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MEASURES FOR THE COLORED CIRCLE

ANDREW SNOWDEN

Abstract. In recent work with Harman, we introduced a new notion of measure for oligo-
morphic groups, and showed how they can be used to produce interesting tensor categories.
Determining the measures for an oligomorphic group is (in our view) an important and dif-
ficult combinatorial problem, which has only been solved in a handful of cases. The purpose
of this paper is to solve this problem for a certain infinite family of oligomorphic groups,
namely, the automorphism group of the n-colored circle (for each n ≥ 1).
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1. Introduction

1.1. Background. Suppose G is an algebraic group (or supergroup) over a field k. One
can then consider the category Rep(G) of finite dimensional algebraic representations of G,
which comes with a tensor product. This category satisfies the following conditions:

(a) It is abelian and every object has finite length (i.e., a finite composition series).
(b) The space of maps between two objects is a finite dimensional k-vector space.
(c) Every object has a dual (i.e., the category is rigid).
(d) If 1 denotes the unit object for tensor product (i.e., the trivial representation) then

End(1) = k.

A pre-Tannakian category is a k-linear symmetric tensor category satisfying these axioms (see
[CO2, §2.1] for more details). An important problem within the field of tensor categories is to
understand the extent to which pre-Tannakian categories go beyond classical representation
categories.

Deligne [Del] gave the first examples of pre-Tannakian categories not of the form Rep(G):
he constructed a 1-parameter family of pre-Tannakian categories RepRepRepRepRepRepRepRepRepRepRepRepRepRepRepRepRep(St) by “interpolating”
the representation categories Rep(Sn) of symmetric groups. Knop [Kno1, Kno2] generalized
Deligne’s construction and interpolated other families of finite groups, such as finite linear
groups. There has been much subsequent work in this direction, e.g., [CO1, CO2, CW, EAH,
Har, Har2].
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2 ANDREW SNOWDEN

Recently, in joint work with Harman [HS1], we gave a new construction of pre-Tannakian
categories. Recall that an oligomorphic group is a permutation group (G,Ω) such that
G has finitely many orbits on Ωn for all n ≥ 0. We introduced a notion of measure for
an oligomorphic group (reviewed in §3 below). Given a k-valued measure µ for G, we
constructed a k-linear rigid tensor category Perm(G;µ) of “permutation modules.” Under
certain hypotheses, we showed that this category admits an abelian envelope RepRepRepRepRepRepRepRepRepRepRepRepRepRepRepRepRep(G;µ) that
is pre-Tannakian.

The simplest example of an oligomorphic group is the infinite symmetric group S. In
this case, we showed in [HS1] that there is a 1-parameter family of measures µt, and that
the resulting category RepRepRepRepRepRepRepRepRepRepRepRepRepRepRepRepRep(S;µt) coincides with Deligne’s interpolation category RepRepRepRepRepRepRepRepRepRepRepRepRepRepRepRepRep(St).
More generally, in all known cases of interpolation (such as those considered by Knop), the
sequence of finite groups has an oligomorphic limit, and our theory yields the interpolation
categories previously constructed.

In [HS1], we also considered a handful of oligomorphic groups that do not arise as limits
of finite groups. For example, we analyzed the the oligomorphic group Aut(R, <) of order-
preserving self-bijections of the real line. We showed that this group admits essentially
four measures, and that one of these measures leads to a pre-Tannakian category. This
category was studied in detail in [HSS], where it was named the Delannoy category ; we
found that it possess several remarkable properties (e.g., the Adams operations are trivial
on its Grothendieck group). A related case will be treated in the forthcoming paper [HSS2].

The purpose of this paper is to add to the list of examples from [HS1]: we determine the
measures for a certain infinite family of oligomorphic groups (which cannot be realized as
limits of finite groups). This leads to a large number of new rigid tensor categories. We do
not know if these categories have abelian envelopes.

Remark 1.1. If C is a class of finite relational structures (such as graphs, total orders, etc.),
one can sometimes form the Fräıssé limit Ω of C, which is a countable structure that has an
important homogeneity property. The automorphism group G of Ω is often oligomorphic,
and this construction is the main source of oligomorphic groups. We showed in [HS1] that
a measure for G is (essentially) a rule assigning to each member of C a value in k such that
certain identities hold. Thus understanding measures is really a combinatorial problem, and
indeed, most of the work in this paper is combinatorially in nature. �

1.2. Statement of results. Let S be a countable set equipped with an everywhere dense
cyclic order; for example, one can take S to be the roots of unity in the complex unit circle.
Let Σ be a non-empty finite set and let σ : S → Σ be a function such that σ−1(a) is dense
for each a ∈ Σ. We regard σ as a coloring of S. It turns out that S is the Fräıssé limit of
the class of finite sets equipped with a cyclic order and Σ-coloring (see Proposition 4.1); in
particular, up to isomorphism, S is independent of the choice of coloring σ. It also follows
that the automorphism group G of S is oligomorphic.

The goal of this paper is to classify the measures for G. It is easy to see that there is a
universal measure valued in a certain ring Θ(G), and the problem of classifying measures for
G amounts to computing the ring Θ(G). This is what our main theorem accomplishes:

Theorem 1.2. Given a directed tree T with edges labeled by Σ, there is an associated Z-valued
measure µT for G. The product of these measures (over isomorphism classes of trees) defines
a ring isomorphism Θ(G) →

∏

T Z. In particular, Θ(G) ∼= ZN , where N = 2n · (n + 1)n−2

and n = #Σ.
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Here, a “tree” is a connected simple graph with no cycles, “directed” means each edge has
been given an orientation, and the labeling means that there is a given bijection between
the edge set and Σ. An example is given in §5.6.

Fix a point ∞ ∈ S, and let L = S \ {∞}. The set L is totally ordered and Σ-colored, and
its automorphism group H is oligomorphic. We also classify measures for H (see §6). (We
note that the group H appears in [Aga, §5.2] and [LNVTS].)

1.3. Summary of proof. The proof has essentially four main steps:

(a) Using the classification of open subgroups of H (Proposition 4.2), we first show that
measures for G are equivalent to Σ-measures. A Σ-measure is a rule ν that assigns
to each a, b ∈ Σ and word w ∈ Σ⋆ a quantity νa,b(w), such that certain relations
hold (see Definition 5.1). This is an important reduction since Σ-measures are purely
combinatorial objects.

(b) We next show that Σ-measures are determined by their values on words of length
one, and the defining relations are generated by those involving words of length at
most two. We phrase this result as an equivalence between Σ-measures and another
notion called Σ-symbols (see Definition 5.8). This is another important reduction
since Σ-symbols are far simpler than Σ-measures.

(c) Next, we essentially solve the defining equations for Σ-symbols. Assuming the coeffi-
cient ring is connected, Σ-symbols correspond to functions S : Σ2 → {0, 1} satisfying
one relatively simple condition, namely, condition (∗) in §2.3.

(d) The functions S appearing above are studied in §2, where they are called “oriented
bisection structures.” We show that these functions naturally correspond to directed
trees with edges labeled by Σ.

1.4. Tensor categories. Let k be a field. Given a tree T as in Theorem 1.2, the machinery
of [HS1] produces a k-linear rigid tensor category Perm(G;µT ) (which is not abelian). This
is potentially a very interesting example, especially in light of the results of [HSS, HSS2] in
the case #Σ = 1. An important problem is to determine if this category has an abelian
envelope, as this would yield a new pre-Tannakian category. We know of no obstruction,
but when #Σ > 1 the results in [HS1] on abelian envelopes do not apply (the measure µT is
not quasi-regular).

1.5. Outline. In §2, we introduce the concept of a bisection structure, and show that they
are equivalent to trees. In §3, we review oligomorphic groups and measures in general. In
§4, we introduce the main groups of interest, and determine some of their group-theoretic
properties. In §5, we prove Theorem 1.2. Finally, in §6, we treat the group H .

1.6. Notation. The following is the most important notation:

k : the coefficient ring
Σ : the finite set of colors
Σ⋆ : the set of words in the alphabet Σ
S : the circle
L : the line, defined as S \ {∞}
σ : the coloring of S
G : the automorphism group of S (except in §3)
H : the automorphism group of L

G(A) : the subgroup of G fixing each element of A
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w[i, j] : a substring of the word w (see §5.1)

Acknowledgments. We thank Nate Harman and Steven Sam for helpful discussions.

2. Bisection structures

2.1. The definition. Suppose x is a real number. Deleting x from the real line cuts it into
two pieces. We thus get an equivalence relation Rx on R \ {x} by letting Rx(y, z) mean “y
and z belong to the same connected component.” If x, y, and z are distinct real numbers then
exactly one of Rx(y, z), Ry(x, z), and Rz(x, y) is false. The following definition axiomizes
this situation, but allows for a bit more flexibility.

Definition 2.1. Let X be a set. A bisection structure on X is a rule R assigning to each
x ∈ X an equivalence relation Rx on X \ {x} such that the following conditions hold:

(a) The equivalence relation Rx has at most two equivalence classes.
(b) If x, y, z ∈ X are distinct then at most one of Rx(y, z), Ry(x, z), and Rz(x, y) fails to

hold. �

Trees also lead to bisection structures. For the purposes of this paper, a tree is a finite
simple graph that is connected and has no cycles, and an X-labeled tree is a tree with a
given bijection between X and the edge set (i.e., the edges are labeled by X). Suppose T is
an X-labeled tree, and let x be an edge of T . Deleting x from T (but not the vertices in x)
yields a forest Tx with at most two components. Let Rx(y, z) mean “y and z belong to the
same component of Tx.” Equivalently, Rx(y, z) means that the geodesic joining y and z in
T does not include the edge x. One readily verifies that the Rx’s define a bisection structure
on X . We denote this bisection structure by RT .

Remark 2.2. Bisection structures are closely related to the concept of betweenness. Indeed,
ifR is the bisection structure on the real line then ¬Rx(y, z) exactly means that x is between y
and z; a similar observation holds for the bisection structures associated to trees. Bankston
[Ban] has defined a general notion of betweenness, and discussed many examples. The
betweenness relations on the vertices of trees appears often in the literature; however, this
does not lead to a bisection structure in general. �

2.2. The main result. The following is the main result we need on bisection structures:

Theorem 2.3. Let R be a bisection structure on a finite set X. Then there exists an X-
labeled tree T such that R = RT , and T is unique up to isomorphism.

The proof will be divided into several lemmas. Say that distinct elements x and y of X
are adjacent if for all z ∈ X \ {x, y} we have Rz(x, y). For each x ∈ X , let E+

x and E−
x be

the two equivalence classes for Rx, labeled in an arbitrary manner; if there are fewer than
two equivalence classes, take one or both of the sets to be empty. Let Ṽ = X × {±}. We

define a relation ∼ on Ṽ by (x, a) ∼ (y, b) if (x, a) = (y, b), or x 6= y are adjacent and x ∈ Eb
y

and y ∈ Ea
x.

Lemma 2.4. ∼ is an equivalence relation on Ṽ .

Proof. We just need to verify transitivity. Thus suppose (x, a) ∼ (y, b) and (y, b) ∼ (z, c).
We show (x, a) ∼ (z, c).

We first claim that x and z are adjacent. Let w ∈ X \ {x, z} be given. If w = y then since
x and z both belong to the equivalence class Eb

y, the relation Rw(x, z) holds. If w 6= y then
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Rw(x, y) and Rw(y, z) hold, since (x, y) and (y, z) are adjacent pairs, and so Rw(x, z) holds,
since Rw is an equivalence relation. This proves the claim.

Now, since x and y are adjacent, the relation Rz(x, y) holds. Since y belongs to Ec
z, it

follows that x does as well. Similarly, z belongs to Ea
x . Thus (x, a) ∼ (z, c), as required. �

Let V to be the quotient Ṽ / ∼. We define a graph T = T (R) with vertex set V and edge
set X . For x ∈ X , the two vertices of the edge x are the classes of (x,+) and (x,−) in
V ; these two vertices are distinct by definition of the equivalence relation, and so T has no
loops. The following lemma shows that there are no 2-cycles, i.e., parallel edges. Thus T is
a simple graph. Note that if x and y are distinct elements of X then they are adjacent (in
the above sense) if and only if they share a vertex in T .

Lemma 2.5. T has no cycles, i.e., it is a forest.

Proof. Suppose by way of contraction that we have a cycle. Let x1, . . . , xn be the edges
involved, so that xi is adjacent to xi+1 for all i ∈ Z/n. Since the labeling of equivalence
classes was arbitrary, we may as well suppose that (xi,+) ∼ (xi+1,−) for all i ∈ Z/n.
We thus have x2 ∈ E+

x1
. Now, x1 ∈ E−

x2
and x3 ∈ E+

x2
, so ¬Rx2

(x1, x3) holds; thus by
Definition 2.1(b), we have Rx1

(x2, x3), and so x3 ∈ E+
x1
. Continuing in this manner, we

find xi ∈ E+
x1

for all 2 ≤ i ≤ n. However, since (xn,+) ∼ (x1,−), we have xn ∈ E−
x1
, a

contradiction. �

Let x 6= z be elements of X . We say that y ∈ X \ {x, z} is between x and z if ¬Ry(x, z)
holds. We let P (x, z) be the set of such elements y.

Lemma 2.6. T is connected, and thus a tree. In fact, for x 6= z, the set P (x, z) is the
collection of edges in the shortest path joining x and z.

Proof. We proceed by induction on #P (x, z). If P (x, z) is empty then x and z are adjacent,
and the statement is trivial. Suppose now that #P (x, z) > 0, and let y be an element of
this set. We claim that

P (x, z) = P (x, y) ∪ {y} ∪ P (y, z).

Indeed, suppose that w ∈ P (x, y), i.e., ¬Rw(x, y) holds. We have the following implications

¬Rw(x, y) =⇒ Ry(w, x) =⇒ ¬Ry(w, z) =⇒ Rw(y, z) =⇒ ¬Rw(x, z).

The first implication comes from Definition 2.1(b); the second follows since ¬Ry(x, z) holds
and Ry is an equivalence relation; the third comes from Definition 2.1(b); and the fourth
follows since ¬Rw(x, y) holds and Rw is an equivalence relation. Thus w ∈ (x, z). We have
thus show that P (x, y) ⊂ P (x, z), and by symmetry we have P (y, z) ⊂ P (x, z) as well. This
proves one of the containments above.

We now prove the reverse containment. Thus suppose w ∈ P (x, z) and w 6= y. We must
show w belongs to either P (x, y) or P (y, z). Suppose it does not belong to P (x, y). Then
¬Rw(x, z) holds, since w ∈ P (x, z), and Rw(x, y) holds, since w 6∈ P (x, y). Since Rw is an
equivalence relation, it follows that ¬Rw(y, z) holds, and so w ∈ P (y, z), as required.

Now, P (x, y) and P (y, z) do not contain y, and thus are proper subsets of P (x, y). Thus,
by the inductive hypothesis, P (x, y) is a path from x to y, and P (y, z) is a path from y to
z. It follows that P (x, z) is a path from x to z. As for the minimality of P (x, z), choose
y ∈ P (x, z) adjacent to x (which must exist). Then P (x, z) = {y}⊔P (y, z). Since P (y, z) is
a minimal path between y and z (by induction), and x 6∈ P (y, z), it follows that P (x, z) is a
minimal path between x and z. �



6 ANDREW SNOWDEN

Lemma 2.7. We have R = RT .

Proof. We have seen that P (y, z) is the shortest path in T from y to z, and so RT
x (y, z) holds

if and only if x 6∈ P (y, z). However, x 6∈ P (y, z) is equivalent to Rx(y, z), by definition. �

Proof of Theorem 2.3. Let T be the set of isomorphism classes of X-labeled trees, and let
B be the set of bisection structures on X . We have a map Φ: T → B by Φ(T ) = RT . The
construction R 7→ T (R) above yields a function Ψ: B → T . Lemma 2.7 shows that Φ ◦ Ψ
is the identity. It is easy to see directly that Ψ ◦ Φ is also the identity; that is, if one starts
with a tree T then T (RT ) is isomorphic to T . �

2.3. Orientations. We now discuss a variant of the above ideas. An oriented bisection
structure is a function

S : (X ×X) \∆ → {±},

where ∆ denotes the diagonal, such that taking Rx(y, z) to be relation defined by S(x, y) =
S(x, z), the collection R = {Rx} is a bisection structure on X . This R automatically satisfies
Definition 2.1(a), so one only needs to consider Definition 2.1(b). In terms of S, this amounts
to the following condition:

(∗) Given distinct x, y, z ∈ X , at most one of the equalities

S(x, y) = S(x, z), S(y, x) = S(y, z), S(z, x) = S(z, y)

fails to hold.

More informally, an oriented bisection structure is simply a bisection structure R where for
each x we have labeled the equivalence classes of Rx as + and −. We made use of exactly
this kind of structure in the proof of Theorem 2.3.

Define a directed tree to be a tree in which each edge has been given a direction. If T is an
X-labeled directed tree then it induces an oriented bisection structure ST on X , as follows.
If we delete edge x from T , there are (at most) two resulting components; the edge x points
towards one of these components, and away from the other. We put ST (x, y) = + if x points
towards y’s component, and put ST (x, y) = − otherwise. One readily verifies that ST is an
oriented bisection structure, and that the analog of Theorem 2.3 holds in this setting. We
give an example in §5.6.

2.4. Enumeration. The following proposition counts the structures we have considered.

Proposition 2.8. Let X be a finite set with n elements. Put

N1 = the number of bisection structures on X

N2 = the number of X-labeled trees up to isomorphism

N3 = the number of oriented bisection structures on X

N4 = the number of directed X-labeled trees up to isomorphism

Then
N1 = N2 = (n+ 1)n−2, N3 = N4 = 2n(n + 1)n−2.

The first formula is valid for n ≥ 2, while the second is valid for n ≥ 1.

Proof. The equality N1 = N2 follows from Theorem 2.3. The explicit formula for N2 follows
from Cayley’s theorem on trees; see [Cam2, Proposition 2.1]. The equality N3 = N4 follows
from the oriented analog of Theorem 2.3. If n ≥ 2 then there are no automorphisms of an
X-labeled tree T , since the group of unlabeled automorphisms acts faithfully on the edges
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(see the proof of [Cam2, Proposition 2.1]). It follows that if we direct the edges of T in two
different ways, the resulting directed X-labeled trees are non-isomorphic. Hence N4 = 2n·N3.
The formula for N4 when n = 1 is easily verified directly. (Note that if T is an X-labeled tree
with one edge then the two ways of directing this edge yield isomorphic directed X-labeled
trees.) �

Remark 2.9. The integer sequence defined by the formula 2n · (n + 1)n−2 is discussed in
[OEIS]. We mention two other places where it occurs.

• Let Sn = Q[xi, yi, zi]1≤i≤n, and let Rn be the quotient of Sn by the ideal generated by
homogeneous Sn-invariants of positive degree. Here the symmetric group Sn acts on
Sn by permuting each set of variables in the obvious manner. Haiman [Hai, Fact 2.8.1]
observed that the dimension of Rn as a Q-vector space is 2n(n+1)n−2 for 1 ≤ n ≤ 5,
and suggested this might be true for all n; as far as we know, this is still open.

• Let Bn(x) be the nth Morgan–Voyce polynomial. This is defined recursively by B0 =
B1 = 1 and Bn = (x+2)Bn−1−Bn−2. The disciminant of Bn+1 is 2

n(n+1)n−2 [FHR,
Table 5]. �

3. Oligomorphic groups and measures

3.1. Oligomorphic groups. An oligomorphic group is a permutation group (G,Ω) such
that G has finitely many orbits on Ωn for all n ≥ 1. We refer to Cameron’s book [Cam1] for
general background on these groups.

Suppose we have an oligomorphic group (G,Ω). For a finite subset A ⊂ Ω, let G(A) be the
subgroup of G fixing each element of A. These subgroups form a neighborhood basis of the
identity for a topology on G. This topology has three important properties: it is Hausdorff;
it is non-archimedean (open subgroups form a neighborhood basis of the identity); and it is
Roelcke pre-compact (if U and V are open subgroups then U\G/V is finite); see [HS1, §2.2].
We say that a topological group is admissible if it satisfies these three properties.

Although we ultimately care most about oligomorphic groups, our constructions only
depend on the topology and not the specific permutation action, so we tend to work with
admissible topological groups.

3.2. Actions. Let G be an admissible topological group. We say that an action of G on a
set X is smooth if every point has open stabilizer. We use the term “G-set” to mean “set
equipped with a smooth action of G.” We say that a G-set is finitary if it has finitely many
orbits. A product of two finitary G-sets is again a finitary G-set. See [HS1, §2.3] for details.

A Ĝ-set is a U -set for some open subgroup U of G, called a group of definition; shrinking
U does not change the Ĝ-set. A Ĝ-set is called finitary if it is finitary with respect to some
group of definition; this does not depend on the group of definition. If f : X → Y is a map
of G-sets then the fiber over any point is a Ĝ-set; this is one reason this concept is useful.
The symbol Ĝ has no rigorous meaning on its own, but we think of it as an infinitesimal
neighborhood of the identity. See [HS1, §2.] for details.

3.3. Measures. Let G be an admissible group. The following definition was introduced in
[HS1], and will be the primary concept studied in this paper:

Definition 3.1. A measure for G valued in a commutative ring k is a rule µ assigning to
each finitary Ĝ-set X a quantity µ(X) in k such that the following axioms hold (in which X

and Y denote finitary Ĝ-sets):
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(a) Isomorphism invariance: µ(X) = µ(Y ) if X ∼= Y .

(b) Normalization: µ(1) = 1, where 1 is the one-point Ĝ-set.

(c) Conjugation invariance: µ(Xg) = µ(X), where Xg is the conjugate of the Ĝ-set X
by g ∈ G.

(d) Additivity: µ(X ∐ Y ) = µ(X) + µ(Y ).
(e) Multiplicativity in fibrations: if X → Y is a map of transitive U -sets, for some open

subgroup U , with fiber F (over some point) then µ(X) = µ(F ) · µ(Y ).

We let MG(k) denote the set of k-valued measures for G. �

Given a measure, one obtains a theory of integration for functions on G-sets; see [HS1, §3].
The construction of tensor categories in [HS1] is built on top of this theory of integration.
For the present paper, however, we will not need integration.

There are a few concepts equivalent to the above notion of measure that we mention,
simply to provide the reader with more intuition:

(a) If X → Y is a map of G-sets then the fiber over any point is a Ĝ-set, and every

Ĝ-set can be obtained in this manner. One can use this to reformulate the notion
of measure as a rule that assigns to each such map X → Y (with Y transitive and
X finitary) a quantity in k, such that certain conditions hold; see [HS1, §4.5]. The
advantage of this formulation is that it depends only on the category of G-sets.

(b) A generalized index is a rule assigning to each containment of open subgroups U ⊂ V
a quantity JU : V K in k, satisfying properties similar to the usual index; see [HS1,
§3.6]. This concept is equivalent to measure, with µ corresponding to J− : −K if
JU : V K = µ(U/V ) for all V ⊂ U .

(c) Suppose that C is a Fräıssé class with limit Ω, and G = Aut(Ω) is oligomorphic. A
measure for G is then equivalent to a rule assigning to each inclusion X ⊂ Y in C

a value in k, such that certain conditions hold; see [HS1, §6]. (Actually, this only
gives a measure for G relative to a stabilizer class.) This shows that measures are
essentially combinatorial in nature.

We will not use any of the above perspectives in this paper. However, we will give a combi-
natorial interpretation for our measures that is similar in spirit to (c).

There is one more concept connected to measures that we will use. Define a ring Θ(G) as
follows: start with the polynomial ring in variables [X ], where X varies over isomorphism

classes of finitary Ĝ-sets, and impose relations corresponding to Definition 3.1(b,c,d,e). There
is a measure µuniv valued in Θ(G) given by µuniv(X) = [X ]. This measure is universal, in the
sense that if µ is a measure valued in some ring k then there is a unique ring homomorphism
ϕ : Θ(G) → k such that µ(X) = ϕ(µuniv(X)). A complete understanding of measures for G
essentially amounts to computing the ring Θ(G).

Example 3.2. Let S be the infinite symmetric group, and let Ω = {1, 2, 3, . . .} be its
domain. Given a complex number t, there is a unique C-valued measure µt for S such that
µt(Ω) = t. This measure satisfies µt(Ω

(n)) =
(

t

n

)

, where Ω(n) denotes the set of n-element
subsets of Ω. The ring Θ(S) is the ring of integer-valued polynomials in a single variable.
These statements are proven in [HS1, §15]. �
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3.4. Minimal maps. LetG be an admissible group and let ϕ : X → Y be a map of transitive
G-sets. We say that ϕ is minimal if it is not an isomorphism and does not factor non-
trivially, i.e., given ϕ = β ◦ α, where β and α are maps of transitive G-sets, either α or β is
an isomorphism. The following two results show the significance of this notion.

Proposition 3.3. Given an open subgroup V of G, there are only finitely many subgroups
U of G containing V .

Proof. If U contains V then U is a union of double cosets of V . Since V \G/V is finite, there
are thus only finitely many possibilities for U . �

Proposition 3.4. Any map of transitive G-sets that is not an isomorphism can be factored
into a sequence of minimal maps.

Proof. It suffices to show that if V ⊂ U is a proper inclusion of open subgroups then the
natural map G/V → G/U admits such a factorization. Choose a strict chain of open
subgroups

V = W0 ⊂W1 ⊂ · · · ⊂Wn = U

where Wi is minimal over Wi−1; such a chain exists by Proposition 3.3. The map G/V →
G/U factors as the composition of the minimal maps G/Wi−1 → G/Wi, which completes
the proof. �

3.5. Another view on measures. We now give a slight reformulation of the definition of
measure that will be more convenient in our particular case. For an admissible group G,
let Ω(G) be its Burnside ring. This is the free Z-module on the set of isomorphism classes
of transitive G-sets. For a transitive G-set X , we let JXK denote its class in Ω(G). For a
general finitary G-set X , we define JXK =

∑n

i=1JYiK, where Y1, . . . , Yn are the G-orbits on
X . As the name suggests, Ω(G) is a ring, via JXK · JY K = JX × Y K.

Let E be a collection of open subgroups of G that is stable under conjugation, and such
that every open subgroup contains some member of E . We introduce the following notion:

Definition 3.5. An E -measure valued in a ring k is a rule µ• assigning to each U ∈ E an
additive map µU : Ω(U) → k satisfying the following axioms:

(a) We have µU(1) = 1 for any U ∈ E .
(b) Given subgroups V ⊂ U in E and a finitary U -set X , we have µU(X) = µV (X).
(c) Given U ∈ E , a finitary U -set X and g ∈ G, we have µU(X) = µUg(Xg), where the

superscript denotes conjugation.
(d) Given U ∈ E and a map π : X → Y of transitive U -sets, we have µU(X) = µU(Y )µV (F ),

where F = π−1(y) for some y ∈ Y , and V ∈ E stabilizes y.

We have written µU(X) in place of µU(JXK) above. Let ME
G(k) denote the set of E -measures

for G valued in k. �

The following is the main result we require on this concept.

Proposition 3.6. We have a natural isomorphism MG(k) → M
E
G(k).

Proof. Suppose that µ is a measure for G. For an open subgroup U , define µU : Ω(U) → k
by µU(X) = µ(X). It is clear that µ• is an E -measure, and that µ can be recovered from
µ•. We thus have an injective map Φ: MG(k) → M

E
G(k).

We now show that Φ is surjective, which will complete the proof. Let µ• be a given E -
measure. We define a measure µ, as follows. Let X be a finitary Ĝ-set. Choose a group
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of definition U for X that belongs to E , and put µ(X) = µU(X). This is independent of
the choice of U . Indeed, suppose U ′ is a second group of definition belonging to E . Then
U ∩ U ′ is an open subgroup of G, and thus contains some V ∈ E by hypothesis. We then
have µU(X) = µV (X) = µU ′(X), since µ• is compatible with restriction. Clearly, µ• = Φ(µ),
provided that µ is a measure, so it suffices to show this. One easily sees that that µ satisfies
axioms (a)–(d) of Definition 3.1.

We now verify axiom (e). Thus let π : X → Y be a map of transitive U -sets, for some
open subgroup U , and let F = π−1(y) for some point y ∈ Y . Let V ⊂ U be an open
subgroup contained in E . Let Y =

⊔n

i=1 Yi be the decomposition of Y into orbits of V and
let Xi = π−1(Yi). Let yi ∈ Yi be any point, and let Fi = π−1(yi) be the fiber over it. Let
W ⊂ V be an open subgroup in E fixing each yi. We have

µ(Xi) = µV (Xi) = µV (Yi)µW (Fi) = µ(Yi)µ(Fi) = µ(Yi)µ(F ).

In the first step, we used the definition of µ; in the second step, we used Definition 3.5(d);
in the third step, we again used the definition of µ; and in the final step, we used that Fi is
conjugate to F by U (since U acts transitively on Y ), and that µ is conjugation invariant.
Summing the above equation over i, we find µ(X) = µ(Y )µ(F ), as required. �

We note that since measures are multiplicative, i.e., µ(X × Y ) = µ(X) · µ(Y ), the above
proposition shows that if µ• is an E -measure then each map µU : Ω(U) → k is a ring homo-
morphism. Our next result can simplify the task of verifying Definition 3.5(d).

Proposition 3.7. Suppose that E is downwards closed, meaning that if U ∈ E and V ⊂ U
is an open subgroup then V ∈ E . For each U ∈ E , let µU : Ω(U) → k be an additive map.
Suppose µ• satisfies Definition 3.5(a,b,c) as well as the following condition:

(d’) Given U ∈ E and a minimal map π : X → Y of transitive U-sets, we have µU(X) =
µU(Y )µV (F ), where F = π−1(y) for some y ∈ Y , and V ∈ E stabilizes y.

Then µ• also satisfies Definition 3.5(d), and is thus an E -measure.

Proof. Given open subgroups V ⊂ U of G, define δ(V ⊂ U) to be the maximal n for
which there exists a chain V = W0 ( · · · ( Wn = U of subgroups. This is defined by
Proposition 3.3. We note that δ(V ⊂ U) = 0 if and only if V = U , and δ(V ⊂ U) = 1 if and
only if V 6= U but there is no subgroup strictly between V and U .

To prove Definition 3.5(d), it suffices to show

µU(U/W ) = µU(U/V )µV (V/W )

whenever W ⊂ V ⊂ U are subgroups in E . We proceed by induction on δ(W ⊂ V ). If
δ(W ⊂ V ) = 0 the statement is clear. Suppose now that δ(W ⊂ V ) is positive, and let W ′

be a minimal subgroup over W contained in V , so that δ(W ′ ⊂ V ) < δ(W ⊂ V ). Note that
U/W → U/W ′ is a minimal map of transitive U -sets, and V/W → V/W ′ is a minimal map
of transitive V -sets. We have

µU(U/W ) = µU(U/W
′)µW ′(W ′/W )

= µU(U/V )µV (V/W
′)µW ′(W ′/W )

= µU(U/V )µV (V/W )

where in the first step we used (d’), in the second step the inductive hypothesis, and in the
third (d’) again. The result follows. �
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4. The colored circle and its symmetries

4.1. The circle. Fix a countable set S with an everywhere dense cyclic order; for example,
one can take the roots of unity in the complex unit circle. Let Σ be a non-empty finite set
and let σ : S → Σ be a function such that σ−1(a) is dense for every a ∈ Σ. We regard σ as
a coloring of S. Let G be the automorphism group of S, i.e., the group of all self-bijections
preserving the cyclic ordering and the coloring.

Proposition 4.1. We have the following:

(a) S is a homogeneous structure: if X and Y are finite subsets of S and i : X → Y is
an isomorphism (i.e., a bijection preserving the induced cyclic orders and colorings)
then there exists g ∈ G such that i = g|X.

(b) S is the Fräıssé limit of the class of finite sets equipped with a cyclic order and Σ-
coloring; in particular, S is independent of the choice of σ, up to isomorphism.

(c) The group G is oligomorphic (with respect to its action on S).

Proof. (a) For this proof, a “structure” means a set equipped with a cyclic order and a
Σ-coloring. Suppose that X → Y is an embedding of finite structures and we have an
embedding α : X → S. We claim that α extends to an embedding β : Y → S. By an
inductive argument, it suffices to treat the case where Y has one more element than X .
Thus suppose Y = X ⊔ {y}. If #X ≤ 1, the claim is clear, so suppose #X ≥ 2. Write
X = {x1, . . . , xn}, where x1 < x2 < · · · < xn < x1, and let i be such that xi < y < xi+1

(where i + 1 is taken modulo n). Choose a point z ∈ S between α(xi) and α(xi+1) having
the same color at y. Now simply define β(xj) = α(xj) for all j, and β(y) = z. Then β is an
embedding of Y extending α.

It now follows from a standard back-and-forth argument that S is homogeneous. To be a
bit more precise, the previous paragraph shows that S is “f-injective” in the terminology of
[HS2, §A.4]. By [HS2, Proposition A.7], any f-injective object is homogeneous.

(b) Since S is a countable homogeneous structure into which every finite structure embeds,
it is the Fräıssé limit of the class of finite structures. (To see that every structure embeds,
simply note that the empty structure does and so the general case follows from f-injectivity.)
The Fräıssé limit is unique up to isomorphism, which yields the uniqueness statement.

(c) Let S(n) denote the set of n-element subsets of S. If x and y are two points in S(n)

that are isomorphic (with their induced structures) then the homogeneity of S shows that
they belong to the same G-orbit. Since there are finitely many structures of cardinality n,
it follows that G has finitely many orbits on S(n). Since this holds for all n, it follows that
G is oligomorphic. �

4.2. The line. Fix a point ∞ ∈ S, and let L = S \ {∞}. Then L carries a total order and
a Σ-coloring. As a totally ordered set, L is isomorphic to the set of rational numbers with
its standard order. An argument similar to the above shows that L is homogeneous, and the
Fräıssé limit of the class of finite sets equipped with a total order and Σ-coloring. We let
H be the automorphism group of L, which is also oligomorphic. Note that H is simply the
stabilizer of ∞ in G, and for a finite subset A of L, we have H(A) = G(A ∪ {∞}). (Here
H(A) denotes the subgroup of H fixing each element of A.)

4.3. Intervals. Given x 6= y in S, consider the set I = (x, y) of all points z ∈ S satisfying
x < z < y. We refer to sets of the form (x, y) as proper intervals. We refer to x and y as the
left and right endpoints of I. If J = (x′, y′) is a second proper interval then J = gI for some
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g ∈ G if and only if σ(x) = σ(x′) and σ(y) = σ(y′). An improper interval is one of the form
S \ {x} for x ∈ S.

Let I be an interval (proper or improper). Then I carries a total order and a Σ-coloring,
and is easily seen to be the Fräıssé limit of the class of finite sets with a total order and
Σ-coloring. Thus I is abstractly isomorphic to L. We let HI be the automorphism group of
I. The pair (HI , I) is isomorphic to (H,L); in particular, HI is oligomorphic.

Suppose that A is a finite non-empty subset of S, and write S \ A = I1 ⊔ · · · ⊔ Ir, where
I1, . . . , Ir are intervals. Whenever we write such a decomposition, we assume that the index-
ing of the intervals is compatible with the natural cyclic order on them, i.e., Ii is between
Ii−1 and Ii+1 (where the indices are taken modulo n). An element of G(A) preserves each
Ii, and so there is a natural map

G(A) → HI1 × · · ·HIr .

One readily sees that this map is an isomorphism.

4.4. Open subgroups. We now classify the open subgroups of H .

Proposition 4.2. Every open subgroup of H has the form H(A) for some finite subset
A ⊂ L.

Proof. This is proved for #Σ = 1 in [HS1, Proposition 17.1]. The general case follows from
a similar argument. �

Corollary 4.3. Let A be a non-empty finite subset of S. Then every open subgroup of G(A)
has the form G(B) for some finite subset B of S containing A.

Proof. Since the choice of ∞ is arbitrary, we may as well assume it belongs to A. Thus
G(A) ⊂ H , and the result now follows from the proposition. �

Remark 4.4. The G(A)’s do not account for all open subgroups of G. Let G[A] denote the
subgroup of G that maps A to itself (as a set). This can be larger than G(A); for instance,
if every point in A has the same color, then the points of A can be cyclically permuted, and
G[A] = Z/n⋉G(A) where n = #A. One can show that G[A] is the normalizer of G(A), and
that G[A]/G(A) is a finite cyclic group. One can furthermore show that every open subgroup
of G sits between G(A) and G[A] for some A. We will not need this result, however. �

4.5. Actions. Let Σ⋆ denote the set of all words in the alphabet Σ. Given a word w =
w1 · · ·wn in Σ⋆ and an interval I, we let Iw denote the subset of In consisting of those tuples
(x1, . . . , xn) such that x1 < · · · < xn and σ(xi) = wi. The group HI clearly acts on Iw, and
this action is transitive by the homogeneity of I.

Proposition 4.5. Let A be a non-empty finite subset of S, and write S \ A = I1 ⊔ · · · ⊔ Ir.
Then every transitive G(A)-set is isomorphic to Iw1

1 × · · · × Iwr
r for some w1, . . . , wr ∈ Σ⋆.

Proof. Let X be a transitive G(A)-set. Then X is isomorphic to G(A)/U for some open
subgroup U of G(A). By Corollary 4.3, we have U = G(B) for some finite subset B of S con-
taining A. Let Bi = B ∩ Ii. Writing Bi = {xi,1 < · · · < xi,n(i)}, let wi = σ(xi,1) · · ·σ(xi,n(i)).
Under the isomorphism G(A) = HI1 × · · · ×HIr , we have G(B) = HI1(B1)× · · · ×HIr(Br).
As HIi acts transitively on Iwi

i with stabilizer HIi(Bi), it follows that HIi/HIi(Bi) ∼= Iwi

i .
Thus X ∼= Iw1

1 × · · · × Iwr
r , as required. �

Proposition 4.6. Let A be a non-empty finite subset of S, and write S \ A = I1 ⊔ · · · ⊔ Ir.
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(a) Let w,w′, w2, . . . , wr ∈ Σ⋆ and let c ∈ Σ. Let π1 : I
wcw′

1 → Iww′

1 be the map that
projects away from the c coordinate, and let

π : Iwcw′

1 × Iw2

2 × · · · × Iwr

r → Iww′

1 × Iw2

2 × · · · × Iwr

r

be the map that is π1 on the first factor and the identity on other factors. Then π is
a minimal map of transitive G(A)-sets.

(b) The fiber of π over any point is isomorphic to Jc, where J is a subinterval of I1 defined
as follows. If w is non-empty, let y be a point in I1 whose color is the final letter of
w; otherwise, let y be the left endpoint of I1. If w

′ is non-empty, let y < y′ be a point
in I1 whose color is the first letter of w′; otherwise, let y′ be the right endpoint of I1.
Then J = (y, y′).

(c) Any minimal map of transitive G(A)-sets is isomorphic to one as in (a), after possibly
re-indexed the intervals.

Proof. Let A ⊂ B ⊂ C be finite subsets of S with #C = #B + 1. Then G(B) is a minimal
subgroup over G(C), and so the natural map G(A)/G(C) → G(A)/G(B) is a minimal map
of transitive G(A)-sets. Looking at the identifications in the proof of Proposition 4.5, we
see that this map has the form stated in (a). Every minimal map has this form by the
classification of open subgroups of G(A).

We now explain statement (b). First note that the fiber of π is isomorphic to the fiber of π1,
so we just consider this. Suppose ℓ(w) = n and ℓ(w′) = m. Let p = (x1, . . . , xn, z1, . . . , zm)
be a point in Iww′

1 . Let J be the interval (xn, z1), where xn is taken to be the left endpoint
of I1 if w is empty, and z1 is taken to be the right endpoint of I1 if w′ is empty. Then
π−1
1 (p) = Jc, and so (b) follows. �

5. Classification of measures

5.1. Combinatorial reformulation of measures. In §5, we prove Theorem 1.2 following
the plan in §1.3. As a first step, we introduce Σ-measures and connect them to measures. For
a word w = w1 · · ·wn in Σ⋆, we let w[i, j] denote the subword wi · · ·wj. We use parentheses
to omit endpoints, e.g., w[i, j) = wi · · ·wj−1.

Definition 5.1. A Σ-measure with values in k is a rule ν assigning to each a, b ∈ Σ and
w ∈ Σ⋆ a quantity νa,b(w) in k such that the following axioms hold:

(a) νa,b(w) = 1 if w is the empty word.
(b) Let w and w′ be words, put r = ℓ(w), and let a, b, c ∈ Σ. Then

νa,b(wcw
′) = νa,b(ww

′)νwr,w
′

1
(c).

Here, we use the convention that wr = a if w is empty, and w′
1 = b if w′ is empty.

(c) Let w of length n, and let a, b, c ∈ Σ. Then

νa,b(w) =

n
∑

i=0

νa,c(w[1, i])νc,b(w(i, n]) +
∑

wi=c

νa,c(w[1, i))νc,b(w(i, n]).

We let MΣ(k) denote the set of such measures. �

Proposition 5.2. We have a natural bijection MG(k) ∼= MΣ(k). Under this bijection, a
measure µ for G corresponds to a Σ-measure ν if and only if µ(Iw) = νa,b(w) whenever I is
a proper interval with endpoints of color a and b, and w ∈ Σ⋆.
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The proof of the proposition will take the remainder of §5.1. Define R to be the commu-
tative ring generated by symbols xa,b(w), where a, b ∈ Σ and w ∈ Σ⋆, modulo the following
relations:

(a) xa,b(w) = 1 if w is empty.
(b) Let w and w′ be words, put r = ℓ(w), and let a, b, c ∈ Σ. Then

xa,b(wcw
′) = xa,b(ww

′)xwr ,w′

1
(c),

where we use conventions as in Definition 5.1.
(c) Let w of length n, let a, b, c ∈ Σ. Then

xa,b(w) =
n

∑

i=0

xa,c(w[1, i])xc,b(w(i, n]) +
∑

wi=c

xa,c(w[1, i))xc,b(w(i, n]).

Thus a Σ-measure is a homomorphism R → k. With this language, we can reformulate
Proposition 5.2 as follows:

Proposition 5.3. There exists a ring isomorphism ϕ : Θ(G) → R satisfying ϕ([Iw]) =
xa,b(w), where I is an arbitrary proper interval, and a and b are the colors of the left and
right endpoints of I.

We note that the classes [Iw] generate Θ(G) by Proposition 4.5, so there is at most one
ring isomorphism as in the proposition.

Let E be the set of subgroups of G of the form G(A) where #A ≥ 2. This satisfies the
conditions of §3.5. We construct an R-valued E -measure ϕ• for G. Let A be a finite subset
of S of cardinality at least 2, and write S\A = I1⊔· · ·⊔Ir. Recall that every transitive G(A)
set is isomorphic to one of the form Iw1

1 × · · · × Iwr
r with w1, . . . , wr ∈ Σ⋆ (Proposition 4.5).

We define
ϕG(A) : Ω(G(A)) → R

to be the unique additive map satisyfing

ϕ(Iw1

1 × · · · × Iwr

r ) = xa1,b1(w1) · · ·xar ,br(wr),

where ai and bi are the colors of the left and right endpoints of Ii. We now verify that the
system ϕ• is indeed an E -measure. Conditions (a) and (c) of Definition 3.5 are clear.

Lemma 5.4. Let I be an interval and let z ∈ I. Write I = J ⊔ {z} ⊔K for intervals J and
K, and let c = σ(z). Then for a word w ∈ Σ⋆ of length n, we have a natural bijection

Iw =
(

n
∐

i=0

Jw[1,i] ×Kw(i,n]
)

∐
(

∐

wi=c

Jw[1,i) ×Kw(i,n]
)

that is equivariant for the action of HI(b) = HJ ×HK.

Proof. Recall that Iw consists of tuples x = (x1 < · · · < xn) in I
n such that σ(xi) = wi. Let

X be the subset of Iw consisting of points x such that no xi is equal to z, and let Y be the
complement. We have a decomposition X = X0 ⊔ · · · ⊔ Xn, where Xi is the subset of X
consisting of points x such that xi < z < xi+1 (and where we ignore conditions involving x0 or
xn+1), and an isomorphismXi

∼= Jw[1,i]×Kw(i,n]. We also have a decomposition Y =
⊔

wi=c Yi,

where Yi consists of points x such that xi = z, and an isomorphism Yi ∼= Jw[1,i) × Kw(i,n].
This completes the proof. �

Lemma 5.5. The system ϕ• satisfies Definition 3.5(b).
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Proof. It suffices to treat the case where V is a maximal subgroup of U . We can thus assume
V = G(B) and U = G(A) where B = A∪{z} and z is some element of S\A; let c = σ(z) be
the color of z. Write S\A = I1⊔· · ·⊔ Ir as above; cyclically rotating the labels, if necessary,
we assume that z ∈ I1. Write I1 = J ⊔ {z} ⊔ K. Let X = Iw1

1 × · · · × Iwr
r be a transitive

G(A)-set. Decomposing Iw1

1 by Lemma 5.4, we find that ϕV (X) is equal to

(

n
∑

i=0

xa1,c(w[1, i])xc,b1(w(i, n]) +
∑

wi=c

xa1,c(w[1, i))xc,b1(w(i, n])
)

× xa2,b2(w2) · · ·xar ,br(wr)

By definition of R, the first factor is equal to xa1,b1(w1), and so the whole expression is equal
to ϕU(X). Thus ϕV (X) = ϕU(X), as required. �

Lemma 5.6. The system ϕ• satisfies Definition 3.5(d).

Proof. It follows from the classification of open subgroups of H (Proposition 4.2) that E

satisfies the condition of Proposition 3.7. Thus, by that proposition, it is enough to verify
Proposition 3.7(d’). Let A be a finite subset of S of cardinality at least 2, and write S \A =
I1 ⊔ · · · ⊔ Ir. Let ai and bi be the colors of the endpoints of Ii. Let π : X → Y be a minimal
map of transitive G(A)-sets with fiber F . By Proposition 4.6, after possibly reindexing, π is
isomorphic to

π1 × id× · · · × id : Iwcw′

1 × Iw2

2 × · · · × Iwr

r → Iww′

1 × Iw2

2 × · · · × Iwr

r ,

where π1 projects away from the c coordinate. Additionally, F is isomorphic to Jc, where J
is an interval with endpoints of colors wr and w

′
1, with r = ℓ(w); here we use the convention

that wr = a1 if w = ∅, and w′
1 = b1 if w′ = ∅. The equation ϕ(X) = ϕ(Y )ϕ(F ) thus

becomes

xa1,b1(wcw
′)xa2,b2(w2) · · ·xar ,br(wr) = xa1,b1(ww

′)xwr ,w
′

1
(c)xa2,b2(w2) · · ·xar ,br(wr),

which does indeed hold in R: this is just the definining relation (b) of R, multiplied on each
side by the same quantity. �

We have thus verified that the system ϕ• is an E -measure. By Proposition 3.6, ϕ• cor-
responds to a measure for G valued in R, i.e., a ring homomorphism ϕ : Θ(G) → R. This
homomorphism clearly satisfies ϕ([Iw]) = xa,b(w), where a and b are the colors of the end-
points of I. The following lemma completes the proof of the proposition.

Lemma 5.7. The map ϕ : Θ(G) → R is an isomorphism.

Proof. Let R̃ be the polynomial ring in the symbols xa,b(w). Define a ring homomorphism

ψ̃ : R̃ → Θ(G) by ψ(xa,b(w)) = [Iw], where I is any proper interval with endpoints of colors
a and b. This is well-defined since if J is a second such interval then I and J are conjugate
by an element of G, and so [Iw] = [Jw] in Θ(G). By computations similar to the ones

carried out above, we see that ψ̃ kills the defining relations of R, and thus induces a ring
homomorphism ψ : R→ Θ(G). This is clearly inverse to ϕ, and so the proof is complete. �

5.2. Measures and symbols. We just proved that measures for G are equivalent to Σ-
measures. This is a significant step forward since Σ-measures are purely combinatorial
objects. However, they are still rather complicated: Σ-measures have infinitely many pa-
rameters and defining equations. We now introduce Σ-symbols, which have finitely many
parameters and defining equations, and connect them to Σ-measures.
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Definition 5.8. A Σ-symbol with values in k is a function

η : Σ3 → k, (a, b, c) 7→ ηa,b(c)

satisfying the following two conditions, for all a, b, c, d ∈ Σ:

ηa,b(c)ηc,b(d) = ηa,b(d)ηa,d(c)(5.9a)

ηa,b(c) = ηa,d(c) + ηd,b(c) + δc,d(5.9b)

We let SΣ(k) denote the set of all Σ-symbols. �

Proposition 5.10. We have a natural bijection MΣ(k) → SΣ(k) given by restricting mea-
sures to words of length 1. In other words, if ν is a Σ-measure then (a, b, c) 7→ νa,b(c) is a
Σ-symbol, and this construction is bijective.

We break the proof into several lemmas.

Lemma 5.11. Let ν be a Σ-measure and define η : Σ3 → k by ηa,b(c) = νa,b(c). Then η is a
Σ-symbol, and ν can be recovered from η.

Proof. Making the substitution (w, c, w′) → (c, d,∅) in Definition 5.1(b), we find

νa,b(cd) = νa,b(c)νc,b(d).

Making the substitution (w, c, w′) → (∅, c, d) in the same axiom, we find

νa,b(cd) = νa,b(d)νa,b(c).

This gives (5.9a). Making the substition (w, c) → (c, d) in Definition 5.1(c) gives (5.9b).
Thus η is a Σ-symbol. Applying Definition 5.1(b) iteratively, we see that ν is determined
by its values on length 1 words. These values are recorded by η, and so ν can be recovered
from η. �

The above lemma provides us with an injective function Φ: MΣ(k) → SΣ(k). To complete
the proof of the proposition, we must show that Φ is surjective. Let a Σ-symbol η be given.
We recursively define ν by νa,b(∅) = 1 and

νa,b(w1 · · ·wn) = ηa,b(wn)νa,wn
(w1 · · ·wn−1)

for n ≥ 1. We clearly have Φ(ν) = η, provided that ν is a Σ-measure. It thus suffices to
show this, which we do in the next two lemmas.

Lemma 5.12. ν satisfies Definition 5.1(b).

Proof. We must show
νa,b(wcw

′) = νa,b(ww
′)νwr ,w

′

1
(c)

for all a, b, c ∈ Σ and w,w′ ∈ Σ⋆, where r = ℓ(w); recall the convention that wr = a if w = ∅

and w′
1 = b if w′ = ∅. We proceed by induction on the length n of the word wcw′. The base

case (n = 1) is trivial, and the n = 2 case follows directly from (5.9a). Suppose now that
n ≥ 3 and the identity holds in length n− 1.

First suppose that w′ is non-empty, and let s = ℓ(w′). We have

νa,b(wcw
′) = ηa,b(w

′
s)νa,w′

s
(wcw′

1 · · ·w
′
s−1)

= ηa,b(w
′
s)νa,w′

s
(ww′

1 · · ·w
′
s−1)νwr,w

′

1
(c)

= νa,b(ww
′)νwr ,w

′

1
(c).
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In the first and third steps, we used the definition of µ, while in the second we used the
inductive hypothesis.

Now suppose that w′ is empty. Since n ≥ 3, we have r ≥ 2. We have

νa,b(wc) = νa,b(w2 · · ·wrc)νa,w2
(w1)

= νa,b(w2 · · ·wr)νwr,b(c)νa,w2
(w1)

= νa,b(w)νwr,b(c).

In the first step, we applied the previous paragraph with with (w, ρ, w′) being (∅, w1, w2 · · ·wrc).
In the final two steps, we used the inductive hypothesis. This completes the proof. �

Lemma 5.13. ν satisfies Definition 5.1(c).

Proof. For a, b, c ∈ Σ and w ∈ Σ⋆, with n = ℓ(w), put

Xc
a,b(w) =

n
∑

i=0

νa,c(w[1, i])νc,b(w(i, n]) +
∑

wi=c

νa,c(w[1, i))νc,b(w(i, n]).

We must prove Xc
a,b(w) = νa,b(w). We proceed by induction on n. The case n = 0 is clear.

Thus suppose n ≥ 1 and the identity holds for smaller n.
In the definition of Xc

a,b(w), break off the i = n terms from each sum, and then apply the
recursive definition of ν to the second factors in the sum. This yields

Xc
a,b(w) =νa,c(w) + ηc,b(wn)

n−1
∑

i=0

νa,c(w[1, i])νc,wn
(w[i, n))

+ δwn,cνa,c(w[1, n)) + ηc,b(wn)
∑

1≤i≤n−1,wi=c

νa,c(w[1, i))νc,wn
(w(i, n)),

and so

Xc
a,b(w) = νa,c(w) + δwn,cνa,c(w[1, n)) + ηc,b(wn)X

c
a,wn

(w[1, n))

The final X factor on the right is equal to νa,wn
(w[1, n)) by the inductive hypothesis. Ap-

plying the definition of ν to the first term above, and replacing c with wn in the second term
(which is valid due to the Kronecker delta), we thus find

Xc
a,b(w) = ηa,c(wn)νa,wn

(w[1, n)) + δwn,cνa,wn
(w[1, n)) + ηc,b(wn)νa,wn

(w[1, n))

= (ηa,c(wn) + δwn,c + ηc,b(wn))νa,wn
(w[1, n))

= ηa,b(wn)νa,wn
(w[1, n)) = νa,b(wn).

In the penultimate step, we applied (5.9b), and in the final step the definition of ν. This
completes the proof. �

5.3. Symbols and bisection structures. We now relate Σ-symbols to the oriented bisec-
tion structures introduced in §2.3. We use somewhat different conventions here, though. We
will take our structures valued in {0, 1} instead of {±}. We will also extend them by zero
to the diagonal. Thus an oriented bisection structure is a function

S : Σ× Σ → {0, 1}

satisfying condition (∗) of §2.3, and Sa,a = 0 for all a ∈ Σ; here, and in what follows, we
write Sa,b for the value of S at (a, b).



18 ANDREW SNOWDEN

Proposition 5.14. Let S be an oriented bisection structure on Σ. Define ηS : Σ3 → k by

ηSa,b(c) = Sc,a − Sc,b − δb,c

Then ηS is a Σ-symbol. If the ring k is connected then every Σ-symbol η has the form ηS for
a unique S.

Recall that k is connected if it has exactly two idempotents, namely 0 and 1; in particular,
this means 1 6= 0 in k. We break the proof into several lemmas. In the first two, S denotes
an oriented bisection structure on Σ.

Lemma 5.15. ηS satisfies (5.9a).

Proof. Let a, b, c, d ∈ Σ. We show

ηSa,b(c)η
S
c,b(d) = ηSa,b(d)η

S
a,d(c)

There are three Kronecker δ’s appearing in the above equation, namely, δc,d, δc,b, and δd,b.
We proceed in cases to handle the possible values of these.

Case 1: b, c, and d are distinct. The identity is

(Sc,a − Sc,b)(Sd,c − Sd,b) = (Sd,a − Sd,b)(Sc,a − Sc,d).

By (∗), we have (Sc,d − Sc,b)(Sd,c − Sd,b) = 0, and so

(Sc,a − Sc,b)(Sd,c − Sd,b) = (Sc,a − Sc,b)(Sd,c − Sd,b)

Similarly, we have

(Sd,a − Sd,b)(Sc,a − Sc,d) = (Sd,c − Sd,b)(Sc,a − Sc,d).

We have thus established the identity.
Case 2: c = d = b. The identity becomes

(−1)(Sc,a − 1) = (Sc,a − 1)2,

which is true since Sc,a − 1 is either 0 or −1.
Case 3: c = d and c 6= b. The identity becomes

(Sc,a − Sc,b)(−Sc,b) = (Sc,a − Sc,b)(Sc,a − 1)

This is equivalent to
(Sc,a − Sc,b)(Sc,a + Sc,b − 1) = 0.

If Sc,a and Sc,b coincide then the first factor vanishes; otherwise, one is 0 and one is 1, and
so their sum is 1 and the second factor vanishes.

Case 4: c = b and c 6= d. Then ηSc,b(d) = 0, and the identity becomes

(Sd,a − Sd,c)(Sc,a − Sc,d) = 0.

This follows from (∗).
Case 5: d = b and c 6= d. The identity becomes

(Sc,a − Sc,d)(Sd,c − 1) = (Sd,a − 1)(Sc,a − Sc,d),

which is equivalent to
(Sc,a − Sc,d)(Sd,c − Sd,a) = 0.

This follows from (∗). �

Lemma 5.16. ηS satisfies (5.9b).
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Proof. Let a, b, c, d ∈ Σ. We have

ηSa,d(c) + ηSd,b(c) + δc,d

=(Sc,a − Sc,d − δc,d) + (Sc,d − Sc,b − δc,b) + δc,d

=Sc,a − Sc,b − δc,b = ηSa,b(c).

This completes the proof. �

Lemma 5.17. Let η be a Σ-symbol and let a, b, c ∈ Σ.

(a) We have ηa,a(c) = −δa,c.
(b) We have ηa,b(c) = ηc,b(c)− ηc,a(c)− δc,a.
(c) If a 6= b then ηa,b(a)

2 = −ηa,b(a).
(d) If a 6= b then ηc,b(a)ηc,a(b) = 0.

Proof. (a) By (5.9b), we have ηa,a(c) = 2ηa,a(c) + δa,c.
(b) By (5.9b), we have ηc,b(c) = ηc,a(c) + ηa,b(c) + δa,c.
(c) By (5.9a), we have ηa,b(a)ηa,b(a) = ηa,b(a)ηa,a(a), and ηa,a(a) = −1 by (a).
(d) By (5.9a), the product in question is ηc,b(b)ηb,b(a), which vanishes by (a). �

Lemma 5.18. Let η be a Σ-symbol valued in a connected ring k. Then there exists a unique
oriented bisection structure S such that η = ηS.

Proof. Let a 6= b be elements of Σ. By Lemma 5.17(c), we see that −ηa,b(a) is an idempotent
of k. Since k is connected, it follows that it is either 0 or 1. Define S by Sa,b = −ηa,b(a) for
a 6= b, and Sa,a = 0. Since −ηa,a(a) = 1 by Lemma 5.17(a), we see that Sa,b = −ηa,b(a)− δa,b
is valid for all a, b ∈ Σ.

We now verify that S satisfies condition (∗). Let a, b, and c be distinct elements of Σ. We
must show

(Sa,b − Sa,c)(Sb,a − Sb,c) = 0.

Up to signs, the first factor is ηc,b(a) and the second is ηc,a(b). The product of these vanishes
by Lemma 5.17(d), and so the claim follows. It now follows from Lemma 5.17(b) that η = ηS.
Since S can be recovered from ηS (as 1 6= 0 in k), uniqueness of S follows. �

5.4. Proof of Theorem 1.2. Let T be directed Σ-labeled tree. This induces an oriented
bisection structure on Σ (§2.1) and thus, by the above results, a Z-valued measure for G,
i.e., a ring homomorphism µT : Θ(G) → Z. Consider the product of these measures

ϕ : Θ(G) →
∏

T

Z.

We must show that ϕ is an isomorphism. For any ring k, there is an induced map

ϕ∗ : Hom(
∏

T

Z, k) → Hom(Θ(G), k),

where the Hom’s are taken in the category of rings. By the results of this section (and
Theorem 2.3), ϕ∗ is bijective if k is a connected ring. It follows that ϕ∗ is also bijective if k
is a finite product of connected rings. It thus suffices to show that Θ(G) is such a product,
for then Yoneda’s lemma will show that ϕ is an isomorphism.

We now show that Θ(G) is a finite product of connected rings. It is equivalent to show
that Θ(G) has finitely many idempotents, and for this it is sufficient to show that Θ(G) has
finitely many minimal primes. Suppose p is a minimal prime. Since Θ(G)/p is a connected
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ring, the quotient map Θ(G) → Θ(G)/p factors through some µT . We thus find ker(µT ) ⊂ p,
and so p = ker(µT ) by the minimality of p. Hence Θ(G) has finitely many minimal primes.

5.5. Description of measures. Let T be a directed Σ-labeled tree and let ν be the corre-
sponding Z-valued Σ-measure. We now explain how to compute ν directly from T . Let S
be the oriented bisection structure associated to T ; we use the convention that Sa,b is 1 if a
points towards b, and 0 if a points away from b. Let η = ηS be the symbol asociated to S .

Let a, b ∈ Σ and let w ∈ Σ⋆ be of length n. Put w0 = a and wn+1 = b. We say that
(a, b, w) is monotonic if for all 0 ≤ i < j < l ≤ n + 1 with wi, wj, and wℓ distinct, we have
that wj belongs to the shortest path joining wi and wl. This means that each wi lies on the
shortest path between a and b (inclusive), and that as we go from wi to wi+1 we either stay
at the same edge or move closer to b along this path.

We say that an edge on the path from a to b is positively oriented if it points away
from a and towards b; otherwise we say that it is negatively oriented. We also apply this
terminology to a and b themselves: a is positively oriented if it points towards b, and b is
positively oriented if it points away from a. (If a = b then a is considered positively oriented.)

We say that (a, b, w) is good if it is monotonic and wi is positively oriented whenever wi

occurs more than once in w0 · · ·wn+1. Assuming (a, b, w) is good, we put ǫa,b(w) = (−1)m,
where m is the number of wi’s, for 1 ≤ i ≤ n, that are positively oriented. The following is
our main result:

Proposition 5.19. If (a, b, w) is good then νa,b(w) = ǫa,b(w); otherwise νa,b(w) = 0.

We require a few lemmas before giving the proof.

Lemma 5.20. For a, b, c, d ∈ Σ, we have

ηa,c(b)ηa,d(c) = ηa,c(b)ηb,d(c).

Proof. The stated equation is equivalent to

ηa,c(b)(ηa,d(c)− ηb,d(c)) = 0.

We have
ηa,d(c)− ηb,d(c) = ηa,b(c) + δb,c,

and so we must show
ηa,c(b)(ηa,b(c) + δb,c) = 0.

If b 6= c this follows from (∗), while if b = c it follows since ηa,b(b) ∈ {−1, 0}. �

Lemma 5.21. For a, b ∈ σ and w ∈ Σ⋆ of length n, we have

νa,b(w) =
n
∏

i=1

ηwi−1,wi+1
(wi),

where we put w0 = a and wn+1 = b.

Proof. Write ν ′a,b(w) for the right side above. We show νa,b(w) = ν ′a,b(w) by induction on the
length n of w. If n ≤ 1, the statement is clear. Now assume n ≥ 2. We have

νa,b(w) = ηa,w2
(w1)νa,b(w2 · · ·wn)

= ηa,w2
(w1)ηa,w3

(w2)ηw2,w4
(w3) · · ·

= ηa,w2
(w1)ηw1,w3

(w2)ηw2,w4
(w3) · · · = ν ′a,b(w).
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In the first step, we used Definition 5.1(b) with (w, c, w′) → (∅, w1, w[2, n]); in the second
step, we used the inductive hypothesis; and in the third step we applied Lemma 5.20 to the
first two factors, with (a, b, c, d) → (a, w1, w2, w3). The result thus follows. �

Lemma 5.22. Let a, b ∈ Σ be distinct. Then

ηa,b(a) =

{

−1 if a points towards b

0 otherwise
ηa,b(b) =

{

−1 if b points away from a

0 otherwise

Let a, b, c ∈ Σ be distinct. Then

ηa,b(c) =











−1 if c is between a and b, and points towards b

1 if c is between a and b, and points towards a

0 otherwise

Proof. These follow from direct computation. We explain the final formula. We have

ηa,b(c) = Sc,a − Sc,b

since δb,c = 0 by assumption. The edge c is between a and b, i.e., on the shortest path joining
a and b, if and only if Sc,a 6= Sc,b. Thus ηa,b(c) = 0 unless a ≤ c ≤ b. Assume that a ≤ c ≤ b.
If c points towards a then Sc,a = 1 and Sc,b = 0; thus ηa,b(c) = 1 in this case. Similarly, if c
points towards b then ηa,b(c) = −1. �

Lemma 5.23. Let a, b ∈ Σ and let w ∈ Σ⋆ have length n. Then for 0 ≤ i < j < l ≤ n + 1
we have that ηwi,wl

(wj) divides νa,b(w). Here we put w0 = a and wn+1 = b.

Proof. If j = i + 1 and l = i + 2 this follows from Definition 5.1(b) with (w, c, w′) →
(w[1, i), wi, w(i, n]). Suppose now that j > i + 1. Then by Definition 5.1 with (w, c, w′) →
(w[1, i], wi+1, w[i + 2, n]), we see that νa,b(w[1, i]w[i + 2, n]) divides νa,b(w). The former is
divisible by ηwi,wl

(wj) by induction, which completes the proof. �

Proof of Proposition 5.19. Suppose (a, b, w) is not good; we show that νa,b(w) = 0. First
suppose (a, b, w) is not monotonic. Then there exists 0 ≤ i < j < l ≤ n+1 with wi, wj, and
wl distint such that wj is not between wi and wl. By Lemma 5.22, we have ηwi,wl

(wj) = 0.
By Lemma 5.23, this symbol divides νa,b(w), and so νa,b(w) = 0. Next suppose that there
is a letter c occurring more than once in w0 · · ·wn+1 that is negatively oriented. Let i < j
be such that wi = wj = c. If c 6= a then Lemma 5.22 shows that ηa,wj

(wi) = 0, while if
c 6= b then the same result shows that ηwi,b(wj) = 0. By Lemma 5.23, these symbols divide
νa,b(w), and so this vanishes as well.

Now suppose that (a, b, w) is good. Let 1 ≤ i ≤ n. If wi−1 = wi = wi+1 then
ηwi−1,wi+1

(wi) = −1. Otherwise, Lemma 5.22 shows that ηwi−1,wi+1
(wi) is −1 if wi is positively

oriented and +1 otherwise. Thus the result follows from Lemma 5.21. �

5.6. An example. Let Σ = {a, . . . , f} be a six element set. Consider the following directed
Σ-labeled tree T :

a

b

c d
e

f

The oriented bisection structure S is specified in the following table:
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a b c d e f
a 0 1 1 1 1 1
b 0 0 0 0 0 0
c 0 0 0 1 1 1
d 1 1 1 0 0 0
e 0 0 0 0 0 0
f 0 0 0 0 0 0

Here the row labeled “a” specifies the values of Sa,−.
Consider νb,f(w). For (b, f, w) to be good, w can only use the edges joining b and f

(inclusively), i.e., b, c, d, and f, and they must appear in that order. In fact, b can not occur
in w since it is negatively oriented and is one of the endpoints, and d can only occur once.
It follows that the good w’s in this case have the form cidjf l where i, l ∈ N and j ∈ {0, 1}.
Moreover, for such i, j, and l, we have

νb,f(c
idjf l) = (−1)i+l.

6. The case of the line

Recall that L = S \ {∞} is a homogeneous structure with a total order and Σ-coloring,
and its automorphism group H is oligomorphic. The following theorem describes measures
for H .

Theorem 6.1. Given a directed Σ-labeled tree T and two (possibly equal) vertices x and y
of T , there is an associated Z-valued measure µT,x,y for H. The product of these measures
defines a ring isomorphism Θ(H) →

∏

T,x,y Z. In particular, Θ(H) ∼= ZM , where M =

(2n+ 2)n and n = #Σ.

Proof. We simply indicate the main ideas of the proof. Put Σ = Σ ∪ {±∞}. A Σ-measure
is a rule assigning to a ∈ Σ ∪ {−∞}, b ∈ Σ ∪ {+∞}, and w ∈ Σ⋆ a value νa,b(w) in k
satisfying axioms similar to those in Definition 5.1. One first shows that measures for H are
equivalent to Σ-measures: given a measure µ for H , the corresponding Σ-measure is defined
by νa,b(w) = µ(Iw), where I is an interval in L with endpoints of type a and b.

Next, a Σ-symbol is a rule assigning to a ∈ Σ ∪ {−∞}, b ∈ Σ ∪ {+∞}, and c ∈ Σ a value
ηa,b(c) in k satisfying axioms similar to those in Definition 5.8. One shows that there is a
bijective correspondence between Σ-measures and Σ-symbols.

Suppose η is a Σ-symbol valued in a connected ring k. Define

S : Σ× Σ → {0, 1}

as follows. For a, b ∈ Σ, we define Sa,b just as before. We put Sa,∞ = −ηa,∞(a) and
Sa,−∞(a) = η−∞,a(a) + 1. One shows using arguments similar to before that these values do
belong to {0, 1}, and that η can be recovered from S. Moreover, S satisfies the following
condition: given a, b ∈ Σ and c ∈ Σ, at least one of the equalities Sa,b = Sa,c or Sb,a = Sb,c

holds.
Restricting S to Σ×Σ yields an oriented bisection structure, and thus a directed Σ-labeled

tree T . One then shows that there is a unique vertex x of T such that Sa,∞ is 1 if a points to
x, and 0 otherwise; similarly, one gets a vertex y associated to −∞. From this description,
it is also clear how one can start with (T, x, y) and then define S, η, ν, and finally µ. This
is how one obtains the stated description for Θ(H).
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Finally, we explain the enumeration. If T is a tree with n edges then T has n+1 vertices,
and so there are (n+1)2 choices for (x, y). Hence M = (n+1)2 ·N , where N is the number
of choices for T . (Note that directed Σ-labeled trees have no non-trivial automorphisms.)
We have already seen in Proposition 2.8 that N = 2n · (n+ 1)n−2. �
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