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The computer simulation of many molecular processes is complicated by long time scales caused
by rare transitions between long-lived states. Here, we propose a new approach to simulate such
rare events, which combines transition path sampling with enhanced exploration of configuration
space. The method relies on exchange moves between configuration and trajectory space, carried out
based on a generalized ensemble. This scheme substantially enhances the efficiency of the transition
path sampling simulations, particularly for systems with multiple transition channels, and yields
information on thermodynamics, kinetics and reaction coordinates of molecular processes without
distorting their dynamics. The method is illustrated using the isomerization of proline in the KPTP
tetrapeptide.

Overcoming high energy barriers to explore configura-
tion and trajectory space in simulations of rare events
is at the core of the sampling problem. Numerous en-
hanced sampling techniques have been developed over
the years to better understand the thermodynamics and
kinetics of rare events such as nucleation, chemical re-
actions and biomolecular reorganization [1–5]. However,
when deciding for the most suitable method, a conflict of
interest frequently arises. Enhanced sampling methods
such as metadynamics [6, 7] and umbrella sampling [8]
efficiently focus computational resources on the regions
of interest while still allowing for reweighting to gain in-
formation on the equilibrium distribution peq(x). How-
ever, the dynamics of the system are distorted by the
introduction of the bias potential. In contrast, path sam-
pling methods such as Transition Path Sampling (TPS)
and Transition Interface Sampling (TIS) allow to obtain
true-dynamic trajectories between stable states [9, 10].
However, these schemes may suffer from correlations be-
tween subsequently sampled trajectories, in particular for
systems with several reaction channels. To alleviate this
problem, in recent years there has been great interest in
applying enhanced sampling methods to path space [11–
14]. Apart from that, points on the trajectory are not
distributed according to peq(x). Although in principle
possible, it is unfeasible to reweight samples to the equi-
librium distribution since this requires knowledge of the
committor probability of each point [15].

In this letter, we propose a sampling scheme based
on a parallel sampling of configuration and path space,
e.g., using metadynamics and TPS. The two simulations
are coupled by exchanging configurations between them
following an acceptance criterion derived for a general-
ized ensemble. As a result, transition paths show less
correlations due to fast relaxation in configuration space
and barriers in configuration space are crossed more fre-
quently due to exchanges with configurations on transi-
tion paths.
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Exchange moves, e.g. as employed in replica exchange
molecular dynamics [16, 17] or replica exchange TIS [18],
are a powerful tool to enhance sampling and reduce cor-
relations between samples. In such a move [19], config-
urations of two systems are exchanged according to an
acceptance criterion to ensure a properly weighted en-
semble in both systems in the limit of infinite sampling.
We propose to perform exchange moves between config-
urations y from a given distribution py(y) and a config-
uration on a path X from the distribution of transition
paths PAB

X (X), which includes only paths that connect
two given regions A and B. In this context, a generalized
ensemble can be defined through the joint distribution:

Pz(z) = py(y)PAB
X [X(τ)] (1)

where the state z is given by z = {y,X(τ)} with a config-
uration y and a path X(τ) of length τ . The probability
density of reactive paths PAB

X [X(τ)] is given by [10]:

PAB
X [X(τ)] =

1

ZAB
HAB(x0, xτ )

τ/∆t−1∏
i=1

h̃(xi∆t)

× PX [X(τ)] (2)

where ∆t is the timestep, p(xi∆t → x(i+1)∆t) is the short-
time transition probability from xi∆t to x(i+1)∆t and ZAB

is the partition function. The probability distribution of
an unconstrained path PX [X(τ)] is given by [10]:

PX [X(τ)] =peq(x0)

τ/∆t−1∏
i=0

p(xi∆t → x(i+1)∆t) . (3)

where peq(x) is the equilibrium or stationary distribu-
tion for the underlying dynamics of X. The factor
HAB(x0, xτ ) is one if the trajectory connects states A
and B in any order and is zero otherwise. The function

h̃(x) is zero if x is in state A or B and unity otherwise,
ensuring that the transition path has exactly one point
in state A and one in B.

For an exchange between the two spaces in Pz(z),
Eq. (1), a new state z′ = {y′, X ′(τ ′)} is generated based
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Figure 1. Schematic representation of the proposed exchange
move for the generation of a new path X ′(τ ′) and configura-
tion y′ given the path X(τ) and configuration y.

on the current state z = {y,X(τ)} (Figure 1). The new
configuration y′ is obtained by selecting a point on the
current trajectory X(τ) with probability psel

[
y′|X(τ)

]
.

The generation probability for this move is given by:

pgen
y

[
X(τ)→ y′

]
= psel

[
y′|X(τ)

]
(4)

A new path X ′ is generated based on y by means of a
shooting move where the equations of motion are inte-
grated forward and backward in time until a stable state
is reached. With k∆t being the time of the shooting point
on the new path, the generation probability is given by:

P gen
X

[
y → X ′(τ ′)

]
=

τ ′/∆t−1∏
i=k

p(x′i∆t → x′(i+1)∆t)

×
k∏
i=1

p̄(x′i∆t → x′(i−1)∆t). (5)

Assuming that the transition probabilities fulfill micro-
scopic reversibility, the above distribution can be rewrit-
ten as:

P gen
X

[
y → X ′(τ ′)

]
=

1

peq(y)
× PX [X ′(τ ′)] (6)

Imposing detailed balance, the acceptance probability for
the described exchange move must obey

P acc
z

(
z → z′

)
P acc
z

(
z′ → z

) =
Pz
(
z′
)
P gen
z

(
z′ → z

)
Pz
(
z
)
P gen
z

(
z → z′

) (7)

which can be satisfied using the Metropolis rule;

P acc
z

(
z → z′

)
= min

{
1,
Pz
(
z′
)
P gen
z

(
z′ → z

)
Pz
(
z
)
P gen
z

(
z → z′

) } (8)

Inserting expressions from Eq. (1), (4) and (6), the ac-
ceptance criterion for the exchange move is:

P acc
z

(
z →z′

)
= HAB(x′0, x

′
τ ′)

τ ′/∆t−1∏
i=1

h̃(x′i∆t)

×min

{
1,
py(y′)

py(y)

peq(y)

peq(y′)

psel
[
y|X ′(τ ′)

]
psel
[
y′|X(τ)

] } (9)

The exchange scheme is most efficient if py(y) has sig-
nificant overlap with peq(y) and shooting moves starting

from samples of y have a reasonable probability of gen-
erating a transition path. Both of these conditions can
be matched well by setting the distribution py(y) to the
Boltzmann distribution with a bias potential introduced
via metadynamics [6, 7]:

py(y) = Z−1 exp
{
−β[U(y) + Ubias(r(y))]

}
(10)

The acceptance of the exchange scheme can then be
further improved by tuning the selection probability
psel
[
y′|X(τ)

]
, which represents the probability to choose

a point y′ on a given path X(τ). We can bias this se-
lection in the spirit of Jung et al. [20] according to the
current bias introduced by metadynamics:

psel
[
y′|X(τ)

]
=

exp
{
−β[Ubias(r(y

′))]
}∑τ/∆t

i=0 exp
{
−β[Ubias(r(xi∆t))]

} (11)

The acceptance probability for the exchange then be-
comes:

P acc
z

(
z → z′

)
= HAB(x′0, x

′
τ ′)

τ ′/∆t−1∏
i=1

h̃(x′i∆t)

×min

{
1,

∑τ/∆t
i=0 exp

{
−β[Ubias(r(xi∆t))]

}∑τ ′/∆t
i=0 exp

{
−β[Ubias(r(x′i∆t))]

}} (12)

The resulting criterion therefore represents the ratio of
the times the old and new paths spend in regions with a
high bias potential. This expression is very similar to the
reweighting factor necessary when initiating paths from
a biased distribution of shooting points [14]. During the
exchange, y acts as a shooting point to generate X ′ and
y′, selected on X, is chosen with the same procedure as
a shooting point in regular TPS. Therefore, we call the
exchange scheme shooting point exchange (SPEx) in the
following.

We first test the sampling scheme on a double well
model, where stable states are connected by two dis-
tinct reaction channels (Figure 2A,B). In this system,
two factors complicate the efficient sampling of configu-
ration and path space. On the one hand, stable states are
separated by an energy barrier limiting the occurrence of
switches between them. On the other hand, also the two
reaction channels are separated by a barrier. Hence, sam-
pling transition paths connecting states A and B suffers
from strong correlations since subsequently visited paths
tend to remain in the same reaction channel. We compare
the performance of standalone metadynamics and TPS
with the performance of SPEx for different heights of the
barrier separating the stable states (simulation details
in supplementary information, SI [21]). In configuration
space, sampled with metadynamics, we measure the time
needed to switch between stable states A and B, τA↔B.
The exchange moves decrease the switching time between
the two states at all barrier heights (Figure 2C). As the
speedup is linked to the number of accepted exchanges,
the effect is more pronounced at smaller barrier heights
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Figure 2. Shooting point exchange for sampling the two reaction channels in the two-dimensional double well model with
two reaction channels. (A) Potential energy and state definitions of the model system. (B) Free energy as a function of x(0)

for different barrier heights. (C) Average switching time to observe a switch between states A and B, τA↔B, for standalone
metadynamics and SPEx, starting the sampling from a converged bias potential. (D, E) Root mean squared error of the fraction
of paths in the upper reaction channel as a function of simulation length for standalone TPS and SPEx. Each curve is for a
specific barrier height and is estimated from 2500 independent sampling runs. (F,G,H) Number of switches between the upper
and lower reaction channel Ns as a function of the barrier height (F) and the number of trials (G,H).

due to an increased likelihood to generate a transition
path also from configurations away from the barrier.

For transition paths, a limiting factor for the sampling
of trajectories that connect A and B is the slow switching
between the upper and lower reaction channel. In regu-
lar TPS, the fraction of paths taking the upper reaction
channel converges very slowly to the analytical fraction
of fup = 1

2 . This is apparent looking at the root mean
square error of fup as a function of the trial number n
estimated from N runs (Figure 2D,E):

RMSEfup
(n) =

√√√√ N∑
i=0

(
fup(n)− 1

2

)2

(13)

In comparison, propagation of the system using meta-
dynamics with shooting point exchange speeds up the
convergence substantially (Figure 2E), especially for high
barriers. This can be traced back to an increased num-
ber of switches during the sampling of the path ensem-
ble (Figure 2F,G,H). Above barriers of 10 kBT , often not
even a single switch between the channels occurs within
1000 trials in standalone TPS. When exchange moves are
included, a minimum number of switches is recovered,
mostly mediated by the exchange moves themselves.

From these observations, we can conclude that ex-
changes between an enhanced sampling simulation in

configuration space and a path sampling simulation in-
crease the sampling efficiency on either side compared
to running both simulations separately. While the in-
creased switching time τA↔B is not negligible, the ad-
ditional cost of sampling a path ensemble in parallel is
not compensated. Therefore, at least in this setup, SPEx
is not expected to increase the sampling efficiency when
the interest is solely on configuration space. In contrast,
when sampling path space, the additional force evalua-
tions from metadynamics per TPS trial are insignificant
compared to the number of force evaluations needed for
the generation of a new path.

As a second case study, we investigate the cis to trans
isomerization of the amino acid proline in the tetrapep-
tide KPTP [22] (Figure 3A). Proline isomerization plays
an important role in protein folding [23, 24] and signal-
ing in cells [25, 26], yet it only occurs on the timescale
of seconds to minutes [27]. Due to the periodic nature of
the relevant imide torsion angle ωP2, the transition from
cis to trans and vice versa can take place via different re-
action channels (Figure 3B). During the transition from
±180° (trans) to 0° (cis), the torsion angle can either
cross over a barrier at −90° or 108°, referred to as anti
and syn conformation [28] (dashed lines in figure 3D).
Additionally, the imide nitrogen geometry, which is pla-
nar in the stable cis and trans states, is deformed out
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Figure 3. Isomerization of proline in the tetrapeptide KPTP. (A) Structure of the peptide (relevant torsion angle definitions
in the inset) (B) Scheme of the cis to trans isomerization and the transition state geometry (C) Schematic overview of the
committor learning process. (D) Free energy from metadynamics including shooting point exchanges. (E) Fraction of paths
in each reaction channel as a function of the number of trials based on ten independent shooting point exchange simulations.
(F) Training data for the committor prediction on top of the free energy surface. Circles show the state definitions (c=cis,
t=trans). (G) Comparison of the sampled committor from fleeting trajectories and the predicted committor. The dashed black
line shows the ideal correspondence while the orange line and shaded area show the average and standard deviation of the
sampled committor in a given window of the predicted committor. (H) Attributions corresponding to the ten most important
input features of the neural network. (I) Free energy along the two most relevant collective variables from (H). Black lines show
isolines of the committor function obtained using symbolic regression. Crosses and circles indicate if a trajectory starting from
that point reached the cis or trans state first. Representative reactive paths are shown in the same color scheme as in (E).

of plane [28]. By the direction of the deformation indi-
cated by the torsion angle ηP2, the transition state can be
distinguished as endo or exo, resulting in a total of four
channels. The critical out of plane deformation is not

captured by ωP2 and therefore previous works proposed
an improper dihedral ζP2 as reaction coordinate [28, 29]
(Figure 3A). Other collective variables discussed in the
context of the isomerization are the ΨP2 backbone an-
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gle [28–30], the puckering state [31, 32] of the ring and
solvent interactions [33].

Previous studies that focused on the mechanism of pro-
line isomerization mainly used biased molecular dynam-
ics to enhance the sampling [22, 29–32]. As a result,
the dynamics of the system was altered and conclusions
on the preferred mechanism and a corresponding reac-
tion coordinate were mostly drawn based on minimum
energy paths, with a notable exception being the recent
work by Moritsugu et al. on the Pin1 enzyme [34]. We
aim to identify the preferred isomerization mechanism,
search systematically for relevant degrees of freedom and
refine a reaction coordinate based on the unbiased dy-
namics of the system (simulation details in SI [21]). Be-
sides the imide torsion angle, we choose ξP2 (see Fig-
ure 3A) for sampling, as we expected it to capture po-
tential geometric changes of both the imide nitrogen and
the sidechain. The resulting free energy from metady-
namics with shooting point exchanges agrees with previ-
ous studies in terms of the barrier height and difference
between the cis and trans state [22, 30] (Figure 3D).
However, estimating the different statistical weights of
the four reaction channels is not possible. The endo and
exo paths are not discriminated by ξP2 and, more im-
portantly, an estimation based on barrier heights does
not account for entropy in path space. Here, the sam-
pled transition paths can give an accurate estimate of the
fraction of paths going through each channel (Figure 3E).
These are syn/exo 0.862, anti/exo 0.084, anti/endo 0.053
and syn/endo 0.001, pointing out a clear preference for
the syn/exo pathway.

Intending to find an improved reaction coordinate for
the transition, we train a neural network to predict the
committor probability pB(x) of a given configuration as
proposed by Jung et al. [35]. The committor describes
the likelihood of reaching state B before state A starting
a simulation from configuration x and thereby also de-
scribes the progress of a reaction. From a broad set of
collective variables based on which the network predicts
the committor, the most important features can be de-
termined by assigning an attribution score [35]. In the
context of SPEx, we train the network using the informa-
tion obtained from exchange moves (Figure 3F, network
details in SI [21]). Although the training data only con-
tain labels indicating if cis or trans was reached first,
the network learns to interpolate in ambiguous regions
(Figure 3G). Looking at the assigned attributions (Fig-
ure 3H), the torsion angles ζP2, ΩP2 and ωP2 are the
most important variables, followed by the radius of gyra-

tion Rg, which has previously been discussed to be linked
to the fraction of cis proline residues [22]. Collective
variables describing the puckering state of the ring, ΨP2

and all other backbone angles do not contribute signif-
icantly to the prediction of the committor. The neural
network prediction is then used to refine an expression
for a reaction coordinate via symbolic regression. Here,
we include only the three torsion angles in the analysis in
an attempt to obtain a reaction coordinate independent
of the peptide sequence.

The most accurate estimate of pB(x) from symbolic
regression includes ζP2 and ΩP2 (Figure 3I):

pB(ζP2,ΩP2) = sig
[
− sin

(
ΩP2 − 0.75

)
+ 4.334 cos

(
ζP2
)

+ cos
(
ΩP2

)
− 0.635

]
, (14)

where sig(x) = 1/[1 + exp(−x)]. Although ζP2 is un-
doubtedly a better reaction coordinate than ωP2 as
shown in previous works, the committor isolines indicate
that at least ΩP2 is required for an accurate prediction
of pB(x).

To conclude, we presented a framework based on ex-
change moves between a configuration and a path en-
semble. The sampling scheme has the potential to effi-
ciently explore free energy surfaces, transition path en-
sembles and reaction coordinates of molecular processes,
as demonstrated on the proline cis-trans isomerization.
The case studies presented here — combining metady-
namics and TPS — are just one realization of the possi-
bilities emerging from Eq. (9). Since the generalized en-
semble is not limited to a single configuration and path
ensemble, we see future applications e.g. in umbrella
sampling [8], multi-state TPS [36] or TIS [37].

Data Availability

The data that support the findings of this study are
available upon reasonable request.
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Andreas, L. J. Blair, S. Becker, and M. Zweckstetter, Na-
ture Communications 11, 6046 (2020).

[25] K. P. Lu, G. Finn, T. H. Lee, and L. K. Nicholson, Nature
Chemical Biology 3, 619 (2007).

[26] P. Sarkar, C. Reichman, T. Saleh, R. B. Birge, and C. G.
Kalodimos, Molecular Cell 25, 413 (2007).
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L. Martin-Samos, M. Masetti, R. Meyer, A. Michaelides,
C. Molteni, T. Morishita, M. Nava, C. Paissoni, E. Pa-
paleo, M. Parrinello, J. Pfaendtner, P. Piaggi, G. Pic-
cini, A. Pietropaolo, F. Pietrucci, S. Pipolo, D. Provasi,
D. Quigley, P. Raiteri, S. Raniolo, J. Rydzewski, M. Sal-
valaglio, G. C. Sosso, V. Spiwok, J. Šponer, D. W. H.
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SI. Simulation Details for the Double Well System

The double well has the potential energy form:

U(x) = α

{
0.25

[
(x(0))2 + (x(1))2 − 4)2 + (x(1))2

]}
(S1)

where α was adjusted to match the desired barrier height. All simulations were run using an underdamped Langevin
integrator [S1] with a friction of 20, a timestep of 0.01, a mass of 1 and kBT = 1. In simulations with and without
shooting point exchange (SPEx), well-tempered metadynamics was configured identically placing a Gaussian of width
0.25 every 100 steps. The initial Gaussian height and bias factor were adjusted according to 0.2/15 × Abarrier and
1+(10/15×Abarrier) respectively, where Abarrier is the barrier height. The current bias was stored on a grid with a bin
width of 0.1 times the Gaussian width. Simulations with shooting point exchange followed the protocol of attempting
an exchange every one TPS trial and 100 metadynamics steps.

SII. Simulation Details for the KPTP-Peptide

We prepared a simulation box with an edge length of 4.95 nm including the KPTP tetrapeptide solvated in TIP3P
water [S2]. We added K+ and Cl− ions up to a concentration of 150 mmol L−1 to neutralize the box. All simulations
were performed employing OpenMM [S3] and PLUMED [S4]. We used a velocity Verlet with velocity randomization
integrator [S5] for simulation in the NVT ensemble at 310 K. The timestep was set to 2 fs and the friction to 1 ps−1.
All hydrogen bonds were constrained and the center of mass motion was removed at each timestep. Electrostatic
interactions were treated using PME and the non-bonded cutoff was set to 1.2 nm.

For SPEx, a well-tempered metadynamics and transition path sampling simulation were run independently and
exchanges between them were performed every one TPS trial and 2000 metadynamics simulation steps. For metady-
namics, we bias along the ωP2 and ξP2 as described in the main text with a bias factor of 20. The Gaussian width
in both dimensions was 0.3 rad and the initial height was set to 2 kJ mol−1. A Gaussian kernel was placed every 100
integration steps.

For the path sampling simulations, we define stable states as a function of ωP2 and ξP2:

htrans(x) = 1 if (ωP2 − π)2 + (ξP2 − π)2 < 0.0625 (S2)

hcis(x) = 1 if (ωP2)2 + (ξP2 − π)2 < 0.0625 (S3)

and set a maximum path length of 2 ns. Shooting points were selected based on the current bias potential as described
in the main text and velocities were redrawn from a Maxwell-Boltzmann distribution after selection to decorrelate
paths faster.

SIII. Training Protocol for Committor Learning

Each exchange trial provides data on the committor in form of a configuration x and whether the simulation reached
cis or trans (0 / 1) from this point. We use a neural network (see table S1) to predict the expected outcome based
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on this data. Instead of x, we provide a set of collective variables (see table S2) and the network output is restricted
to the range [0, 1]. The collective variables are normalized by subtracting their mean and dividing by their respective
standard deviations. Each torsion angle is then mapped on two scalars in form of the sine and cosine of its value to
enforce periodicity of the network output. The training is performed in Pytorch using a loss function of the form:

L =
1

N

N−1∑
i=0

log[ε+ e−ŷiyi ] (S4)

where N is the number of samples in the batch, ŷi is the predicted label and yi the reference label. With ε = 1, the loss
function would be equivalent to a soft-margin loss, however, we use ε = 2.5 to reduce the penalty of a misclassification.
These are common since the training set only includes zeros or ones but we aim to predict probabilities that lie in
between both values. We train for 15 epochs on 2.5× 105 data points using the Adam optimizer with a learning rate
of 0.005, a weight decay of 0.0001 and an exponential learning rate decay with a decay rate of 0.8. For improved
accuracy, we train an ensemble of 10 models and average their committor prediction for the final result. Attributions
(table S2) were assigned by feature permutation as described in Jung et al. [S6].

The symbolic regression was performed using gplearn on 2500 data points comprised of the three most important
features from the attribution analysis and their network-predicted committor value. Parameters for reproducing the
genetic search are given in table S3. The fitness function applies a sigmoid to all search results and calculates the mean
squared error of the prediction with respect to the target from the neural network output. We start 100 independent
optimization runs which we find more efficient in exploration than a larger population size or smaller tournament size.
The ten best-performing models from these symbolic regression runs are shown in table S4.
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Table S1. Neural network architecture for the prediction of the committor in the KPTP tetrapeptide system.

Layer Components
Input Layer Batch Norm

Linear NCVs → 128
Batch Norm + ReLU Activation

Layer 1 Linear 128 → 64
Batch Norm + ReLU Activation

Layer 2 Linear 64 → 32
Batch Norm + ReLU Activation

Layer 3 Linear 32 → 16
Batch Norm + ReLU Activation

Layer 4 Linear 16 → 8
Batch Norm + ReLU Activation

Output Layer Linear 8 → 1
Sigmoid
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Table S2. Collective variable descriptors and their attribution score for the neural network-based prediction of the committor.
On the right, the features are grouped by type (e.g. distance, angle, ...) and on the left they are sorted by their absolute attribu-
tion score. If no reference is given, notations are as follows: d distance, θ angle, ϕ torsion angle, [Φ,Ψ, ω, χ] backbone/sidechain
torsion angles.

Collective Variable Attribution Collective Variable Attribution

dK1Nζ ,T3Oγ 2.85E-03 ζP2 [S28] 1.80E-01
dK1O,K1N -1.10E-04 ΩP2 1.05E-01

dK1Nζ ,Cter 3.38E-03 ωP2 7.91E-02
dK1O,ACE-C -2.29E-05 Rg 4.05E-02
dK1O,ACE-O -6.92E-04 ΦP2 1.43E-02
dK1O,K1N 2.10E-04 ΨP2 8.76E-03
dK1O,K1Cα -3.44E-05 dK1O,T3Cα 7.26E-03

dK1O,K1Cβ -3.66E-04 dend-end 3.46E-03

dK1O,K1Cγ 3.24E-08 dK1Nζ ,Cter 3.38E-03
dK1O,K1Cδ 5.13E-04 χK1

1 3.31E-03

dK1O,K1Cε -5.08E-08 dK1Nζ ,T3Oγ 2.85E-03
dK1O,K1C -6.35E-05 dK1O,P2O 1.97E-03

dK1O,P2N -4.64E-05 ϕK1O, K1C, K1Cα, K1Cβ -1.61E-03
dK1O,P2Cδ -2.74E-06 Puckering Phase [S43] -1.40E-03
dK1O,P2Cγ 2.46E-04 χP2

4 -1.23E-03

dK1O,P2Cβ -2.56E-04 χP2
1 7.53E-04

dK1O,P2Cα 8.64E-07 ηP2 [S28] 7.49E-04
dK1O,P2C 1.27E-07 χK1

4 7.24E-04
dK1O,P2O 1.97E-03 dK1O,ACE-O -6.92E-04
dK1O,T3N -2.79E-05 ΦT3 6.39E-04
dK1O,T3Cα 7.26E-03 dK1O,K1Cδ 5.13E-04
θK1O,K1C,K1Cα -3.98E-06 Puckering Amplitude [S43] -5.07E-04
θK1Cα,K1C,P2N 1.81E-04 θK1C,P2N,P2Cα, -4.84E-04
θK1C,P2N,P2Cα, -4.84E-04 ωT3 -4.07E-04

ϕK1O, K1C, K1Cα, K1N -1.06E-04 dK1O,K1Cβ -3.66E-04

ϕK1O, K1C, K1Cα, K1Cβ -1.61E-03 ωP4 3.47E-04
ΩP2 1.05E-01 Puckering Zy [S43] -2.60E-04

ϕK1O, K1C, P2N, P2C
α 9.16E-08 dK1O,P2Cβ -2.56E-04
ϕACE -5.50E-05 dK1O,P2Cγ 2.46E-04
ωK1 -3.63E-05 ΨT3 2.40E-04
ΨK1 9.98E-05 χP2

2 2.27E-04
ΦK1 1.32E-04 dK1O,K1N 2.10E-04
χK1
1 3.31E-03 θK1Cα,K1C,P2N 1.81E-04
χK1
2 -8.33E-05 ξP2 -1.61E-04
χK1
3 -1.48E-04 χP4

4 -1.51E-04
χK1
4 7.24E-04 χK1

3 -1.48E-04
ωP2 7.91E-02 ΦK1 1.32E-04
ΨP2 8.76E-03 χT3

1 1.26E-04
ΦP2 1.43E-02 dK1O,K1N -1.10E-04
χP2
1 7.53E-04 ϕK1O, K1C, K1Cα, K1N -1.06E-04
χP2
2 2.27E-04 ΨK1 9.98E-05
χP2
3 6.49E-06 ϕNME -9.48E-05
χP2
4 -1.23E-03 χK1

2 -8.33E-05
ξP2 -1.61E-04 ΦP4 -7.67E-05
ωT3 -4.07E-04 ΨP4 -6.91E-05
ΨT3 2.40E-04 dK1O,K1C -6.35E-05
ΦT3 6.39E-04 χP4

2 -5.63E-05
χT3
1 1.26E-04 ϕACE -5.50E-05
ωP4 3.47E-04 dK1O,P2N -4.64E-05
ΨP4 -6.91E-05 χP4

1 -3.93E-05
ΦP4 -7.67E-05 ωK1 -3.63E-05
χP4
1 -3.93E-05 dK1O,K1Cα -3.44E-05
χP4
2 -5.63E-05 dK1O,T3N -2.79E-05
χP4
3 -9.88E-06 dK1O,ACE-C -2.29E-05
χP4
4 -1.51E-04 χP4

3 -9.88E-06
ϕNME -9.48E-05 χP2

3 6.49E-06
ζP2 [S28] 1.80E-01 θK1O,K1C,K1Cα -3.98E-06
ηP2 [S28] 7.49E-04 dK1O,P2Cδ -2.74E-06
Puckering Phase [S43] -1.40E-03 dK1O,P2Cα 8.64E-07
Puckering Amplitude [S43] -5.07E-04 Puckering Zx [S43] 2.54E-07
Puckering Zx [S43] 2.54E-07 dK1O,P2C 1.27E-07

Puckering Zy [S43] -2.60E-04 ϕK1O, K1C, P2N, P2C
α 9.16E-08

NH 0.5 nm around K1O -5.13E-08 NH 0.5 nm around K1O -5.13E-08
Rg 4.05E-02 dK1O,K1Cε -5.08E-08
dend-end 3.46E-03 dK1O,K1Cγ 3.24E-08
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Table S3. Parameters for the symbolic regression of the committor function.

Parameter Value
Population Size 1000
Tournament Size 20
Constant Range −2π - 2π
Generations 100
Pcrossover 0.7
Psubtree-mutation 0.1
Phoist-mutation 0.05
Ppoint-mutation 0.1
Parsimony Coefficient 0.0001
Function Set Add, Sub., Div., Mul., Sin, Cos

Table S4. Symbolic regression results for the committor prediction with the lowest error.

Symbolic Regression Result Mean Square Error

− sin
(
ΩP2 − 0.75

)
+ 4.334 cos

(
ζP2

)
+ cos

(
ΩP2

)
− 0.635 3.201E-02

−1.62(ζP2)2 + cos
(
ΩP2

)
+ cos

(
ΩP2 − 5.266

)
+ 3.354 3.205E-02

sin
(
ΩP2 + 2.474

)
+ 4.703 cos

(
ζP2

)
+ cos

(
ΩP2

)
− 0.743 3.240E-02

sin
(
ΩP2 + 2.497

)
+ 4.778 cos

(
ζP2

)
+ cos

(
cos

(
ΩP2

)
+ 4.099

)
3.249E-02

3.5308 cos
(
ΩP2

)
+ 2 cos

(
ωP2

)
+ cos

(
ζP2 − 5.354

)
− 0.283 3.255E-02

4.706 sin
(
ζP2 − 4.62

)
+ cos

(
ΩP2

)
+ cos

(
ΩP2 + 0.466

)
− 0.682 3.260E-02

sin
(
ΩP2 + 2.387

)
+ 4.658 cos

(
ζP2

)
+ cos

(
ΩP2

)
− 0.74 3.277E-02

−(ζP2)2 − sin
(
ΩP2

)
+ cos

(
ζP2

)
+ 2 cos

(
ΩP2

)
+ 1.918 3.281E-02

−0.889 sin
(
ΩP2

)
+ 3.458 cos

(
ΩP2

)
+ 2.186 cos

(
ωP2

)
3.304E-02

−(ΩP2)2 + sin
(
ζP2 − 3.792

)
+ cos

(
ζP2

)
+ cos

(
ωP2

)
+ cos

(
cos

(
ωP2

))
+ 1.366 3.319E-02
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