wi for i = 1, . . . , k. By construction the sets Wi are
pairwise disjoint, as required. Assuming that |Wi| = d+ 1 for 1 ≤ i ≤ k, implies that

|Pi| = n− (d+ 1)(i− 1) ≥ n− (d+ 1)(k − 1) > n− (d+ 1)
εn

d+ 1
= (1− ε)n.

By the assumption in the lemma, Pi cannot be in convex position. By Lemma 2 there exist
p1, . . . , pd, p ∈ Pi and Ui ⊂ Pi \ {p1, . . . , pd, p} with

|Ui| ≥
|Pi| − 1

d+ 1
≥ n− (d+ 1)(i− 1)− 1

d+ 1
≥ n− (d+ 1)(k − 1)− 1

d+ 1

>
n

d+ 1
− k =

n

d+ 1
− εn

d+ 1
=

(1− ε)n
d+ 1

,

such that p is an interior point in the simplex ∆p1, . . . , pd, q for every q ∈ Ui. Let Wi :=
{p1, . . . , pd, p} and observe that Wi ∩ Ui = ∅. Note that all properties in the lemma have been
verified.

We also need another lemma suggested by Czumaj et al. [8]. Here we include a proof that follows
the ideas of the original proof, however, it is revised for correctness and for a slightly restricted
range of the parameters that suffices for our purposes. More details can be found in Section A.

Lemma 4. (An earlier version in [8]). Let Ω be a set of size n and W1,W2, . . . ,Wk ⊂ Ω be k
pairwise disjoint subsets of Ω of size `, where k ≥ 10 and 3 ≤ ` ≤ n/32. Let s be a positive integer
such that ` + n−`

(2k)1/`
≤ s ≤ n and S ⊂ Ω be a subset of Ω of size s chosen uniformly at random.

Then

Prob(∃i ≤ k : (Wi ⊂ S)) ≥ 1

4
.

Proof. Observe that k` ≤ n, hence k ≤ n/`. Let s0 be the real number defined as follows:

s0 = `+
n− `

(2k)1/`
, or k

(
s0 − `
n− `

)`
=

1

2
, (3)

and note that ` < s0 < n. Indeed, the lower bound is clear and the upper bound s0 < n is
equivalent to (2k)1/` > 1 which is obvious. We first prove that

s0 ≥ 3` log k. (4)

It suffices to show that n − ` ≥ 3`(2k)1/` log k, or, since ` ≤ n/32, that 3`(2k)1/` log k ≤ 31n
32 . We

have

3`(2k)1/` log k ≤ 3`

(
2n

`

)1/`

log

(
2n

`

)
≤ 31n

32
.

Indeed, a standard verification shows that the function

f(x) = 3x

(
2n

x

)1/x

log

(
2n

x

)
, x ∈

[
3,
n

32

]
,

8

where n ≥ 210, attains it maximum at x = n/32, thus

f(x) ≤ f
(n

32

)
= 3 · n

32
·
(

2n

n/32

)32/n

log

(
2n

n/32

)
=

3n

32
· 6432/n · log 64 ≤ 18n

32
· 5

4
≤ 31n

32
.

This concludes the proof of (4) and we next focus on the inequality in the lemma.

Since the probability in question increases as the sample size s grows, it suffices to prove the
inequality for s = ds0e. Observe that `+ 1 ≤ s ≤ n. By the Boole-Bonferoni inequality—see, e.g.,
[18, Ch. 2], we have

Prob(∃i ≤ k : (Wi ⊂ S)) ≥
k∑
i=1

Prob(Wi ⊂ S)−
∑

1≤i<j≤k
Prob((Wi ∪Wj) ⊂ S). (5)

It is easily verified that

Prob(Wi ⊂ S) =

(
n−`
s−`
)(

n
s

) =
(n− `)!

(s− `)!(n− s)!
· s!(n− s)!

n!

=
(n− `)!s!
n!(s− `)!

=
`−1∏
r=0

s− r
n− r

, and

Prob((Wi ∪Wj) ⊂ S) =

(
n−2`
s−2`

)(
n
s

) =
2`−1∏
r=0

s− r
n− r

=

`−1∏
r=0

s− r
n− r

·
`−1∏
r=0

(s− `)− r
(n− `)− r

, for 1 ≤ i < j ≤ k.

Substituting these into Inequality (5) and finally using (3) yields

Prob(∃i ≤ k : (Wi ⊂ S)) ≥ k ·
`−1∏
r=0

s− r
n− r

−
(
k

2

)
·
`−1∏
r=0

s− r
n− r

·
`−1∏
r=0

(s− `)− r
(n− `)− r

= k ·
`−1∏
r=0

s− r
n− r

(
1− k − 1

2
·
`−1∏
r=0

(s− `)− r
(n− `)− r

)

≥ k ·
`−1∏
r=0

s− `
n− `

·

(
1− k

2
·
`−1∏
r=0

s− `
n− `

)

= k ·
(
s− `
n− `

)`
·

(
1− k

2
·
(
s− `
n− `

)`)
.

Let

F1 = k ·
(
s− `
n− `

)`
and F2 = 1− k

2
·
(
s− `
n− `

)`
.

It suffices to show that F1 ≥ 1
2 and F2 ≥ 1

2 . For the first inequality, we have

F1 = k ·
(
s− `
n− `

)`
≥ k ·

(
s0 − `
n− `

)`
=

1

2
. (6)

9

For the second, recall that 0 ≤ s − s0 < 1 and s0 ≥ 6` ≥ 3` by (4). Applying the standard
inequality 1 + x ≤ ex for 0 ≤ x ≤ 1/2 yields:(

s− `
s0 − `

)`
=

(
1 +

s− s0
s0 − `

)`
≤
(

1 +
1

2`

)`
≤ exp(0.5) ≤ 2. (7)

Using (7) and (3) once again yields

F2 = 1− k

2
·
(
s− `
n− `

)`
= 1−

(
s− `
s0 − `

)`
· k

2
·
(
s0 − `
n− `

)`
≥ 1− 2 · k

2
·
(
s0 − `
n− `

)`
= 1− k ·

(
s0 − `
n− `

)`
=

1

2
. (8)

Consequently, we have

Prob(∃i ≤ k : (Wi ⊂ S)) ≥ F1 · F2 ≥
1

2
· 1

2
=

1

4
,

as required.

Let k = b εnd+1c, ` = d + 1, and recall that Algorithm Convex- sets s = ds0e, where s0 is given
by Equation (3).

We next prove that the algorithm finds the sample S not convex with probability ≥ 1/20 in
each of the 22 repetitions in Step 2 and Step 3. Consider one execution of Step 2 and Step 3. For a
fixed i ≤ k, let Fi be the event that S ∩Ui = ∅. By Lemma 3, we have |Ui| ≥ (1−ε)n

d+1 ≥
n
2d . Observe

that (
1− 1

2d

)d+1

≤ 2

3
, for d ≥ 2.

By (4) we have s ≥ s0 ≥ 3` log k, thus (recall also that k ≥ 10, which us used in the last inequality
of the chain below)

Prob(Fi) = Prob(S ∩ Ui = ∅) =

(
n−|Ui|
s

)(
n
s

)
=

(n− |Ui|)(n− |Ui| − 1) · · · (n− |Ui| − s+ 1)

n(n− 1) · · · (n− s+ 1)
≤
(

1− |Ui|
n

)s
≤
(

1− 1

2d

)s
≤
(

1− 1

2d

)3` log k

≤
(

2

3

)3 log k

≤ 1

5k
, for i ∈ [k] and d ≥ 2.

Let E1 be the event that S ∩ Ui 6= ∅ for every i ≤ k. By the union bound, we deduce that

Prob(E1) ≤ k · Prob(F1) ≤
1

5
.

Let E2 be the event that there exists i ≤ k such that Wi ⊂ S. We next verify that the inequality
`+ n−`

(2k)1/`
≤ s ≤ n specified in Lemma 4 holds. Indeed,

s = ds0e ≥ s0 = `+
n− `

(2k)1/`
,

10

and s0 < n as shown in the proof of Lemma 4, whence s = ds0e ≤ n. Hence by Lemma 4 we have

Prob(E2) = Prob(∃i ≤ k : (Wi ⊂ S)) ≥ 1

4
.

Putting these bounds together yields

Prob(E1 ∩ E2) = 1− Prob(E1 ∪ E2) ≥ 1− Prob(E1)− Prob(E2)

≥ 1− 1

5
− (1− Prob(E2)) = Prob(E2)−

1

5

≥ 1

4
− 1

5
=

1

20
.

Let E be the event that Algorithm Convex- finds the sample not convex in at least one of the
22 executions of Step 2 and Step 3. The 22 repetitions are independent events, thus

Prob(E) ≥ 1−
(

1− 1

20

)22

≥ 2

3
.

Thus with probability at least 2/3, Algorithm Convex- rejects the input, as required.

2.2 Positive testing: Algorithm Convex+

Assume for technical reasons that n is sufficiently large: n ≥ 1500. Let 0 < δ ≤ 1/2 be an adjustable
parameter. Assume that P is ε-close to convex position for some ε > 0, where n−1 ≤ ε ≤ nδ−1;
note, this means that P can be made convex by removing at most εn ≤ nδ points.

Algorithm Convex+

Step 1: Randomly select a subset S ⊂ P of size s = d1/(6ε)e, with all s-subsets being equally
likely.

Step 2: Test S for convex position using Chan’s algorithm. If S is not in convex position,
output a (d+ 2)-point witness of non-convexity and reject P . Otherwise output S as a subset
in convex position and accept P .

Time analysis. The setting s = d1/(6ε)e in Step 1 yields that the runtime of Algorithm Convex+

is

T (s, s) = O (T (1/ε, 1/ε)) = O

(
ε
− 2bd/2c

bd/2c+1 logO(1) 1/ε

)
.

Since ε = Ω(1/n),

T (s, s) = O (T (n, n)) = O

(
n

2bd/2c
bd/2c+1 logO(1) n

)
= o(n2), for every n and ε.

Accepting the input with probability ≥ 2/3. We next show that with probability at least
2/3, Algorithm Convex+ accepts P and outputs a subset of size d1/(6ε)e of P in convex position.
By the assumption we can write P = C ∪ D, where C is in convex position and |D| ≤ εn =: t.
Recall that s = d1/(6ε)e. Note that

st =

⌈
1

6ε

⌉
· εn ≤ 1

6ε
· εn+ εn =

n

6
+ εn ≤ 100n

595
for n ≥ 1500.

11

Indeed, n ≥ 1500 =⇒ n0.9 ≥ 721 =⇒ ε ≤ 1/n0.9 ≤ 1/721, for which the above inequality holds.
In particular, we have t ≤ st ≤ 100n/595. We show that

Prob(S ∩D = ∅) = Prob(S ⊆ C) ≥ 2

3
.

Applying the standard inequality 1− x ≥ e−2x for 0 ≤ x ≤ 1/2 yields:

Prob(S ⊆ C) =

(|C|
s

)(
n
s

) ≥ (n−ts)(
n
s

) =
(n− s)(n− s− 1) · · · (n− s− t+ 1)

n(n− 1) · · · (n− t+ 1)

=

t−1∏
i=0

(
1− s

n− i

)
≥
(

1− s

n− t+ 1

)t
≥ exp

(
−2st

n− t+ 1

)
≥ exp

(
−200

495

)
≥ 2

3
,

as required. Hence with probability at least 2/3, S is determined to be in convex position and
output by the algorithm, as required. Let OPT denote the size of the largest convex subset of P .
Since OPT ≤ n and εn ≤ nδ, the approximation ratio of Algorithm Convex+ is

s

OPT
≥ s

n
=

⌈
1

6ε

⌉
1

n
≥ 1

6εn
≥ 1

6nδ
.

In particular, when δ = 0.1, the ratio is at least 1/24 for all n ≤ 106.

3 Concluding remarks

Summary. We presented and analyzed a convexity-testing algorithm implemented by two pro-
cedures based on random sampling that has the following enhanced functionality:

1. For point sets that are ε-far from convex position, with probability ≥ 2/3 the algorithm
outputs a (d+ 2)-point witness of non-convexity as a negative certificate.

2. For point sets that are ε-close to convex position, with probability ≥ 2/3 the algorithm
outputs a 1/(6nδ)-approximation of a maximum-size convex subset. [Comment: The current
fastest algorithm for computing the largest subset in convex position takes O(n3) time for
d = 2, see [6, 10]. In contrast, the problem of computing a largest subset of points in convex
position is NP-complete for d ≥ 3 [14], and moreover, no approximation algorithm is known.]

3. The input range for the tester is significantly extended — for moderate and higher dimensions
— compared to the previous version in [7].

A clarifying remark (A question of Eppstein for the planar case). Four-point witnesses
to non-convexity can be also viewed as forbidden configurations or obstacles in a convex set of
points. Taking this view, sample-based property testing attains the following performance when
the sample size is chosen based on the structure of the obstacle set.

Theorem 3. [11, Theorem 6.8] Let O1, O2, . . . be a finite set of obstacles, whose maximum size is
t, and let ε and p be numbers in the range 0 < ε < 1 and 0 < p < 1. Then there is a sample-
based property testing algorithm for the property that avoids these obstacles whose sample size, on
configurations of size n, is O(n1−1/t) and whose false positive rate for configurations that are ε-far
from this property is at most p.

12

Recall that a sawtooth configuration of n points (where n is a multiple of 4) is obtained by
adding n/2 points very close to the midpoints of the n/2 sides of a regular n/2-gon and interior
to it [11, Definition 3.9]. It is known that a sawtooth configuration of n points is 1/4-close to
convex i.e., it can be made convex by removing a quarter, but not fewer, of its points; see, e.g., [11,
Observation 1.11]. By Theorem 3, letting t = 4 (by the witness structure), ε = 1/4, and p = 1/3,
indicates that a sample-based convexity testing algorithm with sample size O(n3/4) achieves a false
positive rate at most 1/3 for configurations that are 1/4-far from convexity.

Likely unaware of the work of Czumaj et al. [7, 9], Eppstein asked the following natural ques-
tion [11, Open Problem 11.10]: “Does the sample-based property testing algorithm for convexity,
with sample size O(n2/3), achieve constant false positive rate, or is sample size Ω(n3/4) needed?”
Here achieving constant false positive rate means assuring that the false positive rate is bounded
from above by a constant. The machinery developed by Czumaj et al. for convexity testing (this
includes Lemmas 3.2 and 4.9 in [8]) and revisited here in Section 2 shows that a sample size O(n2/3)
suffices for that purpose and in general for any constant 0 < ε < 1 and 0 < p < 1. This answers
Eppstein’s question.

References

[1] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars, Computational Ge-
ometry, 3rd edition, Springer, Heidelberg, 2008.

[2] Arnab Bhattacharyya and Yuichi Yoshida, Property Testing, Springer Nature Singapore, 2022.

[3] Manuel Blum, Michael Luby, and Ronitt Rubinfeld, Self-testing/correcting with applications
to numerical problems, Journal of Computer and System Sciences 47(3) (1993), 549–595.

[4] Timothy M. Chan, Output-sensitive results on convex hulls, extreme points, and related prob-
lems, Discrete & Computational Geometry 16(4) (1996), 369–387.

[5] Bernard Chazelle, An optimal convex hull algorithm in any fixed dimension, Discrete & Com-
putational Geometry 10 (1993), 377–409.

[6] Vašek Chvátal and Gheza T. Klincsek, Finding largest convex subsets, Congressus Numeran-
tium, 29 (1980), 453–460.

[7] Artur Czumaj, Christian Sohler, and Martin Ziegler, Property testing in computational ge-
ometry (extended abstract), in Proc. 8th Annual European Symposium on Algorithms (ESA
2000), Springer, Heidelberg, vol. 1879 of LNCS, pp. 155–166. https://doi.org/10.1007/

3-540-45253-2_15.

[8] Artur Czumaj, Christian Sohler, and Martin Ziegler, Testing convex position,
https://www.researchgate.net/publication/228727099_Testing_Convex_Position.
Online manuscript (16 pages), accessed in April 2022.

[9] Artur Czumaj and Christian Sohler, Property testing with geometric queries, in Proc. 9th
Annual European Symposium on Algorithms (ESA 2001), Springer, Heidelberg, vol. 2161 of
LNCS, pp. 266–277. https://doi.org/10.1007/3-540-44676-1_22.

[10] Herbert Edelsbrunner and Leonidas J. Guibas, Topologically sweeping an arrangement, Jour-
nal of Computer and System Sciences 38(1) (1989), 165–194.

13

https://doi.org/10.1007/3-540-45253-2_15
https://doi.org/10.1007/3-540-45253-2_15
https://www.researchgate.net/publication/228727099_Testing_Convex_Position
https://doi.org/10.1007/3-540-44676-1_22

[11] David Eppstein, Forbidden Configurations in Discrete Geometry, Cambridge University Press,
2018.

[12] Paul Erdős and George Szekeres, A combinatorial problem in geometry, Compositio Mathe-
matica 2 (1935), 463–470.

[13] Funda Ergün, Sampath Kannan, Ravi S. Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan,
Spot-checkers, Journal of Computer and System Sciences 60(3) (2000), 717–751.

[14] Panos Giannopoulos, Christian Knauer, and Daniel Werner, On the computational complexity
of Erdős-Szekeres and related problems in R3, Proc. 21st European Symposium on Algorithms,
vol. 8125 of LNCS (2013), pp. 541–552.

[15] Oded Goldreich, Introduction to Property Testing, Cambridge University Press, 2017.

[16] Jie Han, Yoshiharu Kohayakawa, Marcelo T. Sales, and Henrique Stagni, Property testing
for point sets on the plane, Proc. of Latin American Symposium on Theoretical Informatics
(LATIN 2018), Springer, vol. 10807 of LNCS, pp. 584–596.

[17] Gyula Károlyi and Pavel Valtr, Configurations in d-space without large subsets in convex
position, Discrete & Computational Geometry 30(2) (2003), 277–286.

[18] Lásló Lovász, Combinatorial Problems and Exercises, 2nd edition, Elsevier, Amsterdam, 1993.

[19] Jǐŕı Matoušek, Lectures on Discrete Geometry, Springer, New York, 2002.

[20] Michael Mitzenmacher and Eli Upfal, Probability and Computing: Randomized Algorithms and
Probabilistic Analysis, 2nd edition, Cambridge University Press, 2017.

[21] Peter McMullen, The maximal number of faces of a convex polytope. Mathematika 17 (1970),
179–184.

[22] Albert Nijenhuis and Herbert S. Wilf, Combinatorial Algorithms, 2nd edition, Academic Press,
New York, 1978.

[23] Cosmin Pohoata and Dmitrii Zakharov, Convex polytopes from fewer points, manuscript,
August 2022. Preprint available at arXiv.org/abs/2208.04878.

[24] Edward M. Reingold, Jurg Nievergelt, and Narsingh Deo, Combinatorial Algorithms: Theory
and Practice, Prentice-Hall, New Jersey, 1977.

[25] Raimund Seidel, Convex hull computations, Chap. 26 in Handbook of Discrete and Computa-
tional Geometry (Jacob E. Goodman, Joseph O’Rourke, and Csaba D. Tóth, eds.), 3rd edition,
CRC Press, Boca Raton, 2017, pp.1057–1092.

[26] Andrew Suk, On the Erdős-Szekeres convex polygon problem, Journal of the American Math-
ematical Society 30 (2017), 1047–1053.

[27] Pavel Valtr, Convex independent sets and 7-holes in restricted planar point sets, Discrete &
Computational Geometry 7(2) (1992), 135–152.

[28] David P. Williamson and David B. Shmoys, The Design of Approximation Algorithms, Cam-
bridge University Press, 2011.

14

arXiv.org/abs/2208.04878

A Remarks on Lemma 3.4 in [8]

The following lemma is suggested in [8]. Here we argue why the lemma cannot be used as is.

Lemma 5. [8]. Let Ω be an arbitrary set set of n elements. Let k and ` be arbitrary integers (possi-
bly dependent on n) and let s be an arbitrary integer such that s ≥ 2n/(2k)1/`. Let W1,W2, . . . ,Wk

be arbitrary disjoint subsets of Ω each of size `. Let W be a subset of Ω of size s which is chosen
independently and uniformly at random. Then

Prob(∃j ∈ [k] : (Wj ⊆W)) ≥ 1

4
.

We make two points:

(i) The first point is minor: taking s as the smallest integer satisfying s ≥ 2n/(2k)1/`, namely
s = d2n/(2k)1/`e may result in an integer larger than n and thereby be infeasible. For example,
the setting n = 256, k = 8, ` = 8, yields s = d2n/(2k)1/`e = 363 > 256.

(ii) The second point requires attention. Reading through the first few lines of the proof suggests
that one could take

s = `+
n− `

(2k)1/`
, or k

(
s− `
n− `

)`
=

1

2
. (9)

However, this value may be not an integer, and thereby be again infeasible. Suppose that one
takes instead the ceiling in the expression of s:

s = `+

⌈
n− `

(2k)1/`

⌉
. (10)

For the above setting in (i), this yields s = 8 +
⌈

248
(16)1/8

⌉
= 8 + 176 = 184. Then the two factors

that appear in the calculation of the lower bound on the probability in question are

F1 = k ·
(
s− `
n− `

)`
= 8 ·

(
176

248

)8

= 0.5147 . . . ,

F2 = 1− k ·
(
s− `
n− `

)`
= 1− 8 ·

(
176

248

)8

= 0.4852 . . .

It is now clear that F1 · F2 <
1
4 . Taking the floor does not work either. The above example is

not an exception, and this occurs whenever the value of s in (9) is not an integer, which happens
most of the time.

15

	1 Introduction
	1.1 Preliminaries

	2 An enhanced functionality tester for convex position
	2.1 Negative testing: Algorithm Convex-
	2.2 Positive testing: Algorithm Convex+

	3 Concluding remarks
	A Remarks on Lemma 3.4 in CSZ00

