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Abstract

We consider a class of density-driven flow problems. We are particularly interested in the problem of the
salinization of coastal aquifers. We consider the Henry saltwater intrusion problem with uncertain porosity,
permeability, and recharge parameters as a test case. The reason for the presence of uncertainties is the
lack of knowledge, inaccurate measurements, and inability to measure parameters at each spatial or time
location. This problem is nonlinear and time-dependent. The solution is the salt mass fraction, which is
uncertain and changes in time. Uncertainties in porosity, permeability, recharge, and mass fraction are
modeled using random fields. This work investigates the applicability of the well-known multilevel Monte
Carlo (MLMC) method for such problems. The MLMC method can reduce the total computational and
storage costs. Moreover, the MLMC method runs multiple scenarios on different spatial and time meshes
and then estimates the mean value of the mass fraction. The parallelization is performed in both the physical
space and stochastic space. To solve every deterministic scenario, we run the parallel multigrid solver ug4
in a black-box fashion. We use the solution obtained from the quasi-Monte Carlo method as a reference
solution.

Keywords: uncertainty quantification, ug4, multigrid, density-driven flow, reservoir, groundwater, salt for-
mations

1 Introduction
Saltwater intrusion occurs when sea levels rise and saltwater moves onto the land. Usually, this occurs during
storms, high tides, droughts, or when saltwater penetrates freshwater aquifers and raises the groundwater table.
Since groundwater is an essential nutrition and irrigation resource, its salinization may lead to catastrophic
consequences. Many acres of farmland may be lost because they can become too wet or salty to grow crops.
Therefore, accurate modeling of different scenarios of saline flow is essential [1, 65] to help farmers and researchers
develop strategies to improve the soil quality and decrease saltwater intrusion effects.

Saline flow is density-driven and described by a system of time-dependent nonlinear partial differential
equations (PDEs). It features convection dominance and can demonstrate very complicated behavior [74].

As a specific model, we consider a Henry-like problem with uncertain permeability and porosity. These pa-
rameters may strongly affect the flow and transport of salt. The original Henry saltwater intrusion problem was
introduced by H.R. Henry in the 1960s (cf. [35]). The Henry problem became a benchmark for numerical solvers
for groundwater flow (cf. [74, 67, 66, 18]. In [61], the authors use the generalized polynomial chaos expansion
approximation to investigate how incomplete knowledge of the system properties influences the assessment of
global quantities. Particularly, they estimated the propagation of input uncertainties into a few dimensionless
scalar parameters.

The hydrogeological formations typically have complicated and heterogeneous structures. These formations
may consist of a few layers of porous media with various porosity and permeability coefficients (cf. [59, 64]).
Measurements of the layer positions and their thicknesses are only possible up to some error, and for the
materials inside the layers, the average parameters are typically assumed. Thus, these layers are excellent
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Notation
QoI g quantity of interest g
D computational spatial domain

D0,D1, . . . ,DL hierarchy of spatial meshes
T0, T1, . . . , TL hierarchy of temporal meshes

L number of levels
s complexity

h` (or h), n` spatial step size and number of spatial degrees of freedom on level `
τ` (or τ), r` time step size and number of time steps on level `

m` number of samples (scenarios) on level `
E [·], V [·] expectation and variance

Θ multidimensional domain of integration in parametric space
ω, ξ(ω) random event and random vector
φ(x, ω) porosity random field
K(x, ω) permeability random field
ρ(x, ω) density random field
q(t,x, ω) volumetric velocity

D tensor field D = D(q): molecular diffusion and dispersion of salt
κ̄(x) expectation of κ(x, ω)
d physical (spatial) dimension

c = c(t,x, ω) mass fraction of salt (solution of the problem)

candidates to be modeled by random fields. Further, due to the nonlinearities in the problem, averaging the
parameters does not necessarily lead to the correct mathematical expectation of the solution.

To model uncertainties, we use random fields. Uncertainties in the input data propagate through the model
and make the solution (e.g., the mass fraction) uncertain. An accurate estimation of the output uncertainties
can facilitate a better understanding of the problem, better decisions, and improved control and design of the
experiment.

The following questions can be answered:

1. How long can a particular drinking water well be used (i.e., when will the mass fraction of the salt exceed
a critical threshold)?

2. What regions have especially high uncertainty?

3. What is the probability that the salt concentration is higher than a threshold at a certain spatial location
and time point?

4. What is the average scenario (and its variations)?

5. What are the extreme scenarios?

6. How do the uncertainties change over time?

Many techniques can quantify uncertainties. A classical method is Monte Carlo (MC) sampling. Although
it is dimension-independent, it converges very slowly and requires many samples. This method may not be
affordable for time-consuming simulations. Nevertheless, even up-to-date techniques, such as surrogate models
and stochastic collocation, require a few hundred to a few thousand time-consuming simulations and assume a
certain smoothness by the quantity of interest (QoI).

Another class of methods is the class of perturbation methods [17]. The idea is to decompose the QoI with
respect to (w.r.t.) random parameters in a Taylor series. The higher-order terms can be neglected for small
perturbations, simplifying the analysis and numerics. These methods assume that random perturbations are
small (e.g., up to 5% of the mean, depending on the problem). For larger perturbations, these methods usually
do not work.

There are quite a few studies where authors model uncertainties in reservoirs (cf. [10, 72]). Reconnecting
stochastic methods with hydrogeological applications was accomplished in [7], where the authors analyzed
a collaboration between academics and water suppliers in Germany and made recommendations regarding
optimization and risk assessment. The fundamentals of stochastic hydrogeology and an overview of stochastic
tools and accounting for uncertainty are described in [63].

The review [70] deals with hydrogeologic applications of recent advances in uncertainty quantification, prob-
abilistic risk assessment, and decision-making under uncertainty. The author reviewed probabilistic risk assess-
ment methods in hydrogeology under parametric, geologic, and model uncertainties. Density-driven vertical
transport of saltwater through the freshwater lens on the island of Baltrum (Germany) is modeled in [57].
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In [39], the authors examined the implications of transgression for a range of seawater intrusion scenarios
based on simplified coastal freshwater aquifer settings. They stated that vertical intrusion during transgressions
could involve density-driven convective processes, causing substantially greater amounts of seawater to enter the
aquifer and create more extensive intrusion than horizontal seawater intrusion in the absence of transgression.

The methods to compute the desired statistics of the QoI are direct integration methods, such as the MC,
quasi-MC (QMC) and collocation methods and surrogate-based (generalized polynomial chaos approximation
and stochastic Galerkin [21, 3, 29, 22]) methods. Direct methods compute statistics directly by sampling
uncertain input coefficients and solving the corresponding PDEs, whereas the surrogate-based method computes
a cheap functional (polynomial, exponential, or trigonometrical) approximation of the QoI. Examples of the
surrogate-based methods are radial basis functions [45, 8, 46, 30], sparse polynomials [12, 6, 19], and polynomial
chaos expansion [49, 15, 75]. Sparse grid methods to integrate high-dimensional integrals are considered in
[68, 9, 31, 38, 51, 26, 52, 15, 56]. An idea to generate goal-oriented adaptive spatial grids and use them in the
multilevel MC (MLMC) framework was presented in [20, 5].

The quantification of uncertainties in stochastic PDEs could be a significant challenge due to a) the large
possible number of involved random variables and b) the high cost of each deterministic solution of the governed
PDE. The MC quadrature and its variance-reduced variants have a dimension-independent error convergence
rate O(N−

1
2 ), and the QMC has the worst-case rate O(logM (N)N−1), where N is the number of samples, and

M indicates the dimension of the stochastic space [47]. The MC method is not affected by the dimension of
the integration domain, such as collocations on sparse or full grid methods [2, 50]. A numerical comparison of
other QMC sequences is presented in [58].

Construction of a cheap generalized polynomial chaos expansion-based surrogate model [76, 42, 41] is an
alternative to the MC method. Some well-known functions, such as the multivariate Legendre, Hermite, Cheby-
shev, or Laguerre functions, have been taken as a basis [53, 76]. Surrogate models have pros and cons. The
pros are that the model can be easily sampled once constructed, and all samples are almost free (much cheaper
than sampling the original stochastic PDE). For some problem settings, sampling is unnecessary because the
solution can be computed analytically (e.g., computing an integral of a polynomial). The nontrivial part of
surrogate models is to define how many coefficients are needed and how accurately they should be computed.
Another difficulty is that not every function can be approximated well by a polynomial. The MLMC methods
do not have such limitations.

This work is structured as follows. Section 2 describes the Henry problem and numerical methods to solve
it. The well-known MLMC method is reviewed in Section 3. Next, Section 4 details the numerical results,
which include the numerical analysis of the Henry problem, computing different statistics, the performance of
the MLMC method, and the practical performance of the parallel ug4 solver for the Henry problem [35, 67]
with uncertain coefficients. Finally, we conclude this work with a discussion in Section 5.

Our contribution: We investigate the propagation of uncertainties in the Henry-like problem. Assuming
the porosity, permeability, and recharge are uncertain, we estimate the uncertainties in the density-driven flow.
To reduce the high computing complexity, we applied the existing MLMC technique. We use the multigrid ug4
software library as a black-box solver, allowing us to solve the Henry problem and others (see more in [65]).
We run all MLMC random simulations in parallel. To the best of our knowledge, we are unaware of any other
studies where Henry’s problem [35, 67] was solved using MLMC methods with uncertain porosity, permeability,
and recharge parameters.

2 Henry Problem with Uncertain Porosity and Permeability

2.1 Problem setting
In coastal aquifers, salty seawater intruding on the formation on one side (the seaside) displaces the pure water
due to water recharge from land sources and precipitation from the other side. Due to its higher density, seawater
mainly penetrates along the bottom of the aquifer. This process can achieve a steady state but may be time-
dependent due to the periodicity of the recharge or controlling the pumping rate from the wells. An accurate
simulation of the salinization is vital for the prediction of water resource availability. However, the accuracy of
such predictions strongly depends on the hydrogeological parameters of the formation and the geometry of the
computational domain, denoted by D.

The aquifer D ⊂ Rd, d ∈ {2, 3}, can be modeled as an immobile porous matrix filled with liquid phase—a
solution of salt in water. Due to the nonhomogeneous density distribution, gravitation induces the motion of
the liquid phase. This motion transports the salt, which is otherwise subject to molecular diffusion.

A straightforward but very demonstrative model of coastal aquifers is the so-called Henry problem, first
considered in [35]. In this two-dimensional setting, the aquifer is represented by a rectangular domain D =
[0, 2]× [−1, 0] [m2] entirely saturated with the liquid phase (Fig. 1). The salty seawater intrudes from the right
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side, and pure water is recharged from the left. The top and bottom are considered impermeable. Analogous
settings with partially saturated domains are considered in [69].

The mass conservation laws for the entire liquid phase and salt yield the following equations

∂t(φρ) + ∇ · (ρq) = 0, (1)
∂t(φρc) + ∇ · (ρcq− ρD∇c) = 0, (2)

where φ : D → R denotes the porosity, K : D → Rd×d represents the permeability, c(t,x) : [0,+∞)×D → [0, 1]
is the mass fraction of the salt (or of the brine) in the solution, ρ = ρ(c) indicates the density of the liquid
phase, and D(t,x) : [0,+∞)×D → Rd×d denotes the molecular diffusion and mechanical dispersion tensor. For
the velocity q(t,x) : [0,+∞)×D → Rd, we assume Darcy’s law:

q = −K

µ
(∇p− ρg), (3)

where p = p(t,x) : [0,+∞) × D → R is the hydrostatic pressure, µ = µ(c) denotes the viscosity of the liquid
phase, and g = (0, . . . , 0,−g)T ∈ Rd represents the gravity vector. Inserting (3) into (1–2) results in a system
of two time-dependent PDEs in the unknowns c and p. This system should be closed with boundary conditions
for c and p and an initial condition for c.

Following the classical setting in [35], for this variant of the Henry problem, we set

ρ(c) = ρ0 + (ρ1 − ρ0)c, µ = const (4)

and

D = φDI (5)

with a constant scalar D ∈ R, and the identity matrix I ∈ Rd×d. Furthermore, we assume the isotropic
permeability

K = KI, K ∈ R.

This setting is consistent with the problem setting in [74]. However, we do not assume the Boussinesq approxi-
mation and keep the density variable for all terms. For the initial conditions, we set

c|t=0 = 0. (6)

The boundary conditions are presented in Fig. 1(a). On the right side of the domain, we impose Dirichlet
conditions for the c and p variables that represent the adjacent seawater aquifer:

c|x=2 = 1, p|x=2 = −ρ1gy. (7)

On the left side, we prescribe the inflow of fresh water:

c|x=0 = 0, ρq · ex|x=0 = q̂in, (8)

where ex = (1, 0)>, and q̂in is a constant. For the classical formulation of the Henry problem, this value was
set to q̂in = 6.6 · 10−2 kg/s in [74] or q̂in = 3.3 · 10−2 kg/s in [67, 66]. The Neumann zero boundary conditions
are imposed on the upper and lower sides of D.

An example of c(t,x) and q(t,x) for the parameters from Table 1 is presented in Fig. 1(right). The dark red
color corresponds to c = 1, and dark blue corresponds to c = 0. Due to its higher density, the saltwater intrudes

Parameter Values and Units Description
E [φ] 0.35 [-] mean value of porosity
D 18.8571 · 10−6 [m2 · s−1] diffusion coefficient in the medium
K 1.020408 · 10−9 [m2] permeability of the medium
g 9.8 [m · s−2] gravity
ρ0 1000 [kg ·m−3] density of pure water
ρ1 1024.99 [kg ·m−3] density of brine
µ 10−3 [kg ·m−1 · s−1] viscosity

Table 1: Parameters of the considered density-driven flow problem
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q̂in = 6.6 · 10−2kg/s

c = 0 c = 1

p = −ρ1gy

0

−1m

2my
x

Figure 1: (left) Computational domain D := [0, 2]× [−1, 0]. (Right) One realization of the mass fraction c(t,x)
and the streamlines of the velocity field q for the undisturbed Henry problem at t = 6016 s.

into the aquifer in the lower right part. It is pushed back by the lighter pure water coming from the left. This
process induces a vortex in the flow in the lower right corner of the domain. The saltwater flows in at the lower
part of the right boundary and deviates to the top and right, back to the seaside, forming a salt triangle. This
flow does not transport the salt to the left part of the domain. The salt propagates further to the left due
to diffusion and dispersion and is washed out by the recharge. In the classical formulation, this salt triangle
initially increases over time but achieves a steady state (cf. [74, 67, 66]). However, the initial nonstationary
phase may take significant time. Investigating this phase is especially important to understand the system
behavior when changing the recharge. For this, in addition to the mean and variance, we consider the mass
fraction at 12 points (listed below) and an integral value—the total amount of pure water (as in Eq. 23). The
list of chosen points follows:

{(x, y)i=1,...,12} = {(1.10,−0.95), (1.35,−0.95), (1.60,−0.95), (1.85,−0.95), (1.10,−0.75), (1.35,−0.75), (9)
(1.60,−0.75), (1.85,−0.75), (1.10,−0.50), (1.35,−0.50), (1.60,−0.50), (1.85,−0.50).}

The motivation is to consider points where the concentration variation is considerable. In addition, the mass
fraction c at each point x is a function of time.

These spatial points may help track salinity changes over time in groundwater wells and understand which
areas in the aquifer are most vulnerable. Farmers can use this information to take action, such as decreasing
salinity or adapting strategies by planting salt-tolerant crops.

2.2 Modeling porosity, permeability, and mass fraction
The primary sources of uncertainty are the hydrogeological properties of the porous medium—porosity (φ) and
permeability (K) fields of the solid phase—and the freshwater recharge flux q̂x through the left boundary. The
QoIs are related to the mass fraction c, a function of φ, K, and the recharge. We model the uncertain φ using
a random field and assume K to be isotropic and dependent on φ:

K = KI, K = K(φ) ∈ R. (10)

The distribution of φ(x, ξ), x ∈ D, is determined by a set of stochastic parameters ξ = (ξ1, . . . , ξM , ...). Each
component ξi is a random variable depending on a random event ω. For concision, we skip ω and write ξ := ξ(ω).

The dependence in Eq. (10) is specific for every material. We refer to [54, 55, 16] for a detailed discussion.
In the proposed model, we use a Kozeny–Carman-like dependence

K(φ) = κKC ·
φ3

1− φ2
, (11)

where the scaling factor κKC is chosen to satisfy the equality K(E [φ])I = E(K), resembling the parameters
of the standard Henry problem. The inflow flux is kept constant across the left boundary but depends on the
stochastic variable qin. We also assume that the inflow flux is independent of φ and K.

2.3 Numerical methods for the deterministic problem
The system (1–2) is numerically solved in the domain D × [0, T ], where the symbol × denotes the Cartesian
product. After the discretization of D using quadrilaterals of size h, we obtain Dh. Equations (1–2) are
discretized using a vertex-centered finite-volume scheme with a “consistent velocity” for the approximation of
Darcy’s law (3), as presented in [23, 24, 25]. The degrees of freedom associated with Dh are denoted by n.
There are two degrees of freedom per grid vertex: one for the mass fraction and another for the pressure. We
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use the implicit Euler method with a fixed time step τ for time discretization. The number of the computed
time steps is r = T/τ .

We use partial upwind for the convective terms (cf. [23]). Therefore, the discretization error is of the second
order w.r.t. the spatial mesh size h. However, the diffusion in (2) is minimal compared with the velocity. For
the grids in the numerical experiments, the observed reduction of the discretization error after grid refinement
corresponds to the first order. Thus, we assume the first-order dependence of the discretization error w.r.t. h,
which is consistent with the numerical experiments. Furthermore, the Euler method provides the first-order
dependence of the discretization error w.r.t. τ .

The implicit time-stepping scheme provides unconditional stability but requires the solution to an extensive
nonlinear algebraic system of the discretized equations with n unknowns in every time step. The Newton
method is used to solve this system. Linear systems inside the Newton iteration are solved using the BiCGStab
method (cf. [4]) preconditioned with the geometric multigrid method (V-cycle, cf. [32]). In the multigrid cycle,
the ILUβ-smoothers [33] and Gaussian elimination are used as the coarse grid solver.

To construct the spatial grid hierarchy D0,D1, . . . ,DL, we start with a coarse grid consisting of 512 grid
elements (quadrilaterals) and n0 = 1122 degrees of freedom. This grid is regularly refined to obtain all other
grid levels. After every spatial grid refinement, the number of grid elements is multiplied by a factor of four.
Consequently, the number of degrees of freedom is increased by a factor of four (i.e., n` ≈ n0 · 2d`, d = 2;
see Table 2). This hierarchy is used in the geometric multigrid preconditioner and MLMC method. We also
construct the temporal grid hierarchy T0, T1, . . . , TL. The time step on each temporal grid is denoted by τ` with
τ`+1 = 1

2τ`. The number of time steps on the `th grid (level) is r`+1 = 2r` and r` = r02`, where r0 is the number
of grid points on T0. On the `th level, the MLMC uses the grid D` × T`. Up to six spatial and time grids were
used in the numerical experiments.

In the context of this work, it is critical to estimate the numerical complexity of the deterministic solver w.r.t.
the grid level `. The most time-consuming part of the simulation is the solution of the discretized nonlinear
system. Typically, it is challenging to predict the number of Newton iterations in every time step, but in the
numerical experiments, two iterations were sufficient to achieve the prescribed accuracy. Accordingly, the linear
solver was called at most two times per time step. Furthermore, the convergence rate of the geometric multigrid
method does not depend on the mesh size (cf. [33]). Hence, the computation complexity of one time step is
O(n`), where n` is the number of the degrees of freedom on the grid level `. Therefore, the overall numerical
cost of the computation of one scenario on grid level ` for r` time steps is

s` = O(n`r`), s` ∝ s`−12(d+1), d = 2. (12)

3 Multilevel Monte Carlo
Various numerical methods can quantify uncertainty, and every method has pros and cons. For example, the
classical MC method converges slowly and requires numerous samples. To reduce the total computing cost, we
apply the MLMC method, which is a natural idea because the deterministic solver uses a multigrid method (see
Section 2.3). The MLMC method efficiently combines samples from various levels. Further, we repeat the main
idea of the MLMC method. A more in-depth description of these techniques is found in [13, 14, 27, 28, 34, 71, 44].

We let ξ(ω) and g(ξ) = g(ξ(ω)) represent a vector of random variables and the QoI, respectively, where
ω is a random event. The MLMC method aims to approximate the expected value E [g] with an optimal
computational cost. In this work, g could be c(t,x, ξ) in the whole domain or at a point (t,x) or an integral
over a subdomain. The MLMC method constructs a telescoping sum, defined over a sequence of spatial and
temporal meshes, ` = 0, . . . , L, as described next, to achieve this goal. Moreover, g, numerically evaluated on
level `, is denoted by gh`,τ`,` or, for simplicity, by just g`, where h` and τ` are the discretization steps in space
and time on level `. Further, we assume that E [gh,τ ]→ E [g] as h→ 0 and τ → 0.

Furthermore, s0 is the computing cost to evaluate one realization of g0 (the most expensive one from all
realizations). Similarly, s` denotes the computing cost of evaluating g` − g`−1. For simplicity, we assume that
s` for g`−g`−1 is almost the same as s` for g`. The number of iterations is variable; thus, the cost of computing
a sample of g` − g`−1 may fluctuate for various realizations.

For a better understanding, we consider a two-level MLMC (cf. [28]) and estimate the optimal number of
needed samples on both levels. The two-level MLMC has only two meshes: a coarse one and a fine one. The
QoI E [g] can be approximated on the fine mesh by E [g1] and on the coarse mesh by E [g0]. Furthermore,

E [g1] = E [g0] + E [g1 − g0] ≈ m−10

m0∑
i=1

g
(i)
0 +m−11

m1∑
j=1

(g
(j)
1 − g

(j)
0 ), (13)

where g(j)1 − g
(j)
0 := g1(ξj)− g0(ξj), ξj is a random vector, and m0 and m1 represent the numbers of quadrature

points (numbers of samples/realizations) on the coarse and fine meshes, respectively. The total computational
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cost of evaluation (13) is m0s0 +m1s1. The variances of g0 and g1− g0 are denoted by V0 and V1, and the total
variance is obtained by V0/m0 +V1/m1, assuming that g(i)0 and g(j)1 − g

(j)
0 use independent samples. By solving

an auxiliary minimization problem, the variance is minimal if m1 = m0 ·
√
V1/s1√
V0/s0

. Thus, with the estimates of

the variances and m0, we can estimate m1.
The idea presented above can be extended to a case with multiple levels. Thus, we can find (quasi-) optimal

numbers of samples m0,m1, . . . ,mL. The MLMC method calculates E [gL] ≈ E [g] using the following telescopic
sum:

E [gL] = E [g0] +

L∑
`=1

E [g` − g`−1] (14)

≈ m−10

m0∑
i=1

g
(0,i)
0 +

L∑
`=1

(
m−1`

m∑̀
i=1

(g
(`,i)
` − g(`,i)`−1 )

)
. (15)

In the above equation, level ` in the superscript (`, i) indicates that independent samples are used at each
correction level. As ` increases, the variance of g` − g`−1 decreases. Thus, the total computational cost can be
reduced by taking fewer samples on finer meshes.

We recall that h` = h0 · 2−2` and τ` = τ0 · 2−`. We assume that the average cost of generating one sample
of g` (the cost of one deterministic simulation for one random realization) is

s` = O(n`r`) = O(h−1` τ−1` ) = O
(

1

h0τ0
22`2`

)
= O

(
1

h0τ0
23`
)

= O
(

1

h0τ0
2(d+1)`γ

)
, (16)

where d = 2 is the spatial dimension, and γ = 1 is determined by the computational complexity of the
deterministic solver (ug4).

We let V` be the variance of one sample of g` − g`−1. Then, the total cost and variance of the multilevel
estimator in Eq. (14) are

∑L
`=0m`s` and

∑L
`=0 V`/m`, respectively. For a fixed variance, the cost is minimized

by choosing m` to minimize the following functional for some value of the Lagrange multiplier µ2:

F (m0, . . . ,mL) :=

L∑
`=0

m`s` + µ2 V`
m`

. (17)

To determine m`, we take the derivatives w.r.t. m` and set them equal to zero:

∂F (m0, . . . ,mL)

∂m`
:= s` − µ2 V`

m2
`

= 0.

After solving the obtained equations, we obtain

m2
` = µ2V`

s`
and m` = µ

√
V`
s`
.

To achieve an overall variance of ε2, that is,

L∑
`=0

V`/m` = ε2,

we substitute m` with the computed m` = µ
√

V`
s`
, and obtain

L∑
`=0

V`

µ
√

V`
s`

= ε2.

From the last equation, we obtain

µ = ε−2
L∑
`=0

√
V`s`, and

m` = ε−2
√
V`
s`

L∑
i=0

√
Visi. (18)

The total computational cost is S := ε−2
(∑L

`=0

√
V`s`

)2
(for further analysis of this sum, see [28], p.4).
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Definition 1 We let

E [Y`] :=

{
E [g0] , ` = 0

E [g` − g`−1] , ` > 0
. (19)

In addition, Y :=
∑L
`=0 Y` denotes a multilevel estimator of E [g] based on L + 1 levels and m` independent

samples on level `, where ` = 0, . . . , L. Moreover, Y` = m−1`
∑m`
i=1(g

(`,i)
` − g(`,i)`−1 ), where g−1 ≡ 0.

The standard theory indicates that E [Y ] = E [gL], V [Y`] =
∑L
`=0m

−1
` V`, and V` ≡ V [g` − g`−1].

The mean squared error (MSE) is used to measure the quality of the multilevel estimator:

MSE := E
[
(Y − E [g])2

]
= V [Y ] + (E [Y ]− E [g])

2
. (20)

To obtain an MSE smaller than ε2, we ensure that both V [Y ] and (E [Y ]− E [g])
2

= (E [gL − g])2 are smaller
than ε2/2. Combining this idea with a geometric sequence of levels in which the cost increases exponentially
with the level while the weak error E [gL − g] and multilevel correction variance V` decrease exponentially leads
to the following theorem (cf. Theorem 1, p. 6 in [28]):

Theorem 2 We let d denote the problem dimension. Suppose positive constants α, β, γ > 0 exist such that
α ≥ 1

2min(β, γd), and

|E [g` − g] | ≤ c12−α` (21a)

V` ≤ c22−β` (21b)

S` ≤ c32dγ`. (21c)

Then, for any accuracy ε < e−1, a constant c4 > 0 and a sequence of realizations {m`}L`=0 exist, such that

MSE := E
[
(Y − E [g])2

]
< ε2,

and the computational cost is

S =


O(ε−2), β > dγ

O(ε−2) (log(ε))
2
, β = dγ

O(ε−(2+ dγ−β
α )), β < dγ.

(22)

This theorem (see also [37, 36, 11, 13, 27]) indicates that, even in the worst-case scenario, the MLMC
algorithm has a lower computational cost than that of the traditional (single-level) MC method, which scales
as O(ε−2−dγ/α). Furthermore, in the best-case scenario presented above, the computational cost of the MLMC
algorithm scales as O

(
ε−2
)
.

Using preliminary tests, we can estimate the convergence rates α for the mean (the so-called weak conver-
gence) and β for the variance (the so-called strong convergence). In addition, α is strongly connected to the
order of the discretization error (see Section 2.3), which equals 1, and precise estimates of parameters α and β
are crucial to distribute the computational effort optimally.

4 Numerical Experiments
The goal is to reduce the total computational cost of stochastic simulations. We use the MLMC method to
compute the mean value of various QoIs, such as c in the whole domain, c at a point, or an integral value (we
call it the freshwater integral):

QFW (t, ω) :=

∫
x∈D

I(c(t,x, ω) ≤ 0.012178)dx, (23)

where I(·) is the indicator function identifying a subdomain {x : c(t,x, ω) ≤ 0.012178}, meaning the mass of
the fresh water at a time t. Each simulation may contain up to n = 0.5 · 106 spatial mesh points and a few
thousand time steps (r = 6016 on the finest mesh).

Software and parallelization: The computations presented in this work were performed using the ug4
simulation software toolbox (https://github.com/ug4/ughub.wiki.git) [60, 73]. This software has been
applied for subsurface flow simulations of real-world aquifers (cf. [65]). The toolbox was parallelized using MPI,
and the presented results were obtained on the Shaheen II cluster provided by the King Abdullah University of
Science and Technology. Every sample was computed on 32 cores of a separate cluster node. Each simulation
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(scenario) was localized to one node to reduce the communication time between nodes. All scenarios were
concurrently computed on different nodes. A similar approach was used in [41, 42]. Simulations were performed
on different meshes; thus, the computation time of each simulation varied over a wide range (see Table 2).

Porosity and recharge: We assume two horizontal layers: y ∈ (−0.75, 0] (the upper layer) and y ∈
[−1,−0.75] (the lower layer). The porosity inside each layer is uncertain and is modeled as in Eq. (24):

φ(x, ξ) = 0.35 · (1 + 0.15(ξ2 cos(πx/2) + ξ2 sin(2πy) + ξ1 cos(2πx))) · C0(ξ1), (24)

where C0(ξ1) =

{
1 + 0.2ξ1 if y < −0.75
1− 0.2ξ1 if y ≥ −0.75,

(25)

Additionally, the recharge flux is also uncertain and is equal to

q̂in = −6.6 · 10−2(1 + 0.5 · ξ3), (26)

where ξ1, ξ2, and ξ3 are sampled independently and uniformly in [−1, 1]. Figure 2 depicts a random realization
of the porosity random field φ(ξ) (left) and the corresponding solution c(t,x, ξ) = c(t, φ(ξ)) at t = T (right).
Additionally, four isolines {x : |c(t, φ(ξ))− c(t)| = 0.1 · i}, i = 1, 2, 3, 4, are presented on the right. The isolines
demonstrate the absolute value of the difference between the computed realization c(t, φ(ξ)) and the expected
value c(t). These computations were performed for ξ = ξ∗ = (−0.5898,−0.7257,−0.9616) and t = T = 6016 s.

Figure 2: (left) Realisation of porosity φ(ξ∗) ∈ [0.248, 0.499]. (right) Corresponding mass fraction
c(T,x, φ(ξ∗)) ∈ [0, 1] with isolines {x : |c(T, φ(ξ∗))− c(T )| = 0.1 · i}, i = 1, 2, 3, 4.

The mean and variance of the mass fraction are provided in Fig. 3 on the left and right, respectively.
The expectation takes values from [0, 1], and the variance range is [0, 0.05]. The areas with high variance
(dark red) indicate regions with high variability/uncertainty. Such regions may need additional attention from
specialists (e.g., placement of additional sensors). Additionally, the right image displays five contour lines
{x : Var[c](t,x) = 0.01 · i}, i = 1..5, t = T = 6016.

Figure 3: (left) Mean value c ∈ [0, 1] and (right) variance Var[c] ∈ [0.01, 0.05] of the mass fraction, with contour
lines {x : Var[c] = 0.01 · i}, i = 1..5, t = T = 6016.

We observed that the variability (uncertainty) of the mass fraction might vary from one grid point to another.
At some points (dark blue regions), the solution does not change. At other points (white-yellow regions), the
variability is very low or high (dark red regions). In regions with high uncertainty, refining the mesh and
applying the MLMC method make sense.

Before we run the MLMC method, we first examine the solution c(t,x) at 12 preselected points (see Eq. (9)).
Figure 4 includes 12 subfigures. Each subfigure presents 600 QMC realizations of c(t,x) and five quantiles
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depicted by dotted lines. The dotted line at the bottom indicates the quantile 0.025. The following dotted line
is the quantile 0.25, and the dotted line on the top indicates the quantile 0.975. All five quantiles from the
bottom to the top are 0.025, 0.25, 0.50, 0.75, and 0.975, respectively. We observe that c at the final point t = T
varies considerably.

Figure 4: Six hundred QMC realisations of c(t,x) at 12 x-points listed in Eq. (9).
First row points: {(1.10,−0.95),(1.35,−0.95),(1.60,−0.95),(1.85,−0.95)}, second row
points: {(1.10,−0.75),(1.35,−0.75),(1.60,−0.75),(1.85,−0.75)}, and third row points:
{(1.10,−0.50),(1.35,−0.50),(1.60,−0.50),(1.85,−0.50)}. Dotted lines from the bottom to the top indicate the
quantiles 0.025, 0.25, 0.50, 0.75, and 0.975, respectively.
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Example. In Fig. 5, we demonstrate the probability density function (pdf) of t∗(ω) = mint{t : QFW (t, ω) <
1.2} (left), and the pdf of t∗(ω) = mint{t : QFW (t, ω) < 1.7} (right). On average, after approximately 29 time
steps (on the left) and six time steps (on the right), the volume of the fresh water becomes less than 1.2 and
1.7, respectively. The initial volume of the fresh water was 2.0.

Figure 5: The pdf of the earliest time point when the freshwater integral QFW becomes smaller than 1.2 (left)
and 1.7 (right). The x-axis represents time points.

All 600 realiations of QFW (t) are depicted in Fig. 6 The time is along the x-axis, t ∈ [τ, 48τ ]. Additionally,
five quantiles are represented by dotted curves from the bottom to the top and are 0.025, 0.25, 0.50, 0.75, and
0.975, respectively.

Figure 6: Six hundred realizations of QFW (t). The x-axis represents time t = 1τ, . . . , 48τ ; dotted curves denote
five quantiles: 0.025, 0.25, 0.50, 0.75, and 0.975 from the bottom to the top.

Example. Figure 7 (left) displays the evolution of the pdf of c(t,x, ω) at a fixed point x = (1.85,−0.95)
in time t = {3τ, . . . , 48τ}. From left to right, the farthest left (blue) pdf corresponds to t = 3τ , the second
curve from the left (red) corresponds to t = 4τ , and so on. In the beginning, t = 3τ , and the mass fraction c
is low, about 0.15 on average. Then, with time, c increases and, at t = T = 48τ , is approximately equal to 1.
Example. The next QoI is the earliest time moment when c(t,x), at fixed x = (1.85,−0.95), becomes smaller
than the threshold value 0.9 (maximum is 1.0). Figure 7 (right) presents its pdf. On average, after t ≈ 10 time
steps, the mass fraction becomes smaller than 0.9, but 40 time steps are needed in some scenarios.
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Figure 7: (left) Evolution of the pdf of c(t,x) for t = {3τ, . . . , 48τ}. (right) The pdf of the earliest time point
when c(t,x) < 0.9 (x = (1.85,−0.95) is fixed).

Next, we research how g`−g`−1 depends on the time and level. All graphics in Fig. 8 display 100 realizations
of the differences between solutions computed on two neighbor meshes for every time point ti, i = 1 . . . 48 (along
the x-axis). The top left graphic indicates the differences between the mass fractions computed on Levels 1 and
0. The other graphics reveal the same, but for Levels 2 and 1, 3 and 2, 4 and 3, and 5 and 4, respectively. The
largest value decreases from 2.5 · 10−2 (top left) to 5 · 10−4. Considerable variability is observed for t ∈ [3, 7]
and t ∈ [8, 25]. Starting with t ≈ 30, the variability between solutions decreases and stabilizes. From these
five graphics, we can estimate that the maximal amplitude decreases by a factor ≈ 2, at 0.015, 0.008, 0.004,
0.0015, and 0.0008. However, it is challenging to make a similar statement about each time point t. This
observation makes it difficult to estimate the weak and strong convergence rates and the optimal number of
samples correctly on each mesh level. They are different for each time t (and for each x). For some time points,
the solution is smooth and requires only a few levels and a few samples on each level. For other points with
substantial dynamics, the numbers of levels and samples are higher.
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Figure 8: Differences between mass fractions c computed at the point (1.60,−0.95) on levels a) 1 and 0, b) 2
and 1 (first row), c) 3 and 2, d) 4 and 3 (second row), and e) 5 and 4 (third row) for 100 realizations (x-axis
represents time).
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Because g`− g`−1 is random, we visualize its mean and variance. Figure 9 demonstrates the mean (left) and
variance (right) of the differences in concentrations g`− g`−1, ` = 1, . . . , 5. On the left, the amplitude decreases
when ` increases. A slight exception is the blue line for t ≈ 9, 10, 11 (right). A possible explanation is that
the solutions g0 or g1 are insufficiently accurate. The right image presents how the amplitude of the variances
decays. This decay is necessary for the successful work of the MLMC method. We also observe a potential issue;
the weak and strong convergence rates vary for various time points t. Thus, determining the optimal number
of samples m` for each level is not possible (only suboptimal).

At the beginning t = 0, the variability is zero and starts to increase. We observe changes during a specific
time interval, and then the process starts to stabilize after ≈ 45 time steps. The variability is either unchanging
from level to level or decreases.

Figure 9: (left) Mean and (right) variance of the differences g` − g`−1 vs. time, computed on various levels at
the point (1.60,−0.95).

Table 2 contains average computing times, which are necessary to estimate the number of samples m` at
each level `. The fourth column contains the average computing time, and the fifth and sixth columns contain
the shortest and longest computing times. The computing time for each simulation varies depending on the
number of iterations, which depends on the porosity and permeability. We observed that, after ≈ 6016 s, the
solution is almost unchanging; thus, we restrict this to only t ∈ [0, T ], where T = 6016. For example, if the
number of time steps is r` = 188 (Level 0 in Table 2), then the time step τ = T

r`
= 6016

188 = 32 s.
The time step τ is adaptive and changing from τ = 6016

128 = 32 s (very coarse mesh) to τ = 6016
6016 = 1 s (finest

mesh). Starting with level ` = 2, the average time increases by a factor of eight. These numerical tests confirm
the theory in Eq. (12), stating that the numerical solver is linear w.r.t. n` and r`.

Level ` n` r` τ` = 6016/r`
Computing times (s`)
average min. max.

0 1122 188 32 1.15 0.88 1.33
1 4290 376 16 4.1 3.4 4.87
2 16770 752 8 19.6 17.6 22
3 66306 1504 4 136.0 128 144
4 263682 3008 2 1004.0 891 1032
5 1051650 6016 1 8138.0 6430 8480

Table 2: Number of degrees of freedom n`, number of time steps r`, step size in time τ`, average, minimal, and
maximal computing times on each level `.
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With estimates for each level, we can estimate the rates of α and β (Eqs. (21a)-(21b)) in weak and strong
convergences.

The slope in Fig. 10 can be used to estimate the rates of the weak (left) and strong (right) convergences.
The differences are indicated on the horizontal axis.

Figure 10: Weak (left) and strong (right) convergences computed for Levels 1 and 0, 2 and 1, 3 and 2, 4 and 3,
and 5 and 4 (horizontal axis) at the fixed point (t, x, y) = (14, 1.60,−0.95).

We use computed variances V` and computing times (work) s` from Table 2 to estimate the optimal number
of samples m` and compute the telescopic sum from Eq. (15) to approximate the expectation.

Table 3 lists m` for a given total variance ε2:

level, ` 0 1 2 3 4 5
s` 1.156 4.113 20.382 139.0 993.0 8053.0
V` 1.4e-5 0.2e-5 0.5e-6 0.1e-6 0.5e-7 1e-7
m`(ε

2 =5e-6) 35 7 2 1 1 1
m`(ε

2 =1e-6) 172 35 8 2 1 1
m`(ε

2 =5e-7) 343 69 16 3 1 1
m`(ε

2 =1e-7) 1714 344 78 14 4 2

Table 3: Number of samples m` computed using Eq. (18) as a function of the total variance ε2.

After the telescopic sum is computed, we can compare the results with the QMC results. Figure 11 depicts
the decay of the absolute (left) and relative (right) errors vs. levels along the x-axes. The ’true’ solution was
computed using the QMC method on the finest mesh level L = 5.

Figure 11: Decay of the absolute (left) and relative (right) errors between the mean values computed on a fine
mesh via QMC and on a hierarchy of meshes via MLMC at the fixed point (t, x, y) = (12, 1.60,−0.95). x-axis
contains the mesh levels.
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5 Conclusion
We investigated the applicability and efficiency of the MLMC approach for the Henry-like problem with uncertain
porosity, permeability, and recharge. These uncertain parameters were modeled by random fields with three
independent random variables. The numerical solution for each random realization was obtained using the
well-known ug4 parallel multigrid solver. The number of required random samples on each level was estimated
by computing the decay of the variances and computational costs for each level. These estimates depend on the
minimization function in Eq. (17).

We also computed the expected value and variance of the mass fraction in the whole domain, the evolution
of the pdfs, the solutions at a few preselected points (t,x), and the time evolution of the freshwater integral
value. We have found that some QoIs require only 2-3 of the coarsest mesh levels, and samples from finer
meshes would not significantly improve the result. Note that a different type of porosity in Eq. (24) may lead
to a different conclusion.

The results show that the MLMC method is faster than the QMC method at the finest mesh. Thus, sampling
at different mesh levels makes sense and helps to reduce the overall computational cost.
Limitations. 1. It may happen that the QoIs computed on different grid levels are the same (for the given
random input parameters). In this case the standard (Q)MC on a coarse mesh will be sufficient. 2. The time
dependence is challenging. The optimal number of samples depends on the point (t,x) and may be small for
some points and large for others. 3. Twenty-four hours may not be sufficient to compute the solution at the
sixth mesh level.
Future work. Our model of porosity in Eq. (24) is quite simple. It would be beneficial to consider a more
complicated/multiscale/realistic model with more random variables. A more advanced version of MLMC may
give better estimates of the number of levels L and the number of samples on each level m`. Another hot topic
is data assimilation and the identification of unknown parameters [40, 43, 48, 62]. Known experimental data
and measurements of porosity, permeability, velocity or mass fraction could be used to minimise uncertainties.
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