
Chern dartboard insulator: sub-Brillouin zone topology and skyrmion multipoles

Yun-Chung Chen,1 Yu-Ping Lin,2 and Ying-Jer Kao1, 3, 4, ∗

1Department of Physics and Center for Theoretical Physics, National Taiwan University, Taipei 10607, Taiwan
2Department of Physics, University of California, Berkeley, California 94720, USA

3Center for Quantum Science and Technology, National Taiwan University, Taipei 10607, Taiwan
4National Center for High-Performance Computing, Hsinchu City 30076, Taiwan

Topology plays a crucial role in many physical systems, leading to interesting states at the surface. The
paradigmatic example is the Chern number defined in the Brillouin zone that leads to the robust gapless edge
states. Here we introduce the reduced Chern number, defined in subregions of the Brillouin zone (BZ), and
construct a family of Chern dartboard insulators (CDIs) with quantized reduced Chern numbers in the sub-BZ
(sBZ) but with trivial bulk topology. CDIs are protected by mirror symmetries and exhibit distinct pseudospin
textures, including (anti)skyrmions, inside the sBZ. These CDIs host exotic gapless edge states, such as Möbius
fermions and midgap corner states, and can be realized in photonic crystals. Our work opens up new possibilities
for exploring sBZ topology and nontrivial surface responses in topological systems.

INTRODUCTION

Chern insulators are classic examples of non-interacting
systems with nontrivial bulk topology1, in which the quan-
tized Hall conductivity observed in transport experiments is
related to the first Chern number defined in the Brillouin
zone (BZ)2. The associated quantum anomalous Hall effect
has also been observed 3–7 along with robust gapless edge
states4,5,8,9. In this work, we show that the nontrivial topology
can appear locally in the BZ, even when the global topology
is trivial. The idea relies on the concept of sub-Brillouin zone
(sBZ) topology where the topological invariant is defined in
a fraction of the BZ. We introduce a family of delicate topo-
logical systems10,11, termed as the Chern dartboard insula-
tors (CDIs), which exhibit the nontrivial sBZ topology. The
n-th order Chern dartboard insulators, CDIn for short, have
quantized first Chern numbers inside 1/2n of the BZ. These
reduced Chern numbers are protected by n mirror symme-
tries (Fig. 1a). These systems cannot be captured by the theo-
ries of tenfold way12,13, symmetric indicators14–16 or topolog-
ical quantum chemistry17,18. In addition, all the CDIs exhibit
multicellular and even noncompact topology10,11,19, i.e., the
Wannier functions cannot be entirely localized to δ-functions
due to the reduced Chern numbers. Similar to the returning
Thouless pump (RTP) insulators, all the CDIs can be captured
by the quantized Berry phases along the high-symmetry lines
(HSLs), and the topology can be trivialized by adding trivial
atomic bands into either the occupied or unoccupied space.

Interestingly, for the two-band CDIs, skyrmion multipoles
appear as a manifestation of the sBZ topology in the BZs.
Contrary to Chern insulators that exhibit meron-antimeron
pairs, the BZs of CDIs consist of HSLs which pin the pseu-
dospins in the same direction. The (anti)skyrmions live in the
sBZs bounded by the HSLs, thereby exhibiting the multipole
structures (Fig. 2). The total number of (anti)skyrmions in the
sBZ indeed corresponds to the reduced Chern number.

Here we observe that with the sBZ topology, all the CDIs
host gapless edge states, even with Möbius fermions and
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midgap corner states in certain cases. However, contrary to
Chern insulators, by including weak disorders (compared to
the bulk gap) that obey mirror symmetries, one can in gen-
eral gap out the edge states. In this sense, the edge (corner)
states are as robust as the two-dimensional (2D) weak TIs or
the multipole-moment insulators protected by crystalline sym-
metries20–23. Nevertheless, under the sharp boundary condi-
tion, the gapless edge states can be protected at certain high-
symmetry edges.

ANALYSES AND RESULTS

Theory. We aim at finding the possible topology protected
by nmirror symmetriesM1,M2, ...,Mn. These symmetries
divide the BZ into the irreducible BZs, which become the fun-
damental domain to define the topology. A possible realiza-
tion is to consider the systems with the same mirror symmetry
representationM1, ...,Mn = σz ⊗ I ,

MiH(k)M−1
i = H(Rik), (1)

where σz and I are the Pauli and identity matrix, and Ri rep-
resent the mirror reflections in the k space. Here, the basis
orbitals are chosen such that the mirror symmetry representa-
tion is diagonal. Therefore, the projection matrix onto the oc-
cupied space at the HSLs is in a block diagonal form. Notice
that the system also has Cn symmetry with trivial representa-
tion Cn = I .

Next, we consider the models in which all the occupied
states at the HSLs have the same mirror representations. The
blocks in the projection matrix are thus composed of zero and
identity matrices, which correspond to the unoccupied and oc-
cupied space, respectively. Up to a k-dependent U(1) phase,
the HSLs are mapped to a point in the Hilbert space, and
each sBZ enclosed by the HSLs is topologically equivalent
to a compact manifold. The first Chern number is thus well-
defined in the irreducible BZ,

Cn = − 1

2π

∫

irBZ
d2kTrFxy, (2)

where Fxy is the non-Abelian Berry curvature, and Cn is the
reduced Chern number of the n-th order CDIs.
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FIG. 1. Illustration of Chern dartboard insulators. a Chern dart-
board insulators with different orders. The black dashed lines denote
the high-symmetry lines of mirror symmetries in the Brillouin zone.
The Chern number is quantized inside the regions enclosed by the
high-symmetry lines. Here, the regions with blue and red color have
reduced Chern number Cn = 1,−1. b Mercater projection of Type I
n = 1 Chern dartboard insulator.

The simplest CDI1 is protected by one mirror symmetry
and has the quantized reduced Chern number inside half of
the BZ. There are two types of CDI1: Type I has the opposite
mirror representations at the two different HSLs. An example
is given by the two-band tight-binding Hamiltonian with the
mirror symmetryMy = σz ,

HI
1 (k)= cos kx sin kyσx + sin kx sin kyσy

+(m+ cos ky)σz, (3)

where m is a tunable parameter. In this model, the two HSLs
sit at ky = 0, π. The basis orbitals consist of an s orbital and
a py orbital. At −1 < m < 1, this model has a quantized
reduced Chern number C1 = 1 inside the upper half BZ, and
has a flat-band limit at m = 0. Type I CDI1 has a quantized
bulk polarization if the total number of the occupied bands is
odd20.

On the other hand, type II CDI1 has the same mirror rep-
resentations at the two different HSLs. A flat-band model is
given by

HII
1 (k)=

1

2
(1 + cos kx) sin 2kyσx + sin kx sin kyσy

+
1

2
[(1 + cos kx)(cos 2ky − 1) + 2]σz. (4)

Interestingly, the bulk polarization Px =
∫ 2π

0
TrAxdkx

shows the RTP behavior10,11 in both cases. The RTP invari-
ant is given by the difference of polarizations along the HSLs
∆Px = Px(ky = π) − Px(ky = 0). Notably, this invariant

FIG. 2. Pseudospin textures of the Chern dartboard insulators.
The vector field represents the components of nx and ny , and the
color represents the nz component. a Type I n = 1 Chern dartboard
insulator in the flat-band limit. The reduced Chern number C1 = 1
arising from the winding around the south pole at ky = π. b Type II
n = 1 Chern dartboard insulator in the flat-band limit. The reduced
Chern number C1 = 1 arising from the skyrmion living inside half of
the BZ. c n = 2 Chern dartboard insulator. d n = 3 Chern dartboard
insulator. e n = 4 Chern dartboard insulator. f The zoom-in subplot
for the red frame in e.

can be related to the quantized reduced Chern number through
the Stokes theorem.

The sBZ topology can be visualized by mapping (3) to the
Bloch sphere with kx → φ, ky → θ24,25. This mapping is only
meaningful when ky ∈ [0, π]. The upper half BZ is mapped
to the entire sphere through the Mercator projection, thereby
hosting the reduced Chern number C1 = 1 (Figs. 1b and 2a).
Meanwhile, the lower half BZ ky ∈ [−π, 0] is also mapped to
the entire sphere, but now with a negative sign C1 = −1 due
to mirror symmetry. The quantization of the reduced Chern
number inside the half BZ can be understood as follows: un-
der the mirror symmetryMy = σz , the ky = 0 and π HSLs
are mapped to the north and south poles, respectively, as they
have opposite representations. Therefore, the half BZ has a
topology equivalent to S2, and the reduced Chern number C1
is well-defined (Fig. 1b). In contrast to Type I CDI1, Type II
CDI1 has well-defined skyrmions inside the half BZ, as shown
in Figure 2b. The sBZ topology is more complicated as both
the HSLs are mapped to the north pole, and it can be directly



3

related to the existence of skyrmions.
Higher-order CDIs, on the other hand, are quite different

from the CDI1s as they cannot be captured by the RTP in-
variant. In particular, the symmetry representations of the
valence bands (or the conduction bands) at all the HSLs are
exactly the same as the symmetry representation of one of
the basis orbitals. Figures 2c, 2d and 2e plot the peudospin
textures of the two-band higher-order CDIs. All these cases
have blue-centered skyrmions or antiskyrmions inside the ir-
reducible BZs, which lead to the nontrivial reduced Chern
number Cn = 1. Finally, we note that there are two types
of CDI3s with different configurations of the irreducible BZs.
Here we plot Type I CDI3 that corresponds to the configura-
tion in Fig. 1a.

By inspecting the symmetry representations at the HSLs
alone, one cannot detect the CDIs. However, the CDIs still
have different band representations from the ones with δ-like
Wannier functions, since the homotopic inequivalence occurs
from the quantized reduced Chern number. Moreover, the
n = 2, 4, 6 CDIs are noncompact atomic insulators, where
the orthonormal Wannier functions cannot be strictly local and
compact19. Note that these models are quite different from the
cases studied in Ref.19, where the noncompactness arises from
the obstruction of the lattices that leads to obstructed atomic
insulators. Here, the CDIs are not obstructed and the noncom-
pactness arises due to the multicellularity.

Gapless edge states. Similar to the Chern insulators, the
appearance of gapless edge states in CDIs can be explained
by the domain walls, with the exception of Type I CDI1s. The
domain walls arise because of the band inversions inside the
irreducible BZs. For Type I CDI1s, there are no isolated band-
inversion points and the gapless edge states only exist in the
directions perpendicular to the HSLs. For other CDIs, there
must exist isolated band-inversion points inside the irreducible
BZ, owing to the quantized reduced Chern number Cn. Inside
the irreducible BZ, the topology shares similar behavior with
regular Chern insulators. If one tries to close the gap by cre-
ating massive Dirac cones at the band-inversion points, the
minimal low-energy Dirac Hamiltonian with mirror symme-
try representation σz ⊗ I can be expressed as

H(k, r) = kxΓx + kyΓy +m(r)σz ⊗ I, (5)

where the three matrices Γx,Γy, σz ⊗ I anticommute with
each other, andm(r) is a position-dependent mass term. Since
m(r) < 0 inside the bulk, the gapless edge states appear as
the domain walls between the bulk and the vacuum in which
m(r) > 026. In the two-band models, the band-inversion
points are exactly associated with the skyrmion centers in
Fig. 2.

It is worth emphasizing that there is a fundamental differ-
ence between the Chern insulators and the CDIs. In a Chern
insulator with C = 1, we have only one band-inversion point
inside the BZ. Thus, the chiral gapless edge states appear due
to the domain walls between the bulk and the vacuum. How-
ever, for CDIs with Cn = 1, we have 2n band-inversion points
with opposite signs of reduced Chern number inside the BZ
under mirror symmetries. It follows that the edges host n
gapless edge states with positive chirality and n gapless edge

0 2
ky

-1.0
-0.5
0.0
0.5
1.0

E

a

0 2
kx

-1.0
-0.5
0.0
0.5
1.0

E

b

0 2
kx

-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0

E

c

0 2
kx

-4.0
-2.0
0.0
2.0
4.0

E

d

0 / 3 2 / 3
ky

-4.0
-2.0
0.0
2.0
4.0

E

e

0 2
kx

-4.0
-2.0
0.0
2.0
4.0

E

f

FIG. 3. Edge states of Chern dartboard insulators. The nanorib-
bon band structures are shown in all subfigures. The doubly degen-
erate edge states localized separately at the two opposite edges are
highlighted by red color. a Type I and II CDI1s with edges along
the y-direction in the flat-band limit. The edge states localized at
the left (right) edge are denoted by blue (black) color. b Type II
CDI1 with edges along the x-direction in the flat-band limit. c CDI2
with edges along the x-direction. d CDI4 with edges along the x-
direction. e CDI3 with edges along the y-direction, which corre-
spond to the zigzag edges. The edge states localized at the left (right)
edge are denoted by blue (black) color. f CDI3 with edges along the
x-direction, which correspond to the flat edges.

states with negative chirality near E = 0, regardless of the
edge terminations. The bulk-boundary correspondence for all
the CDIs, except for Type I CDI1, can be written as,

N+
e = N−

e = nCn, (6)

where N±
e is the minimal number of gapless edge states with

positive (negative) chirality near E = 0. Here, we emphasize
again that this picture only works in the low-energy region.
One can expect that the gapless edge states with positive and
negative chiralities may rejoin at high energy such that they
are disconnected from the bulk bands. In this sense, the gap-
less edge states in the CDIs are as robust as the delicate TIs.
In Fig. 3, we plot the nanoribbon band structures for all the
CDIs. It is easy to observe that the bulk-boundary correspon-
dence Eq. (6) is satisfied. Finally, the edge states in Fig. 3c,
Fig. 3d and Fig. 3f are doubly degenerate because of mirror
symmetry that relates the two boundaries.
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FIG. 4. Midgap corner states in Type I n = 1 Chern dartboard
insulator. a The nanoflake energy spectrum. b The probability dis-
tribution of the two corner states. In the flat-band limit, the left and
right corners of the nanoflake also host midgap corner states, but
they are not robust. To explicitly show it, we set m = 0.2 and add
the nearest-neighbor coupling 0.3 cos kxσz to Eq. (3).

Midgap Corner States. By cutting the edges in the (1,1)
and (1,-1) directions of Type I CDI1, we obtain two protected
midgap corner states with quantized 1/2 charges. Notice that
the unit cell is preserved, and the upper and lower corners have
two atoms instead of one atom. Contrary to the 2D weak TIs
where there are plenties of midgap edge states, Type I CDI1
host two protected midgap corner states at the upper and lower
corners (Fig. 4). This is similar to the midgap corner states in
the model with a quantized polarization28, where the corner
states appear at the corners that correspond to the direction of
polarization. Therefore, Type I CDI1 also serves as the sim-
plest two-band models with protected midgap corner states.

Möbius Fermions. Interestingly, the edge states parallel
to the x-axis in Type II CDI1 show even more striking phe-
nomenon. We expect that there are two chiral gapless edge
states with opposite chirality near E = 0, regardless of the
edge terminations due to the band inversions inside the irre-
ducible BZ. In the flat-band limit, the edge Hamiltonian de-
scribes the phase transition point of the four-band SSH model,
and the edge states form the Möbius fermions29 (Fig. 3b). The
energy of the two edge states are E1(kx) = sin(kx/2) and
E2(kx) = − sin(kx/2). Clearly, they show the Möbius twist:
the energies are only periodic in kx ∈ [0, 4π], and a single
edge Dirac cone appears at kx = 0. Since the edge Dirac
cone is protected by the quantized reduced Chern number, the
Dirac cone cannot disappear although the position can shift
from kx = 0. The eikx/2 dependence is also clearly shown
in the edge states (see Supplementary Note 2 for details). In
addition to Type II CDI1, the Möbius fermions also appear in
both types of CDI3s (Fig. 3f). Finally, we note that the Möbius
fermions can only appear with odd numbers of Dirac cones in
the CDIs.

DISCUSSIONS

We introduce a novel concept of sBZ topology that man-
ifests itself in different classes of CDIs. CDIs host gapless
edge states in general and can even develop nontrivial Möbius
fermions or midgap corner states in certain cases. Although
here we only consider specific examples of the sBZ topology,
one can easily generalize the same argument to systems in
higher dimensions or with different symmetries/constraints.
The sBZ topology thus opens a fertile area for new topological
systems with nontrivial surface responses. The different phys-
ical properties from the global topology make the realization
and classification of the sBZ topology a new frontier of re-
search in topological materials. Thanks to the recent advances
in detecting local Berry curvature in various systems30,31, and
in realizing topological phases in nanophotonic silicon ring
resonators32, the realization and observation of CDIs and their
exotic edge states is expected in the near future.

METHODS

Conventions and definitions. With translational symmetry, the
second quantized tight-binding Hamiltonian can be written into the
Bloch form,

Ĥ =
∑

k

c†i,k
[
H(k)

]
ij
cj,k, (7)

where

cj,k =
1√
Nt

∑

R

eik·Rcj,R (8)

is the electron annihilation operator. Here, j = 1, ..., 2N labels the
basis orbitals and spins, R labels the unit cell position, and Nt is the
total number of the unit cells. We use the convention that the Bloch
Hamiltonian H(k) is periodic under a translation of a reciprocal lat-
tice vector G:

H(k) = H(k +G). (9)

The intra-cell eigenstates are defined by:

H(k)|ul(k)〉 = El(k)|ul(k)〉, (10)

where l = 1, ..., 2N are the band indices and El(k) is the eigenen-
ergy. Note that one can generically choose a smooth and periodic
gauge for the eigenstates of CDIs since the total Chern number is
zero. Considering the half-filling band insulators, the intra-cell states
can be decomposed into the valence states |ul

v〉 and the conduc-
tion states |ul

c〉, where l = 1, ..., N . The Bloch state is given by
|ψl(k)〉 = eik·R|ul(k)〉.

The non-Abelian Berry connection for the valence bands is de-
fined as:

Alm(k) = i〈ul
v(k)|∇|um

v (k)〉, (11)

and the non-Abelian Berry curvature in two dimensions is:

Fxy,lm = ∂xAy,lm − ∂yAx,lm − i
[
Ax, Ay

]
lm
. (12)

Skyrmion number. The topology of two-band CDIs can be vi-
sualized using the psudospin textures. We first expand the Bloch
Hamiltonian into the Pauli matrices:

H(k) =
∑

i

di(k)σi, (13)
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where σi with i = x, y, z are the Pauli matrices. The reduced Chern
number can be defined as the degree of the map from the irreducible
BZ to S2:

Cn = − 1

4π

∫

irBZ
d2kn ·

(
∂n

∂kx
× ∂n

∂ky

)
(14)

where n(k) = d(k)/|d(k)| are the unit vectors that define the space
of S2. The reduced Chern number measures how many times the
irreducible BZ wraps around S2.

The peudospin textures of CDIs are plotted in Fig. 2. The first
Chern number can be calculated as the sum of the indices around
either n0 = (0, 0, 1) or n0 = (0, 0,−1) inside the BZ, with a sign
difference33. Note that this choice is just for convenience as one can
easily do an arbitrary unitary transformation. The reduced Chern
number is

Cn =
∑

i

Si, (15)

where Si is the index around the south pole n0 = (0, 0,−1) with
the blue center in the plot, and i denotes the different skyrmions in-
side the BZ. Since the irreducible BZ is a two-dimensional manifold,
the indices can be calculated simply as the winding numbers of the
vectors around the south pole. Notice that the Poincaré–Hopf theo-
rem constrains the total indices including those around the north pole
n0 = (0, 0, 1) are summed to zero. This is consistent with Eq. (14)
since a nonzero Chern number implies the north pole and the south
pole must be wrapped around nontrivially.

Tight-binding models. Here we list the two-band spinless tight-
binding models used to construct the figures in the main text for
CDIs. The n = 1, 2, 4 CDIs are built in the simple square lattice with
primitive lattice vectors a1 = (1, 0) and a2 = (0, 1) in the unit of a
lattice constant. The CDI3 is built in the triangular lattice with prim-
itive lattice vectors a1 = (1, 0) and a2 = (1/2,

√
3/2) in the unit

of a lattice constant. The basis orbitals are all placed on the atoms.
The numerical results of the midgap corner states and the nanoribbon
band structures are performed using the PYTHTB package34.

Type I CDI1:

HI
1 (k)= cos kx sin kyσx + sin kx sin kyσy

+(m+ cos ky)σz, (16)

where m is a parameter. The basis orbital consists of a s orbital and
a py orbital. The Hamiltonian has the mirror symmetryMy = σz .
For−1 < m < 1, this model has a quantized reduced Chern number
C1 = 1 inside the upper half BZ, see Fig. 1. The system has a flat-
band limit when m = 0.

Type II CDI1:

HII
1 (k)= cos kx sin 2kyσx + sin kx sin kyσy

+(m+ cos 2ky − cos kx)σz, (17)

where m is a parameter. The basis orbital consists of a s orbital and
a py orbital. The Hamiltonian has the mirror symmetryMy = σz .
For 0 < m < 2, this model has a quantized reduced Chern number

C1 = 1 inside the upper half BZ, see Fig. 1. The system has a flat-
band limit in the following form:

HIIc
1 (k)=

1

2
(1 + cos kx) sin 2kyσx + sin kx sin kyσy

+
1

2
[(1 + cos kx)(cos 2ky − 1) + 2]σz. (18)

CDI2:

H2(k) =− sin kx sin 2kyσx + sin 2kx sin kyσy

+(m+ cos 2kx + cos 2ky)σz. (19)

where m is a parameter. The basis orbital consists of a s orbital and
a dxy orbital. The Hamiltonian has two mirror symmetriesMx =
My = σz . For 0 < m < 2, this model has a quantized reduced
Chern number C2 = 1 inside the upper right quarter of the BZ, see
Fig. 1. We set m = 1.0 for all the figures.

CDI4:

H4(k) = (− sin kx sin 4ky + sin 4kx sin ky)σx

+(sin 2kx sin 4ky − sin 4kx sin 2ky)σy

+
[
m+ cos 2kx + cos 2ky + cos 4kx

+cos 4ky + 4 cos kx cos ky
]
σz, (20)

where m is a parameter. The basis orbital consists of a s orbital
and a second orbital that is odd under four mirror symmetries. The
Hamiltonian has four mirror symmetriesMx = My = Mx+y =
Mx−y = σz . For 2 < m < 4, this model has a quantized reduced
Chern number C4 = 1 inside the irreducible BZ, see Fig. 1. We set
m = 3.0 for all the figures.

Type I CDI3:

H3(k) =
[
sin

5

2
kx sin

√
3

2
ky − sin 2kx sin

√
3ky

+sin
1

2
kx sin

3
√
3

2
ky
]
σx

+
[
− cos

5

2
kx sin

√
3

2
ky − cos 2kx sin

√
3ky

+cos
1

2
kx sin

3
√
3

2
ky
]
σy

+

[
m+

6∑

a=1

(
eit2(a)·k +

1

2
e2it2(a)·k

)]
σz, (21)

where m is a parameter and t2(a) =√
3[cos(πa/3− π/6), sin(πa/3− π/6)]T . The basis orbitals

consist of a s orbital and a fy(3x2−y2) orbital. The Hamiltonian has
three mirror symmetriesMy = C3MyC

−1
3 = C2

3MyC
−2
3 = σz .

The σz term contains the hoppings with range a1 +a2, 2(a1 +a2),
and also the ones generated by all the C6 rotations. The σx and
σy terms contain the hoppings with range a1 + 2a2 and the ones
generated by three mirror symmetries. For 0 < m < 4.5, this model
has a quantized reduced Chern number C3 = 1 inside the irreducible
BZ, see Fig. 1. We set m = 2.0 for all the figures.

DATA AVAILABILITY

The data for all the figures are all available by requesting.
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servation of unidirectional backscattering-immune topological
electromagnetic states.. Nature 461, 772–775 (2009).

[10] Nelson, A., Neupert, T., Bzdušek, T. c. v. & Alexandradinata,
A. Multicellularity of Delicate Topological Insulators. Phys.
Rev. Lett. 126, 216404 (2021).

[11] Nelson, A., Neupert, T., Alexandradinata, A. & Bzdušek, T.
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Supplementary Note 1. Mathematical Formulation of Chern Dartboard Insulators

Consider n mirror symmetriesM1,M2, ...,Mn with the same mirror symmetry representationM1, ...,Mn = σz ⊗ I:

MiH(k)M−1
i = H(Rik), (1)

where Ri represent mirror reflections in k space. Using the Stokes theorem:

− 1

2π

∮
TrA · dk = − 1

2π

∫

irBZ
d2kTrFxy = Cn, (2)

whereA and Fxy are the non-Abelian Berry connection and curvature, and Cn is the reduced Chern number of the n-th order
CDIs. The loop integral encloses the irreducible BZ. On the HSLs, the valence states are eigenstates of the Hamiltonian due
to Eq. (1). Next, we consider the models which all the occupied states at the high-symmetry lines (HSLs) have the same
mirror representations. As a result, the valence states are spanned by the basis orbitals:

|uiv(k ∈ HSLs)〉 =
N∑

j=1

Uij(k ∈ HSLs)|bj〉, (3)

where |bj〉 with j = 1, ..., N are the basis orbitals that have the same mirror symmetry representation with the occupied states
|ujv(k ∈ HSLs)〉. Here, the basis orbitals are chosen into the basis such that the mirror symmetry representation is diagonal.
Since the total Chern number is zero, Uij(k) can be chosen to a smooth and periodic U(N) gauge transformation. The key
point is that the rank of the occupied states is equal to the rank of the basis states |bj〉 such that Uij(k) is a well-defined U(N)
gauge transformation. By plugging Eq. (3) into Eq. (2), it follows that,

i

2π

∫
Tr
[
U†π∇Uπ − U†0∇U0

]
· dk = C1, (4)

where Uπ and U0 denote the gauge transformation at the two different HSLs, and

− i

2π

∮
TrU†∇U · dk = Cn, (5)

for n > 1. The reduced Chern number is thus quantized to integers. Note that the k-dependent U(1) phase is crucial to obtain
the nonzero reduced Chern number.
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Supplementary Note 2. n = 1 Chern Dartboard Insulator in the Compact Limit

In this supplementary note, we discuss the analytical results of the CDI1s in the compact limit. Here, the compact limit means
that the model has the compact orthonormal Wannier functions with finite lattice sites. Note that for general parameters of
the Hamiltonian, the Wannier functions decay exponentially rather than compactly localize.For the trivial atomic insulator,
the compact limit is attained when the electrons entirely localize at each atom and the associated Wannier functions are δ-
functions. However, for the CDIs with multicellularity, it is impossible to adiabatically deform the models into the trivial
atomic insulators. Nevertheless, it is possible for CDI1s to attain the compact limit where the Wannier functions are strictly
zero outside a finite domain.

In the compact limit, the system has the following properties: (i) the correlation length is strictly zero, and the correlation
function has a finite range; (ii) the excited spectrum is entirely flat since the excited degrees of freedom can be localized into a
finite region. Therefore, there can’t be dispersion of k. The first property can be proved by expanding the correlation function
into the basis of the orthonormal compact Wannier functions:

Cαβij = 〈c†αicβj〉 =
∑

n∈occ.,R

〈αi|Wn
R〉〈Wn

R|βj〉, (6)

where α,β label the positions of two atomic lattice sites, and i, j label the basis orbitals or spins. Wn
R are the Wannier

functions constructed from the occupied space with position R. Since the Wannier functions are compact, the correlation
function must also be compact and become zero outside a finite domain.

Type I CDI1. The Type I CDI1 in the compact limit with C1 = 1 has the form:

HI
1 (k) = cos kx sin kyσx + sin kx sin kyσy + cos kyσz. (7)

Interestingly, this model can be simply related to the Bloch sphere through the mapping defined by the polar coordinate
kx → φ, ky → θ. These two polar coordinates define the direction of the vector n. It is clear that the upper half BZ is mapped
to the entire sphere through the Mercator projection and therefore has reduced Chern number C1 = 1, see Fig. 2 in the main
text. In the compact limit, the energy spectrum is entirely flat:

E(k) = ±|d(k)| = ±1, (8)

and the normalized valence state is given by:

|uIv(k)〉 = e−iky/2
(
−e−ikx sin

ky
2

cos
ky
2

)
. (9)

Notice that a global periodic and smooth gauge is possible for the valence state as the total Chern number is zero under
mirror symmetry. Since the normalization is a constant, we can easily obtain the orthonormal compact Wannier function at
the originR = 0:

|WR=0〉 =
1

(2π)2

∫

BZ

d2keik·r|uIv(k)〉, (10)

The Wannier function occupies four atomic lattice sites, see Supplementary Fig. 1a. The Wannier center is localized at
Wyckoff position b, which shares the same representation with the 2D weak TI protected by mirror symmetry. One should
note that these two models cannot be adiabatically deformed into each other due to the quantized reduced Chern number.

The polarization and the Berry curvature can be analytically obtained:

Px =

∫ 2π

0

Axdkx =
1− cos ky

2
,

Py =

∫ 2π

0

Aydky =
1

2
,

Fxy = − sin ky
2

,

(11)

which are written in the concise expressions due to the constant normalization of the valence state. The quantized polarization
Py = 1/2 because of the mirror symmetryMy as Py → −Py = −1/2 = 1/2 modulo integer under mirror reflection. In
contrast, the polarization Px shows the returning Thouless pump (RTP) behavior. The RTP invariant is associated with the
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Supplementary Figure 1. Compact valence band Wannier functions for the n = 1 Chern dartboard insulators. Each
atom is assigned with a s and a py orbital, which correspond to the first and the second component of the spinors. a Type I
n = 1 Chern dartboard insulator in the compact limit. The Wannier function transforms as a py orbital at Wyckoff position b.
b Type II n = 1 Chern dartboard insulator in the compact limit. The Wannier function transforms as a py orbital at Wyckoff
position a.

kx-dependent U(1) phases at the HSLs arising from the quantized reduced Chern number. Note that it is impossible to find
the periodic and smooth gauge that has no kx-dependent U(1) phase at both HSLs. For example, under the gauge of Eq. (9),
the valence state at the HSLs is given by

|uIv(kx, ky = 0)〉 =

(
0
1

)
,

|uIv(kx, ky = π)〉 = e−ikx
(
i
0

)
.

(12)

One can find that at the HSL ky = π, |uIv(kx)〉 ∝ e−ikx which leads to the quantized RTP invariant. Although we can simply
remove this gauge by multiplying a phase eikx in all the BZ, the valence state at the HSL ky = 0 develops a new phase eikx
such that the difference ∆Px = Px(ky = π) − Px(ky = 0) is still quantized to one. Therefore, the RTP invariant and the
reduced Chern number C1 are indeed quantized under mirror symmetry.

Notice that here we use the convention that both the Hamiltonian and the intra-cell state are periodic in the BZ. It is
interesting to ask what will happen if we use another convention that is more convenient for getting the polarizations and
Wannier centers of the systems. In this convention, the valence state has an additional phase e−ik·tα depending on the basis
vector tα. The intra-cell state and the Hamiltonian are thus aperiodic. To respect the mirror symmetry My = σz in real
space, tα ∝ x̂. Here, we assume the first orbital is localized at x = 0 and the second orbital is localized at x = β, where β is
a constant, and we have set the lattice constant a = 1. By plugging the phase e−iβkx into the second orbital in Eq. (9), one
can easily check that

Px =
(1 + β)− (1− β) cos ky

2
,

Py =
1

2
,

Fxy = −(1− β)
sin ky

2
,

C1 = 1− β.

(13)

Therefore, the reduced Chern number and the RTP invariant are no longer quantized if we use the aperiodic convention and
the two orbitals are not overlapped with each other in the x-direction. This actually makes sense: at ky = 0, the valence
state is spanned by the second orbital at x = β; and at ky = π, the valence state is spanned by the first orbital at x = 1,
see Eq. (13). In fact, this is just a demonstration of the violation of the iso-orbital condition that ensures the quantization of
the RTP invariant. The iso-orbital condition states that the occupied states have the same symmetry eigenvalues as the band
representation induced from one of the basis orbitals, which is obviously violated in the Type I CDI1. Moreover, when β = 1,

3



where all the invariants except Py become trivial, the valence state in Eq. (9) becomes

|uIv(k, β = 1)〉 = e−iky/2
(
−e−ikx sin

ky
2

e−ikx cos
ky
2

)

= e−iky/2
(
− sin

ky
2

cos
ky
2

)
.

Notice that the e−ikx phase disappears in the valence state. The corresponding Hamiltonian is given by:

HI
1 (k, β = 1) = sin kyσx + cos kyσz. (14)

This describes the compact limit of the Su-Schrieffer-Heeger (SSH) model (up to a unitary transformation) stacked in two
dimensions. Therefore, the system can be continuously tuned to the 2D weak TI if one allows to move the orbitals in the
x-direction.

Type II CDI1. The compact limit of the Type II CDI1 with C1 = 1 is:

HII
1 (k) =

1

2
(1 + cos kx) sin 2kyσx + sin kx sin kyσy +

1

2
[(1 + cos kx)(cos 2ky − 1) + 2]σz. (15)

One can simply check that the model has two flat bands E(k) = ±|d(k)| = ±1. The normalized valence band state in the
compact limit is given by:

|uIIv (k)〉 = e−ikx/2
(

− cos kx2 sin ky
cos kx2 cos ky + i sin kx

2

)
. (16)

The compact Wannier function is shown in Supplementary Fig. 1b, which occupies six atomic lattice sites. Notice that the
Wannier center is localized at Wyckoff position a, which is consistent with the symmetry representation. The corresponding
polarization and Berry curvature are:

Px =
1− cos ky

2
,

Py = 0,

Fxy = −(1 + cos kx)
sin ky

2
.

(17)

Here, the bulk polarization Py = 0 contrary to the Type I CDI1 which has Py = 1/2. The Type II CDI1 shows the same RTP
behavior as the Type I CDI1. As a simple check, one can find that the valence state at the HSLs are:

|uIv(kx, ky = 0)〉 =

(
0
1

)
,

|uIv(kx, ky = π)〉 = e−ikx
(

0
−1

)
.

(18)

Notice the difference between the valence state in the Type I CDI1. Here, they have the same mirror representation at both
HSLs. Nevertheless, the appearance of the phase e−ikx is essential to lead to the quantized reduced Chern number and the
RTP invariant.

If we use the aperiodic convention for the intra-cell states, the second orbital should multiply a phase e−iβkx , where β is
the position of the second orbital in the x-direction. Here, we see that the Type II CDI1 is fundamentally different from the
Type I CDI1. By multiplying the phase in the second orbital, the valence states at both HSLs also multiply the same phase.
Although the polarization Px get shifted by β, the RTP invariant stays the same since the difference doesn’t change. Therefore,
the reduced Chern number also stays the same. This just reflects the fact that the valence state at both HSLs correspond to
the same basis orbital py . Therefore, by shifting its position, the difference between the polarizations at both HSLs cannot
change. In fact, since the Type II CDI1 has the same mirror representation at both HSLs, the iso-orbital condition is satisfied.

Compact edge theory. It is also inspiring to discuss the edge physics in the compact limit which has zero correlation
length. Since the correlation function is strictly local and becomes zero outside a finite domain, it is possible to find the set of
compactly supported eigenstates inside the bulk:

Ĥ|Wn
R〉 = En|Wn

R〉, (19)
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where |Wn
R〉 are the compactly supported Wannier functions, and the energy En is the same for all the Wannier functions

within the same band n. Since all the eigenstates are degenerate within the same band in the compact limit, the Wannier
functions are also the eigenstates of the Hamiltonian. Note that in general Wannier functions are not the eigenstates of the
real-space Hamiltonian. Eq. (19) is only true in the compact limit. Now we consider the boundaries of the system. Since the
correlation function is strictly local, the edge states are also strictly local in the direction normal to the edge:

Ĥe(ke)|ei(ke)〉 = Ee(ke)|ei(ke)〉. (20)

Here, ke is the reciprocal vector in the direction that parallels to the edge as we assume the periodic boundary condition
along that direction. i labels the different edge states that are strictly localized on the boundary, that is, 〈R′j|eni (ke)〉 = 0 for
|R′−Re| ≥ ge, whereR′ is the projected atomic position in the direction normal to the edge, andRe is the projected position
of the edge. ge is a positive integer.

Now, we can apply the strictly local condition to the Type I CDI1s in the compact limit. First we observe that the edge
states that parallel to the x-axis have flat energy band due to the quantized bulk polarization Py = 1/2. This shares the
same characteristics with the 2D weak TIs. However, the edge states that parallel to the y-axis are much different due to the
quantized reduced Chern number. One can expect that for ky ∈ [0, π], the edge behaves like a chiral gapless edge states and
have the opposite chirality for ky ∈ [π, 2π]. By observing that the Wannier functions occupy two atomic lattice sites along
the x-direction (Supplementary Fig. 1), we conclude that the edge states occupy only one atomic lattice site normal to the
boundary, that is, ge = 1. Therefore, the edge Hamiltonian in Eq. (20) is exactly given by:

He(ky) = cos kyσz. (21)

The edge states are exactly given by:

|eL〉 =

(
1
0

)
,

|eR〉 =

(
0
1

)
,

(22)

with energy ELe (ky) = cos ky and ERe (ky) = − cos ky . Here the superscript L and R represent the edge at the left or right
boundary. Although the edge Hamiltonian is a two-band Hamiltonian, the two edge states are spatially living in the opposite
boundaries. Since the edge states need to be orthogonal to the bulk states, there is only one edge state living in each boundary.
One can observe that indeed the edge states flow between the bulk bands with energy E(k) = ±1 for k ∈ [0, π] and opposite
for k ∈ [π, 2π]. Recall from the argument in the main text, this connectivity persists as long as mirror symmetry is preserved
and the sharp boundary condition is assumed, even though the system is not in the compact limit. In addition, the Hamiltonian
Eq. (21) describes the simplest one-dimensional conducting chain with nearest-neighbor coupling.

The appearance of the edge states can be explained through the angular-momentum anomaly:

−]fLv(ky = 0) + ]fLv(ky = π)

= ]fLc(ky = 0)− ]fLc(ky = π) = ∆Px. (23)

Here ]fLi denotes the number of left-edge-localized states with the same mirror representations of the valence bands i = v or
conduction bands i = c. It is easy to see that ]fLv(ky = 0) = 0 and ]fLv(ky = π) = 1, in addition with ]fLc(ky = 0) = 1
and ]fLc(ky = π) = 0. Since the RTP invariant is a topological invariant protected by mirror symmetry, there must exist
edge-localized states such that the relation is obeyed. The edge spectrum flows between the bulk bands since they have
different mirror representations at ky = 0, π with the valence or conduction bands. Moreover, the edge states at the left and
right boundaries form a conjugate pair as their mirror representations are opposite, and the angular-momentum anomaly is
satisfied with an opposite sign.

We again investigate the edge physics for the Type II CDI1. First, consider the edge states that parallel to the y-axis. In
this case, one can expect the similar edge behavior as the Type I CDI1s. Since the compact Wannier functions also occupy
two atomic lattice sites along the x-direction (Supplementary Fig. 1), we have ge = 1, and the edge Hamiltonian is exactly
given by:

He(ky) =
1

2
sin 2kyσx +

1

2
(cos 2ky + 1)σz. (24)

Here, contrary to the previous case, the edge Hamiltonian is not a simple one-dimensional conducting with nearest-neighbor
coupling but rather the phase transition point of the SSH model between winding numberw = 0 andw = 2. This is consistent
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with the intuition as the Type II CDI1 has more robust topology than the Type I CDI1. The normalized edge states are given
by:

|eL〉 =
1

2

(
1 + e−iky

−i+ ie−iky

)

|eR〉 =
1

2

(
i− ie−iky
1 + e−iky

)
,

(25)

with energyELe (ky) = cos ky andERe (ky) = − cos ky . The edge states flow between the bulk bands with energyE(k) = ±1
for k ∈ [0, π] and opposite for k ∈ [π, 2π]. Therefore, the bulk-boundary correspondence N+

e = N−e = C1 is satisfied. We
emphasize again that the spectral flow is protected even though the system is not in the compact limit. Here, the Type II
CDI1s host nontrivial one-dimensional conducting chain at the edges. Since the bulk bands have the same mirror eigenvalues
at ky = 0, π, the edge states must have different mirror eigenvalues at ky = 0, π, contrary to the Type I CDI1s where the edge
states have the same mirror eigenvalues. We can also check that the angular-momentum anomaly is obeyed from Eq. (23),
and the edge states at the left and right boundaries also form a conjugate pair.

The edge states that parallel to the x-axis in the compact limit show quite different edge physics. Here, we expect
ge = 2 since the Wannier functions occupy three atomic lattice sites along the y-direction (Supplementary Fig. 1). The edge
Hamiltonian can thus be exactly obtained:

He(kx) = −1

2
sin kxτyσy +

1

2
(1− cos kx)τ0σz. (26)

Here, τi represents the Pauli matrices acting on the sublattices since now we have two atomic lattice sites ge = 2 for the edge
states. τ0 = I is the identity acting on the sublattices. The mirror symmetry representation becomesMye = τxσz , and it acts
as an internal symmetry for the edge states. The edge Hamiltonian describes the phase transition point of the four-band SSH
model. By explicitly solving the normalized edge states, we obtain:

|eU1 〉 =
1

2

(
−i sin

kx
2
− i, sin kx

2
− 1, cos

kx
2
,−i cos

kx
2

)T

|eD1 〉 =Mye|eU1 〉

|eU2 〉 =
1

2

(
i sin

kx
2
− i,− sin

kx
2
− 1,− cos

kx
2
, i cos

kx
2

)T

|eD2 〉 =Mye|eU2 〉,

(27)

with energy EU1 = ED1 = sin(kx/2), EU2 = ED2 = − sin(kx/2), where the superscripts label the edge states at the upper or
lower boundary, which are related by mirror symmetry.

One may immediately notice that the edge states form the Möbius fermions as discussed in the main text. Apparently,
both the edge states |eU1 〉 and |eU2 〉 are not periodic in the edge BZ even though we use the periodic convention. However,
notice that |eU1 (kx = 2π)〉 = |eU2 (kx = 0)〉, |eU1 (kx = 0)〉 = |eU2 (kx = 2π)〉 and the two edge states together form a periodic
and smooth function between kx ∈ [0, 4π]. The corresponding energies EU1 (kx) and EU2 (kx) also show the Möbius twist.

Supplementary Note 3. Type II n = 3 Chern dartboard insulator

The Type II CDI3 has a quantized reduced Chern number C3 inside 1/6 of the BZ, see Supplementary Fig. 2a. It can be
built by a s and a fx(x2−3y2) orbital on the triangular lattice with lattice vectors a1 = (1, 0)T , a2 = (1/2,

√
3/2)T . The

fx(x2−3y2) is odd under three mirror symmetries:Mx, C3MxC
−1
3 , C2

3MxC
−2
3 . All these mirror symmetries have the same

representation σz . The C3 rotation has a trivial representation C3 = I since it can be obtained by a combination of two mirror
symmetries. The model with C3 = 1 is:

HII
3 (k) =

[
sin

5

2
kx sin

√
3

2
ky − sin 2kx sin

√
3ky + sin

1

2
kx sin

3
√

3

2
ky
]
σx

+
[

sin
5

2
kx cos

√
3

2
ky − sin 2kx cos

√
3ky − sin

1

2
kx cos

3
√

3

2
ky
]
σy

+

[
m+

6∑

a=1

(
eit1(a)·k + e2it1(a)

)]
σz,

(28)
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Supplementary Figure 2. Type II n = 3 Chern dartboard insulator. a The quantized Chern number inside the irreducible
BZs. The dashed lines indicate the HSLs. The reciprocal lattice vectors G1 = (2π, 2π/

√
3)T and G2 = (0, 4π/

√
3)T

form the rhombus-shape BZ, which is indicated by the red dashed lines. The numbers denote the Chern numbers inside the
irreducible BZs, enclose by the path Γ−M ′ −K ′ −M − Γ. b The peudospin texture of the Type II CDI3. There are totally
6 skyrmions and 3 antiskyrmions inside half of the BZ, which add up to C1 = 6− 3 = 3. The antiskyrmions are not clear in
this figure since they are very close to the skyrmions. Here m = 1.5.

where t1(a) = [cos(πa/3), sin(πa/3)]T . The σz term contains the hoppings with range a1, 2a1, and also the ones generated
by all the C6 rotations. The σx and σy contains the hoppings with range 2a1 + a2 and the ones generated by three mirror
symmetries. The system has a quantized reduced Chern number C3 = 1 if 0.5 < m < 2.5. The pseudospin texture is plotted
in Supplementary Fig. 2b.

The Type II CDI3 is actually a little different from other CDIs. The sBZs with quantized reduced Chern number are not
entirely enclosed by the HSLs. Nevertheless, the sBZ topology is still well-defined. This comes from the fact that the valence
states inside the half rhombus-shape BZ, which is an equilateral triangle, is C3-symmetric around the center K or K ′. This
emergent C ′3 symmetry is a combination of a C3 symmetry plus a k-space translation. Next, we use the Stokes theorem:

1

2π

∮
A · dk =

1

2π

∫

sBZ
d2kFxy, (29)

where the loop integral is around the path Γ−M ′ −K ′ −M − Γ, see Supplementary Fig. 2a. Due to the C ′3 symmetry, the
path integral:

1

2π

∫ K′

M ′
A · dk +

1

2π

∫ M

K′
A · dk = 0, (30)

and the remained integral:
1

2π

∫ M ′

Γ

A · dk +
1

2π

∫ Γ

M

A · dk = −C′3 ∈ Z (31)

is a loop integral since M ′ maps to M by C ′3 symmetry, which has a trivial representation. Therefore, the region enclosed by
this path has a quantized reduced Chern number C′3 ∈ Z.

In Supplementary Fig. 3, we plot the edge states for the Type II CDI3. Notice that the edge states in the y-direction are
not connecting with the bulk bands and thus they show the feature of Möbius fermions. For both the zigzag and flat edges,
we observe that the bulk-boundary correspondence is still satisfied for each edge:

N+
e = N−e = 3 = nCn. (32)

Supplementary Note 4. Noncompact Atomic Insulators

Contrary to the CDI1s, the n = 2, 4, 6 CDIs are noncompact atomic insulators. This comes from the fact that the non-δ
compact Wannier functions are incompatible with C2 symmetry of trivial representation C2 = I . If the Wannier functions are
compact, there exists a minimal circle with radius rm such that 〈R′j|Wr0〉 = 0 for |R′ − r0| > rm. Here, |R′j〉 represents
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Supplementary Figure 3. Nanoribbon band structures of the Type II n = 3 Chern dartboard insulator. a The spectrum
in the x-direction. The edge states localized at the lower (upper) edge are denoted by the blue (black) color. b The spectrum
in the y-direction. In this case, all the edge states are doubly degenerate because of the mirror symmetryMx, as highlighted
by the red color. Here m = 1.5.
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Supplementary Figure 4. Proof for the noncompact atomic insulators. The key point is that the Wannier function centered
at r̄ = 2R1

M − r0 must have a nonzero overlap |〈R1
M j|Wr0〉|2 with the Wannier function centered at r0.

the atomic lattice state at position R′ and j ∈ 1, 2, .., N denotes the orbitals. r0 denotes the center of the circle and the
Wannier function |Wr0〉. Let us define the farthest basis state collection {|RM j〉} with nonzero overlap 〈RM j|Wr0〉 6= 0 for
at least one j, that has the maximal distance from the center of the circle |RM −r0| = rm ≥ |R′−r0| for all 〈R′j|Wr0〉 6= 0
for at least one j.

Now we arbitrarily choose a farthest basis state |R1
M j〉 from the collection {|RM j〉}. If this basis state doesn’t lie on the

center of the Wannier function r0, there exists another farthest basis state |R2
M j〉 = |(2r0 −R1

M )j〉 = C2|R1
M j〉 = |R1

M j〉
related by a C2 rotation, see Fig. 4. However, if we consider another Wannier function centered at r̄ = 2R1

M−r0, the overlap
between the two Wannier functions is given by:

〈Wr̄|Wr0〉 =
∑

R′,j

〈Wr̄|R′j〉〈R′j|Wr0〉

= |〈R1
M j|Wr0〉|2 6= 0,

for at least one j. Notice that here we have used the equal condition of the triangular inequality:

|R′ − r0|+ |R′ − r̄| ≥ |r̄ − r0| = 2rm. (33)

Since 〈R′j|Wr0〉 = 0 for |R′ − r0| > rm and 〈R′j|Wr̄〉 = 0 for |R′ − r̄| > rm, the only overlap between the two Wannier
functions is at R′ = R1

M . However, this overlap must be nonzero due to the trivial representation of C2 symmetry, and
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Supplementary Figure 5. Compact Wannier functions for the Type I n = 3 Chern dartboard insulator. a An equilateral
triangular shape of the Wannier function. The dashed lines show the mirror reflection planes that pass through the atomic
sites. b N = 7 compact Wannier function. c N = 13 compact Wannier function. d N = 16 compact Wannier function. e
N = 19 compact Wannier function. f N = 25 compact Wannier function.

the Wannier functions are not orthogonal to each other. Therefore, the non-δ orthonormal compact Wannier functions are
incompatible with a C2 rotation of trivial representation. The only loophole of this proof is that the minimal circle has radius
rm = 0 such that there is only one farthest basis state, which is just the Wannier function itself. Therefore, it is possible to
have the δ-like compact Wannier function, as it should be.

For the CDIs protected by three mirror symmetries, we cannot use the above proof since there is no C2 symmetry in
the systems. Therefore, we explicitly search for different shapes of symmetric compact Wannier functions that satisfy the
orthogonality. We find that the compact Wannier functions less or equal than 25 atomic sites are all inconsistent with the
symmetries and orthogonality conditions. For simplicity, we consider the two-band models built on the triangular lattice with
primitive lattice vectors a1 = (1, 0) and a2 = (1/2,

√
3/2) in the unit of a lattice constant. Then orthogonality conditions

can be written as:
〈WR|WR′〉 = δRR′ , (34)

for anyR andR′. Mirror symmetric conditions can be written as:

Mi|WR〉 = ±|WR〉. (35)

Here, the real-space mirror symmetry operator Mi = Ri ⊗ σz , where Ri represents mirror reflection in real space with
i = 1, 2, 3, and σz is the mirror symmetry representation acting on the orbital basis. Notice that the systems also have C3 = I
symmetry arising from three mirror symmetries. Without loss of generality, we consider only the cases that the compact
Wannier function transforms as a s orbital under mirror symmetries,Mi|WR〉 = |WR〉. From these symmetry constraints,
we can easily list different shapes of the symmetric compact Wannier functions. Then we use all the orthogonality conditions
to constrain each component of the compact Wannier functions. We label each configuration with the total number of the
occupied atomic sites. The atomic lattice states are denoted as

|i〉 =

(
ai
bi

)
, (36)

where i labels the atomic lattice sites as shown in Supplementary Fig. 5 and 6. Notice that the C3 = I symmetry substantially
reduces the number of different atomic lattice states for each compact Wannier function. In the following, we discuss the
Type I and Type II CDI3s respectively.

Type I CDI3. The mirror reflection planes pass through the atoms of the triangular lattice, see Supplementary Fig. 5a.
The three mirror symmetries can be denoted asMy, C3MyC

−1
3 , C2

3MyC
−2
3 . The basis orbitals consist of a s orbital and a

fy(3x2−y2) orbital.
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N = 4 compact Wannier function. The configuration of the compact Wannier function is shown in Supplementary
Fig. 5a. Since the mirror reflection planes pass through each atom, the atomic lattice states should be the eigenstates of the
mirror symmetry representation σz with eigenvalue 1. That is,

σz|1〉 = |1〉 =

(
a1

0

)
, (37)

where |1〉 are the three outer atomic lattice states that constitute a equilateral triangle. The orthogonality condition requires
that

〈1|1〉 = 0, (38)

which is impossible. We note that this contradiction arises as long as the shape of the compact Wannier function is an
equilateral triangle regardless of the total number of the occupied atomic lattice sites inside. Therefore, in the following, we
have automatically excluded the compact Wannier functions with this kind of shape.
N = 7 compact Wannier function. The configuration of the compact Wannier function is shown in Supplementary

Fig. 5b. First we list the mirror symmetry constraints

σz|1〉 = |1〉 =

(
a1

0

)
, (39a)

σz|2〉 = |2〉 =

(
a2

0

)
, (39b)

σz|3〉 = |3〉 =

(
a3

0

)
. (39c)

The orthogonality conditions require that,

〈2|1〉 = 0⇒ a∗2a1 = 0, (40a)

〈1|1〉+ 〈2|2〉 = 0⇒ |a1|2 + |a2|2 = 0, (40b)
〈3|1〉+ 〈1|2〉+ 〈1|2〉+ 〈2|3〉 = 0. (40c)

From Eq. (40b) we can conclude that a1 = a2 = 0. Therefore the N = 7 compact Wannier function is inconsistent.
N = 13 compact Wannier function. The configuration of the compact Wannier function is shown in Supplementary

Fig. 5c. The mirror symmetry constraints are:

|2〉 = σz|1〉 ⇒
(
a2

b2

)
=

(
a1

−b1

)
, (41a)

σz|3〉 = |3〉 =

(
a3

0

)
, (41b)

σz|4〉 = |4〉 =

(
a4

0

)
, (41c)

σz|5〉 = |5〉 =

(
a5

0

)
. (41d)

The orthogonality conditions require that,

〈2|1〉 = 0⇒ |a1|2 − |b1|2 = 0, (42a)

〈1|1〉+ 〈2|2〉 = 0⇒ |a1|2 + |b1|2 + |a1|2 + |b1|2 = 0, (42b)
〈4|1〉+ 〈2|3〉 = 0, (42c)
〈3|1〉+ 〈3|2〉+ 〈4|3〉+ 〈1|4〉+ 〈2|4〉 = 0, (42d)
〈5|1〉+ 〈1|2〉+ 〈3|3〉+ 〈4|4〉+ 〈1|2〉+ 〈2|5〉 = 0, (42e)
〈4|1〉+ 〈4|2〉+ 〈5|3〉+ 〈3|4〉+ 〈3|4〉+ 〈4|5〉+ 〈1|3〉+ 〈2|3〉 = 0. (42f)

From Eq. (42b), we obtain a1 = b1 = a2 = b2 = 0 and the Wannier function becomes the N = 7 compact Wannier function.
Therefore the N = 13 compact Wannier function is inconsistent. It is clear from this case that all the Wannier function with
star shape is also inconsistent.
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N = 16 compact Wannier function. The configuration of the compact Wannier function is shown in Supplementary
Fig. 5d. The mirror symmetry constraints are:

|3〉 = σz|2〉 ⇒
(
a3

b3

)
=

(
a2

−b2

)
, (43a)

σz|1〉 = |1〉 =

(
a1

0

)
, (43b)

σz|4〉 = |4〉 =

(
a4

0

)
, (43c)

σz|5〉 = |5〉 =

(
a5

0

)
, (43d)

σz|6〉 = |6〉 =

(
a6

0

)
. (43e)

The orthogonality conditions require that,

〈3|1〉 = 0⇒ a∗2a1 = 0, (44a)

〈1|1〉+ 〈3|2〉 = 0⇒ |a1|2 + |a2|2 − |b2|2 = 0, (44b)

〈5|1〉+ 〈2|2〉+ 〈3|3〉 = 0⇒ a∗5a1 + |a2|2 + |b2|2 + |a2|2 + |b2|2 = 0, (44c)
〈4|1〉+ 〈5|2〉+ 〈1|3〉+ 〈3|4〉 = 0⇒ a∗4a1 + a∗5a2 + a∗1a2 + a∗2a4 = 0, (44d)
〈6|1〉+ 〈4|2〉+ 〈4|3〉+ 〈5|4〉+ 〈2|5〉+ 〈3|5〉 = 0⇒ a∗6a1 + a∗4a2 + a∗4a2 + a∗5a4 + a∗2a5 + a∗2a5 = 0, (44e)
〈5|1〉+ 〈6|2〉+ 〈2|3〉+ 〈4|4〉+ 〈5|5〉+ 〈2|3〉+ 〈1|5〉+ 〈3|6〉 = 0

⇒ a∗5a1 + a∗6a2 + |a2|2 − |b2|2 + |a4|2 + |a5|2 + |a2|2 − |b2|2 + a∗1a5 + a∗2a6 = 0, (44f)
〈4|1〉+ 〈5|2〉+ 〈5|3〉+ 〈6|4〉+ 〈4|5〉+ 〈1|3〉+ 〈4|5〉+ 〈5|6〉+ 〈2|4〉+ 〈1|2〉+ 〈3|4〉 = 0. (44g)

From Eq. (44a), it is clear that either a1 = 0 or a2 = 0. However, a1 6= 0 otherwise the Wannier function becomes the
N = 13 compact Wannier function, which is inconsistent. Therefore the only possibility is that

a2 = a3 = 0, (45)

and Eq. (44b) becomes
|b2|2 = |a1|2. (46)

From Eq. (44c), (45) and (46), it follows that
a∗5a1 + 2|a1|2 = 0. (47)

Since a1 6= 0, it implies that
a5 = −2a1. (48)

From Eq. (44d) and (45), we obtain
a4 = 0. (49)

From Eq. (44e), (45) and (49),
a6 = 0. (50)

The equation (44f) by plugging into Eq. (45), (46), (48) and (49) becomes

−2|a1|2 = 0, (51)

and b2 = 0 also. Therefore the N = 16 compact Wannier function is inconsistent.
N = 19 compact Wannier function. The configuration of the compact Wannier function is shown in Supplementary
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Fig. 5e. The mirror symmetry constraints are:

|4〉 = σz|2〉 ⇒
(
a4

b4

)
=

(
a2

−b2

)
, (52a)

σz|1〉 = |1〉 =

(
a1

0

)
, (52b)

σz|3〉 = |3〉 =

(
a3

0

)
, (52c)

σz|5〉 = |5〉 =

(
a5

0

)
, (52d)

σz|6〉 = |6〉 =

(
a6

0

)
, (52e)

σz|7〉 = |7〉 =

(
a7

0

)
. (52f)

We only have to list the first orthogonality condition,

〈3|1〉 = 0⇒ a∗3a1 = 0. (53)

It is clear that either a1 = 0 or a3 = 0. However, both cases imply that the Wannier function becomes the N = 16 compact
Wannier function, which is inconsistent. We thus conclude that the N = 19 compact Wannier function is inconsistent. It is
clear from this case that all the Wannier function with hexagonal shape is also inconsistent.
N = 25 compact Wannier function. The configuration of the compact Wannier function is shown in Supplementary

Fig. 5f. The mirror symmetry constraints are:

|2〉 = σz|1〉 ⇒
(
a2

b2

)
=

(
a1

−b1

)
, (54a)

|6〉 = σz|4〉 ⇒
(
a6

b6

)
=

(
a4

−b4

)
, (54b)

σz|3〉 = |3〉 =

(
a3

0

)
, (54c)

σz|5〉 = |5〉 =

(
a5

0

)
, (54d)

σz|7〉 = |7〉 =

(
a7

0

)
, (54e)

σz|8〉 = |8〉 =

(
a8

0

)
, (54f)

σz|9〉 = |9〉 =

(
a9

0

)
. (54g)
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The orthogonality conditions require that,

〈2|1〉 = 0⇒ |a1|2 − |b1|2 = 0, (55a)

〈5|1〉+ 〈2|2〉 = 0⇒ a∗5a1 + |a1|2 + |b1|2 = 0, (55b)
〈6|1〉+ 〈2|3〉 = 0⇒ a∗4a1 − b∗4b1 + a∗1a3 = 0, (55c)
〈4|1〉+ 〈5|3〉+ 〈6|2〉 = 0⇒ a∗4a1 + b∗4b1 + a∗5a3 + a∗4a1 + b∗4b1 = 0, (55d)
〈8|1〉+ 〈3|2〉+ 〈6|3〉+ 〈5|4〉+ 〈2|6〉 = 0

⇒ a∗8a1 + a∗3a1 + a∗4a3 + a∗5a4 + a∗1a4 + b∗1b4 = 0, (55e)
〈7|1〉+ 〈1|2〉+ 〈3|3〉+ 〈6|4〉+ 〈5|5〉+ 〈2|7〉 = 0

⇒ a∗7a1 + |a3|2 + |a4|2 − |b4|2 + |a5|2 + a∗1a7 = 0, (55f)
〈7|1〉+ 〈7|2〉+ 〈8|3〉+ 〈4|4〉+ 〈1|5〉+ 〈6|6〉+ 〈5|7〉+ 〈2|5〉 = 0

⇒ a∗7a1 + a∗7a1 + a∗8a3 + |a4|2 + |b4|2 + a∗1a5 + |a4|2 + |b4|2 + a∗5a7 + a∗1a5 = 0, (55g)
〈9|1〉+ 〈4|2〉+ 〈7|3〉+ 〈8|4〉+ 〈4|5〉+ 〈3|6〉+ 〈6|7〉+ 〈5|8〉+ 〈2|8〉 = 0, (55h)
〈8|1〉+ 〈8|2〉+ 〈9|3〉+ 〈7|4〉+ 〈3|5〉+ 〈7|6〉+ 〈8|7〉+ 〈4|8〉+ 〈1|6〉+ 〈3|5〉+ 〈6|8〉+ 〈5|9〉+ 〈2|4〉 = 0, (55i)
〈7|1〉+ 〈5|2〉+ 〈8|3〉+ 〈9|4〉+ 〈7|5〉+ 〈4|6〉+ 〈7|7〉+ 〈8|8〉
+ 〈4|6〉+ 〈1|2〉+ 〈1|5〉+ 〈3|8〉+ 〈6|9〉+ 〈5|7〉+ 〈2|7〉 = 0, (55j)
〈4|1〉+ 〈6|2〉+ 〈7|3〉+ 〈8|4〉+ 〈6|5〉+ 〈8|6〉+ 〈9|7〉+ 〈7|8〉
+ 〈3|6〉+ 〈4|5〉+ 〈7|8〉+ 〈8|9〉+ 〈4|7〉+ 〈1|3〉+ 〈3|4〉+ 〈6|7〉+ 〈5|8〉+ 〈2|3〉 = 0. (55k)

From Eq. (55a) and (55b), we obtain
2|a1|2 + a∗5a1 = 0. (56)

If a1 6= 0, then
a5 = −2a1. (57)

From Eq. (55d) and (57), it follows that
a∗4a1 + b∗4b1 − a∗1a3 = 0. (58)

By combining Eq. (55c) and (58), we get
a∗4a1 = 0, (59)

b∗4b1 = a∗1a3, (60)

and it follows that
a4 = 0, (61)

|b4|2 = |a3|2, (62)

since a1 6= 0 and |a1|2 = |b1|2. From Eq. (55e), (60) and (61), we obtain

a∗8a1 + 2a∗3a1 = 0, (63)

and therefore
a8 = −2a3. (64)

Using Eq. (57), (61) and (62), we can rewrite Eq. (55f) as

4|a1|2 + a∗7a1 + a∗1a7 = 0. (65)

From Eq. (55g), (57), (61), (62) and (64), it follows that

2a∗7a1 − 2a∗1a7 = 4|a1|2. (66)

It is clear that the only solution is a1 = 0 which is in contradiction to our assumption. Therefore a1 = 0 in the first place, but
it implies that a1 = b1 = a2 = b2 = 0. The Wannier function then becomes the N = 19 compact Wannier function which is
inconsistent. We thus conclude that the N = 25 compact Wannier function is inconsistent.
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Supplementary Figure 6. Compact Wannier functions for the Type II n = 3 Chern dartboard insulator. a An equilateral
triangular shape of the Wannier function. The dashed lines show the mirror reflection planes. b N = 7 compact Wannier
function. c N = 12 compact Wannier function. d N = 18 compact Wannier function. e N = 19 compact Wannier function.
f N = 25 compact Wannier function.

Type II CDI3. The mirror reflection planes pass through the center of the equilateral triangle, see Supplementary Fig. 6a.
The three mirror symmetries can be denoted asMx, C3MxC

−1
3 , C2

3MxC
−2
3 . The basis orbitals consist of a s orbital and a

fx(x2−3y2) orbital.
N = 3 compact Wannier function. The configuration of the compact Wannier function is shown in Supplementary

Fig. 6a. Since the mirror reflection planes pass through each atom that we label as 1, the atomic lattice states should be the
eigenstates of the mirror symmetry representation σz with eigenvalue 1. That is,

σz|1〉 = |1〉 =

(
a1

0

)
. (67)

However, the orthogonality condition requires that

〈1|1〉 = 1/
√

3 = 0, (68)

which is impossible. We note that this contradiction arises as long as the shape of the compact Wannier function is an
equilateral triangle (or star shape) regardless of the total number of the occupied atomic lattice sites inside. Therefore, in the
following, we have automatically excluded the compact Wannier functions with this kind of shape.
N = 7 compact Wannier function. The configuration of the compact Wannier function is shown in Supplementary

Fig. 6b. First we list the mirror symmetry constraints:

|2〉 = σz|1〉 ⇒
(
a2

b2

)
=

(
a1

−b1

)
, (69a)

σz|3〉 = |3〉 =

(
a3

0

)
. (69b)

The orthogonality conditions require that,

〈2|1〉 = 0⇒ |a1|2 − |b1|2 = 0, (70a)

〈1|1〉+ 〈2|2〉 = 0⇒ |a1|2 + |b1|2 + |a1|2 + |b1|2 = 0, (70b)
〈3|1〉+ 〈1|2〉+ 〈1|2〉+ 〈2|3〉 = 0. (70c)

From Eq. (69a) and (70b), we can conclude that,

a1 = b1 = a2 = b2 = 0, (71)
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and the N = 7 compact Wannier function is inconsistent.
N = 12 compact Wannier function. The configuration of the compact Wannier function is shown in Supplementary

Fig. 6c. The mirror symmetry constraints are:

|3〉 = σz|1〉 ⇒
(
a3

b3

)
=

(
a1

−b1

)
, (72a)

σz|2〉 = |2〉 =

(
a2

0

)
, (72b)

σz|4〉 = |4〉 =

(
a4

0

)
. (72c)

The orthogonality conditions require that,

〈3|1〉 = 0⇒ |a1|2 − |b1|2 = 0, (73a)

〈1|1〉+ 〈3|2〉 = 0⇒ |a1|2 + |b1|2 + a∗1a2 = 0, (73b)

〈4|1〉+ 〈2|2〉+ 〈1|3〉+ 〈3|4〉 = 0⇒ a∗4a1 + |a2|2 + a∗1a4 = 0, (73c)
〈2|1〉+ 〈4|2〉+ 〈2|3〉+ 〈1|4〉+ 〈3|4〉 = 0⇒ a∗2a1 + a∗4a2 + a∗2a1 + a∗1a4 + a∗1a4 = 0, (73d)
〈4|1〉+ 〈4|2〉+ 〈1|3〉+ 〈2|3〉+ 〈4|4〉+ 〈2|4〉+ 〈1|2〉+ 〈3|4〉 = 0. (73e)

From Eq. (73a) and (73b), we can obtain
a∗1(2a1 + a2) = 0. (74)

If a1 6= 0, this implies that
a2 = −2a1. (75)

By plugging Eq. (75) into (73c) and (73d), it follows that

4|a1|2 + a∗1a4 + a∗4a1 = 0,

−4|a1|2 + 2a∗1a4 − 2a∗4a1 = 0.
(76)

It is clear that the only solution is a1 = 0 which is in contradiction to our assumption. Therefore a1 = 0 in the first place.
But this implies that b1 = a3 = b3 = 0, and the shape of the Wannier function becomes an equilateral triangle. Therefore the
N = 12 compact Wannier function is inconsistent.
N = 18 compact Wannier function. The configuration of the compact Wannier function is shown in Supplementary

Fig. 6d. The mirror symmetry constraints are:

|4〉 = σz|1〉 ⇒
(
a4

b4

)
=

(
a1

−b1

)
, (77a)

|3〉 = σz|2〉 ⇒
(
a3

b3

)
=

(
a2

−b2

)
, (77b)

σz|5〉 = |5〉 =

(
a5

0

)
, (77c)

σz|6〉 = |6〉 =

(
a6

0

)
. (77d)

The orthogonality conditions require that,

〈4|1〉 = 0⇒ |a1|2 − |b1|2 = 0, (78a)

〈1|1〉+ 〈4|2〉 = 0⇒ |a1|2 + |b1|2 + a∗1a2 − b∗1b2 = 0, (78b)
〈1|2〉+ 〈4|3〉 = 0⇒ a∗1a2 + b∗1b2 + a∗1a2 + b∗1b2 = 0, (78c)

〈5|1〉+ 〈3|2〉+ 〈1|4〉+ 〈4|5〉 = 0⇒ a∗5a1 + |a2|2 − |b2|2 + a∗1a5 = 0, (78d)

〈2|1〉+ 〈5|2〉+ 〈3|3〉+ 〈1|5〉+ 〈4|6〉 = 0⇒ a∗2a1 + b∗2b1 + a∗5a2 + |a2|2 + |b2|2 + a∗1a5 + a∗1a6 = 0, (78e)
〈6|1〉+ 〈6|2〉+ 〈2|3〉+ 〈2|4〉+ 〈5|5〉+ 〈3|6〉+ 〈1|3〉+ 〈4|6〉 = 0

⇒ a∗6a1 + a∗6a2 + |a2|2 − |b2|2 + a∗2a1 − b∗2b1 + |a5|2 + a∗2a6 + a∗1a2 − b∗1b2 + a∗1a6 = 0, (78f)
〈3|1〉+ 〈6|2〉+ 〈6|3〉+ 〈2|4〉+ 〈2|5〉+ 〈5|6〉+ 〈3|5〉+ 〈1|6〉+ 〈4|6〉 = 0

⇒ a∗2a1 − b∗2b1 + a∗6a2 + a∗6a2 + a∗2a1 − b∗2b1 + a∗2a5 + a∗5a6 + a∗2a5 + a∗1a6 + a∗1a6 = 0, (78g)
〈5|1〉+ 〈6|2〉+ 〈5|3〉+ 〈4|1〉+ 〈3|4〉+ 〈6|5〉+ 〈6|6〉+ 〈2|5〉+ 〈2|3〉+ 〈5|6〉+ 〈3|6〉+ 〈1|2〉+ 〈4|5〉 = 0. (78h)
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From Eq. (78a), (78b) and (78c), we can obtain
a∗1(a1 + a2) = 0. (79)

If a1 6= 0, it implies that
a2 = −a1. (80)

By plugging Eq. (80) into (78b) or (78c), it follows that

b∗1(b1 − b2) = 0. (81)

Since a1 6= 0 and Eq. (78a), it implies that b1 6= 0 and

b2 = b1. (82)

Using the results of Eq. (78a), (80) and (82), we can get from Eq. (78d) and (78e)

a∗5a1 + a∗1a5 = 0. (83)

−a∗5a1 + a∗1a5 + 2|a1|2 + a∗1a6 = 0. (84)

Combining the above equations, it follows that

2a1 + 2a5 + a6 = 0. (85)

By plugging Eq. (78a), (80) and (82) into Eq. (78f), we obtain

|a5|2 = 4|a1|2. (86)

Remember we still have two orthogonality conditions to check. Luckily, the first one Eq. (78g) is enough, which gives

−4|a1|2 − 2a∗6a1 − 2a∗1a5 + a∗5a6 + 2a∗1a6 = 0. (87)

Using Eq. (83), (85) and (86), we can rewrite this equation as

−12|a1|2 − 8a∗1a5 = 0. (88)

It is clear that the only solution to Eq. (86) and Eq. (88) is a1 = 0 which is in contradiction to our assumption. Therefore
a1 = 0 in the first place. But this implies that b1 = a4 = b4 = 0, and the shape of the Wannier function becomes the N = 12
compact Wannier function. Therefore the N = 18 compact Wannier function is inconsistent.
N = 19 compact Wannier function. The configuration of the compact Wannier function is shown in Supplementary

Fig. 6e. The mirror symmetry constraints are:

|3〉 = σz|1〉 ⇒
(
a3

b3

)
=

(
a1

−b1

)
, (89a)

|6〉 = σz|5〉 ⇒
(
a6

b6

)
=

(
a5

−b5

)
, (89b)

σz|2〉 = |2〉 =

(
a2

0

)
, (89c)

σz|4〉 = |4〉 =

(
a4

0

)
, (89d)

σz|7〉 = |7〉 =

(
a7

0

)
. (89e)
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The orthogonality conditions require that,

〈3|1〉 = 0⇒ |a1|2 − |b1|2 = 0, (90a)
〈4|1〉+ 〈3|2〉 = 0⇒ a∗4a1 + a∗1a2 = 0, (90b)

〈1|1〉+ 〈4|2〉+ 〈3|3〉 = 0⇒ |a1|2 + |b1|2 + a∗4a2 + |a1|2 + |b1|2 = 0, (90c)

〈6|1〉+ 〈2|2〉+ 〈4|4〉+ 〈3|5〉 = 0⇒ a∗5a1 − b∗5b1 + |a2|2 + |a4|2 + a∗1a5 − b∗1b5 = 0, (90d)
〈5|1〉+ 〈6|2〉+ 〈2|3〉+ 〈1|4〉+ 〈4|5〉+ 〈3|6〉 = 0

⇒ a∗5a1 + b∗5b1 + a∗5a2 + a∗2a1 + a∗1a4 + a∗4a5 + a∗1a5 + b∗1b5 = 0, (90e)
〈7|1〉+ 〈5|2〉+ 〈1|3〉+ 〈5|4〉+ 〈6|5〉+ 〈2|6〉+ 〈1|3〉+ 〈4|6〉+ 〈3|7〉 = 0

⇒ a∗7a1 + a∗5a2 + a∗5a4 + |a5|2 − |b5|2 + a∗2a5 + a∗4a5 + a∗1a7 = 0, (90f)
〈6|1〉+ 〈7|2〉+ 〈5|3〉+ 〈2|4〉+ 〈5|5〉+ 〈6|6〉+ 〈2|4〉+ 〈1|6〉+ 〈4|7〉+ 〈3|5〉 = 0

⇒ a∗5a1 − b∗5b1 + a∗7a2 + a∗5a1 − b∗5b1 + 2a∗2a4 + 2|a5|2 + 2|b5|2 + a∗1a5 − b∗1b5 + a∗4a7 + a∗1a5 − b∗1b5 = 0, (90g)
〈5|1〉+ 〈6|2〉+ 〈4|3〉+ 〈6|4〉+ 〈7|5〉+ 〈5|6〉+ 〈1|4〉+ 〈2|3〉+ 〈5|6〉+ 〈6|7〉+ 〈2|5〉+ 〈1|2〉+ 〈4|5〉+ 〈3|6〉 = 0

⇒ a∗5a1 + b∗5b1 + a∗5a2 + a∗4a1 + a∗5a4 + a∗7a5 + 2|a5|2 − 2|b5|2 + a∗1a4 + a∗2a1 + a∗5a7 + a∗2a5 + a∗1a2 + a∗4a5

+ a∗1a5 + b∗1b5 = 0. (90h)

From Eq. (90a), (90b) and (90c), we can obtain

4|a1|2a1 − a∗1a2
2 = 0. (91)

If a1 6= 0,
a2 = ±2a1. (92)

By plugging it into Eq. (90b), we get
a4 = ∓2a1. (93)

From Eq. (92) and (93), we can simplify Eq. (90d) and (90e) into

8|a1|2 + a∗5a1 + a∗1a5 − b∗5b1 − b∗1b5 = 0, (94)

(1± 2)a∗5a1 + (1∓ 2)a∗1a5 + b∗5b1 + b∗1b5 = 0. (95)

Combining these two equations, it follows that

8|a1|2 + (2± 2)a∗5a1 + (2∓ 2)a∗1a5 = 0, (96)

and
a5 = −2a1. (97)

Then Eq. (94) can be rewritten as
b∗5b1 + b∗1b5 = 4|a1|2. (98)

Using Eq. (92), (93) and (97), Eq. (90f) and (90g) become

4|a1|2 − |b5|2 + a∗7a1 + a∗1a7 = 0, (99)

−8|a1|2 + 2|b5|2 − 2b∗5b1 − 2b∗1b5 ± 2a∗7a1 ∓ 2a∗1a7 = 0. (100)

From Eq. (98), (99) and (100), it follows that

−8|a1|2 + (2± 2)a∗7a1 + (2∓ 2)a∗1a7 = 0, (101)

and
a7 = 2a1. (102)

Plugging it into Eq. (99), we obtain
|b5|2 = 8|a1|2. (103)

17



We have still one orthogonality condition Eq. (90h) to check. Using Eq. (92), (93), (97), (102) and (103), we can simplify it
into

b∗5b1 + b∗1b5 = 20|a1|2. (104)

From Eq. (98) and (104), it is clear that the only solution is a1 = 0 which is in contradiction to our assumption. Therefore
a1 = 0 in the first place. But it implies that b1 = a3 = b3 = a4 = a2 = 0, and the shape of the Wannier function becomes
the N = 7 compact Wannier function. Therefore the N = 19 compact Wannier function is inconsistent.
N = 25 compact Wannier function. The configuration of the compact Wannier function is shown in Supplementary

Fig. 6f. The mirror symmetry constraints are:

|5〉 = σz|1〉 ⇒
(
a5

b5

)
=

(
a1

−b1

)
, (105a)

|4〉 = σz|2〉 ⇒
(
a4

b4

)
=

(
a2

−b2

)
, (105b)

|8〉 = σz|7〉 ⇒
(
a8

b8

)
=

(
a7

−b7

)
, (105c)

σz|3〉 = |3〉 =

(
a3

0

)
, (105d)

σz|6〉 = |6〉 =

(
a6

0

)
, (105e)

σz|9〉 = |9〉 =

(
a9

0

)
. (105f)

The orthogonality conditions require that,

〈5|1〉 = 0⇒ |a1|2 − |b1|2 = 0, (106a)

〈1|1〉+ 〈5|2〉 = 0⇒ |a1|2 + |b1|2 + a∗1a2 − b∗1b2 = 0, (106b)
〈1|2〉+ 〈5|3〉 = 0⇒ a∗1a2 + b∗1b2 + a∗1a3 = 0, (106c)

〈6|1〉+ 〈4|2〉+ 〈1|5〉+ 〈5|6〉 = 0⇒ a∗6a1 + |a2|2 − |b2|2 + a∗1a6 = 0, (106d)
〈2|1〉+ 〈6|2〉+ 〈4|3〉+ 〈1|6〉+ 〈5|7〉 = 0⇒ a∗2a1 + b∗2b1 + a∗6a2 + a∗2a3 + a∗1a6 + a∗1a7 − b∗1b7 = 0, (106e)

〈2|2〉+ 〈6|3〉+ 〈4|4〉+ 〈1|7〉+ 〈5|8〉 = 0⇒ 2|a2|2 + 2|b2|2 + a∗6a3 + 2a∗1a7 + 2b∗1b7 = 0, (106f)
〈7|1〉+ 〈8|2〉+ 〈3|3〉+ 〈2|5〉+ 〈6|6〉+ 〈4|7〉+ 〈1|4〉+ 〈5|8〉 = 0

⇒ a∗7a1 + b∗7b1 + a∗7a2 − b∗7b2 + |a3|2 + a∗2a1 − b∗2b1 + |a6|2 + a∗2a7 − b∗2b7 + a∗1a2 − b∗1b2 + a∗1a7 + b∗1b7 = 0, (106g)
〈3|1〉+ 〈7|2〉+ 〈8|3〉+ 〈3|4〉+ 〈2|6〉+ 〈6|7〉+ 〈4|8〉+ 〈1|8〉+ 〈5|9〉 = 0

⇒ a∗3a1 + a∗7a2 + b∗7b2 + a∗7a3 + a∗3a2 + a∗2a6 + a∗6a7 + a∗2a7 + b∗2b7 + a∗1a7 − b∗1b7 + a∗1a9 = 0, (106h)
〈8|1〉+ 〈9|2〉+ 〈7|3〉+ 〈2|4〉+ 〈3|5〉+ 〈7|6〉+ 〈8|7〉+ 〈3|8〉+ 〈2|4〉+ 〈6|8〉+ 〈4|9〉+ 〈1|3〉+ 〈5|7〉 = 0

⇒ a∗7a1 − b∗7b1 + a∗9a2 + a∗7a3 + 2|a2|2 − 2|b2|2 + a∗3a1 + a∗7a6

+ |a7|2 − |b7|2 + a∗3a7 + a∗6a7 + a∗2a9 + a∗1a3 + a∗1a7 − b∗1b7 = 0, (106i)
〈4|1〉+ 〈8|2〉+ 〈9|3〉+ 〈7|4〉+ 〈2|5〉+ 〈3|6〉+ 〈7|7〉+ 〈8|8〉+ 〈3|6〉+ 〈2|8〉
+ 〈6|9〉+ 〈4|7〉+ 〈1|7〉+ 〈5|8〉 = 0,

⇒ 2a∗2a1 − 2b∗2b1 + 2a∗7a2 − 2b∗7b2 + a∗9a3 + 2a∗3a6

+ 2|a7|2 + 2|b7|2 + 2a∗2a7 − 2b∗2b7 + a∗6a9 + 2a∗1a7 + 2b∗1b7 = 0, (106j)
〈6|1〉+ 〈7|2〉+ 〈8|3〉+ 〈6|4〉+ 〈1|5〉+ 〈4|5〉+ 〈8|6〉+ 〈9|7〉+ 〈7|8〉+ 〈2|6〉 (106k)
+ 〈3|4〉+ 〈7|8〉+ 〈8|9〉+ 〈3|7〉+ 〈2|3〉+ 〈6|7〉+ 〈4|8〉+ 〈1|2〉+ 〈5|6〉 = 0.

From Eq. (106a), (106b) and (106c), we can obtain

2|a1|2 + 2a∗1a2 + a∗1a3 = 0. (107)

If a1 6= 0,
a3 = −2a1 − 2a2. (108)
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We can solve for b2 from Eq. (106a) and (106b),

b2 =
2|a1|2 + a∗1a2

b∗1
. (109)

Notice that b1 6= 0 since a1 6= 0. From Eq. (106b), (106d), (106e) and (106f), we get

|a1|2 + a∗1a6 + a∗1a7 = 0, (110)

and therefore
a6 = −a1 − a7. (111)

By using Eq. (109) and (111), Eq. (106d) can be rewritten as

6|a1|2 + 2a∗1a2 + 2a∗2a2 + a∗1a7 + a∗7a1 = 0. (112)

One can observe that the quantity
3|a1|2 + 2a∗1a2 + a∗1a7 ≡ i7 (113)

must be an imaginary number. Now we can solve for a7,

a7 = −3a1 − 2a2 −
i7
a∗1
. (114)

Using Eq. (108), (109), (111) and (114), we can solve for b7 from Eq. (106d),

b7 =
|a1|2 + 2a∗1a2 − i7a2/a1

b∗1
. (115)

Plugging Eq. (108), (109), (111), (114) and (115) into Eq. (106g), it follows that

|i7|2
|a1|2

= 4|a1|2. (116)

and therefore
i7 = ±2|a1|2i. (117)

We can obtain the expressions for a6, a7 and b7,

a6 = (2± 2i)a1 + 2a2, (118)

a7 = −(3± 2i)a1 − 2a2, (119)

b7 =
|a1|2 + (2∓ 2i)a∗1a2

b∗1
. (120)

Eq. (106h) can thus be simplified into
(−6∓ 4i)|a1|2 − 2a∗1a2 + a∗1a9 = 0, (121)

and consequently
a9 = (6± 4i)a1 + 2a2. (122)

We have still three orthogonality conditions to check. The first one Eq. (106i) after plugging all the solved variables gives

−8|a1|2 + 2|a2|2 + 4a∗1a2 + 4a∗2a1 = 0. (123)

The second one Eq. (106j) gives

(12∓ 8i)|a1|2 + (−12∓ 4i)a∗1a2 + (4± 4i)a∗2a1 = 0. (124)

Now we can solve for a2,

a2 =

(
1∓ 1

2
i

)
a1. (125)

By plugging it into Eq. (123), we obtain
|a2|2 = 0. (126)

Therefore a1 = a2 = 0 which is in contradiction to our assumption, and thus a1 = 0 in the first place. But it implies that
b1 = a5 = b5 = 0, and the shape of the Wannier function becomes the N = 19 compact Wannier function. We can conclude
accordingly that the N = 25 compact Wannier function is inconsistent.
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