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Abstract

Given two graphs G and H, the online Ramsey number 7(G, H) is defined to be the minimum number
of rounds that Builder can always guarantee a win in the following (G, H)-online Ramsey game between
Builder and Painter. Starting from an infinite set of isolated vertices, in each round Builder draws an edge
between some two vertices, and Painter immediately colors it red or blue. Builder’s goal is to force either
a red copy of GG or a blue copy of H in as few rounds as possible, while Painter’s goal is to delay it for as
many rounds as possible. Let K; 3 denote a star with three edges and P, a path with ¢ vertices. Latip and
Tan conjectured that 7(K1,3, Pr) = (3/2 + o(1))¢ [Bull. Malays. Math. Sci. Soc. 44 (2021) 3511-3521]. We
show that 7(K1 3, Py) = [3£/2] for £ > 2, which verifies the conjecture in a stronger form.
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1. Introduction

We are concerned with a game-theoretic notion called online Ramsey number in this paper. Given two
graphs G and H, the (G, H)-online Ramsey game is a combinatorial game played on an infinite set of vertices
between two players, Builder and Painter. Starting from an edgeless graph, in each round Builder draws an
edge between two nonadjacent vertices, and Painter colors it red or blue immediately. Builder’s goal is to
force either a red copy of G or a blue copy of H in as few rounds as possible, while Painter’s goal is to delay
it for as many rounds as possible. The online Ramsey number 7(G, H) is the smallest number of rounds
needed to create either a red copy of G or a blue copy of H, assuming that both Builder and Painter play
optimally.

The online Ramsey number was introduced by Beck [3] and owes its name to Kurek and Rucinski [12].
It can be viewed as the online version of size Ramsey number. Recall that the Ramsey number r(G, H) and
the size Ramsey number #(G, H) are the smallest number of vertices and edges, respectively, in a graph F
such that for any red-blue edge coloring of F', there is either a red copy of G or a blue copy of H. Clearly
#(G,H) < #(G, H) < ("%).

In the classical case where both G and H are complete graphs, we write m, n instead of K,,, K, for
simplicity of notation. It is well known that the Ramsey number r(n,n) is between 27/2 and 22", Both
bounds have seen no exponential improvements in decades |10]. For size Ramsey numbers, a result attributed
to Chvdtal shows that #(m,n) = (T(”;’")). While for online Ramsey numbers, Conlon [4] showed that for

infinitely many n, 7#(n,n) < 1.0017"#(n,n), which is an exponential improvement for infinite numbers.
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For the lower bound, Beck [3] described an elegant proof of #(n,n) > r(n,n)/2 which was found by Alon.
Recently Conlon, Fox, Grinshpun, and He [5] proved that 7#(n,n) > 2(2_\/5)”"’0(1), which is an exponential
improvement to the lower bound. The basic conjecture, attributed by Kurek and Rucinski [12], is to show
that #(n,n) = o(#(n,n)). This conjecture is at present far from being solved. For the exact values, only two
nontrivial ones were obtained: 7(3,3) = 8 by Kurek and Rucinski [12], and 7(3,4) = 17 by Pratat [15].

For sparse graphs, the online Ramsey numbers involving paths, stars, trees, and cycles have been studied
1, 12, 16, 17, 18, 19, 111, 13, [14, 16, [17]. In general, however, exact results are rare. Most results are upper or
lower bounds, between which there is always a challenging gap. We are interested in exploring the following
problem.

Question 1.1. Determine the exact expressions of some online Ramsey functions f(n) = 7(G, H,), where
G is a small fized graph, and H, is a graph from a class of sparse graphs such as paths, stars, and cycles.

Let P, and C),, denote a path of order n and a cycle of order n, respectively. In 2015, Cyman, Dzido,
Lapinskas, and Lo [7] obtained the exact online Ramsey numbers of P3 versus all paths and all cycles, which
are 7(Ps, Pp,) = [5(n — 1)/4] for n > 3 and 7(Ps,C,) = [5n/4] for n > 5. In the same paper they showed
that 2n — 2 < 7(Cy, P,,) < 4n — 8 for n > 5. Dybizbariski, Dzido, and Zakrzewska [§] improved the upper
bound of 7(Cy, P,,) from 4n — 8 to 3n — 5. Finally, Adamski and Bednarska-Bzdega [2] closed the gap by
proving that #(Cy, P,,) = 2n—2 for n > 8. Their proof involves a technical inductive argument, in which the
base case is computer-assisted. In 2022, Song and Zhang [17] showed that 7(Ps,nKs2) = [3n/2] for n > 2;
7(Py,nK2) = [In/5] for n > 2; #(mKa, P,) = n+2m — 4 for m = 2,3 and n > 5. Here, nK> denotes a
matching with n edges.

In 2021, Latip and Tan [13] studied the function 7(K7 3, P;) and obtained that [3(¢—1)/2] < #(K1,3, Pp) <
5¢/3 + 2. Here we use the clearer notation K 3 rather than Ss to denote a star with three edges, because
S, may denote a star with n vertices or a star with n edges in different literatures. Latip and Tan believed
that the lower bound is close to the exact expression and posed the following conjecture.

Conjecture 1.2. [13] 7(K1 3, P;) = (3/2+ o(1))L.

In this paper, we determine the exact value of 7(K 3, P;) for all £ > 2, which verifies the above conjecture
in a stronger form.

Theorem 1.3. 7(K 3, P;) = [34/2] for £ > 2.

The remainder of this paper is organized as follows. Section 2lshows the lower bound of 7#(K7 3, P;). We
will prove the upper bound by induction for ¢ > 7. Thus we divide the proof of the upper bound into two
sections: Section Bl for 2 < ¢ < 6 and Section [ for ¢ > 7.

2. The lower bound

During the whole game Painter uses a blocking strategy: she always colors an edge red unless doing so
would create either a red Ky 3 or a red cycle Cy, for 3 < k < |£/2]. More specifically, let R; be the graph
induced by all red edges before the ith round, and let e; be the edge chosen by Builder in his ith move. If
R; + e; contains a K1 3 or a cycle whose length is at most |¢/2], then Painter colors e; blue. Otherwise she
colors e; red.

Let G, R, and B be the graphs induced by all edges, all red edges, and all blue edges before the |3¢/2]th
round, respectively. We will prove that G contains neither a red K 3 nor a blue P,. Hence Builder can not
win the game in [3¢/2] — 1 rounds, and the lower bound follows.

If R has at least |£/2] + 1 edges, then B has at most |3¢/2] — 1 — (|£/2] 4+ 1) edges, which is £ — 2. In
this way, B can not contain a path P,. So we assume that R contains no cycle with length at least [¢/2] + 1.
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Combining it with the Painter’s strategy, we see that R contains no cycle, and has maximum degree at most
two. Consequently, R consists of a disjoint union of paths. Assume that the number of components in R is
s. Let X be the set of vertices which have degree two, and {y2;—1, y2;} the ends of the ith path for 1 <14 < s.
Thus, R has | X| 4+ s edges, which is at most |£/2].

Let P be a longest blue path in G. Since each vertex is incident to at most two edges of a path, P contains
at most 2|X | edges incident to X. Recall that each blue edge is forced to appear, to avoid either a red K 3
or a red cycle. In other words, each blue edge is either incident to a vertex of X, or yo;_1¥y2; for some i with
1 < i < s. Therefore, the total number of edges in P is at most 2|X |+ s. Since |E(R)| + |E(P)| < |E(G)|,
we have

31X |+ 2s < [3¢/2] — 1.

Suppose to the contrary that there is a blue path of order ¢, then
2| X|+s>4¢—1. (1)
If s > 2, then we have

130/2] —1 > 3|X| + 2s
>32|X[+s)/2+1
>3(0—-1)/2+1
= (30-1)/2,

which is a contradiction. So we have s = 1. The inequality () implies that 2|X| > ¢ — 2. It follows that
|X|+ s > ¢/2. Since R has |X| + s edges, we see that £/2 < |X|+ s < |£/2]. Thus, ¢ is even, and R is a
red path with /2 edges (and £/2 + 1 vertices). If Builder joins the two end vertices of this path, he creates
a cycle of length ¢/2 + 1. Painter will color this edge red by her strategy. Thus, the blue edges can only be
forced by the vertices with degree two in R. Hence G contains only ¢ — 2 blue edges, which contradicts our
assumption that there is a blue P,. Thus we have the lower bound.

3. The upper bound for 2 < £ <6
We start with the following simple lemma.

Lemma 3.1. If there is a blue Py in the online Ramsey game, then in the next three rounds, there is either
a blue Pyy1 or a red K 3.

Proof. Let v be an end vertex of the blue Px. Builder joins v to three new vertices in the next three rounds.
If none of the three edges is blue, we have a red K; 3. Otherwise, we have a blue Pj41. O

For ¢ = 2,3, Builder draws a star with ¢ + 1 edges. Then there is either a red K 3 or a blue P,. Hence
7(K1,3,Pr) <{+1=[3¢/2] for £ = 2,3. For £ = 4, Builder joins vy to v1,vs,... one by one, until a blue
K o appears. This blue K 2 can be obtained in at most four rounds, since otherwise a red K 3 shows up
and our proof is done. If the blue K7 o is obtained in three rounds, by Lemma 3] our proof is done. If the
blue K 2 shows up in the fourth round, we assume that vovy, vov2 are red, and vovs, vovs are blue. Builder
chooses v;v3 and viv4 in the next two moves. If neither of them is blue, then there is a red K; 5. Otherwise,
there is a blue Py. Thus 7(K 3, P1) < 6.

For 5 < ¢ < 6, Builder first draws a path P, denoted by vyvsv3vs. It has five color patterns up to
symmetry: bbb, bbr, brb, brr, rrr. In fact, the path may have another color pattern rbr, which is avoided as
follows. If the first two edges vive and vovs are colored blue and red respectively, then Builder joins v4 to
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v3. On the other hand, if vyvs is red and vywvs is blue, then Builder joins v4 to v;. Thus rbr can not show
up in the first three rounds.

We assume that there is no red K 3 in [3£/2] rounds, since otherwise our proof is done. If vjv9v304
has color pattern bbb, by Lemma B1] #(K1 3, Pr) < |3¢/2] for £ = 5,6. If it has color pattern brb, Builder
joins a new vertex vs to v and ws in the next two moves. If both vovs and vzvs are blue, then vivov5v3v4
is a blue Ps;. By Lemma B.1] Builder forces a blue Py in the next three rounds. If both vovs and v3vs are
red, then for ¢ = 5, Builder chooses two edges v1vs and v4vs, both of which are forced to be blue. Hence
V201 V5V403 1S a blue Ps. For ¢ = 6, Builder chooses three edges vovg, v5v6, and v4v5, all of which are forced
to be blue. Hence viv2v6v5v4v3 is a blue Ps. If vovs and vsvs have different colors, say, vavs is red and vzvs
is blue, then Builder joins vy to v4 and hence vivav4v3v5 is a blue Ps. By Lemma [3.I] Builder forces a blue
Py in the next three rounds.

If v1v9v3v4 has color pattern bbr, Builder joins vs to a new vertex vs. If vzvs is blue, then Builder chooses
v1vg and vqvs in the next two moves. At least one of the two edges is blue. Thus, we have a blue Ps in six
rounds. By Lemma [3.1] Builder forces a blue Py in the next three rounds. If vsvs is red, then Builder joins
vy to two new vertices vg and vy. At least one of the two new edges is blue. If exactly one of them is blue,
say, vqvg is blue and wvyv7 is red, then Builder chooses vsvg for £ = 5, and then joins v4 to a new vertex vg
for £ = 6. As a result, v1v2v3v6v4 is a blue Ps and vyvsv3v6v40s is a blue Pg. If both vyvg and vav7 are blue,
then Builder chooses v3vg, which has to be blue. Hence we obtain a blue Py (and also a blue Ps) in seven
rounds, which is v1vev3vV6V4V7.

Figure 1: The color patterns brr and rrr of the first three edges.

For the other two color patterns brr and rrr, we illustrate Builder’s strategy as in Figure [l In the
pattern brr, we use a circled number to denote that Painter has a choice in that move. Since there is a blue
P; in six rounds in the left graph, it follows that a blue Py can be forced in nine rounds. In the pattern rrr,
at least one of the black dotted edges is blue. To summarize, Builder can always force a blue Ps in seven
rounds and a blue Py in nine rounds.

4. The upper bound for £ > 7

In this section we show that #(K4 3, Pr) < [3¢/2] for £ > 7. Assume that Painter always avoids a red
Ki,3. When an edge is ‘forced’ to be blue in the following, it means that there is a red K; 3 if the edge is
colored red. We shall find a blue P in [3¢/2] rounds. In the first two moves Builder draws a star K o,
which has three possible color patterns up to symmetry: bb, br, rr. For the last two patterns, Builder then
joins the center of K2 to a new vertex. Thus, there are three cases in total: the first two rounds form a
blue path of order three; the first three rounds form a star with two edges blue and one edge red; the first
three rounds form a star with two edges red and one edge blue. In most cases, the Builder’s strategy is as
follows. First he creates a small graph H. Then for some integer k with 4 < k < ¢ — 2, Builder forces a blue
path P,_j that is vertex-disjoint with H by induction. Finally, he combines H and P,;_j to a blue path P;.

Case 1. The first two rounds form a blue path of order three.

Assume that the blue path is vjvovs. Builder extends it to a longer path vivsvsv4vs in the next two
moves. We distinguish three subcases by the colors of vzvs and v4vs.
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Figure 2: We distinguish three cases.

Subcase 1.1. The edge v4vs is red.

Py_g

U1 V2 V3's_ V4 .’ U5 U1 V2 U3 Vg Us

~

Figure 3: Force a Py in Subcase 1.1.

If vgvy is red, Builder then chooses vsvs. If vsvs is blue, Builder forces a blue Py_s5 in [3¢/2| — 7 rounds
by induction, whose end vertices are denoted by = and y. Next Builder draws two edges yvs and vgv;, both
of which are forced to be blue. Thus, there is a blue path xPy_5yvsv1v203v5 of order £ in |3£/2] rounds. If
v3vy is red and ¢ = 7, Builder draws four edges yvs, vsvg, vgv4, and v4v1, all of which are blue. Here, vg
and y are two new vertices. Thus, yvsvgv4v1v2v3 is a blue P;. If vgvs is red and ¢ > 8, Builder forces a blue
Py_g with two ends = and y in |3¢/2] — 9 rounds by induction. Next Builder draws four edges yvs, vsvg,
vgvg, and vqv1. Here, vg is a new vertex, and the four edges are forced to be blue. Thus, there is a blue
path 2 P;_gyvsvevav1v2v3 of order £ in [3¢/2] rounds.

If v3v4 is blue, Builder then forces a blue Pp_4 with two ends x and y in |3¢/2] — 6 rounds by induction.
Next Builder draws two edges zv4 and yvy, at least one of which is blue. Without loss of generality, assume
that yvy is blue. Thus, there is a blue path xPy_syvsv3vev1 of order £ in |3£/2] rounds.

Subcase 1.2. The edge v3vy is red and v4vs is blue.

Prg P

Figure 4: Force a P, in Subcase 1.2.

Builder joins both v3 and vy to a new vertex vg. If v3vg and v4vg are red, and £ = 7, then vy vov3V7V4V5Vg
is a blue P7, where vy is a new vertex. If vgvg and vyvg are red, and £ = 8, then vivv3V7V4V5V6Y IS a
blue Ps, where vy and y are two new vertices. If v3vg and vyvg are red, and ¢ > 9, then Builder forces a
blue Py_7 in |3¢/2] — 10 rounds by induction, whose end vertices are denoted by = and y. It follows that
V1V2V3V704U5 VY Pr—7x is a blue Py, where vy is a new vertex. Thus, we obtain a blue P, in the required
rounds.



If wsvg is red and vavg is blue, and £ = 7, then Builder chooses v3vs, which has to be blue. He then joins
vg to two new vertices x and y. Either vgz or vgy is blue. Thus, we have a blue P7, which is vy vsv3v5v4v62
or v1v2v3U5v4VsY. If vgvg is red and vavg is blue, and ¢ > 8, then Builder forces a blue Py_g with two ends
2 and y in |34/2] — 9 rounds by induction. Next Builder chooses vsuvs, 2vs, and yvg. The edge vsvs has
to be blue, and at least one of zvg and yvg, say yvg, is blue. As a result, vivovzvsv4V6y Pr_gx is a blue Py.
We obtain a blue Py in |3¢/2] rounds again. If vsvg is blue and vyvg is red, applying the same argument as
above, we can obtain a blue P;.

If both v3vg and v4vg are blue, and £ = 7, we have obtained a blue Ps in six rounds, which is v vov3v604V5.
Thus, it is easy to obtain a blue P; in nine rounds. If both v3vg and vsvg are blue, and ¢ > 8, then Builder
forces a blue Py_g with two ends x and y in [3¢/2] — 9 rounds by induction. Next Builder chooses the edge
v1vUs. If v1vs is blue, Builder joins vy to x and y. At least one of xvy and yvy, say, yvy is blue. Accordingly,
V501 0203VsV4Y Pr_g2 is a blue P;. Hence we obtain a blue P, in |3¢/2] rounds. If vjvs is red, Builder then
joins vs to x and y. At least one of xvs and yvs, say, yvs is blue. Accordingly, v vavzvgvavsyPr_gx is a blue
P,. We obtain a blue P in the required rounds.

Subcase 1.3. Both edges vsvy and vqvs are blue.

Pi_s Pr_s Pi_s
—& |
” ---9
vIv, V2 V3 Vg Vs » Vg U1 Vg V3 V4 Vs Vg

Figure 5: Force a P, in Subcase 1.3.

Builder joins v5 to a new vertex vg in the next move. If vsvg is blue and ¢ = 7, Builder joins vg to three
new vertices vy, vg,vg. At least one of the three edges, say vgvr, is blue. Thus we obtain a blue P; in nine
rounds. If vsvg is blue and £ > 8, Builder forces a blue Py_g in |3£/2] — 9 rounds by induction, whose end
vertices are denoted by x and y. Builder joins v; and vg in the next move. If vivg is blue, then all v;’s for
1 < i <6 form a cycle. Builder joins  to vy, ve,v3 respectively. At least one of xwvy, xvs, zvs is blue. We
may assume that zv; is blue without loss of generality. Accordingly, vavzvsvsvgvixPr_gy is a blue Pp. If
v10g is red, Builder chooses vgxr and vgy in the last two moves. We may assume that vgy is blue without
loss of generality. It follows that vivev3v4v5v6yPr—gx is a blue Py.

If vsve is red, Builder forces a blue Py_5 with end vertices « and y in [3¢/2] — 7 rounds by induction.
Builder chooses vsz and vsy in the last two moves. To avoid a red K 3, we may assume that vsy is blue
without loss of generality. It follows that vjvevsvsvsyPr—s52 is a blue Pp. In all three cases, we obtain a blue
P, in at most |3¢/2] rounds.

Case 2. A star with two edges blue and one edge red appears in the first three rounds.

Assume that the blue path is vjvavs, and the red edge is vavs. Since 7(Ky 3, Pi—4) < |3¢/2] — 6 by
induction, Builder forces a blue P;_4 in the next |3¢/2] — 6 rounds, whose end vertices are denoted by x
and y. Then he chooses vzvy in the next move. If vzvy is red, he draws two edges vivy and vgz, both of
which are forced to be blue. Hence there is a blue path vsvevivsz P4y of order £ in [3¢/2] rounds. If vgvy
is blue, he draws two edges v4z and vsy. To avoid a red K 3, at least one of vyz and vsy is blue, say, vax
is blue. Thus, there is a blue path vyvovsvsx P4y of order £ in |3¢/2] rounds.

Case 3. A star with two edges red and one edge blue appears in the first three rounds.

Assume that the red path is v1vovs, and the blue edge is vous. We extend this red path in the following
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U1 V2 U3

Figure 6: Force a Py in Case 2.

way. First Builder joins v3 to two new vertices us and v4. If both vsus and vzvs are blue, then we have
found the required red path. If not, the two edges vsus and vzvs have to be one red and one blue, since
otherwise there is a red K 3, which contradicts our assumption. Without loss of generality, assume that
vzug is blue and wvzvy is red. For each i > 4, if v;_1v; is red, Builder joins v; to two new vertices u; and
vi+1. If both v;u; and v;v;41 are blue, then we stop the procedure. Otherwise, assume that v;u; is blue and
v;V;4+1 is red. The procedure stops when either the red path has length |£/2] 4+ 1, or both v;u; and vivesq
are blue for some ¢t with 3 <t < [£/2] + 1.

U2 us Uq Ut

. ...........
U1 V2 U3 V4 Ut Vt+1

Figure 7: The graph that Builder constructs in the first phase of Case 3.

If the red path has length |¢/2] + 1, Builder joins u; to v;y; for each ¢ with 2 <4 < [£/2]. All edges
u;v;+1 have to be blue to avoid a red K1 3. Thus, if £ is even, vaugvsus - - - vg/241Ug/241 is a blue P, and if
¢ is odd, u1vaugv3U3 -+ + + V(4—1)/241U(¢—1)/2+41 1S & blue P, where u; is a new vertex. In both cases, Builder
can force a blue Py in £ — 1+ [£/2] + 1 rounds, which is |3¢/2] rounds.

Now we consider the other case that there exists an integer ¢ with 3 <t < [¢/2]| + 1 such that both vzu
and vive41 are blue edges. Builder joins v; to u;41 for each ¢ with 2 <4 <t—1. If t = |£/2] +1 and ¢ is odd,
then ugvausvs - - - urvrve4q is a blue path of order £. If ¢ = [£/2] 4+ 1 and £ is even, then usvousvs - - - Uy is
a blue path of order £. In both cases, a blue P; can be forced in |3¢/2] rounds.

If ¢t = |¢/2], Builder joins vq to viqq. If £ is even and vivi41 is blue, then we can find a blue P, which is
UgUaU3V3 - + - UtV V1V . 1 £ is even and vyvy41 is red, then Builder chooses vius, and viusveusvs - - - UV V41
is a blue Py. If £ is odd and vjv¢41 is blue, then Builder draws two edges v12 and vyy, at least one of which is
blue, say, vix is blue. It follows that usveusvs - - - ugvvs41v12 is a blue Pp. If £ is odd and vqveyq is red, then
Builder draws two edges v1x and vjug, both of which are forced to be blue. Hence zviusvousvs - - - w0441
is a blue Py. It is not difficult to check that the total number of rounds is at most |3¢/2]. Thus, we assume
that 3 <t < [£/2] — 1.

Since ¢ — 2t > 2, we have 7(K1 3, P—at) < |3(¢ — 2t)/2] by induction. Thus, Builder can force a blue
Py_o; in the next [3(¢ — 2t)/2| rounds. Assume that the end vertices of this Py_o is « and y. Builder
joins vy to viq1. If vyv44q is red, Builder chooses zv; and vjus, which are forced to be blue. Hence
yPy_opxv1ugvousvs - - - upvrvp4q is a blue Pp. If vyviqq is blue, Builder draws two edges vz and vyy, at least
one of which is blue, say, viz. It follows that usvousvs - - - uvsvs1v12P—01y is a blue Pp. Extending the
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path zP;_o;y to a blue Py, we have used 2t blue edges and ¢ red edges. Accordingly, the total number of
rounds is at most |3(¢ — 2t)/2] + 3¢, which is |3¢/2]. Therefore, 7(K1 3, P;) < [3€/2].
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