Preprint

ON DETERMINANTS INVOLVING SECOND-ORDER RECURRENT SEQUENCES

ZHI-WEI SUN

Abstract

Let A and B be complex numbers, and let $\left(w_{n}\right)_{n \geq 0}$ be a sequence of complex numbers with $w_{n+1}=A w_{n}-B w_{n-1}$ for all $n=1,2,3, \ldots$. When $w_{0}=0$ and $w_{1}=1$, the sequence $\left(w_{n}\right)_{n \geq 0}$ is just the Lucas sequence $\left(u_{n}(A, B)\right)_{n \geq 0}$. In this paper, we evaluate the determinants $$
\operatorname{det}\left[w_{|j-k|}\right]_{1 \leq j, k \leq n} \quad \text { and } \quad \operatorname{det}\left[w_{|j-k+1|}\right]_{1 \leq j, k \leq n} .
$$

In particular, we have $$
\operatorname{det}\left[u_{|j-k|}(A, B)\right]_{1 \leq j, k \leq n}=(-1)^{n-1} u_{n-1}\left(2 A,(B+1)^{2}\right) .
$$

When $B=-1$ and $2 \mid n$, we also determine the characteristic polynomial of the matrix $\left[w_{j+k}\right]_{0 \leq j, k \leq n-1}$.

1. Introduction

In 1934 R. Robinson proposed the evaluation of the determinant $\operatorname{det}[\mid j-$ $k \mid]_{1 \leq j, k \leq n}$ as a problem in Amer. Math. Monthly, later its solutions appeared in [2]. Namely, we have

$$
\begin{equation*}
\operatorname{det}[|j-k|]_{1 \leq j, k \leq n}=(-1)^{n-1}(n-1) 2^{n-2} . \tag{1.1}
\end{equation*}
$$

Let $n \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$, and let T be any (undirected) tree with n vertices v_{1}, \ldots, v_{n}. For $j, k=1, \ldots, n$, let $d\left(v_{j}, v_{k}\right)$ denote the distance between the vertices v_{j} and v_{k}. In 1971 R.L. Graham and H.O. Pollak [1] established the following celebrated formula:

$$
\begin{equation*}
\operatorname{det}\left[d\left(v_{j}, v_{k}\right)\right]_{1 \leq j, k \leq n}=(-1)^{n-1}(n-1) 2^{n-2} . \tag{1.2}
\end{equation*}
$$

This is a further extension of (1.1) as a path with n vertices is a tree. Based on the idea in [4], in 2007 W. Yan and Y.-N. Yeh [5, Corollary 2.3] obtained the following q-analogue of (1.2) for $n>1$:

$$
\begin{equation*}
\operatorname{det}\left[\left[d\left(v_{j}, v_{k}\right)\right]_{q}\right]_{1 \leq j, k \leq n}=(-1)^{n-1}(n-1)(1+q)^{n-2}, \tag{1.3}
\end{equation*}
$$

where $[m]_{q}$ with $m \in \mathbb{N}$ denotes the q-analogue of m given by

$$
[m]_{q}:=\sum_{0 \leq k<m} q^{k}= \begin{cases}\left(1-q^{m}\right) /(1-q) & \text { if } q \neq 1 \\ m & \text { if } q=1 .\end{cases}
$$

[^0]Supported by the Natural Science Foundation of China (grant no. 11971222).
(Throughout this paper, we consider 0^{0} as 1.) Another result of Yan and Yeh [5, Corollary 2.2] states that

$$
\begin{equation*}
\operatorname{det}\left[q^{d\left(v_{j}, v_{k}\right)}\right]_{1 \leq j, k \leq n}=\left(1-q^{2}\right)^{n-1} \tag{1.4}
\end{equation*}
$$

Let R be a commutative ring with identity. The Lucas sequences $\left(u_{n}(x, y)\right)_{n \geq 0}$ and $\left(v_{n}(x, y)\right)_{n \geq 0}$ over R are defined as follows:
$u_{0}(x, y)=0, u_{1}(x, y)=1, u_{n+1}(x, y)=x u_{n}(x, y)-y u_{n-1}(x, y)$ for $n \in \mathbb{Z}^{+} ;$
$v_{0}(x, y)=2, v_{1}(x, y)=x, u_{n+1}(x, y)=x u_{n}(x, y)-y u_{n-1}(x, y)$ for $n \in \mathbb{Z}^{+}$.
It is well known that

$$
u_{n}(x, y)=\frac{x^{n}-y^{n}}{x-y}=\sum_{0 \leq k<n} x^{k} y^{n-1-k} \text { and } v_{n}(x, y)=x^{n}+y^{n}
$$

for all $n \in \mathbb{N}$. Note that for any $n \in \mathbb{N}$ we have $u_{n}(q+1, q)=[n]_{q}$, in particular $u_{n}(2,1)=n$.

Let $A, B \in \mathbb{C}$, where \mathbb{C} is the field of complex numbers. Let $\left(w_{n}\right)_{n \geq 0}$ be a sequence of complex numbers satisfying the recurrence

$$
\begin{equation*}
w_{n+1}=A w_{n}-B_{n-1}(n=1,2,3, \ldots) . \tag{1.5}
\end{equation*}
$$

When $w_{0}=0$ and $w_{1}=1$, we have $w_{n}=u_{n}(A, B)$ for all $n \in \mathbb{N}$. When $w_{0}=2$ and $w_{1}=A$, we have $w_{n}=v_{n}(A, B)$ for any $n \in \mathbb{N}$. In this paper, we evaluate

$$
\operatorname{det}\left[w_{|j-k|}\right]_{1 \leq j, k \leq n} \text { and } \operatorname{det}\left[w_{\mid j-k+1}\right]_{1 \leq j, k \leq n},
$$

which extends (1.1) in a new way.
Theorem 1.1. Let A and B be elements of a commutative ring R with identity, and let $\left(w_{n}\right)_{n \geq 0}$ be a sequence of elements of R satisfying the recurrence (1.5). For any $n \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$, we have

$$
\begin{equation*}
\operatorname{det}\left[w_{|j-k|}\right]_{1 \leq j, k \leq n}=w_{0} u_{n}\left(A^{\prime}, B^{\prime}\right)+\left(\left(B w_{0}\right)^{2}-\left(A w_{0}-w_{1}\right)^{2}\right) u_{n-1}\left(A^{\prime}, B^{\prime}\right), \tag{1.6}
\end{equation*}
$$

where

$$
A^{\prime}=\left(A^{2}-B^{2}+1\right) w_{0}-2 A w_{1} \text { and } B^{\prime}=\left(\left(A w_{0}-(B+1) w_{1}\right)^{2} .\right.
$$

Taking $w_{0}=0$ and $w_{1}=1$ in Theorem 1.1 and noting that

$$
\begin{equation*}
u_{n}\left(x z, y z^{2}\right)=u_{n}(x, y) z^{n-1} \quad(n=1,2,3, \ldots), \tag{1.7}
\end{equation*}
$$

we immediately obtain the following corollary.
Corollary 1.1. Let A and B be elements of a commutative ring R with identity. Then, for any positive integer n, we have

$$
\begin{equation*}
\operatorname{det}\left[u_{|j-k|}(A, B)\right]_{1 \leq j, k \leq n}=(-1)^{n-1} u_{n-1}\left(2 A,(B+1)^{2}\right) . \tag{1.8}
\end{equation*}
$$

Let $n>1$ be an integer. In view of (1.7),

$$
u_{n-1}(2 A, 4)=2^{n-2} u_{n-1}(A, 1) .
$$

So, (1.8) with $B=1$ gives the identity

$$
\begin{equation*}
\operatorname{det}\left[u_{|j-k|}(A, 1)\right]_{1 \leq j, k \leq n}=(-1)^{n-1} 2^{n-2} u_{n-1}(A, 1) \tag{1.9}
\end{equation*}
$$

In the case $A=2$, this turns out to be the classical formula (1.1). Note also that (1.8) with $B=-1$ yields the identity

$$
\begin{equation*}
\operatorname{det}\left[u_{|j-k|}(A,-1)\right]_{1 \leq j, k \leq n}=(-1)^{n-1}(2 A)^{n-2} \tag{1.10}
\end{equation*}
$$

The identity (1.8) with $A=1$ and $B=-2$ gives the formula

$$
\begin{equation*}
\operatorname{det}\left[u_{|j-k|}(1,-2)\right]_{1 \leq j, k \leq n}=(-1)^{n-1}(n-1) \tag{1.11}
\end{equation*}
$$

In the case $B=q$ and $A=q+1$, with the aid of (1.7), from the identity (1.8) we obtain the q-analogue of (1.1):

$$
\begin{equation*}
\operatorname{det}\left[[|j-k|]_{q}\right]_{1 \leq j, k \leq n}=(-1)^{n-1}(n-1)(q+1)^{n-2} \tag{1.12}
\end{equation*}
$$

One may wonder whether the identity (1.8) can be extended to trees. The answer is negative. Let's consider a tree T with vertices $v_{1}, v_{2}, v_{3}, v_{4}$ and edges $v_{1} v_{2}, v_{2} v_{3}, v_{2} v_{4}$. For any $A, B \in \mathbb{C}$, we clearly have

$$
\operatorname{det}\left[u_{d\left(v_{j}, v_{k}\right)}(A, B)\right]_{1 \leq j, k \leq 4}=\left|\begin{array}{cccc}
0 & 1 & A & A \\
1 & 0 & 1 & 1 \\
A & 1 & 0 & A \\
A & 1 & A & 0
\end{array}\right|=-3 A^{2}
$$

which is independent of B, while the right-hand side of (1.8) indeed depends on B.

It is easy to see that

$$
u_{n}(1,1)=(-1)^{n-1}\left(\frac{n}{3}\right) \quad \text { for all } n \in \mathbb{N}
$$

where $(-)$ denotes the Legendre symbol. In view of this and (1.7), the identity (1.8) with $B= \pm 2 A-1$ yields the following corollary.

Corollary 1.2. Let A be any element of a commutative ring with identity. For any integer $n \geq 2$ we have

$$
\begin{align*}
\operatorname{det}\left[u_{|j-k|}(A, 2 A-1)\right]_{1 l s j, k \leq n} & =\operatorname{det}\left[u_{|j-k|}(A,-2 A-1)\right]_{1 l s j, k \leq n} \\
& =\left(\frac{1-n}{3}\right)(2 A)^{n-2} \tag{1.13}
\end{align*}
$$

Taking $w_{0}=2$ and $w_{1}=A$ in Theorem 1.1 and making use of (1.7), we get the following corollary.
Corollary 1.3. Let A and B be elements of a commutative ring R with identity. For any integer $n>1$, we have

$$
\begin{align*}
\operatorname{det}\left[v_{|j-k|}(A, B)\right]_{1 \leq j, k \leq n}=2 & (1-B)^{n-1} u_{n}\left(2(1+B), A^{2}\right) \\
& +\left(4 B^{2}-A^{2}\right)(1-B)^{n-2} u_{n-1}\left(2(1+B), A^{2}\right) \tag{1.14}
\end{align*}
$$

By Corollary 1.3, for any $A \in \mathbb{C}$, we have

$$
\begin{equation*}
\operatorname{det}\left[v_{|j-k|}(A, 1)\right]_{1 \leq j, k \leq n}=0 \quad \text { for all } n=3,4,5, \ldots \tag{1.15}
\end{equation*}
$$

In the case $B=-1$, Corollary 1.3 yields the following result.
Corollary 1.4. For any $A \in \mathbb{C}$ and $n \in\{2,3,4, \ldots\}$, we have

$$
\operatorname{det}\left[v_{|j-k|}(A,-1)\right]_{1 \leq j, k \leq n}=(-1)^{\lfloor(n-1) / 2\rfloor}(2 A)^{n-2} \times \begin{cases}4 A & \text { if } 2 \nmid n \tag{1.16}\\ 4-A^{2} & \text { if } 2 \mid n\end{cases}
$$

Applying Corollary 1.3 with $A= \pm 2 B$ and using the identity (1.7), we obtain the following corollary.
Corollary 1.5. Let R be a commutative ring with identity. For any $B \in R$ and $n \in \mathbb{Z}^{+}$, we have

$$
\begin{align*}
\operatorname{det}\left[v_{|j-k|}(2 B, B)\right]_{1 \leq j, k \leq n} & =\operatorname{det}\left[v_{|j-k|}(-2 B, B)\right]_{1 \leq j, k \leq n} \\
& =2^{n}(1-B)^{n-1} u_{n}\left(1+B, B^{2}\right) \tag{1.17}
\end{align*}
$$

Recall that the Fibonacci numbers are those $F_{n}=u_{n}(1,-1)$ with $n \in \mathbb{N}$. For any $n \in \mathbb{N}$, we clearly have

$$
F_{2 n+2}=F_{2 n}+\left(F_{2 n}+F_{2 n-1}\right)=2 F_{2 n}+\left(F_{2 n}-F_{2 n-2}\right)=3 F_{2 n}-F_{2 n-2}
$$

Thus $F_{2 n}=u_{n}(3,1)$ for all $n \in \mathbb{N}$.
Corollary 1.6. For any integer $n \geq 2$, we have

$$
\begin{equation*}
\operatorname{det}\left[v_{|j-k|}(2,2)\right]_{1 \leq j, k \leq n}=(-2)^{n} F_{2 n-4} \tag{1.18}
\end{equation*}
$$

Proof. In view of Corollary 1.3 with $A=B=2$ and the identity (1.7),

$$
\begin{aligned}
\operatorname{det}\left[v_{|j-k|}(2,2)\right]_{1 \leq j, k \leq n} & =(-1)^{n-1} 2\left(u_{n}(6,4)-6 u_{n-1}(6,4)\right) \\
& =(-1)^{n-1} 2\left(-4 u_{n-2}(6,4)\right) \\
& =-8(-1)^{n-1} 2^{n-3} u_{n-2}(3,1)=(-2)^{n} u_{n-2}(3,1)
\end{aligned}
$$

This implies (1.18) since $u_{m}(3,1)=F_{2 m}$ for all $m \in \mathbb{N}$.
Corollary 1.7. Let R be a commutative ring with identity, and let $A, B \in R$ and $\varepsilon \in\{ \pm 1\}$. Suppose that

$$
w_{-1}=\varepsilon, w_{0}=1, \text { and } w_{n+1}=A w_{n}-B w_{n-1} \text { for } n \in \mathbb{N}
$$

Then, for any $n \in \mathbb{Z}^{+}$, we have

$$
\begin{equation*}
\operatorname{det}\left[w_{|j-k|}\right]_{1 \leq j, k \leq n}=u_{n}\left(1-(A-\varepsilon B)^{2}, B^{2}(1+B-\varepsilon A)^{2}\right) \tag{1.19}
\end{equation*}
$$

Proof. Note that $w_{1}=A w_{0}-B w_{-1}=A-\varepsilon B$ and $\left(B w_{0}\right)^{2}=\left(A w_{0}-w_{1}\right)^{2}$. Applying Theorem 1.1, we immediately get the desired identity (1.19).
Corollary 1.8. (i) For any integer $n \geq 2$, we have

$$
\begin{equation*}
\operatorname{det}\left[q^{|j-k|}+t\right]_{1 \leq j, k \leq n}=(1-q)^{n-1}(1+q)^{n-2}((n(1-q)+2 q) t+q+1) \tag{1.20}
\end{equation*}
$$

(ii) For any positive integer n, we have

$$
\begin{equation*}
\operatorname{det}\left[q^{|j-k|}-q^{j}-q^{k}+1\right]_{1 \leq j, k \leq n}=\left(1-q^{2}\right)^{n}+n(1+q)^{n-1}(1-q)^{n+1} \tag{1.21}
\end{equation*}
$$

Proof. (i) Let $w_{n}=q^{n}+t$ for $n \in \mathbb{N}$. Then $w_{0}=t+1, w_{1}=q+t$, and

$$
w_{n+1}=(q+1) w_{n}-q w_{n-1} \text { for all } n=1,2,3, \ldots
$$

Thus, applying Theorem 1.1 we get the desired identity (1.20).
(ii) By [3, Lemma 2.1],

$$
\begin{equation*}
\operatorname{det}\left[q^{\mid j-k}+t\right]_{1 \leq j, k \leq n+1}=\operatorname{det}\left[q^{|j-k|}\right]_{1 \leq j, k \leq n+1}+t \operatorname{det}(M), \tag{1.22}
\end{equation*}
$$

where $M=\left[m_{j, k}\right]_{2 \leq j, k \leq n+1}$ with $m_{j, k}=q^{|j-k|}-q^{|j-1|}-q^{|1-k|}+q^{|1-1|}$. In view of Theorem 1.1(i) and the identity (1.22),

$$
\begin{aligned}
\operatorname{det}(M) & =(1-q)^{n}(1+q)^{n-1}((n+1)(1-q)+2 q) \\
& =(1-q)^{n}(1+q)^{n-1}(n(1-q)+1+q) \\
& =n(1-q)^{n+1}(1+q)^{n-1}+(1-q)^{n}(1+q)^{n} .
\end{aligned}
$$

Note that $M=\left[m_{j+1, k+1}\right]_{1 \leq j, k \leq n}$ and

$$
m_{j+1, k+1}=q^{|j-k|}-q^{j}-q^{k}+1 \text { for all } j, k=1, \ldots, n .
$$

So we have the identity (1.21). This ends our proof.
In contrast with Theorem 1.1, we also have the following (relatively easier) result.

Theorem 1.2. Let A and B be elements of a commutative ring R with identity, and let $\left(w_{n}\right)_{n \geq 0}$ be a sequence of elements of R satisfying the recurrence (1.5). For any integer $n>1$, we have

$$
\begin{equation*}
\operatorname{det}\left[w_{|j-k+1|}\right]_{1 \leq j, k \leq n}=\left(w_{1}^{2}-A w_{0} w_{1}+B w_{0}^{2}\right)\left((B+1) w_{1}-A w_{0}\right)^{n-2} \tag{1.23}
\end{equation*}
$$

Clearly, Theorem 1.2 has the following consequence.
Corollary 1.9. Let A and B be elements of a commutative ring R with identity. For any integer $n>1$, we have

$$
\begin{equation*}
\operatorname{det}\left[u_{|j-k+1|}(A, B)\right]_{1 \leq j, k \leq n}=(B+1)^{n-2} \tag{1.24}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}\left[v_{|j-k+1|}(A, B)\right]_{1 \leq j, k \leq n}=\left(4 B-A^{2}\right)(A(B-1))^{n-2} \tag{1.25}
\end{equation*}
$$

Now, we present our third theorem.
Theorem 1.3. For any positive integer n, we have

$$
\begin{align*}
\operatorname{det}\left[q^{|j-k|}+x \delta_{j k}\right]_{1 \leq j, k \leq n}= & (x+1) u_{n}\left(1-q^{2}+\left(1+q^{2}\right) x, q^{2} x^{2}\right) \tag{1.26}\\
& -q^{2} x^{2} u_{n-1}\left(1-q^{2}+\left(1+q^{2}\right) x, q^{2} x^{2}\right)
\end{align*}
$$

where the Kronecker symbol $\delta_{j k}$ is 1 or 0 according as $j=k$ or not.
Taking $x= \pm 1$ in (1.26) and recalling the identity (1.7), we obtain the following corollary.

Corollary 1.10. Let n be any positive integer. Then

$$
\begin{equation*}
\operatorname{det}\left[q^{|j-k|}+\delta_{j k}\right]_{1 \leq j, k \leq n}=u_{n+1}\left(2, q^{2}\right) \tag{1.27}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}\left[q^{|j-k|}-\delta_{j k}\right]_{1 \leq j, k \leq n}=(-1)^{n-1} q^{n} u_{n-1}(2 q, 1) . \tag{1.28}
\end{equation*}
$$

Applying (1.27) with $q=2$, and noting that

$$
u_{n+1}(2,4)=2^{n} u_{n+1}(1,1)=2^{n}(-1)^{n}\left(\frac{n+1}{3}\right)
$$

with the aid of (1.7), we get from Corollary 1.10 the following consequence.
Corollary 1.11. For any positive integer n, we have the identity

$$
\begin{equation*}
\operatorname{det}\left[2^{|j-k|}+\delta_{j k}\right]_{1 \leq j, k \leq n}=(-2)^{n}\left(\frac{n+1}{3}\right) \tag{1.29}
\end{equation*}
$$

Now we state our last theorem.
Theorem 1.4. Let $A \in \mathbb{C}$ with $A\left(A^{2}+4\right) \neq 0$. And let $\left(w_{i}\right)_{i \geq 0}$ be a sequence of complex numbers with $w_{i+1}=A w_{i}+w_{i-1}$ for all $i=1,2,3, \ldots$. For any positive even integer n, $\operatorname{det}\left[x \delta_{j k}-w_{j+k}\right]_{0 \leq j, k \leq n-1}$ (the characteristic polynomial of the matrix $W=\left[w_{j+k}\right]_{0 \leq j, k \leq n-1}$) equals

$$
\begin{align*}
x^{n} & -\left(w_{1} v_{n-1}(A,-1)+w_{0} v_{n-2}(A,-1)\right) \frac{u_{n}(A,-1)}{A} x^{n-1} \\
& +\left(w_{0}^{2}+A w_{0} w_{1}-w_{1}^{2}\right) \frac{u_{n}(A,-1)^{2}}{A^{2}} x^{n-2} . \tag{1.30}
\end{align*}
$$

Taking $w_{0}=0$ and $w_{1}=1$ in Theorem 1.4, we get the following corollary.
Corollary 1.12. Let $A \in \mathbb{C}$ with $A\left(A^{2}+4\right) \neq 0$. For any positive even integer n, we have

$$
\begin{align*}
& A^{2} \operatorname{det}\left[x \delta_{j k}-u_{j+k}(A,-1)\right]_{0 \leq j, k \leq n-1} \\
= & A^{2} x^{n}-A u_{n}(A,-1) v_{n-1}(A,-1) x^{n-1}-u_{n}(A,-1)^{2} x^{n-2} . \tag{1.31}
\end{align*}
$$

Applying Theorem 1.4 with $w_{i}=u_{i+2}(A,-1)$ for all $i \in \mathbb{N}$, and noting that

$$
\begin{aligned}
v_{n+1}(A,-1) & =A v_{n}(A,-1)+v_{n-1}(A,-1) \\
& =A\left(A v_{n-1}(A, 1)+v_{n-2}(A,-1)\right)+v_{n-1}(A,-1) \\
& =\left(A^{2}+1\right) v_{n-1}(A,-1)+A v_{n-2}(A,-1)
\end{aligned}
$$

for all $n=2,3, \ldots$, we obtain the following corollary.
Corollary 1.13. Let $A \in \mathbb{C}$ with $A\left(A^{2}+4\right) \neq 0$. For any positive even integer n, we have

$$
\begin{align*}
& A^{2} \operatorname{det}\left[x \delta_{j k}-u_{j+k}(A,-1)\right]_{1 \leq j, k \leq n} \\
= & A^{2} x^{n}-A u_{n}(A,-1) v_{n+1}(A,-1) x^{n-1}-u_{n}(A,-1)^{2} x^{n-2} . \tag{1.32}
\end{align*}
$$

Taking $w_{0}=2$ and $w_{1}=A$ in Theorem 1.4, and noting that

$$
A v_{m}(A,-1)+2 v_{m-1}(A,-1)=\left(A^{2}+4\right) u_{m}(A,-1) \text { for all } m=1,2,3, \ldots
$$

(which can be easily proved by induction), we obtain the following result.
Corollary 1.14. Let $A \in \mathbb{C}$ with $A\left(A^{2}+4\right) \neq 0$. For any positive even integer n, we have

$$
\begin{align*}
& A^{2} \operatorname{det}\left[x \delta_{j k}-v_{j+k}(A,-1)\right]_{0 \leq j, k \leq n-1} \\
= & A^{2} x^{n}-A\left(A^{2}+4\right) u_{n}(A,-1) u_{n-1}(A,-1) x^{n-1}+\left(A^{2}+4\right) u_{n}(A,-1)^{2} x^{n-2} \tag{1.33}
\end{align*}
$$

Applying Theorem 1.4 with $w_{i}=v_{i+2}(A,-1)$ for all $i \in \mathbb{N}$, and noting that

$$
A\left(A^{2}+3\right) v_{n-1}(A,-1)+\left(A^{2}+2\right) v_{n-2}(A,-1)=\left(A^{2}+4\right) u_{n+1}(A,-1)
$$

for all $n=2,3, \ldots$ (which can be easily proved by induction), we get the following corollary.
Corollary 1.15. Let $A \in \mathbb{C}$ with $A\left(A^{2}+4\right) \neq 0$. For any positive even integer n, we have

$$
\begin{align*}
& A^{2} \operatorname{det}\left[x \delta_{j k}-v_{j+k}(A,-1)\right]_{1 \leq j, k \leq n} \\
= & A^{2} x^{n}-A\left(A^{2}+4\right) u_{n}(A,-1) u_{n+1}(A,-1) x^{n-1}+\left(A^{2}+4\right) u_{n}(A,-1)^{2} x^{n-2} . \tag{1.34}
\end{align*}
$$

The Lucas numbers are those $L_{n}=v_{n}(1,-1)(n \in \mathbb{N})$. Taking $x=-1$ in Corollaries 1.13 and 1.15, we obtain the following consequence.

Corollary 1.16. Let n be a positive even number. For any $A \in \mathbb{C}$ with $A\left(A^{2}+4\right) \neq 0$, we have
$A^{2} \operatorname{det}\left[u_{j+k}(A,-1)+\delta_{j k}\right]_{1 \leq j, k \leq n}=(A-1)\left(A+u_{n}(A,-1)^{2}\right)+A u_{n+1}(A,-1)^{2}$
and

$$
\begin{equation*}
A^{2} \operatorname{det}\left[v_{j+k}(A,-1)+\delta_{j k}\right]=v_{n+1}(A,-1)^{2} \tag{1.35}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\operatorname{det}\left[F_{j+k}+\delta_{j k}\right]_{1 \leq j, k \leq n}=F_{n+1}^{2} \tag{1.37}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}\left[L_{j+k}+\delta_{j k}\right]_{1 \leq j, k \leq n}=L_{n+1}^{2} \tag{1.38}
\end{equation*}
$$

Similarly, taking $x=-1$ and $A=1$ in Corollaries 1.12 and 1.14, we find that for any positive even integer n we have

$$
\begin{equation*}
\operatorname{det}\left[F_{j+k}+\delta_{j k}\right]_{0 \leq j, k \leq n-1}=F_{n-1}^{2} \tag{1.39}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}\left[L_{j+k}+\delta_{j k}\right]_{0 \leq j, k \leq n-1}=L_{n} L_{n+1}-1=L_{2 n+1} \tag{1.40}
\end{equation*}
$$

We are going to prove Theorems 1.1-1.2 and Theorems 1.3-1.4 in Sections 2 and 3 , respectively. We will propose some conjectures in Section 4.

2. Proofs of Theorems 1.1-1.2

Proof of Theorem 1.1. Let M_{n} denote the matrix $\left[w_{|j-k|}\right]_{1 \leq j, k \leq n}$. Clearly,

$$
\operatorname{det}\left(M_{1}\right)=w_{0}=w_{0} u_{1}\left(A^{\prime}, B^{\prime}\right)+\left(\left(B w_{0}\right)^{2}-\left(w_{1}-A w_{0}\right)^{2}\right) u_{0}\left(A^{\prime}, B^{\prime}\right)
$$

and

$$
\begin{aligned}
\operatorname{det}\left(M_{2}\right) & =\left|\begin{array}{ll}
w_{0} & w_{1} \\
w_{1} & w_{0}
\end{array}\right|=w_{0}^{2}-w_{1}^{2} \\
& =w_{0} u_{2}\left(A^{\prime}, B^{\prime}\right)+\left(\left(B w_{0}\right)^{2}-\left(w_{1}-A w_{0}\right)^{2}\right) u_{1}\left(A^{\prime}, B^{\prime}\right)
\end{aligned}
$$

So (1.6) holds for $n=1,2$.
Now suppose $n \geq 3$, and assume that

$$
\begin{equation*}
\operatorname{det}\left(M_{k}\right)=w_{0} u_{k}\left(A^{\prime}, B^{\prime}\right)+\left(\left(B w_{0}\right)^{2}-\left(w_{1}-A w_{0}\right)^{2}\right) u_{k-1}\left(A^{\prime}, B^{\prime}\right) \tag{2.1}
\end{equation*}
$$

for each $k=1, \ldots, n-1$. Observe that

$$
\begin{aligned}
& B w_{|(n-2)-k|}-A w_{|(n-1)-k|}+w_{|n-k|} \\
= & \begin{cases}B w_{n-2-k}-A w_{n-1-k}+w_{n-k}=0 & \text { if } 1 \leq k<n-1, \\
B w_{1}-A w_{0}+w_{1}=(B+1) w_{1}-A w_{0} & \text { if } k=n-1, \\
B w_{2}-A w_{1}+w_{0}=B\left(A w_{1}-B w_{0}\right)-A w_{1}+w_{0} & \text { if } k=n .\end{cases}
\end{aligned}
$$

Thus, adding the $(n-2)$-th row times B and the $(n-1)$-th row times $-A$ to the last row of M_{n}, we find that $\operatorname{det}\left(M_{n}\right)=\operatorname{det}\left(M_{n}^{\prime}\right)$, where

$$
M_{n}^{\prime}:=\left[\begin{array}{ccccccc}
w_{0} & w_{1} & w_{2} & \cdots & w_{n-3} & w_{n-2} & w_{n-1} \\
w_{1} & w_{0} & w_{1} & \cdots & w_{n-4} & w_{n-3} & w_{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
w_{n-4} & w_{n-5} & w_{n-6} & \cdots & w_{1} & w_{2} & w_{3} \\
w_{n-3} & w_{n-4} & w_{n-5} & \cdots & w_{0} & w_{1} & w_{2} \\
w_{n-2} & w_{n-3} & w_{n-4} & \cdots & w_{1} & w_{0} & w_{1} \\
0 & 0 & 0 & \cdots & 0 & C & (B-1) D
\end{array}\right]
$$

with $C=(B+1) w_{1}-A w_{0}$ and $D=A w_{1}-(B+1) w_{0}$. Adding the $(n-2)$-th column times B and the $(n-1)$-th column times $-A$ to the last column of M_{n}^{\prime}, we see that $\operatorname{det}\left(M_{n}^{\prime}\right)=\operatorname{det}\left(M_{n}^{\prime \prime}\right)$, where

$$
M_{n}^{\prime \prime}:=\left[\begin{array}{ccccccc}
w_{0} & w_{1} & w_{2} & \cdots & w_{n-3} & w_{n-2} & 0 \\
w_{1} & w_{0} & w_{1} & \cdots & w_{n-4} & w_{n-3} & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
w_{n-4} & w_{n-5} & w_{n-6} & \cdots & w_{1} & w_{2} & 0 \\
w_{n-3} & w_{n-4} & w_{n-5} & \cdots & w_{0} & w_{1} & 0 \\
w_{n-2} & w_{n-3} & w_{n-4} & \cdots & w_{1} & w_{0} & C \\
0 & 0 & 0 & \cdots & 0 & C & (B-1) D-A C
\end{array}\right]
$$

Expanding $\operatorname{det}\left(M_{n}^{\prime \prime}\right)$ via its last row, we get

$$
\begin{aligned}
\operatorname{det}\left(M_{n}^{\prime \prime}\right)= & ((B-1) D-A C)\left|\begin{array}{cccccc}
w_{0} & w_{1} & w_{2} & \cdots & w_{n-3} & w_{n-2} \\
w_{1} & w_{0} & w_{1} & \cdots & w_{n-4} & w_{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
w_{n-4} & w_{n-5} & w_{n-6} & \cdots & w_{1} & w_{2} \\
w_{n-3} & w_{n-4} & w_{n-5} & \cdots & w_{0} & w_{1} \\
w_{n-2} & w_{n-3} & w_{n-4} & \cdots & w_{1} & w_{0}
\end{array}\right| \\
& -C\left|\begin{array}{ccccc}
w_{0} & w_{1} & w_{2} & \cdots & w_{n-3} \\
w_{1} & w_{0} & w_{1} & \cdots & w_{n-4} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
w_{n-4} & w_{n-5} & w_{n-6} & \cdots & w_{1} \\
w_{n-3} & w_{n-4} & w_{n-5} & \cdots & w_{0} \\
w_{n-2} & w_{n-3} & w_{n-4} & \cdots & w_{1} \\
C
\end{array}\right| .
\end{aligned}
$$

Therefore
$\operatorname{det}\left(M_{n}\right)=\operatorname{det}\left(M_{n}^{\prime}\right)=\operatorname{det}\left(M_{n}^{\prime \prime}\right)=((B-1) D-A C) \operatorname{det}\left(M_{n-1}\right)-C^{2} \operatorname{det}\left(M_{n-2}\right)$.
Note that $C^{2}=B^{\prime}$ and
$(B-1) D-A C=(B-1)\left(A w_{1}-(B+1) w_{0}\right)-A\left((B+1) w_{1}-A w_{0}\right)=A^{\prime}$.
Thus, with the aid of (2.1) for $k=n-1, n-2$, we have

$$
\begin{aligned}
\operatorname{det}\left(M_{n}\right)= & A^{\prime} \operatorname{det}\left(M_{n-1}\right)-B^{\prime} \operatorname{det}\left(M_{n-2}\right) \\
= & A^{\prime}\left(w_{0} u_{n-1}\left(A^{\prime}, B^{\prime}\right)+\left(\left(B w_{0}\right)^{2}-\left(w_{1}-A w_{0}\right)^{2}\right) u_{n-2}\left(A^{\prime}, B^{\prime}\right)\right) \\
& -B^{\prime}\left(w_{0} u_{n-2}\left(A^{\prime}, B^{\prime}\right)+\left(\left(B w_{0}\right)^{2}-\left(w_{1}-A w_{0}\right)^{2}\right) u_{n-3}\left(A^{\prime}, B^{\prime}\right)\right) \\
= & w_{0} u_{n}\left(A^{\prime}, B^{\prime}\right)+\left(\left(B w_{0}\right)^{2}-\left(w_{1}-A w_{0}\right)^{2}\right) u_{n-1}\left(A^{\prime}, B^{\prime}\right) .
\end{aligned}
$$

In view of the above, by induction the identity (1.6) holds for any $n \in$ \mathbb{Z}^{+}.

Proof of Theorem 1.2. Let $W_{n}=\operatorname{det}\left[w_{|j-k+1|}\right]_{1 \leq j, k \leq n}$. Clearly,

$$
W_{2}=\left|\begin{array}{ll}
w_{1} & w_{0} \\
w_{2} & w_{1}
\end{array}\right|=w_{1}^{2}-w_{0}\left(A w_{1}-B w_{0}\right)=w_{1}^{2}-A w_{0} w_{1}+B w_{0}^{2} .
$$

Now, assume $n \geq 3$. Observe that

$$
\begin{aligned}
& B w_{|(n-2)-k+1|}-A w_{|(n-1)-k+1|}+w_{|n-k+1|} \\
= & \begin{cases}B w_{n-k-1}-A w_{n-k}+w_{n-k+1}=0 & \text { if } 1 \leq k<n, \\
B w_{1}-A w_{0}+w_{1}=(B+1) w_{1}-A w_{0} & \text { if } k=n .\end{cases}
\end{aligned}
$$

Thus, adding the $(n-2)$-th row times B and the $(n-1)$-th row times $-A$ to the last row of the determinant W_{n}, we find that the last row turns to be

$$
\underbrace{0 \cdots 0}_{n-1}(B+1) w_{1}-A w_{0} .
$$

Therefore

$$
W_{n}=\left((B+1) w_{1}-A w_{0}\right) W_{n-1} .
$$

In view of the above, by induction we have

$$
W_{n}=\left(w_{1}^{2}-A w_{0} w_{1}+B w_{0}^{2}\right)\left((B+1) w_{1}-A w_{0}\right)^{n-2}
$$

for all $n=2,3, \ldots$. This ends our proof.

3. Proofs of Theorems 1.3-1.4

Proof of Theorem 1.3. Let $a_{j k}=q^{|j-k|}+x \delta_{j k}$ for all $j, k=1, \ldots, n$, and let Q_{n} denote the matrix $\left[a_{j k}\right]_{1 \leq j, k \leq n}$. Clearly, $\operatorname{det}\left(Q_{1}\right)=q^{0}+x=x+1$ and $\operatorname{det}\left(Q_{2}\right)=\left|\begin{array}{cc}q^{0}+x & q \\ q & q^{0}+x\end{array}\right|=(x+1)^{2}-q^{2}=(x+1)\left(1-q^{2}+\left(1+q^{2}\right) x\right)-q^{2} x^{2}$.

Thus, (1.26) holds for $n \in\{1,2\}$.
Now, we let $n \geq 3$ and assume the equality

$$
\begin{align*}
\operatorname{det}\left[q^{|j-k|}+x \delta_{j k}\right]_{1 \leq j, k \leq m}= & (x+1) u_{m}\left(1-q^{2}+\left(1+q^{2}\right) x, q^{2} x^{2}\right) \tag{3.1}\\
& -q^{2} x^{2} u_{m-1}\left(1-q^{2}+\left(1+q^{2}\right) x, q^{2} x^{2}\right)
\end{align*}
$$

for any positive integer $m<n$.
Observe that

$$
\begin{aligned}
-q a_{n-1, k}+a_{n k} & =-q\left(q^{|n-1-k|}+x \delta_{n-1, k}\right)+q^{|n-k|}+x \delta_{n k} \\
& = \begin{cases}0 & \text { if1 } \leq k \leq n-2 \\
-q(1+x)+q=-q x & \text { if } k=n-1 \\
-q^{2}+1+x & \text { if } k=n\end{cases}
\end{aligned}
$$

Thus, via adding the $(n-1)$-th row times $-q$ to the n-th row of Q_{n}, we see that $\operatorname{det}\left(Q_{n}\right)=\operatorname{det}\left(Q_{n}^{\prime}\right)$, where

$$
Q_{n}^{\prime}:=\left[\begin{array}{ccccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1, n-2} & a_{1, n-1} & a_{1, n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2, n-2} & a_{2, n-1} & a_{2, n} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
a_{n-3,1} & a_{n-3,2} & a_{n-3,3} & \cdots & a_{n-3, n-2} & a_{n-3, n-1} & a_{n-3, n} \\
a_{n-2,1} & a_{n-2,2} & a_{n-2,3} & \cdots & a_{n-2, n-2} & a_{n-2, n-1} & a_{n-2, n} \\
a_{n-1,1} & a_{n-1,2} & a_{n-1,3} & \cdots & a_{n-1, n-2} & a_{n-1, n-1} & a_{n-1, n} \\
0 & 0 & 0 & \cdots & 0 & -q x & x+1-q^{2}
\end{array}\right]
$$

Via adding the $(n-1)$-th column times $-q$ to the n-th column of Q_{n}^{\prime}, we get that $\operatorname{det}\left(Q_{n}^{\prime}\right)=\operatorname{det}\left(Q_{n}^{\prime \prime}\right)$, where

$$
Q_{n}^{\prime \prime}:=\left[\begin{array}{ccccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1, n-2} & a_{1, n-1} & 0 \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2, n-2} & a_{2, n-1} & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
a_{n-3,1} & a_{n-3,2} & a_{n-3,3} & \cdots & a_{n-3, n-2} & a_{n-3, n-1} & 0 \\
a_{n-2,1} & a_{n-2,2} & a_{n-2,3} & \cdots & a_{n-2, n-2} & a_{n-2, n-1} & 0 \\
a_{n-1,1} & a_{n-1,2} & a_{n-1,3} & \cdots & a_{n-1, n-2} & a_{n-1, n-1} & -q x \\
0 & 0 & 0 & \cdots & 0 & -q x & f(q, x)
\end{array}\right]
$$

where

$$
f(q, x):=1-q^{2}+\left(1+q^{2}\right) x .
$$

Expanding $\operatorname{det}\left(Q_{n}^{\prime \prime}\right)$ via its last row, we see that

$$
\begin{aligned}
& \operatorname{det}\left(Q_{n}^{\prime \prime}\right)=f(q, x) \operatorname{det}\left(Q_{n-1}\right) \\
&-(-q x)\left|\begin{array}{cccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1, n-2} & 0 \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2, n-2} & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
a_{n-3,1} & a_{n-3,2} & a_{n-3,3} & \cdots & a_{n-3, n-2} & 0 \\
a_{n-2,1} & a_{n-2,2} & a_{n-2,3} & \cdots & a_{n-2, n-2} & 0 \\
a_{n-1,1} & a_{n-1,2} & a_{n-1,3} & \cdots & a_{n-1, n-2} & -q x
\end{array}\right| .
\end{aligned}
$$

Therefore,

$$
\operatorname{det}\left(Q_{n}\right)=\operatorname{det}\left(Q_{n}^{\prime}\right)=\operatorname{det}\left(Q_{n}^{\prime \prime}\right)=f(q, x) \operatorname{det}\left(Q_{n-1}\right)-(-q x)^{2} \operatorname{det}\left(Q_{n-2}\right),
$$

Combining this with (3.1) for $m=n-1, n-2$, we find that

$$
\begin{aligned}
\operatorname{det}\left(Q_{n}\right)= & f(q, x)\left((x+1) u_{n-1}\left(f(q, x), q^{2} x^{2}\right)-q^{2} x^{2} u_{n-2}\left(f(q, x), q^{2} x^{2}\right)\right) \\
& -q^{2} x^{2}\left((x+1) u_{n-2}\left(f(q, x), q^{2} x^{2}\right)-q^{2} x^{2} u_{n-3}\left(f(q, x), q^{2} x^{2}\right)\right) \\
= & (x+1) u_{n}\left(f(x, q), q^{2} x^{2}\right)-q^{2} x^{2} u_{n-1}\left(f(q, x), q^{2} x^{2}\right) .
\end{aligned}
$$

In view of the above, we have proved the desired result by induction n.
Lemma 3.1. Let $A, B \in \mathbb{C}$, and let

$$
w_{0}, w_{1} \in \mathbb{C}, \text { and } w_{i+1}=A w_{i}-B w_{i-1} \text { for all } i=1,2,3, \ldots
$$

Then, for any $j \in \mathbb{N}$ and $k \in \mathbb{Z}^{+}$, we have

$$
\begin{equation*}
w_{j+k}=w_{j+1} u_{k}(A, B)-B w_{j} u_{k-1}(A, B) . \tag{3.2}
\end{equation*}
$$

Proof. This can be easily proved by induction on k.
Proof of Theorem 1.4. Let α and β be the two distinct roots of the quadratic equation $x^{2}-A x+B=0$ with $B=-1$. Then $\alpha+\beta=A$ and $\alpha \beta=B=-1$. It is well known that there are $a, b \in \mathbb{C}$ such that $w_{m}=a \alpha^{m}+b \beta^{m}$ for all $m \in \mathbb{Z}$. As $a+b=w_{0}$ and $a \alpha+b \beta=w_{1}$, we find that

$$
\begin{equation*}
a=\frac{w_{1}-\beta w_{0}}{\alpha-\beta} \quad \text { and } \quad b=\frac{\alpha w_{0}-w_{1}}{\alpha-\beta} . \tag{3.3}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
a b=\frac{(\alpha+\beta) w_{0} w_{1}-B w_{0}^{2}-w_{1}^{2}}{(\alpha-\beta)^{2}}=\frac{w_{0}^{2}+A w_{0} w_{1}-w_{1}^{2}}{(\alpha-\beta)^{2}} . \tag{3.4}
\end{equation*}
$$

Observe that $\alpha \neq \pm 1$ since $\alpha \beta=B=-1$ and $\alpha+\beta=A \neq 0$. For any $j \in \mathbb{N}$, we clearly have

$$
\begin{aligned}
\sum_{k=0}^{n-1} w_{j+k} \alpha^{k} & =\sum_{k=0}^{n-1}\left(a \alpha^{j+k}+b \beta^{j+k}\right) \alpha^{k} \\
& =a \alpha^{j} \sum_{k=0}^{n-1} \alpha^{2 k}+b \beta^{j} \sum_{k=0}^{n-1} B^{k}=a \alpha^{j} \frac{\alpha^{2 n}-1}{\alpha^{2}-1}+b \beta^{j} \frac{B^{n}-1}{B-1} .
\end{aligned}
$$

Note that $B^{n}=1$ as $B=-1$ and $2 \mid n$. Thus

$$
\sum_{k=0}^{n-1} w_{j+k} \alpha^{k}=a \lambda^{j} \frac{\alpha^{2 n}-(\alpha \beta)^{n}}{\alpha^{2}+\alpha \beta}=\alpha^{j} \times \frac{a}{A} \alpha^{n-1}\left(\alpha^{n}-\beta^{n}\right)
$$

So, the matrix $W=\left[w_{j+k}\right]_{0 \leq j, k \leq n-1}$ has an eigenvalue

$$
\lambda_{0}=\frac{a}{A} \alpha^{n-1}\left(\alpha^{n}-\beta^{n}\right)
$$

with the eigenvector $\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right)^{T}$. Similarly,

$$
\lambda_{1}=\frac{b}{A} \beta^{n-1}\left(\beta^{n}-\alpha^{n}\right)=-\frac{b}{A} \beta^{n-1}\left(\alpha^{n}-\beta^{n}\right)
$$

is an eigenvalue of W with the eigenvector $\left(1, \beta, \beta^{2}, \ldots, \beta^{n-1}\right)^{T}$. If $c, d \in \mathbb{C}$ are not all zero, and $c \alpha^{k}+d \beta^{k}=0$ for all $k=0, \ldots, n-1$, then $c=$ $-d \neq 0$ and $\alpha=\beta$. As $\alpha \neq \beta$, the two vectors $\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right)^{T}$ and $\left(1, \beta, \beta^{2}, \ldots, \beta^{n-1}\right)^{T}$ are linearly independent over \mathbb{C}.

For each $2 \leq m \leq n-1$, since

$$
w_{n}\left(-B u_{m-1}\right)+w_{j+1} u_{m}+w_{j+m} \times(-1)=0
$$

by Lemma 3.1, the vector $V_{m}=\left(v_{m 0}, v_{m 1}, \ldots, v_{m, n-1}\right)^{T}$ is an eigenvector associated to the eigenvalue $\lambda_{m}=0$ of the matrix W, where

$$
v_{m 0}=-B u_{m-1}=u_{m-1}, v_{m 1}=u_{m}, v_{m m}=-1,
$$

and $v_{m k}=0$ for all $2 \leq k \leq n-1$ with $k \neq m$. If $c_{2}, \ldots, c_{n-1} \in \mathbb{C}$ and $\sum_{m=2}^{n-1} c_{m} v_{m k}=0$ for all $k=0,1, \ldots, n-1$, then for each $2 \leq k \leq n-1$ we have

$$
0=\sum_{m=2}^{n-1} c_{m} v_{m k}=c_{k} v_{k k}=c_{k}
$$

So, the vectors V_{2}, \ldots, V_{n-1} are linearly independent over \mathbb{C}.

In view of the above, $\lambda_{0}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}$ are all the n eigenvalues of the matrix $W=\left[w_{j+k}\right]_{0 \leq j, k \leq n-1}$. So we have

$$
\begin{aligned}
\operatorname{det}\left[x \delta_{j k}-w_{j+k}\right]_{0 \leq j, k \leq n-1} & =\prod_{m=0}^{n-1}\left(x-\lambda_{m}\right)=x^{n-2}\left(x-\lambda_{0}\right)\left(x-\lambda_{1}\right) \\
& =x^{n-2}\left(x^{2}-\left(\lambda_{0}+\lambda_{1}\right) x+\lambda_{0} \lambda_{1}\right)
\end{aligned}
$$

In view of (3.3),

$$
\lambda_{0}+\lambda_{1}=\frac{u_{n}}{A}\left(\left(w_{1}-\beta w_{0}\right) \alpha^{n-1}-\left(\alpha w_{0}-w_{1}\right) \beta^{n-1}\right)=\frac{u_{n}}{A}\left(w_{1} v_{n-1}-B w_{0} v_{n-2}\right)
$$

Also,

$$
\lambda_{0} \lambda_{1}=-\frac{a b B^{n-1}}{A^{2}}\left(\alpha^{n}-\beta^{n}\right)^{2}=-\frac{B^{n-1} u_{n}^{2}}{A^{2}}\left(w_{0}^{2}+A w_{0} w_{1}-w_{1}^{2}\right)
$$

by (3.4).

4. Some Conjectures

Conjecture 4.1. For any positive integer n, we have

$$
\begin{equation*}
\operatorname{det}\left[2^{|j-k|}-1+\delta_{j, k}\right]_{1 \leq j, k \leq n}=2^{n}+(-1)^{n} 2^{n-1}\left(2\left(\frac{n}{3}\right)+n\left(\frac{n+1}{3}\right)\right) \tag{4.1}
\end{equation*}
$$

Remark 4.1. For any positive integer n, [6, Theorem 1.4] implies that

$$
\operatorname{det}\left[2^{j+k}-1+\delta_{j k}\right]_{1 \leq j, k \leq n}=4\left(2^{n}-1\right)^{2}-(n-1) \frac{4^{n+1}-1}{3}
$$

Conjecture 4.2. For any positive odd integer n, we have

$$
\begin{align*}
\operatorname{det}\left[F_{j+k}+\delta_{j k}\right]_{0 \leq j, k \leq n-1} & =F_{n+1}^{2}+1 \tag{4.2}\\
\operatorname{det}\left[F_{j+k}+\delta_{j k}\right]_{1 \leq j, k \leq n} & =F_{n+1}^{2}+1=F_{n} F_{n+2} \tag{4.3}\\
\operatorname{det}\left[L_{j+k}+\delta_{j k}\right]_{0 \leq j, k \leq n-1} & =L_{n} L_{n+1}=L_{2 n+1}-1 \tag{4.4}
\end{align*}
$$

Remark 4.2. For any positive integer n, H. Wang and Z.-W. Sun [6, Theorem 1.1(ii)] proved that

$$
\operatorname{det}\left[F_{|j-k|}+\delta_{j k}\right]_{1 \leq j, k \leq n}= \begin{cases}1 & \text { if } n \equiv 0, \pm 1(\bmod 6) \\ 0 & \text { otherwise }\end{cases}
$$

Based on our computation via Mathematica, we also propose the following two conjectures.

Conjecture 4.3. For any $A \in \mathbb{C}$ and $n \in \mathbb{Z}^{+}$, we have

$$
\begin{equation*}
\operatorname{det}\left[v_{j+k}(A, 1)+\delta_{j k}\right]_{1 \leq j, k \leq n}=u_{n+1}(A, 1)^{2}-n^{2} \tag{4.5}
\end{equation*}
$$

Conjecture 4.4. Let n be any positive odd integer. For any $A \in \mathbb{C}$ we have

$$
\begin{equation*}
A^{2} \operatorname{det}\left[v_{j+k}(A,-1)+\delta_{j k}\right]_{1 \leq j, k \leq n}=v_{n+1}(A,-1)^{2}-A^{2}-4 \tag{4.6}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\operatorname{det}\left[L_{j+k}+\delta_{j k}\right]_{1 \leq j, k \leq n}=L_{n+1}^{2}-5 \tag{4.7}
\end{equation*}
$$

Remark 4.3. For any $A, B \in \mathbb{C}$ and $n \in \mathbb{N}$, it is well known that

$$
v_{n}(A, B)^{2}-\left(A^{2}-4 B\right) u_{n}(A, B)^{2}=4 B^{n}
$$

which can be easily proved.

References

[1] R.L. Graham and H.O. Pollak, On the addressing problem for loop switching, Bell SystemTech. J. 50 (1971), 2495-2519.
[2] R. Robinson and G. Szegö, Solutions to problem 3705, Amer. Math. Monthly 43 (1936), no. 4, 246-259.
[3] Z.-W. Sun, On some determinants involving the tangent function, preprint, arXiv:1901.04837, 2019.
[4] W. Yan and Y.-N. Yeh, A simple proof of Graham and Pollak's theorem, J. Combin. Theory Ser. A 113 (2006), 892-893.
[5] W. Yan and Y.-N. Yeh, The determinants of q-distance matrices of trees and two quantities relating to permutations, Adv. Appl. Math. 39 (2007), 311-321.
[6] H. Wang and Z.-W. Sun, Evaluations of some Toeplitz-type determinants, arXiv:2206.12317, 2022.
[7] J. Wolstenholme, On certain properties of prime numbers, Quart. J. Appl. Math. 5 (1862), 35-39.

Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

Email address: zwsun@nju.edu.cn
Homepage: http://maths.nju.edu.cn/~zwsun

[^0]: Key words and phrases. Second-order recurrence, Lucas sequence, Fibonacci number, determinant, tree.

 2020 Mathematics Subject Classification. Primary 11B39, 11C20; Secondary 05C05, 15B05.

