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Abstract

Visible-infrared person re-identification (VI-ReID) aims to retrieve images of

the same pedestrian from different modalities, where the challenges lie in the

significant modality discrepancy. To alleviate the modality gap, recent meth-

ods generate intermediate images by GANs, grayscaling, or mixup strategies.

However, these methods could introduce extra data distribution, and the se-

mantic correspondence between the two modalities is not well learned. In

this paper, we propose a Patch-Mixed Cross-Modality framework (PMCM),

where two images of the same person from two modalities are split into

patches and stitched into a new one for model learning. A part-alignment

loss is introduced to regularize representation learning, and a patch-mixed

modality learning loss is proposed to align between the modalities. In this

way, the model learns to recognize a person through patches of different

styles, thereby the modality semantic correspondence can be inferred. In ad-

dition, with the flexible image generation strategy, the patch-mixed images
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freely adjust the ratio of different modality patches, which could further alle-

viate the modality imbalance problem. On two VI-ReID datasets, we report

new state-of-the-art performance with the proposed method.

Keywords: Visible-Infrared Person Re-Identification, Patch-Mix

1. Introduction

Visible-infrared person re-identification (VI-ReID) [1] aims to match a

target person between the RGB visible cameras and low-light infrared (IR)

cameras. The task is increasing research interests [2, 3, 4, 5] because of its

great value in the practical 24-hour surveillance system. The main challenge

of VI-ReID lies in modality discrepancy, where different wavelengths bring

significantly different visual appearances (e.g., color, texture).

Typically, there are three main types of methods: 1) the representation

learning based methods [6, 7], where networks are designed to learn discrim-

inative features in a modality-shared space; 2) the metric learning based

methods [8, 9], where loss functions are designed to bridge the modality gap;

3) the modality-transform based methods [10, 11], which transform modal-

ities into each other for style consistency. However, these methods try to

handle the large modality discrepancy directly, while it is hard to align het-

erogeneous modalities without considering the correspondence between IR

and RGB images.

To handle the above issue, recent works generate a third modality to

assist cross-modality learning. Among them, a branch of works constructs
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Figure 1: Different methods of generating the intermediate modality. (a) grayscale images
are generated by visible images, (b) a mixed image is a global mixture of corresponding
RGB and IR images, and (c) our proposed patch-mixed image, where each patch is either
from RGB or IR, helps to infer the semantic corresponds between the two modalities and
relieves the modality imbalance problem.

the new modality upon only one modality. For example, [12] generates the

third auxiliary modality by transforming the visible images to one-channel

images and then reconstructs three-channel images. In [13], grayscale images

are generated by visible images and are utilized to enhance the robustness

against color variations. However, as shown in Fig. 1 (a), these new images

are generated through only one modality, where the information from the IR

images is ignored. Another branch of works [14, 15] adopts mixup [16] strat-

egy to generate intermediate modality images between RGB and infrared

images, achieving promising results. However, as shown in Fig. 1 (b), it in-
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troduces a different data distribution, with each pixel is neither RGB nor IR,

which may improve the generalization ability but the semantic correspon-

dence between the two modalities is chaotic that the person may appear as

a double shadow with two heads.

In this paper, we propose a Patch-Mixed Cross-Modality framework (PMCM),

which leverages modality discrepancy by learning with a new patch-mixed

modality. As shown in Fig. 1 (c), the patch-mixed image is generated by

blending a person’s image of two modalities in the patch level where the

data distribution within each patch is consistent with the original modality.

The patch-mixed modality benefits cross-modality learning in two aspects:

1) The semantic correspondence between two modalities could be inferred by

recognizing a patch-mixed image. For example, the network will learn that

the hair in the IR patch and the face in the RGB patch together describe a

person’s appearance. Thereby, the model learns to deal with the two modal-

ities in the same way, and the modality gap is reduced. 2) The patch-mixed

modality also relieves the modality imbalance problem. As there usually are

more images captured by daytime cameras, the data of IR and RGB images

are imbalanced. With the flexible image generation approach, the proportion

of different modalities can be adjusted freely to produce images with more

IR information or RGB information. Therefore, the distribution of training

samples is modified, which achieves an effect similar to over-sampling.

As a minor contribution, we adopted an improved center-to-center loss to

directly reduce the modality gap by aligning identity centers between RGB,
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IR and our patch-mixed modality. To regularize representation learning of

part features, we take full advantage of the association between the part fea-

tures and the global feature. Thus, a part alignment loss is proposed to con-

strain the consistency of part and global prediction distributions. With the

part-based learning strategy, the discriminative part features are explored,

which benefits the global feature learning in return. Besides, considering the

shared information between the new modality and the other two modalities,

we propose a patch-mixed modality learning loss to enhance the modality

invariance learning by aligning the distribution of the prediction logits.

The main contributions of our work can be summarized as follows:

• We propose a novel patch-mixed cross-modality learning framework

for the VI-ReID task, which effectively encourages the model to treat

the RGB and IR images in the same way and alleviate the modality

imbalance problem.

• We consider different constraints to further enhance the learned model.

A part-alignment loss is proposed to constrain the consistency of part

and global prediction distributions for more discriminative representa-

tion. A patch-mixed modality learning loss is proposed to align the

new modality with the other two modalities.

• Experimental results show that our method outperforms other methods

on two VI-ReID datasets by a large margin, and the data imbalance

problem is effectively alleviated.
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2. Related Work

2.1. Visible-Infrared Person Re-identification

VI-ReID aims to match persons of different modalities, which faces the

challenge of large intra-modality variation and inter-modality discrepancy.

Wu et al. [17] was the first to define the task, which proposed a deep zero-

padding method along with a large-scale VI-ReID dataset named SYSU-

MM01.

Following that, researchers propose to learn modality-specific and modality-

shared feature representations by designing networks or loss functions. Ling et

al. [8] propose a Multi-Constraint similarity learning method that jointly con-

siders the cross-modality relationships from three different aspects. Sun et

al. [18] performs pixel-to-pixel dense alignment acting on the intermediate

representations. Huang et al. [6] makes use of both modality shared appear-

ance features and modality-invariant relation features to boost performance

Huang et al. [19] take the initiative to investigate the importance and strat-

egy of exploiting person body information. Wan et al. [20] explicitly utilizes

body topology to jointly achieve semantic- and structural-level alignment.

On the other hand, another branch of work aims to bridge the modality

discrepancy by transforming the images from one modality to the other by

generative adversarial networks (GANs). Choi et al. [21] propose an effec-

tive generator to extract pose-invariant and illumination-invariant features.

Zhao et al. [22] learns the color-irrelevant features and aligns the identity-

level feature distributions. Zhang et al. [23] compensates for the missing
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modality-specific information from the other modality in the feature level.

2.2. VI-ReID with Intermediate Modality Images

To further reduce the modality gap, researchers propose to construct a

third modality to assist shared feature space learning. In [12], a third auxil-

iary modality is generated by transforming the visible images to one-channel

images and then reconstructing three-channel images. In [13], grayscale im-

ages are generated by visible images and are utilized to enhance the robust-

ness against color variations. Following that, [11] transforms both of the two

modalities into the grayscale for modality alignment to reduce the modal-

ity discrepancy. However, in these methods, the third modality is generated

upon only one modality, without considering the relationship between IR and

RGB images.

Recently, some methods have proposed to generate intermediate modality

images between RGB and infrared images, which achieved promising results.

In [24], inspired by mixup [16], a linear interpolation is performed of two im-

ages from different modalities for the same identities to generate mixed im-

ages. Similarly, in [14], mixed modality images are generated with a dynamic

mixup ratio learned by a deep reinforcement learning framework. In [15], a

syncretic modality collaborative learning model is designed, where shallow

representation is mixed. Lu et al. [10] proposes an intermediate modality

generation module involves CutMix [25] to better integrate features from

visible and infrared modalities.
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Compared with these extra-modality learning methods, our Patch-Mix

strategy generates the third modality by mixing the RGB and IR modalities

at the raw pixel level, which helps to learn a semantic alignment of two

modalities by a unified input.

2.3. Modality Imbalanced Learning

Current research on imbalanced data focuses on the class imbalance prob-

lem and introduces two main strategies: re-sampling and re-weighting. Re-

sampling like [26, 27] over-sample classes with few samples and under-sample

classes with many samples. Re-weighting like [28, 29] adaptively adjusts the

weights of different classes in the loss function. Liu et al. [30] first notice the

unique data imbalance problem in cross-modality tasks and name it Modal-

ity Imbalance, which refers to the situation that one modality contains more

samples than the other modality. To address the problem, they borrow the

idea of re-weighting and allowing independent augmentation for a specified

modality. Different from their work, our PMCM alleviates this problem by

adjusting the ratio of patch-mix, where more patches of one modality can be

contained for data balance.

3. Proposed Method

In this paper, we aim to learn modality-invariant representations by an

intermediate patch-mixed modality, where cross-modality retrieval can be

achieved. The overview of the proposed method is shown in Fig. 2, where
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Figure 2: (a) Framework of the proposed PMCM. The patch-mixed image and the origi-
nal images are together fed into the backbone network to extract features. After pooling,
the obtained features are jointly optimized by the baseline loss, center-to-center loss, and
patch-mixed modality learning loss. (b) Center-to-center (C2C) loss attempts to reduce
the distance between the identity centers of any two modalities. (c) Patch-Mixed Modal-
ity Learning (PMML) loss aims to align the prediction distributions of the patch-mixed
modality with that of the other two modalities, where global and local features are con-
sidered.

RGB, IR, and patch-mixed images are fed into the network, optimized by

the baseline losses, center-to-center loss, and patch-mixed modality learning

loss.

Following, we introduce our method in detail. We begin with the baseline

method for this task. Then we illustrate the modality center alignment and

patch-mixed cross-modality framework.

3.1. Baseline Method

3.1.1. Baseline

We adopt a two-stream network as our baseline and sample the same

number of RGB and IR images in a mini-batch. We introduce the ResNet-50
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as the backbone, where the first convolution blocks are modality-unique to

learn modality-invariant low-level features, and the others are weight-shared

to capture discriminative features. Besides, we alter channel-wise attention

to part-wise attention in MAMs proposed by Wu et al. [31] and insert them

into the backbone to extract modality-irrelevant feature maps. After the

backbone, we only adopt global average pooling to the obtained feature maps

to attain global features and then use a batch normalization layer to get the

query representations. At last, the loss function for the baseline is formulated

as follows:

Lbase global = Lid,g + Ltri + λ1Ls2s,g, (1)

where Lid,g is the cross-entropy loss of the global features after a classifier,

Ltri is the hard triplet loss [32], λ1 denotes the weight of Ls2s,g, which is the

sample-to-sample loss [11], attempting to pull close the sample features of

different modalities with the same identity. Specifically, given the global fea-

tures of two modalities, RGB and IR, the sample-to-sample loss is formulated

as:

Ls2s =
1

N

N∑

i=1

mean[F (fV
i )− F (f I

i )], (2)

where N is the number of paired samples in a mini-batch, fV
i and f I

i are the

features of the i-th sample of RGB and IR, respectively. F (·) is a network

with two fully-connected layers.
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3.1.2. Baseline with Part-based Learning

Inspired by PCB [33], recent VI-ReID works [11, 22, 31] learn part-based

features to enhance global discriminative representation learning and achieve

promising performance. In this work, we also exploit horizontal stripes to

obtain part features. Similarly, cross-entropy loss and sample-to-sample loss

are adopted to address the part-based features:

Lbase part = Lid,p + Ls2s,p. (3)

where Lid,p is the cross-entropy loss of all the part features and Ls2s,p is the

sample-to-sample loss of all the part features.

In addition, since the global feature and part features both describe the

same identity, we hope that the output distribution of part features could

be similar to the global feature. Therefore, we calculate the KL divergence

of the two output distributions as the regularization term, to learn more

generalized part features. In this way, the prediction of global and each part

features are supposed to be consistent. Given part and global features, the

part alignment loss can be formulated as:

Lpart align =
N∑
i=1

P∑
k=1

Cg(f
g
i ) log

Cg(f
g
i )

Cpk(f
pk
i )

, (4)

where P is the number of parts, fpk
i denotes the feature of the k-th part

feature of the i-th identity, Cg(·) and Cpk(·) are the classifier of global features

and that of the k-th part features.
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Besides, in order to speed up the convergence of the model, we reduce the

weight of losses involving part features in the early stage of training, which

may cause relatively large interference. Therefore we set a weight µ to losses

involving part features, which linearly increases with epochs and reaches its

maximum at some point. In this way, the total loss of the part-based baseline

is formulated as follows:

Lbase = Lbase global + µ(Lbase part + Lpart align). (5)

3.2. Modality Center Alignment

To further reduce the cross-modality variance, we consider directly align-

ing the identity centers between any two modalities. We adopt a global

center-to-center loss similar to previous work [8], where the distance between

each center of the same identity from different modalities is minimized as

shown in Fig. 2(b). We obtain global centers of all training data by main-

taining a memory bank instead of calculating the centers only in a mini-batch.

Thus our global centers are more robust and tolerant to the mini-batch cal-

culation bias caused by insufficient samples.

Given the global features of RGB images and IR images, the global center-

to-center loss can be defined as:

Lc2c,g =
1

Y

Y∑
i=1

∥∥mV
i −mI

i

∥∥2
, (6)

where mV
i and mI

i respectively denote the memory banks of the center of the
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i-th identity in the RGB and IR modality, which are updated every mini-

batch, and Y is the number of identities.

Similarly, we consider the center relations between part features and use

µ to balance the global and part losses. The final center-to-center loss is

calculated as:

Lc2c = λ2Lc2c,g + µλ3Lc2c,p (7)

where λ2 and λ3 are the weights of Lc2c,g and Lc2c,p.

In addition, there are also some differences in the optimization strategy.

Since the stored features in the memory are inconsistent with those trained in

the current training batch, we set a threshold epoch to delay the optimization

of this loss until the model gets stable.

3.3. Patch-Mixed Cross-Modality Learning

To deal with the modality variance, recent VI-ReID works [13, 14, 24]

construct intermediate modalities and achieve promising performance. Dif-

ferent from these grayscale or mixup-based methods, we propose a novel

patch-mixed intermediate modality, where each patch is from the original IR

and RGB images, having the same data distribution of the original data.

3.3.1. Patch-Mix strategy

Given an infrared image xI and a visible image xV , a patch-mixed image

xM is generated, where each patch xM(i, j) is formed by either xV (i, j) or

xI(i, j). Here, i and j denote the patch index of image length and width,

respectively. We set the probability of choosing an RGB patch to be p, and
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Figure 3: Patch-mixed images with different mix ratios p. When p = 0, the image is
composed of only an infrared image. As p increases, more visible patches are adopted.

then the probability of choosing an infrared patch is 1 − p. As shown in

Fig. 3, the ratio p balances the information from two modalities.

The patch mixed images encourage cross-modality learning from two as-

pects. First, by learning from adjacent RGB and IR patches, which may

represent the same semantic part, the model is encouraged to recognize the

same semantic part through two modality patches. Therefore, the modality

variance is bridged and the generalization ability is improved. Second, the

patch-mixed images help to reduce the modality imbalance. Usually, images

captured by daytime cameras are more than those of nighttime cameras,

so the data of IR and RGB images are typically imbalanced. As shown in

Fig. 3, with an adjustable ratio p, images with more IR information or RGB

information can be generated freely according to the data distribution.

3.3.2. Patch-Mixed Modality Learning (PMML)

Considering that the mixed modality contains internal information in

both of the two modalities, we align it with the other two modalities.

As shown in Fig. 2 (c), we input three training samples in three modali-
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ties with the same identity into the network and obtain their output distri-

bution. The KL divergence of the two output distributions is calculated to

constrain the learning of patch-mixed modality. Since the logits are grouped

by global and part relationship after the classifiers, we first regroup the logits

by modality and then align between the mixed modality and the two original

modalities.

Given part and global features, the part alignment loss can be formulated

as:

LM,V
pmml =

K∑
i=1

Cg(f
V,g
i ) log

Cg(f
V,g
i )

Cpk(f
M,g
i )

+
K∑
i=1

P∑
k=1

Cpk(f
V,pk
i ) log

Cpk(f
V,pk
i )

Cpk(f
M,pk
i )

(8)

where fpk
i denotes the feature of the k-th part feature of the i-th identity,

Cg(·) and Cpk(·) are the classifier of global features and that of the k-th part

features.

Similarly, the alignment between the patch-mixed images and infrared

images is calculated. The total patch-mixed modality learning loss is defined

as:

Lpmml = pLM,V
pmml + (1− p)LM,I

pmml. (9)

Note that to further alleviate the modality imbalance problem, we adopt a

weight p to balance the two losses, which is the same as the ratio of patch-mix.

The effect of ratio p is that the more image information of one modality the

mixed modality contains, the more similar it will be to the source modality.
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3.4. Overall Optimization

Ultimately, we optimize the PMCM in an end-to-end manner with the

final loss defined as follows:

L = Lbase + Lc2c + µLpmml (10)

4. Experiments

4.1. Experimental Settings

4.1.1. Datasets

We evaluate our proposed framework on two VI-ReID datasets, SYSU-

MM01 [17] and RegDB [34].

The SYSU-MM01 dataset contains 491 identities captured by 4 visible

cameras and 2 infrared cameras both including indoor and outdoor environ-

ments. The training set contains 22258 visible images and 11909 infrared

images involving 395 identities, while the testing set contains 96 identities

with 3803 infrared images as query images. Following the protocols, we test

it both in all-search mode and indoor-search mode for only single-shot.

The RegDB dataset contains 412 identities with 206 identities for training

and 206 identities for testing, where each identity has 10 visible images and

10 infrared images from a pair of overlapping visible and infrared cameras.

Following the protocols, we test it both in Visible2Thermal mode, where vis-

ible images as query and infrared images as the gallery, and Thermal2Visible

mode similar to the former.
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4.1.2. Evaluation metrics

For both datasets, we adopt the Cumulative Matching Characteristic

(CMC) and mean Average Precision (mAP) to evaluate the performance

and take the average result of ten tests to report.

4.1.3. Implementation details

We implement our method with PyTorch and use ResNet50 pre-trained

on ImageNet [35] as the backbone. All the input images are data augmented

with a sequence of being resized to the size of 3×384×192, random horizontal

flipping, and random channel erasing [36]. The size of a mini-batch is set to

32, where we randomly sample 4 identities for each modality and 4 images for

each identity. Besides, we adopt SGD as the optimizer with a weight decay

of 5×10−4, a momentum of 0.9, and a dynamic learning rate schedule, where

the rate linearly increases from 0 to 0.1 in the first 10 epochs and decreases by

0.1 per 30 epochs after the 30th epoch. The total number of training epochs

is set to 101 and the number of tests is 10. In terms of hyper-parameters,

we set λ1, λ2 and λ3 to 0.2, 0.2 and 1.0. Following [32], we set the margin

of triplet loss to 0.3. The ratio p of patch-mix is set to 0.1 for SYSU-MM01

and 0.5 for RegDB. The parameter µ is gradually increased from 0 to 0.5 in

the first 50 rounds and kept until the end.

We train our framework with one Tesla V100 GPU and the time cost of

one epoch is increased by 54% compared to that of baseline. However, our

inference time is exactly the same as the baseline, which is more important

17



Method
All-search Indoor-Search

Single-Shot Multi-Shot Single-Shot Multi-Shot

R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP

X-Modality [12] 49.92 89.79 95.96 50.73 - - - - - - - - - - - -
MMN [11] 70.6 96.2 99.0 66.9 - - - - 76.2 97.2 99.3 79.6 - - - -

MPANet [31] 70.58 96.21 98.80 68.24 75.58 97.91 99.43 62.91 76.74 98.21 99.57 80.95 84.22 99.66 99.96 75.11
MCSL [8] 64.82 - - 60.81 68.05 - - 51.84 - - - - - - - -
JCCL [22] 57.20 94.30 98.40 59.30 60.70 95.20 98.60 52.60 66.60 98.80 99.70 74.70 73.80 99.40 99.90 68.30

DCLNet [18] 70.79 - - 65.18 - - - - 73.51 - - 76.80 - - - -
FMCNet [23] 66.34 - - 62.51 73.44 - - 56.06 68.15 - - 74.09 78.86 - - 63.82

CMT [37] 71.88 96.45 98.87 68.57 80.23 97.91 99.53 63.13 76.98 97.68 99.64 79.91 84.87 99.41 99.97 74.11
MTL [19] 67.25 95.38 98.46 64.29 72.95 96.94 99.27 57.62 69.58 96.66 99.03 74.37 80.39 98.80 99.83 68.60

MTMFE [6] 69.47 96.42 99.11 66.41 73.74 97.48 99.59 59.78 71.72 97.19 98.97 76.38 81.49 99.18 99.79 70.94
G2DA [20] 63.94 93.34 97.29 60.73 71.23 95.93 98.59 54.99 71.06 97.31 99.47 76.01 80.83 98.50 99.77 68.88
SIDA [3] 68.36 95.91 98.56 64.19 - - - - 73.28 97.35 99.52 77.49 - - - -

LDAEF [7] 66.61 - - 62.86 75.24 - - 56.70 70.90 - - 75.78 81.84 - - 69.42
PMT [38] 67.53 95.36 98.64 64.98 - - - - 71.66 96.73 99.25 76.52 - - - -

MRCN-P [39] 70.8 96.5 99.1 67.3 - - - - 76.4 98.5 99.9 80.0 - - - -
ProtoHPE [40] 71.92 96.19 97.98 70.59 - - - - 77.81 98.64 99.59 81.31 - - - -

CMM [24] 51.80 92.72 97.71 51.21 56.27 94.08 98.12 43.39 54.98 94.38 99.41 63.7 60.42 96.88 99.5 53.52
SMCL [15] 67.39 92.87 96.76 61.78 72.15 90.66 94.32 54.93 68.84 96.55 98.77 75.56 79.57 95.33 98.00 66.57
MID [14] 60.27 92.90 - 59.40 - - - - 64.86 96.12 - 70.12 - - - -
IMG [10] 61.31 91.31 57.20 69.79 95.12 51.01 67.20 96.06 72.41 78.14 97.69 65.51

PMCM(ours) 75.54 97.49 99.30 71.16 82.52 99.00 99.78 65.88 81.52 98.99 99.71 84.33 90.06 99.80 99.97 79.45

Table 1: Comparison of CMC and mAP performances with the SOTAs on SYSU-MM01.
Particularly, methods in the last five lines adopt different mixup strategies to generate an
intermediate modality for model learning.

in applications in the real-world scene.

4.2. Comparison with State-of-the-Art Methods

We compare the proposed PMCM with several state-of-the-art methods

for VI-ReID, including X-Modality [12], MMN [11], MPANet [31], SMCL [15],

MCSL [8], JCCL [22], DCLNet [18], FMCNet [23], MID [14], CMT [37],

SIDA [3], LDAEF [7], PMT [38], MRCN-P [39], ProtoHPE [40], MTL [19],

MTMFE [6], G2DA [20], IMG [10], and CMM [24].

The comparison results on SYSU-MM01 and RegDB are respectively

shown in Table 1 and Table 2. We observe that our PMCM outperforms

the existing SOTAs on all evaluation metrics by a large margin in SYSU-

MM01. PMCM is superior to the second-best ProtoHPE in single-shot and

all-search mode in SYSU-MM01 by 3.62% in Rank-1 accuracy and 0.57%
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Method
Visible2Infrared Infrared2Visible

Rank-1 mAP Rank-1 mAP

X-Modality [12] 62.20 60.20 - -
MMN [11] 91.6 84.1 87.5 80.5

MPANet [31] 82.8 80.7 83.7 80.9
MCSL [8] 93.83 87.55 91.55 85.25
JCCL [22] 78.8 69.4 77.9 69.4

DCLNet [18] 81.2 74.3 78.0 70.6
FMCNet [23] 89.12 84.43 88.38 83.86

CMT [37] 95.17 87.3 91.97 84.46
MTL [19] 89.91 85.64 88.34 84.06

MTMFE [6] 85.04 82.52 81.11 79.59
G2DA [20] 73.95 65.49 69.67 61.98
SIDA [3] 81.73 75.07 79.71 72.60

LDAEF [7] 90.76 87.30 88.79 85.44
PMT [38] 84.83 76.55 84.16 75.13

MRCN-P [39] 95.1 89.2 92.6 86.5
ProtoHPE [40] 88.74 83.72 88.69 81.99

CMM [24] 59.81 60.86 - -
SMCL [15] 83.93 79.83 83.05 78.57
MID [14] 87.45 84.85 84.29 81.41
IMG [10] 89.70 85.82 87.64 84.03

PMCM(ours) 93.09 89.57 91.44 87.15

Table 2: Comparison of CMC and mAP performances with the SOTAs on RegDB.

in mAP. Compared with the methods adopting mixup schemes, PMCM also

shows the best, exceeding SMCL in single-shot and all-search mode in SYSU-

MM01 by 8.15% in Rank-1 accuracy and 9.38% in mAP, demonstrating that

our methods can encourage the model to learn the semantic correspondence

between the two different modalities thus improving the overall performance.

Although some methods like MSCL, CMT, and MRCN-P surpass us in

certain metrics in RegDB, their performance in SYSU-MM01 is significantly

inferior to our PMCM. For instance, CMT exceeds our PMCM by 2.08%

in Rank-1 accuracy in Visible2Infrared mode and 0.53% in Rank-1 accuracy

in Infrared2Visible mode, but CMT is inferior to our PMCM by 3.66% in

Rank-1 accuracy and 2.59% in mAP in single-shot and all-search mode in
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B Part PartAlign C2C PatchMix PMML Rank-1 mAP

1 ✓ - - - - - 64.58 62.41
2 ✓ ✓ - - - - 67.24 64.90
3 ✓ ✓ ✓ - - - 69.52 65.37
4 ✓ - - ✓ - - 68.63 64.43
5 ✓ ✓ ✓ ✓ - - 70.66 66.06
6 ✓ - - - ✓ - 67.92 63.77
7 ✓ - - - ✓ ✓ 69.08 64.20
8 ✓ ✓ ✓ ✓ ✓ - 73.76 69.88
9 ✓ ✓ ✓ ✓ ✓ ✓ 75.54 71.16

Table 3: Ablation studies on the effectiveness of each component of the proposed PMCM
in SYSU-MM01, where B denotes the baseline method.

SYSU-MM01. Compared with them, PMCM exhibits a better overall perfor-

mance, providing evidence for effectively alleviating the modality imbalanced

problem.

All the results above fully demonstrate the superiority and robustness of

our PMCM, where more modality-invariant and discriminative features can

be learned.

4.3. Algorithm Analysis

4.3.1. Ablation studies

To validate each component of PMCM, we conduct ablation experiments

on SYSU-MM01 in the all-search and single-shot mode in an accumulation

way. The experimental result is shown in Table 3 and numbered by row.

Effectiveness of the part-based baseline (Part). When exploring

part features upon the global-based baseline, the performance is increased by

2.66% and 2.49% on Rank-1 and mAP respectively, showing its enhancement
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to the feature representation learning.

Effectiveness of the part alignment loss (PartAlign). The part

alignment loss plays the role of regularization to the global and part feature

predictions. Comparing row 3 with row 2 in the table, we observe that the

improvements in Rank-1 accuracy and mAP are 2.32% and 0.47%, proving

the part alignment loss better mines discriminative part features.

Effectiveness of the center-to-center loss (C2C). Compared with

the baseline, C2C improves the Rank-1 accuracy and mAP by 4.05% and

2.02% and collaboration with ”Part” and ”PartAlign” further improves the

two metrics by 2.03% and 1.63%, thanks to that C2C pulls close the cen-

ters of different modalities of the same identity to extract modality-invariant

features.

Effectiveness of training with patch-mixed images (PatchMix).

Adding PatchMix strategy to the baseline increases the Rank-1 accuracy

and mAP by 3.34% and 1.36%, respectively, illustrating its effective. After

introducing the modules above, the PatchMix strategy can still provide a

significant improvement of the two metrics by 3.10% and 3.82%.

Effectiveness of patch-mixed cross-modality learning (PMML).

As an auxiliary learning scheme, PMML shows improvement of the Rank-1

accuracy and mAP in two further experiments based on PatchMix, demon-

strating its ability to enhance the effectiveness of PatchMix.
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(a) SYSU-MM01 (b) RegDB

Figure 4: Influence of the different values of patch-mix ratio p, (a) experiments on
SYSU-MM01 in all-search and single-shot mode, and (b) experiments on RegDB in In-
frared2Visible mode.

4.3.2. Analysis of patch-mix ratio

The ratio p adjusts the proportion of IR patches and RGB patches in the

patch-mixed images. When p is 0, the image is composed of only an IR image.

As p increases, more RGB patches are contained. Based on this, we argue

that the model will ultimately learn (1 + p) times the RGB information and

(2 − p) times the IR modality information. When the modality imbalanced

problem occurs, we can rebalance the RGB and IR information by adjusting

the value of p. As shown in Fig. 4, we evaluate the ratio p on both SYSU-

MM01 in all-search single-shot mode and RegDB in Infrared2Visible mode.

On SYSU-MM01, the samples of IR modality are much fewer than those

of RGB modality. We observe that when the ratio p is set to 0.5 (the number

of patches of two modalities is equal), a relatively low re-ID performance is

obtained. When p decreases from 0.5 to 0.1 (more IR patches contained), the

performance is continuously improved, and when the ratio is set to 0.1, the
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Figure 5: Analysis of the Rank-1 accuracy with parameters λ1, λ2 and λ3. We keep the
other parameters constant while testing the target one, and the table shows the insensi-
tivity of our PMCM to these parameters.

best performance is achieved. This demonstrates that, when there is more IR

information contained in the intermediate modality, a better balance of IR

and RGB data is kept, and the model could learn the two modalities equally.

On RegDB, IR and RGB modalities have the same number of samples,

which means RegDB is a data-balanced dataset. As shown in Fig. 4 (b), the

model achieves best performance when p is set to 0.5. In addition, when the

ratio is larger or smaller than 0.5, the balance between the two modalities is

broken, thus leading to a performance decrease.

All pieces of evidence above prove that the proposed patch-mix scheme

effectively alleviates the modality imbalance problem.

4.3.3. Analysis of parameters λ1, λ2 and λ3

We have evaluated the parameters including λ1, λ2, and λ3 by control

variates in SYSU-MM01. The line chart of the rank-1 accuracy is shown in

Fig. 5, which reveals that the fluctuation range of the metrics is approxi-

mately 3% within the range (0.1, 1.0) and if the value falls to 0, the accuracy

23



Method Rank-1 Rank-10 mAP

CutMix [25] 69.48 95.07 64.73
RandomErasing [41] 69.71 95.31 63.95

Grayscale 70.94 95.95 65.84
PatchMix 73.76 97.34 69.88

Mixup [16] + PMML 73.26 96.95 69.39
RandomErasing [41] + PMML 73.74 97.02 70.00

CutMix [25] + PMML 73.90 97.16 70.31
PatchMix + PMML 75.54 97.49 71.16

Table 4: Comparison of different intermediate modality generation strategies on SYSU-
MM01.

will significantly decrease. The experiments demonstrate that our method is

insensitive to the value of three loss weights but each of them counts.

4.3.4. Analysis of different mixup strategies

In addition, to show the superiority of our method over other intermediate

modality generation strategies, we compare images generated by grayscale,

the standard mixup with PMML, CutMix [25], CutMix with PMML, Ran-

domErasing [41] and RandomErasing with PMML. During implementation,

we replace the PatchMix and PMML modules in our framework with the

other generative methods and conduct experiments on them in the SYSU-

MM01 dataset. The results are shown in Table 4. We observe that our

method exceeds all of the strategies, which fully demonstrates the advantage

of our patch-mix scheme over other existing methods. Moreover, our PMML

scheme works quite effectively on the other intermediate modality generation

strategies and produces different degrees of improvement in the two metrics.

24



method Rank-1 Rank-10 Rank-20 mAP

Schedule1 71.89 96.38 98.63 67.14
Schedule2 73.91 97.19 98.94 69.57

ours 75.54 97.49 99.30 71.16

Table 5: Analysis of the update schedule. Schedule1 is constant at 0.5, and Schedule2 is
a linearly increasing value.

Size Rank-1 Rank-10 Rank-20 mAP

4× 4 74.47 97.38 99.30 69.92
8× 8 75.09 97.27 99.26 70.93
12× 12 75.13 97.31 99.27 70.86
16× 16 75.54 97.49 99.30 71.16
32× 32 74.62 97.13 99.11 69.92

Table 6: Influence of different sizes of patch experimented on SYSU-MM01.

4.3.5. Analysis of the global-local balancing weight µ.

In order to speed up the convergence and reduce the error caused by the

low-quality features extracted from part features in the early training stage,

we design the special update schedule for the hyper-parameter, which linearly

increases from 0 to 0.5 in the first half of the training phase and remains un-

changed till the end. To validate the effectiveness of our schedule, we compare

it with two other schedules. Schedule1 is constant at 0.5, and Schedule2 is a

linearly increasing value represented by current epoch/total epochs. Based

on the results shown in Table 5, our schedule achieves the best performance,

which exceeds Schedule1 by 3.65% and Schedule2 by 1.63% in Rank-1 accu-

racy, which meets our expectations.
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Figure 6: Visualization of PatchMixed images in SYSU-MM01 with the mixup ratio 0.1.
It is obvious that all the generated images retain most of the infrared modality information
and introduce a small amount of RGB modal information. Only very few of them have
semantic misalignment issues, such as missing a piece on the face and replacing it with a
piece from the surroundings.

4.3.6. Analysis of different sizes of the patch

We conduct experiments to investigate the impact of different sizes of the

image patches in SYSU-MM01. According to the results shown in Table6,

either too large or too small sizes will slightly reduce the effect, which means

our method is quite robust to the patch size. Finally, we choose the patch

size of 16× 16 for our method.

4.4. Visualization

4.4.1. Visualization of PatchMixed images

We manually checked 200 random PatchMixed images in SYSU-MM01

with the mixup ratio of 0.1 and part of the PatchMixed images are shown in
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(a) Baseline (b) PMCM

Figure 7: Visualization of cosine similarity distribution of inter-modality positive samples
and intra-modality negative samples with (a) baseline and (b) our PMCM on the test set
of SYSU-MM01.

Fig. 6. As a result, we find that in most generated images, the mixed patches

are harmonious with the patches around them, while less than 10% percent of

generated mixed images have body part miss alignment between modalities.

In addition, most misalignment is contour shifts within a body part. The case

of containing two right hands (or two other body parts) has never happened.

Although the edges of patches may not be always consistent, most of the

time, the semantic meaning of a patch is consistent with its neighbors.

4.4.2. Cosine distance distribution

We visualize the cosine distance distribution of inter-modality positive

samples and intra-modality negative samples in the test set of SYSU-MM01,

as is shown in Fig. 7. In baseline (Fig. 7(a)), the two types of image pair

share a similar distance distribution, which reveals that the baseline can
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(a) Baseline (b) PMCM

Figure 8: Visualization of the feature embeddings distribution of (a) baseline and (b)
PMCM via t-SNE in the SYSU-MM01 dataset, where dots and pluses in the same color
denote features of the same identity in RGB modality and infrared modality.

hardly retrieve inter-modality positive images. Instead, our proposed PMCM

(Fig. 7(b)) separates the inter-positive pairs and intra-negative pairs, show-

ing that cross-modality images could have bigger similarity and be retrieved

successfully. It fully demonstrates that our method can effectively reduce the

intra-class modality discrepancy.

4.4.3. Feature distribution

To further explore the reason why PMCM is effective, we visualize the

feature distribution of samples in the SYSU-MM01 dataset via t-SNE as

shown in Fig. 8, where different colors denote different identities. For the

baseline (Fig. 8(a)), feature embeddings of the same identity are far away,

which indicates the baseline can hardly narrow the large modality gap. In

comparison, our PMCM (Fig. 8(b)) discriminates and aggregates these fea-

ture embeddings of the same identity separately and clearly, demonstrating

that our method can effectively improve representation learning and narrow
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the cross-modality gap.

5. Conclusion

In this paper, we propose a Patch-Mixed Cross-Modality (PMCM) frame-

work for VI-ReID. A patch-mixed modality is introduced to learn the se-

mantic correspondence between visible and infrared images and alleviate

the modality imbalance problem. A patch-mixed modality learning loss is

adopted to take advantage of the third modality to reduce the modality

gap between the two modalities. The patch-mixed modality and its learn-

ing strategy can be assumed as an add-on component and easily adopted in

future work. To further reduce the inter- and intra-modality variance, we

propose a part-alignment loss to constrain the consistency of part and global

prediction distributions for more discriminative representation. Extensive

experiment results have demonstrated the superior effectiveness of PMCM

compared with other state-of-the-art methods. The code will be publicly

available, which will enable future research. The limitation of our work is

that some generated images may have body parts that miss alignment be-

tween modalities, which could lead to inaccurate representation learning. In

our future work, we plan to explore solutions to improve alignment in patch-

mixed images.
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