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Abstract. In this paper, we devote to investigating the circumstances under which the addi-
tion of an edge to a graph will cause the Laplacian matching roots to change only by integer
quantities. We prove that the Laplacian matching root integral variation in one place is impos-
sible and the Laplacian matching root integral variation in two places is also impossible under
some constraints.

1. Introduction

There are several polynomials associated with a graph, including the characteristic polyno-
mial, the chromatic polynomial, the matching polynomial , and the Tutte polynomial. One of
the most fundamental topics in graph polynomial theory is to investigate the properties of roots
of the polynomials. In this paper, we devote to studying that how the roots of the Laplacian
matching polynomial of a graph change by integer quantities while adding an edge.

Throughout this paper, all graphs are assumed to be finite, undirected, and without loops or
multiple edges. Let G be a graph with vertex set V (G) = {v1, . . . , vn} and edge set E(G) =
{e1, . . . , em}. For a vertex v of G, we denote by N(v) the set of all vertices of G adjacent to
v. The degree of v is defined as |N(v)|, and is denoted by d(v). The maximum degree of the
vertices of G is denoted by ∆(G). For a missing edge e in G, G+ e is the graph obtained from
G by adding e as a new edge. For a subset W of V (G), we shall use G[W ] to denote the induced
graph of G induced by W . For a subset M of E(G), we shall use V (M) to denote the set of
vertices of G each of which is an endpoint of one of the edges in M . If no two distinct edges in
M share a common endpoint, then M is called a matching of G. The set of matchings of G is
denoted by M(G). An i-matching is a matching of size i, we denote by φi(G) the number of
i-matching of G, with the convention that φ0(G) = 1. The matching polynomial of G is

M (G,x) =
∑

M∈M(G)

(−1)|M |x|V (G)\V (M)| =
∑

i≥0

(−1)iφi(G)xn−2i,

which was formally defined by Heilmann and Lieb [4] in studying statistical physics.
The matching polynomial is an absorbing mathematical object and is closely related to other

topics in spectral graph theory. For instance, the well known Heilmann-Lieb root bound theorem
[4] states that for a graph G with maximum degree ∆(G) ≥ 2, the roots of M (G,x) lie in

the interval (−2
√

∆(G)− 1, 2
√

∆(G)− 1). Godsil and Gutman [3] shown that the average of
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adjacency characteristic polynomials of all signed graphs with underlying graph G is exactly
the matching polynomial of G. Based on above two facts, Marcus, Spielman, and Srivastava [6]
established that there are infinitely many bipartite Ramanujan graphs.

By observing above relation between the adjacency characteristic polynomial and the match-
ing polynomial, it is natural to ask: What is the average of Laplacian characteristic polynomials
of all signed graphs with underlying graph G? In 2020, Mohammadian [7] called it the Lapla-

cian matching polynomial of G, denoted by L M (G,x), and proved that it has the following
expression

(1.1) L M (G,x) =
∑

M∈M(G)

(−1)|M |
∏

v∈V (G)\V (M)

(x− d(v)).

Independently, Zhang and Chen [12] also studied this polynomial and called it the average

Laplacian polynomial of G.
The roots of L M (G,x), denoted by λ1(G), . . . , λn(G), are called the Laplacian matching

roots of G. In [7], Mohammadian proved that all Laplacian matching roots of G are real and
nonnegative. So, the Laplacian matching roots can be arranged as λ1(G) ≥ · · · ≥ λn(G) ≥ 0.
By (1.1), it is easy to observe that the sum of all Laplacian matching roots of G equals to∑

v∈V (G) d(v). This observation implies that for any e /∈ E(G),

(1.2)
n∑

i=1

λi(G+ e)−
n∑

i=1

λi(G) = 2.

Recently, Wan, Wang, and Mohammdian [9] proved the following Theorem.

Theorem 1.1. Let G be a graph of order n. Then the Laplacian matching roots of G + e
interlace those of G, that is,

(1.3) λ1(G+ e) ≥ λ1(G) ≥ λ2(G+ e) ≥ λ2(G) ≥ · · · ≥ λn(G+ e) ≥ λn(G).

Combining (1.2) and (1.3), we see that by adding an edge, none of the Laplacian matching
roots can decrease, and that the sum of those roots will increase by 2. To investigate the
integrality of Laplacian matching roots, in this paper, we only consider the circumstances under
which the addition of an edge to a graph will cause the Laplacian matching roots to change only
by integer quantities. Evidently, there are just two possible cases that can happen as follows:

(A) one root of L M (G,x) increasing by 2 and other n − 1 roots of L M (G,x) remain
unchanged;

(B) two roots of L M (G,x) increasing by 1 and other n − 2 roots of L M (G,x) remain
unchanged.

We refer to (A) and (B) by saying the Laplacian matching root integral variation (abbreviated
by LMRIV) occurs to G in one place by adding an edge and LMRIV occurs to G in two places,
respectively. The analogous discussion for the Laplacian eigenvalues of G was considered in
serveral literatures. For more details, one can refer to [1], [5], [8] and [10].

In this paper, we will prove that LMRIV in one place is impossible and LMRIV in two places

is also impossible if g(G)
c(G) > 7

6 , where g(G) is the girth of G and c(G) is the dimension of cycle

space of G.

2. Preliminaries

In this section, we collect some concepts and known results about the matching polynomial
and the Laplacian matching polynomial for later use. Let G be a graph of order n. If v ∈ V (G),
then G−v is the graph obtained from G by deleting v together with all edges incident to v. The
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matching polynomial satisfies the following basic identity, which is called the expansion formula
of M (G,x) at vertex v.

Proposition 2.1. [2] Let G be a graph. For any v ∈ V (G),

M (G,x) = xM (G− v, x)−
∑

u∈N(v)

M (G− v − u, x).

The subdivision of G, denoted by S(G), is the graph derived from G by replacing every edge
e = {a, b} of G with two edges {a, ve} and {b, ve} along with the new vertex ve corresponding
to the edge e. The following theorem establishs an important connection between the matching
polynomial and the Laplacian matching polynomial, which is a useful tool to deal with the
Laplacian matching roots of a graph.

Theorem 2.2. [9, 11, 12] Let G be a graph. Then,

M (S(G), x) = x|E(G)|−|V (G)|
L M (G,x2).

Another useful result due to Chen and Zhang [12] provides a combinatorial interpretation for
the coefficients of the Laplacian matching polynomial by means of the weight of a TU-subgraph.
A TU-subgraph of G is a subgraph whose components are trees or unicyclic graphs. Suppose
that a TU-subgraph H of G consists of s unicyclic graphs and trees T1, . . . , Tt. Then the weight
of H is defined as

ω(H) = 2s
t∏

i=1

|Ti|,

where |Ti| is the order of Ti.

Theorem 2.3. [12] Let G be a graph of order n, and L M (G,x) =
∑n

i=0(−1)ibix
n−i be the

Laplacian matching polynomial of G. Then,

bi = ω(Hi) =
∑

H∈Hi

ω(H)

for i = 1, 2, . . . , n, where Hi denotes the set of all the TU-subgraphs of G with i edges.

Recall that the Laplacian matching roots of G can be arranged as

λ1(G) ≥ . . . ≥ λn(G) ≥ 0.

The following three theorems on the Laplacian matching roots for a connected graph, appeared
in [9, 12], will be used frequently in the later section.

Theorem 2.4. [9, 12] Let G be a connected graph. Then, λn(G) = 0 if and only if G is a tree.

Theorem 2.5. [9] Let G be a connected graph. Then,

λ1(G) ≥ ∆(G) + 1,

with the equality holds if and only if G is a star.

Theorem 2.6. [9] Let G be a connected graph and e /∈ E(G). Then, λ1(G+e) has the multiplicity

1 and is strictly greater than λ1(G).
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3. Main results

The purpose of this section is to investigate the LMRIV. To begin with, we will prove that
LMRIV in one place is impossible. Before proceeding, we introduce some needed notations.
In what follows, we always suppose that G is a connected graph with V (G) = {v1, . . . , vn}
and E(G) = {e1, . . . , em}, and always use R(G) = {λ1, . . . , λn} to denote the multiset of the
Laplacian matching roots of G, where λ1 ≥ · · · ≥ λn ≥ 0.

Theorem 3.1. The LMRIV will not occur in one place.

Proof. Assume that LMRIV occurs to G in one place by adding a new edge e = vivj . By
Theorem 2.6, the largest Laplacian matching root must be changed by 2, so we can write
R(G+ e) = {λ1 + 2, λ2, . . . , λn}. It follows from Theorem 2.2 that

M (S(G), x) = xm−n
L M (G,x2) = xm−n

n∏

ℓ=1

(x2 − λℓ)

and

M (S(G+ e), x) = xm−n+1
L M (G+ e, x2)

= xm−n+1(x2 − λ1 − 2)

n∏

ℓ=2

(x2 − λℓ)

= xM (S(G), x) − 2xm−n+1
n∏

ℓ=2

(x2 − λℓ).

(3.1)

One the other hand, by Propostion 2.1, we have

(3.2) M (S(G + e), x) = xM (S(G), x) − M (S(G) − vi, x)− M (S(G)− vj , x).

Combining (3.1) and (3.2), one can deduce that

(3.3) M (S(G) − vi, x) + M (S(G)− vj, x) = 2xm−n+1
n∏

ℓ=2

(x2 − λℓ).

By comparing the coefficient of xm+n−3 on two sides of (3.3), we observe that

4m− d(vi)− d(vj) = 2
n∑

ℓ=2

λℓ = 2(2m− λ1),

which implies that d(vi)+d(vj) = 2λ1. This contradicts Theorem 2.5, completing the proof. �

Now, we devote to considering the case in which the LMRIV occurs to G in two places. By
Theorem 2.6, the largest matching root must be changed. In what follows, we always denote
another changed root by λk.

Theorem 3.2. If the LMRIV occurs to G in two places by adding a new edge e = vivj and the

changed roots of G are λ1 and λk, then

λ1 + λk = d(vi) + d(vj) + 1,

λ1λk = d(vi)d(vj).

Proof. Write R(G+ e) = {λ1 + 1, λ2, . . . , λk−1, λk + 1, λk+1, . . . , λn}. By Theorem 2.2, we have

(3.4) M (S(G), x) = xm−n
L M (G,x2) = xm−n

n∏

ℓ=1

(x2 − λℓ)
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and

M (S(G+ e), x) =xm−n+1
L M (G+ e, x2)

=xm−n+1(x2 − λ1 − 1)(x2 − λk − 1)
∏

ℓ 6=1,k

(x2 − λℓ)

=xM (S(G), x) − xm−n+1(x2 − λ1)
∏

ℓ 6=1,k

(x2 − λℓ)

− xm−n+1(x2 − λk)
∏

ℓ 6=1,k

(x2 − λℓ) + xm−n+1
∏

ℓ 6=1,k

(x2 − λℓ).

(3.5)

In addition, it follows from Proposition 2.1 that

(3.6) M (S(G + e), x) = xM (S(G), x) − M (S(G) − vi, x)− M (S(G)− vj , x).

Combining the (3.5) and (3.6), one can deduce that

M (S(G)− vi, x) + M (S(G) − vj , x)

= xm−n+1(x2 − λ1)
∏

ℓ 6=1,k

(x2 − λℓ) + xm−n+1(x2 − λk)
∏

ℓ 6=1,k

(x2 − λℓ)

− xm−n+1
∏

ℓ 6=1,k

(x2 − λℓ)

= (2x2 − λ1 − λk − 1)xm−n+1
∏

ℓ 6=1,k

(x2 − λℓ).

(3.7)

Note that both S(G)− vi and S(G)− vj contain m+n− 1 vertices, and contain 2m− d(vi) and
2m − d(vj) edges, respectively. Further, by comparing the coefficients of xm+n−3 on two sides
of (3.7), we observe that

4m− d(vi)− d(vj) = λ1 + λk + 1 + 2
∑

ℓ 6=1,k

λℓ = 4m− λ1 − λk + 1,

which implies that
λ1 + λk = d(vi) + d(vj) + 1.

Now, we are going to prove the second statement. Recall that φ2(G) deonte the number of
the 2-matchings in G. For any u ∈ V (G), it is clear that

(3.8) φ2(S(G)) − φ2(S(G) − u) = (2m− d(u) − 1)d(u).

By comparing the coefficients of xm+n−4 on two sides of (3.4), we observe that

(3.9) φ2(S(G)) =
∑

1≤s<t≤n

λsλt.

For vi, vj ∈ V (G), combining (3.8) and (3.9), we have

φ2(S(G)− vi) =
∑

1≤s<t≤n

λsλt − (2m− d(vi)− 1)d(vi)

and
φ2(S(G)− vj) =

∑

1≤s<t≤n

λsλt − (2m− d(vj)− 1)d(vj).

Hence, writing φ(vi, vj) = φ2(S(G)− vi) + φ2(S(G)− vj), we have

(3.10) φ(vi, vj) = 2
∑

1≤s<t≤n

λsλt − (2m− d(vi)− 1)d(vi)− (2m− d(vj)− 1)d(vj).
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By comparing the coefficients of xm+n−5 on two sides of (3.7), we have

(3.11) φ(vi, vj) = 2
∑

s,t6=1,k

λsλt + (λ1 + λk + 1)
∑

ℓ 6=1,k

λℓ.

Therefore, it follows from (3.10) and (3.11) that

(3.12) (λ1 + λk − 1)
∑

ℓ 6=1,k

λℓ + 2λ1λk = 2m(d(vi) + d(vj))− (d2(vi) + d2(vj) + d(vi) + d(vj)).

Noting that λ1 + λk = d(vi) + d(vj) + 1 and
∑

ℓ 6=1,k

λℓ = 2m− (λ1 + λk), we can deduce that

λ1λk = d(vi)d(vj),

as desired. �

As applications of Theorem 3.2, in the following two consequeces, we give some sufficent
conditions for the LMRIV not occuring in two places.

Corollary 3.3. For any tree T , the LMRIV will not occur in two places.

Proof. If the LMRIV occurs to T in two places by adding a new edge e = vivj, by Theorem 2.4
and Theorem 2.6, the changed roots are λ1 and λn(= 0). By Theorem 3.2, we find that

d(vi)d(vj) = λ1λn = 0,

which implies that d(vi) = 0 or d(vj) = 0, contradiction. �

Corollary 3.4. For two nonadjacent vertices vi and vj , if d(vi) + d(vj) ≤ 3, then the LMRIV

will not occur to G in two places by adding a new edge e = vivj .

Proof. Assume that LMRIV occurs to G in two places by adding the edge e = vivj with
d(vi) + d(vj) ≤ 3. It follows from Theorem 3.2 and the Vieta’s formulas that

λ1 =
(d(vi) + d(vj) + 1) +

√
(d(vi) + d(vj) + 1)2 − 4d(vi)d(vj)

2
< d(vi) + d(vj) + 1 ≤ 4.

Theorem 2.5 states that λ1 ≥ ∆(G) + 1, which implies that ∆(G) < 3. Since G contains two
vertices vi and vj such that d(vi) + d(vj) ≤ 3, we conclude that G is a path, which contradicts
Corollary 3.3. �

Next, we will keep on discussing the LMRIV occuring in two places by combining another
useful tool. By Theorem 2.3, we may let L M (G,x) =

∑n
i=0(−1)ibix

n−i and L M (G+ e, x) =∑n
i=0(−1)ib̃ix

n−i. If the LMRIV occurs to G in two places by adding a new edge e = vivj and
the changed roots of G are λ1 and λk, then

(3.13)
b̃n
bn

=
(λ1 + 1)(λk + 1)

λ1λk

.

For convenience, denote by H (G) (or H ) the set of all the TU-subgraphs of G with n edges,
and denote by T (G) the set of all spanning trees of G. By Theorem 2.3, we have

bn = ω(H (G)) =
∑

H∈H (G)

ω(H).

It should be mentioned here that for any H ∈ H (G), all components of H are unicylic because
that H is a TU-subgraph of size n.

Lemma 3.5. For two nonadjacent vertices vi and vj , if d(vi) = d(vj) = 2, then the LMRIV will

not occur to G in two places by adding a new edge e = vivj.
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Proof. Assume that LMRIV occurs to G in two places by adding the edge e = vivj with
d(vi) = d(vj) = 2. It follows from Theorem 3.2 that λ1 = 4 and λk = 1. By Theorem 2.5, we
can deduce that ∆(G) ≤ 3. If ∆(G) = 3, then λ1 = ∆(G)+1, and so Theorem 2.5 states that G
is a star. This contradicts Corollary 3.3. If ∆(G) ≤ 2, then G is a tree unless that G is a cylce
Cn. By Corollary 3.3, we only consider the case that G = Cn (n ≥ 3). It follows from Theorem

2.3 that bn = 2 and b̃n = 2(n + 1). By (3.13),

2(n + 1)

2
=

b̃n
bn

=
(λ1 + 1)(λk + 1)

λ1λk

=
5

2
.

This contradiction completes the proof. �

Let us introduce more notations and definitions for later use. Recall that we always suppose
that G is a connected graph of order n (n ≥ 3) and size m. The girth of G is denoted by g(G),
and the dimension of cycle space of G is denoted by c(G), that is, c(G) = m−n+1. A connected
graph G is unicylic (bicyclic, resp.) if c(G) = 1 (c(G) = 2, resp.) Let π = {V1, . . . , Vp(π)} be
a partition of V (G), and let Ω be the set of all these partions. Denote by Gi the subgraph of
G induced by Vi. A partition π is called TU-admissible if for any i (1 ≤ i ≤ p(π)), Gi is a
connected graph with c(Gi) ≥ 1. We shall use Hπ(G) to denote the subset of H (G) consisting
of the TU-subgraphs of size n whose components are corresponding to π. So, H (G) can be
partitioned as {Hπ(G)}π∈Ω. If p(π) = 1, we simply use H1(G) instead of Hπ(G), which denotes
the set consisting of all unicyclic spanning subgraphs of G.

Lemma 3.6. Let G be a connected graph with c(G) ≥ 1. Then
|T (G)|
|H1(G)| ≥

g(G)
c(G) .

Proof. We are going to count pairs (T,U) consisting of unicyclic spanning subgraphs U and
spanning trees T of G satisfying E(T ) ⊂ E(U). On the one hand, the number of such pairs is
given by |T (G)|c(G). On the other hand, the number of pairs (T,U) is at least |H1(G)|g(G).
This completes the proof. �

Lemma 3.7. Let G be a connected graph with
g(G)
c(G) > 1. For two nonadjacent vertices vi and

vj , if d(vi) = 1 or d(vj) = 1, then the LMRIV will not occur to G in two places by adding a new

edge e = vivj.

Proof. Assume that LMRIV occurs to G in two places by adding the edge e = vivj with
d(vi) = 1. Denote by f the edge incident to vi. By Corollary 3.4, we can assume that d(vj) ≥ 3.
It follows from (3.13) and Theorem 3.2 that

b̃n
bn

=
(λ1 + 1)(λk + 1)

λ1λk

= 1 +
1

d(vi)
+

1

d(vj)
+

2

d(vi)d(vj)
≤ 3.

To get a contradiction, we prove that b̃n
bn

> 3. Applying Theorem 2.3, we have

b̃n
bn

=
ω(H (G+ e))

ω(H (G))
=

ω(H e(G+ e)) + ω(H f (G+ e)) + ω(H e,f (G+ e))

ω(H (G))
,

where H e(G + e) (H f (G + e), H e,f (G + e), resp.) is the subset of H (G + e) consisting of
the TU-subgraphs of size n containing e but no f (containing e but no f , containing e and f ,
resp.). Clearly, ω(H f (G+ e)) = ω(H (G)). Note that any TU-subgraph in H e(G+ e) can be
obtained from some TU-subgraph of G by replacing f by e, and vice versa. It is not hard to see
that ω(H e(G+ e)) = ω(H (G)). Therefore, it is enough to show that

(3.14)
ω(H e,f (G+ e))

ω(H (G))
> 1.
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Let π = {V1, . . . , Vp} be a TU-admissible partition of V (G). We say that π is of Type I if vi
and vj lie in the same element of π. Otherwise, π is called of Type II. Recall that Hπ(G) is the
subset of H (G) consisting of the TU-subgraphs of size n whose components are corresponding
to π, and H (G) can be partitioned as {Hπ(G)}π∈Ω. For any Hπ(G), we define the subset
σ(Hπ(G)) of H e,f (G+ e) as follows.

If π is of Type I, without loss of generality, assume that vi, vj ∈ V1. Denote by Gi (G̃i, resp.)
the subgraph of G (G + e, resp.) induced by Vi for i = 1, . . . , p. In the situation, σ(Hπ(G))
is defined to be the subset of H e,f(G + e) consisting of the TU-subgraphs of size n whose

components are corresponding to π. Note that for any H̃ ∈ σ(Hπ(G)), the component H̃[V1]

of H corresponding to V1 is comprised of a spanning tree G̃1 − vi together with edge e and f ,

and the component H̃[Vi] of H corresponding to Vi is a unicyclic spanning subgraph of G̃i for
i = 2, . . . , p, which is preserved while we add e to G. Therefore, we can deduce that

(3.15)

∑
H̃∈σ(Hπ(G)) ω(H̃)

∑
H∈Hπ(G) ω(H)

=
2p|T (G̃1 − vi)|Π

p
i=2|H1(G̃i)|

2pΠp
i=1|H1(Gi)|

=
|T (G̃1 − vi)|

|H1(G1)|
=

|T (G1|

|H1(G1)|
> 1,

where the last inequality follows from Lemma 3.6.
If π is of Type II, without loss of generality, assume that vi ∈ V1 and vj ∈ V2. We still use

Gi (G̃i, resp.) to denote the subgraph of G (G+ e, resp.) induced by Vi for i = 1, . . . , p. In the
situation, σ(Hπ(G)) is defined to be the subset of H e,f (G+ e) consisting of the TU-subgraphs

H̃ of size n satisfying the following conditions:

• The components of H̃ are corresponding to the partition {V1 ∪ V2, V3, . . . , Vp};

• H̃[V1 ∪ V2]− e exactly have two compopents which correspond to V1 and V2 repectively.

Equivalently, e connects a spanning tree of G̃1 and a unicyclic spanning subgraph of G̃2,

or e connects a spanning tree of G̃2 and a unicyclic spanning subgraph of G̃1.

Note that Gi = G̃i for i = 1, . . . , p as π is of Type II. Therefore, we can deduce that
∑

H̃∈σ(Hπ(G)) ω(H̃)
∑

H∈Hπ(G) ω(H)
=

2p−1(|T (G̃1)||H1(G̃2)|+ |T (G̃2)||H1(G̃1)|)Π
p
i=3|H1(G̃i)|

2pΠp
i=1|H1(Gi)|

=
|T (G1)|

2|H1(G1)|
+

|T (G2)|

2|H1(G2)|
> 1,

(3.16)

where the last inequality follows from Lemma 3.6.
We are now ready to prove (3.14). By the above definition of σ(Hπ(G)), it is clear that

σ(Hπ(G)) ∩ σ(Hπ′(G)) = ∅ if π 6= π′. Note that ω(H (G)) =
∑

π∈Ω

∑
H∈Hπ(G) ω(H). To

establish (3.14), it suffices to show that

∑
H̃∈σ(Hπ(G))

ω(H̃)
∑

H∈Hπ(G) ω(H) > 1 for all TU-admissiable π ∈ Ω,

which has been provided by (3.15) and (3.16). The result follows. �

We are now ready to present the main theorem in this paper.

Theorem 3.8. Let G be a connected graph with
g(G)
c(G) >

7
6 . Then, the LMRIV will not occur to

G in two places by adding a new edge.

Proof. Assume that LMRIV occurs to G in two places by adding the edge e = vivj. By
combining Corollary 3.4, Corollary 3.5 and Lemma 3.7, we may assume that 2 ≤ d(vi) < d(vj).
It follows from (3.13) and Theorem 3.2 that

b̃n
bn

=
(λ1 + 1)(λk + 1)

λ1λk

= 1 +
1

d(vi)
+

1

d(vj)
+

2

d(vi)d(vj)
≤

13

6
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with equality holds if and only if d(vi) = 2 and d(vj) = 3.

To get a contradiction, we prove that b̃n
bn

> 13
6 . Applying Theorem 2.3, we have

b̃n
bn

=
ω(H (G+ e))

ω(H (G))
=

ω(H e(G+ e)) + ω(H ê(G+ e))

ω(H (G))
,

where H e(G+ e) (H ê(G+ e), resp.) is the subset of H (G+ e) consisting of the TU-subgraphs
of size n containing e (containing no e, resp.). Clearly, ω(H ê(G + e)) = ω(H (G)). Therefore,
it is enough to show that

ω(H e(G+ e))

ω(H (G))
>

7

6
.

The remaining proof is similar to the proof of Lemma 3.7, and the details are left to the reader.
�

The following consequence immediately follows from Theorem 3.8. We wonder that there is
no connected graph G such that the LMRIV occuring to G in two places by adding a new edge.

Corollary 3.9. Let G be a connected unicyclic or bicyclic graph. Then, the LMRIV will not

occur to G in two places by adding a new edge.
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