Proof of a Conjecture on Online Ramsey Numbers of Stars versus Paths

Ruyu Song ${ }^{\text {a,b }}$, Sha Wang ${ }^{\text {a,b }}$, Yanbo Zhang ${ }^{\text {a,b,* }}$
${ }^{a}$ School of Mathematical Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
${ }^{b}$ Hebei International Joint Research Center for Mathematics and Interdisciplinary Science, Shijiazhuang, 050024, Hebei, China

Abstract

Given two graphs G and H, the online Ramsey number $\tilde{r}(G, H)$ is defined to be the minimum number of rounds that Builder can always guarantee a win in the following (G, H)-online Ramsey game between Builder and Painter. Starting from an infinite set of isolated vertices, in each round Builder draws an edge between some two vertices, and Painter immediately colors it red or blue. Builder's goal is to force either a red copy of G or a blue copy of H in as few rounds as possible, while Painter's goal is to delay it for as many rounds as possible. Let $K_{1,3}$ denote a star with three edges and P_{ℓ} a path with ℓ vertices. Latip and Tan conjectured that $\tilde{r}\left(K_{1,3}, P_{\ell}\right)=(3 / 2+o(1)) \ell$ [Bull. Malays. Math. Sci. Soc. 44 (2021) 3511-3521]. We show that $\tilde{r}\left(K_{1,3}, P_{\ell}\right)=\lfloor 3 \ell / 2\rfloor$ for $\ell \geq 2$, which verifies the conjecture in a stronger form.

Keywords: Ramsey number, Online Ramsey number, Path, Star
2020 MSC: 05C55, 05C57, 05D10

1. Introduction

We are concerned with a game-theoretic notion called online Ramsey number in this paper. Given two graphs G and H, the (G, H)-online Ramsey game is a combinatorial game played on an infinite set of vertices between two players, Builder and Painter. Starting from an edgeless graph, in each round Builder draws an edge between two nonadjacent vertices, and Painter colors it red or blue immediately. Builder's goal is to force either a red copy of G or a blue copy of H in as few rounds as possible, while Painter's goal is to delay it for as many rounds as possible. The online Ramsey number $\tilde{r}(G, H)$ is the smallest number of rounds needed to create either a red copy of G or a blue copy of H, assuming that both Builder and Painter play optimally.

The online Ramsey number was introduced by Beck [3] and owes its name to Kurek and Ruciński [12]. It can be viewed as the online version of size Ramsey number. Recall that the Ramsey number $r(G, H)$ and the size Ramsey number $\hat{r}(G, H)$ are the smallest number of vertices and edges, respectively, in a graph F such that for any red-blue edge coloring of F, there is either a red copy of G or a blue copy of H. Clearly $\tilde{r}(G, H) \leq \hat{r}(G, H) \leq(\underset{2}{r(G, H)})$.

In the classical case where both G and H are complete graphs, we write m, n instead of K_{m}, K_{n} for simplicity of notation. It is well known that the Ramsey number $r(n, n)$ is between $2^{n / 2}$ and $2^{2 n}$. Both bounds have seen no exponential improvements in decades 10]. For size Ramsey numbers, a result attributed to Chvátal shows that $\hat{r}(m, n)=\binom{r(m, n)}{2}$. While for online Ramsey numbers, Conlon [4] showed that for infinitely many $n, \tilde{r}(n, n) \leq 1.001^{-n} \hat{r}(n, n)$, which is an exponential improvement for infinite numbers.

[^0]For the lower bound, Beck 3] described an elegant proof of $\tilde{r}(n, n) \geq r(n, n) / 2$ which was found by Alon. Recently Conlon, Fox, Grinshpun, and He [5] proved that $\tilde{r}(n, n) \geq 2^{(2-\sqrt{2}) n+O(1)}$, which is an exponential improvement to the lower bound. The basic conjecture, attributed by Kurek and Ruciński 12], is to show that $\tilde{r}(n, n)=o(\hat{r}(n, n))$. This conjecture is at present far from being solved. For the exact values, only two nontrivial ones were obtained: $\tilde{r}(3,3)=8$ by Kurek and Ruciński [12], and $\tilde{r}(3,4)=17$ by Prałat [15].

For sparse graphs, the online Ramsey numbers involving paths, stars, trees, and cycles have been studied $[1,2,6,7,8,9,11,13,14,16,17]$. In general, however, exact results are rare. Most results are upper or lower bounds, between which there is always a challenging gap. We are interested in exploring the following problem.

Question 1.1. Determine the exact expressions of some online Ramsey functions $f(n)=\tilde{r}\left(G, H_{n}\right)$, where G is a small fixed graph, and H_{n} is a graph from a class of sparse graphs such as paths, stars, and cycles.

Let P_{n} and C_{n} denote a path of order n and a cycle of order n, respectively. In 2015, Cyman, Dzido, Lapinskas, and Lo [7] obtained the exact online Ramsey numbers of P_{3} versus all paths and all cycles, which are $\tilde{r}\left(P_{3}, P_{n}\right)=\lceil 5(n-1) / 4\rceil$ for $n \geq 3$ and $\tilde{r}\left(P_{3}, C_{n}\right)=\lceil 5 n / 4\rceil$ for $n \geq 5$. In the same paper they showed that $2 n-2 \leq \tilde{r}\left(C_{4}, P_{n}\right) \leq 4 n-8$ for $n \geq 5$. Dybizbański, Dzido, and Zakrzewska 8] improved the upper bound of $\tilde{r}\left(C_{4}, P_{n}\right)$ from $4 n-8$ to $3 n-5$. Finally, Adamski and Bednarska-Bzdȩga [2] closed the gap by proving that $\tilde{r}\left(C_{4}, P_{n}\right)=2 n-2$ for $n \geq 8$. Their proof involves a technical inductive argument, in which the base case is computer-assisted. In 2022, Song and Zhang 17] showed that $\tilde{r}\left(P_{3}, n K_{2}\right)=\lceil 3 n / 2\rceil$ for $n \geq 2$; $\tilde{r}\left(P_{4}, n K_{2}\right)=\lceil 9 n / 5\rceil$ for $n \geq 2 ; \tilde{r}\left(m K_{2}, P_{n}\right)=n+2 m-4$ for $m=2,3$ and $n \geq 5$. Here, $n K_{2}$ denotes a matching with n edges.

In 2021, Latip and Tan [13] studied the function $\tilde{r}\left(K_{1,3}, P_{\ell}\right)$ and obtained that $\lceil 3(\ell-1) / 2\rceil \leq \tilde{r}\left(K_{1,3}, P_{\ell}\right) \leq$ $5 \ell / 3+2$. Here we use the clearer notation $K_{1,3}$ rather than S_{3} to denote a star with three edges, because S_{n} may denote a star with n vertices or a star with n edges in different literatures. Latip and Tan believed that the lower bound is close to the exact expression and posed the following conjecture.

Conjecture 1.2. [1J] $\tilde{r}\left(K_{1,3}, P_{\ell}\right)=(3 / 2+o(1)) \ell$.
In this paper, we determine the exact value of $\tilde{r}\left(K_{1,3}, P_{\ell}\right)$ for all $\ell \geq 2$, which verifies the above conjecture in a stronger form.

Theorem 1.3. $\tilde{r}\left(K_{1,3}, P_{\ell}\right)=\lfloor 3 \ell / 2\rfloor$ for $\ell \geq 2$.
The remainder of this paper is organized as follows. Section 2 shows the lower bound of $\tilde{r}\left(K_{1,3}, P_{\ell}\right)$. We will prove the upper bound by induction for $\ell \geq 7$. Thus we divide the proof of the upper bound into two sections: Section 3 for $2 \leq \ell \leq 6$ and Section 4 for $\ell \geq 7$.

2. The lower bound

During the whole game Painter uses a blocking strategy: she always colors an edge red unless doing so would create either a red $K_{1,3}$ or a red cycle C_{k} for $3 \leq k \leq\lfloor\ell / 2\rfloor$. More specifically, let R_{i} be the graph induced by all red edges before the i th round, and let e_{i} be the edge chosen by Builder in his i th move. If $R_{i}+e_{i}$ contains a $K_{1,3}$ or a cycle whose length is at most $\lfloor\ell / 2\rfloor$, then Painter colors e_{i} blue. Otherwise she colors e_{i} red.

Let G, R, and B be the graphs induced by all edges, all red edges, and all blue edges before the $\lfloor 3 \ell / 2\rfloor$ th round, respectively. We will prove that G contains neither a red $K_{1,3}$ nor a blue P_{ℓ}. Hence Builder can not win the game in $\lfloor 3 \ell / 2\rfloor-1$ rounds, and the lower bound follows.

If R has at least $\lfloor\ell / 2\rfloor+1$ edges, then B has at most $\lfloor 3 \ell / 2\rfloor-1-(\lfloor\ell / 2\rfloor+1)$ edges, which is $\ell-2$. In this way, B can not contain a path P_{ℓ}. So we assume that R contains no cycle with length at least $\lfloor\ell / 2\rfloor+1$.

Combining it with the Painter's strategy, we see that R contains no cycle, and has maximum degree at most two. Consequently, R consists of a disjoint union of paths. Assume that the number of components in R is s. Let X be the set of vertices which have degree two, and $\left\{y_{2 i-1}, y_{2 i}\right\}$ the ends of the i th path for $1 \leq i \leq s$. Thus, R has $|X|+s$ edges, which is at most $\lfloor\ell / 2\rfloor$.

Let P be a longest blue path in G. Since each vertex is incident to at most two edges of a path, P contains at most $2|X|$ edges incident to X. Recall that each blue edge is forced to appear, to avoid either a red $K_{1,3}$ or a red cycle. In other words, each blue edge is either incident to a vertex of X, or $y_{2 i-1} y_{2 i}$ for some i with $1 \leq i \leq s$. Therefore, the total number of edges in P is at most $2|X|+s$. Since $|E(R)|+|E(P)| \leq|E(G)|$, we have

$$
3|X|+2 s \leq\lfloor 3 \ell / 2\rfloor-1
$$

Suppose to the contrary that there is a blue path of order ℓ, then

$$
\begin{equation*}
2|X|+s \geq \ell-1 \tag{1}
\end{equation*}
$$

If $s \geq 2$, then we have

$$
\begin{aligned}
\lfloor 3 \ell / 2\rfloor-1 & \geq 3|X|+2 s \\
& \geq 3(2|X|+s) / 2+1 \\
& \geq 3(\ell-1) / 2+1 \\
& =(3 \ell-1) / 2,
\end{aligned}
$$

which is a contradiction. So we have $s=1$. The inequality (1) implies that $2|X| \geq \ell-2$. It follows that $|X|+s \geq \ell / 2$. Since R has $|X|+s$ edges, we see that $\ell / 2 \leq|X|+s \leq\lfloor\ell / 2\rfloor$. Thus, ℓ is even, and R is a red path with $\ell / 2$ edges (and $\ell / 2+1$ vertices). If Builder joins the two end vertices of this path, he creates a cycle of length $\ell / 2+1$. Painter will color this edge red by her strategy. Thus, the blue edges can only be forced by the vertices with degree two in R. Hence G contains only $\ell-2$ blue edges, which contradicts our assumption that there is a blue P_{ℓ}. Thus we have the lower bound.

3. The upper bound for $2 \leq \ell \leq 6$

We start with the following simple lemma.
Lemma 3.1. If there is a blue P_{k} in the online Ramsey game, then in the next three rounds, there is either a blue P_{k+1} or a red $K_{1,3}$.

Proof. Let v be an end vertex of the blue P_{k}. Builder joins v to three new vertices in the next three rounds. If none of the three edges is blue, we have a red $K_{1,3}$. Otherwise, we have a blue P_{k+1}.

For $\ell=2,3$, Builder draws a star with $\ell+1$ edges. Then there is either a red $K_{1,3}$ or a blue P_{ℓ}. Hence $\tilde{r}\left(K_{1,3}, P_{\ell}\right) \leq \ell+1=\lfloor 3 \ell / 2\rfloor$ for $\ell=2,3$. For $\ell=4$, Builder joins v_{0} to v_{1}, v_{2}, \ldots one by one, until a blue $K_{1,2}$ appears. This blue $K_{1,2}$ can be obtained in at most four rounds, since otherwise a red $K_{1,3}$ shows up and our proof is done. If the blue $K_{1,2}$ is obtained in three rounds, by Lemma 3.1, our proof is done. If the blue $K_{1,2}$ shows up in the fourth round, we assume that $v_{0} v_{1}, v_{0} v_{2}$ are red, and $v_{0} v_{3}, v_{0} v_{4}$ are blue. Builder chooses $v_{1} v_{3}$ and $v_{1} v_{4}$ in the next two moves. If neither of them is blue, then there is a red $K_{1,3}$. Otherwise, there is a blue P_{4}. Thus $\tilde{r}\left(K_{1,3}, P_{4}\right) \leq 6$.

For $5 \leq \ell \leq 6$, Builder first draws a path P_{4}, denoted by $v_{1} v_{2} v_{3} v_{4}$. It has five color patterns up to symmetry: $b b b, b b r, b r b, b r r, r r r$. In fact, the path may have another color pattern $r b r$, which is avoided as follows. If the first two edges $v_{1} v_{2}$ and $v_{2} v_{3}$ are colored blue and red respectively, then Builder joins v_{4} to
v_{3}. On the other hand, if $v_{1} v_{2}$ is red and $v_{2} v_{3}$ is blue, then Builder joins v_{4} to v_{1}. Thus $r b r$ can not show up in the first three rounds.

We assume that there is no red $K_{1,3}$ in $\lfloor 3 \ell / 2\rfloor$ rounds, since otherwise our proof is done. If $v_{1} v_{2} v_{3} v_{4}$ has color pattern $b b b$, by Lemma 3.1, $\tilde{r}\left(K_{1,3}, P_{\ell}\right) \leq\lfloor 3 \ell / 2\rfloor$ for $\ell=5,6$. If it has color pattern $b r b$, Builder joins a new vertex v_{5} to v_{2} and v_{3} in the next two moves. If both $v_{2} v_{5}$ and $v_{3} v_{5}$ are blue, then $v_{1} v_{2} v_{5} v_{3} v_{4}$ is a blue P_{5}. By Lemma 3.1. Builder forces a blue P_{6} in the next three rounds. If both $v_{2} v_{5}$ and $v_{3} v_{5}$ are red, then for $\ell=5$, Builder chooses two edges $v_{1} v_{5}$ and $v_{4} v_{5}$, both of which are forced to be blue. Hence $v_{2} v_{1} v_{5} v_{4} v_{3}$ is a blue P_{5}. For $\ell=6$, Builder chooses three edges $v_{2} v_{6}, v_{5} v_{6}$, and $v_{4} v_{5}$, all of which are forced to be blue. Hence $v_{1} v_{2} v_{6} v_{5} v_{4} v_{3}$ is a blue P_{6}. If $v_{2} v_{5}$ and $v_{3} v_{5}$ have different colors, say, $v_{2} v_{5}$ is red and $v_{3} v_{5}$ is blue, then Builder joins v_{2} to v_{4} and hence $v_{1} v_{2} v_{4} v_{3} v_{5}$ is a blue P_{5}. By Lemma 3.1. Builder forces a blue P_{6} in the next three rounds.

If $v_{1} v_{2} v_{3} v_{4}$ has color pattern $b b r$, Builder joins v_{3} to a new vertex v_{5}. If $v_{3} v_{5}$ is blue, then Builder chooses $v_{1} v_{4}$ and $v_{4} v_{5}$ in the next two moves. At least one of the two edges is blue. Thus, we have a blue P_{5} in six rounds. By Lemma 3.1 Builder forces a blue P_{6} in the next three rounds. If $v_{3} v_{5}$ is red, then Builder joins v_{4} to two new vertices v_{6} and v_{7}. At least one of the two new edges is blue. If exactly one of them is blue, say, $v_{4} v_{6}$ is blue and $v_{4} v_{7}$ is red, then Builder chooses $v_{3} v_{6}$ for $\ell=5$, and then joins v_{4} to a new vertex v_{8} for $\ell=6$. As a result, $v_{1} v_{2} v_{3} v_{6} v_{4}$ is a blue P_{5} and $v_{1} v_{2} v_{3} v_{6} v_{4} v_{8}$ is a blue P_{6}. If both $v_{4} v_{6}$ and $v_{4} v_{7}$ are blue, then Builder chooses $v_{3} v_{6}$, which has to be blue. Hence we obtain a blue P_{6} (and also a blue P_{5}) in seven rounds, which is $v_{1} v_{2} v_{3} v_{6} v_{4} v_{7}$.

Figure 1: The color patterns $b r r$ and $r r r$ of the first three edges.
For the other two color patterns brr and rrr, we illustrate Builder's strategy as in Figure 1 In the pattern $b r r$, we use a circled number to denote that Painter has a choice in that move. Since there is a blue P_{5} in six rounds in the left graph, it follows that a blue P_{6} can be forced in nine rounds. In the pattern rrr, at least one of the black dotted edges is blue. To summarize, Builder can always force a blue P_{5} in seven rounds and a blue P_{6} in nine rounds.

4. The upper bound for $\ell \geq 7$

In this section we show that $\tilde{r}\left(K_{1,3}, P_{\ell}\right) \leq\lfloor 3 \ell / 2\rfloor$ for $\ell \geq 7$. Assume that Painter always avoids a red $K_{1,3}$. When an edge is 'forced' to be blue in the following, it means that there is a red $K_{1,3}$ if the edge is colored red. We shall find a blue P_{ℓ} in $\lfloor 3 \ell / 2\rfloor$ rounds. In the first two moves Builder draws a star $K_{1,2}$, which has three possible color patterns up to symmetry: $b b, b r, r r$. For the last two patterns, Builder then joins the center of $K_{1,2}$ to a new vertex. Thus, there are three cases in total: the first two rounds form a blue path of order three; the first three rounds form a star with two edges blue and one edge red; the first three rounds form a star with two edges red and one edge blue. In most cases, the Builder's strategy is as follows. First he creates a small graph H. Then for some integer k with $4 \leq k \leq \ell-2$, Builder forces a blue path $P_{\ell-k}$ that is vertex-disjoint with H by induction. Finally, he combines H and $P_{\ell-k}$ to a blue path P_{ℓ}.

Case 1. The first two rounds form a blue path of order three.
Assume that the blue path is $v_{1} v_{2} v_{3}$. Builder extends it to a longer path $v_{1} v_{2} v_{3} v_{4} v_{5}$ in the next two moves. We distinguish three subcases by the colors of $v_{3} v_{4}$ and $v_{4} v_{5}$.

Case 1

Case 2

Case 3

Figure 2: We distinguish three cases.

Subcase 1.1. The edge $v_{4} v_{5}$ is red.

Figure 3: Force a P_{ℓ} in Subcase 1.1.
If $v_{3} v_{4}$ is red, Builder then chooses $v_{3} v_{5}$. If $v_{3} v_{5}$ is blue, Builder forces a blue $P_{\ell-5}$ in $\lfloor 3 \ell / 2\rfloor-7$ rounds by induction, whose end vertices are denoted by x and y. Next Builder draws two edges $y v_{4}$ and $v_{4} v_{1}$, both of which are forced to be blue. Thus, there is a blue path $x P_{\ell-5} y v_{4} v_{1} v_{2} v_{3} v_{5}$ of order ℓ in $\lfloor 3 \ell / 2\rfloor$ rounds. If $v_{3} v_{5}$ is red and $\ell=7$, Builder draws four edges $y v_{5}, v_{5} v_{6}, v_{6} v_{4}$, and $v_{4} v_{1}$, all of which are blue. Here, v_{6} and y are two new vertices. Thus, $y v_{5} v_{6} v_{4} v_{1} v_{2} v_{3}$ is a blue P_{7}. If $v_{3} v_{5}$ is red and $\ell \geq 8$, Builder forces a blue $P_{\ell-6}$ with two ends x and y in $\lfloor 3 \ell / 2\rfloor-9$ rounds by induction. Next Builder draws four edges $y v_{5}, v_{5} v_{6}$, $v_{6} v_{4}$, and $v_{4} v_{1}$. Here, v_{6} is a new vertex, and the four edges are forced to be blue. Thus, there is a blue path $x P_{\ell-6} y v_{5} v_{6} v_{4} v_{1} v_{2} v_{3}$ of order ℓ in $\lfloor 3 \ell / 2\rfloor$ rounds.

If $v_{3} v_{4}$ is blue, Builder then forces a blue $P_{\ell-4}$ with two ends x and y in $\lfloor 3 \ell / 2\rfloor-6$ rounds by induction. Next Builder draws two edges $x v_{4}$ and $y v_{4}$, at least one of which is blue. Without loss of generality, assume that $y v_{4}$ is blue. Thus, there is a blue path $x P_{\ell-4} y v_{4} v_{3} v_{2} v_{1}$ of order ℓ in $\lfloor 3 \ell / 2\rfloor$ rounds.

Subcase 1.2. The edge $v_{3} v_{4}$ is red and $v_{4} v_{5}$ is blue.

Figure 4: Force a P_{ℓ} in Subcase 1.2.
Builder joins both v_{3} and v_{4} to a new vertex v_{6}. If $v_{3} v_{6}$ and $v_{4} v_{6}$ are red, and $\ell=7$, then $v_{1} v_{2} v_{3} v_{7} v_{4} v_{5} v_{6}$ is a blue P_{7}, where v_{7} is a new vertex. If $v_{3} v_{6}$ and $v_{4} v_{6}$ are red, and $\ell=8$, then $v_{1} v_{2} v_{3} v_{7} v_{4} v_{5} v_{6} y$ is a blue P_{8}, where v_{7} and y are two new vertices. If $v_{3} v_{6}$ and $v_{4} v_{6}$ are red, and $\ell \geq 9$, then Builder forces a blue $P_{\ell-7}$ in $\lfloor 3 \ell / 2\rfloor-10$ rounds by induction, whose end vertices are denoted by x and y. It follows that $v_{1} v_{2} v_{3} v_{7} v_{4} v_{5} v_{6} y P_{\ell-7} x$ is a blue P_{ℓ}, where v_{7} is a new vertex. Thus, we obtain a blue P_{ℓ} in the required rounds.

If $v_{3} v_{6}$ is red and $v_{4} v_{6}$ is blue, and $\ell=7$, then Builder chooses $v_{3} v_{5}$, which has to be blue. He then joins v_{6} to two new vertices x and y. Either $v_{6} x$ or $v_{6} y$ is blue. Thus, we have a blue P_{7}, which is $v_{1} v_{2} v_{3} v_{5} v_{4} v_{6} x$ or $v_{1} v_{2} v_{3} v_{5} v_{4} v_{6} y$. If $v_{3} v_{6}$ is red and $v_{4} v_{6}$ is blue, and $\ell \geq 8$, then Builder forces a blue $P_{\ell-6}$ with two ends x and y in $\lfloor 3 \ell / 2\rfloor-9$ rounds by induction. Next Builder chooses $v_{3} v_{5}, x v_{6}$, and $y v_{6}$. The edge $v_{3} v_{5}$ has to be blue, and at least one of $x v_{6}$ and $y v_{6}$, say $y v_{6}$, is blue. As a result, $v_{1} v_{2} v_{3} v_{5} v_{4} v_{6} y P_{\ell-6} x$ is a blue P_{ℓ}. We obtain a blue P_{ℓ} in $\lfloor 3 \ell / 2\rfloor$ rounds again. If $v_{3} v_{6}$ is blue and $v_{4} v_{6}$ is red, applying the same argument as above, we can obtain a blue P_{ℓ}.

If both $v_{3} v_{6}$ and $v_{4} v_{6}$ are blue, and $\ell=7$, we have obtained a blue P_{6} in six rounds, which is $v_{1} v_{2} v_{3} v_{6} v_{4} v_{5}$. Thus, it is easy to obtain a blue P_{7} in nine rounds. If both $v_{3} v_{6}$ and $v_{4} v_{6}$ are blue, and $\ell \geq 8$, then Builder forces a blue $P_{\ell-6}$ with two ends x and y in $\lfloor 3 \ell / 2\rfloor-9$ rounds by induction. Next Builder chooses the edge $v_{1} v_{5}$. If $v_{1} v_{5}$ is blue, Builder joins v_{4} to x and y. At least one of $x v_{4}$ and $y v_{4}$, say, $y v_{4}$ is blue. Accordingly, $v_{5} v_{1} v_{2} v_{3} v_{6} v_{4} y P_{\ell-6} x$ is a blue P_{ℓ}. Hence we obtain a blue P_{ℓ} in $\lfloor 3 \ell / 2\rfloor$ rounds. If $v_{1} v_{5}$ is red, Builder then joins v_{5} to x and y. At least one of $x v_{5}$ and $y v_{5}$, say, $y v_{5}$ is blue. Accordingly, $v_{1} v_{2} v_{3} v_{6} v_{4} v_{5} y P_{\ell-6} x$ is a blue P_{ℓ}. We obtain a blue P_{ℓ} in the required rounds.

Subcase 1.3. Both edges $v_{3} v_{4}$ and $v_{4} v_{5}$ are blue.

Figure 5: Force a P_{ℓ} in Subcase 1.3.

Builder joins v_{5} to a new vertex v_{6} in the next move. If $v_{5} v_{6}$ is blue and $\ell=7$, Builder joins v_{6} to three new vertices v_{7}, v_{8}, v_{9}. At least one of the three edges, say $v_{6} v_{7}$, is blue. Thus we obtain a blue P_{7} in nine rounds. If $v_{5} v_{6}$ is blue and $\ell \geq 8$, Builder forces a blue $P_{\ell-6}$ in $\lfloor 3 \ell / 2\rfloor-9$ rounds by induction, whose end vertices are denoted by x and y. Builder joins v_{1} and v_{6} in the next move. If $v_{1} v_{6}$ is blue, then all v_{i} 's for $1 \leq i \leq 6$ form a cycle. Builder joins x to v_{1}, v_{2}, v_{3} respectively. At least one of $x v_{1}, x v_{2}, x v_{3}$ is blue. We may assume that $x v_{1}$ is blue without loss of generality. Accordingly, $v_{2} v_{3} v_{4} v_{5} v_{6} v_{1} x P_{\ell-6} y$ is a blue P_{ℓ}. If $v_{1} v_{6}$ is red, Builder chooses $v_{6} x$ and $v_{6} y$ in the last two moves. We may assume that $v_{6} y$ is blue without loss of generality. It follows that $v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} y P_{\ell-6} x$ is a blue P_{ℓ}.

If $v_{5} v_{6}$ is red, Builder forces a blue $P_{\ell-5}$ with end vertices x and y in $\lfloor 3 \ell / 2\rfloor-7$ rounds by induction. Builder chooses $v_{5} x$ and $v_{5} y$ in the last two moves. To avoid a red $K_{1,3}$, we may assume that $v_{5} y$ is blue without loss of generality. It follows that $v_{1} v_{2} v_{3} v_{4} v_{5} y P_{\ell-5} x$ is a blue P_{ℓ}. In all three cases, we obtain a blue P_{ℓ} in at most $\lfloor 3 \ell / 2\rfloor$ rounds.

Case 2. A star with two edges blue and one edge red appears in the first three rounds.
Assume that the blue path is $v_{1} v_{2} v_{3}$, and the red edge is $v_{2} v_{4}$. Since $\tilde{r}\left(K_{1,3}, P_{\ell-4}\right) \leq\lfloor 3 \ell / 2\rfloor-6$ by induction, Builder forces a blue $P_{\ell-4}$ in the next $\lfloor 3 \ell / 2\rfloor-6$ rounds, whose end vertices are denoted by x and y. Then he chooses $v_{3} v_{4}$ in the next move. If $v_{3} v_{4}$ is red, he draws two edges $v_{1} v_{4}$ and $v_{4} x$, both of which are forced to be blue. Hence there is a blue path $v_{3} v_{2} v_{1} v_{4} x P_{\ell-4} y$ of order ℓ in $\lfloor 3 \ell / 2\rfloor$ rounds. If $v_{3} v_{4}$ is blue, he draws two edges $v_{4} x$ and $v_{4} y$. To avoid a red $K_{1,3}$, at least one of $v_{4} x$ and $v_{4} y$ is blue, say, $v_{4} x$ is blue. Thus, there is a blue path $v_{1} v_{2} v_{3} v_{4} x P_{\ell-4} y$ of order ℓ in $\lfloor 3 \ell / 2\rfloor$ rounds.

Case 3. A star with two edges red and one edge blue appears in the first three rounds.
Assume that the red path is $v_{1} v_{2} v_{3}$, and the blue edge is $v_{2} u_{2}$. We extend this red path in the following

Figure 6: Force a P_{ℓ} in Case 2.
way. First Builder joins v_{3} to two new vertices u_{3} and v_{4}. If both $v_{3} u_{3}$ and $v_{3} v_{4}$ are blue, then we have found the required red path. If not, the two edges $v_{3} u_{3}$ and $v_{3} v_{4}$ have to be one red and one blue, since otherwise there is a red $K_{1,3}$, which contradicts our assumption. Without loss of generality, assume that $v_{3} u_{3}$ is blue and $v_{3} v_{4}$ is red. For each $i \geq 4$, if $v_{i-1} v_{i}$ is red, Builder joins v_{i} to two new vertices u_{i} and v_{i+1}. If both $v_{i} u_{i}$ and $v_{i} v_{i+1}$ are blue, then we stop the procedure. Otherwise, assume that $v_{i} u_{i}$ is blue and $v_{i} v_{i+1}$ is red. The procedure stops when either the red path has length $\lfloor\ell / 2\rfloor+1$, or both $v_{t} u_{t}$ and $v_{t} v_{t+1}$ are blue for some t with $3 \leq t \leq\lfloor\ell / 2\rfloor+1$.

Figure 7: The graph that Builder constructs in the first phase of Case 3.
If the red path has length $\lfloor\ell / 2\rfloor+1$, Builder joins u_{i} to v_{i+1} for each i with $2 \leq i \leq\lfloor\ell / 2\rfloor$. All edges $u_{i} v_{i+1}$ have to be blue to avoid a red $K_{1,3}$. Thus, if ℓ is even, $v_{2} u_{2} v_{3} u_{3} \cdots v_{\ell / 2+1} u_{\ell / 2+1}$ is a blue P_{ℓ}, and if ℓ is odd, $u_{1} v_{2} u_{2} v_{3} u_{3} \cdots v_{(\ell-1) / 2+1} u_{(\ell-1) / 2+1}$ is a blue P_{ℓ}, where u_{1} is a new vertex. In both cases, Builder can force a blue P_{ℓ} in $\ell-1+\lfloor\ell / 2\rfloor+1$ rounds, which is $\lfloor 3 \ell / 2\rfloor$ rounds.

Now we consider the other case that there exists an integer t with $3 \leq t \leq\lfloor\ell / 2\rfloor+1$ such that both $v_{t} u_{t}$ and $v_{t} v_{t+1}$ are blue edges. Builder joins v_{i} to u_{i+1} for each i with $2 \leq i \leq t-1$. If $t=\lfloor\ell / 2\rfloor+1$ and ℓ is odd, then $u_{2} v_{2} u_{3} v_{3} \cdots u_{t} v_{t} v_{t+1}$ is a blue path of order ℓ. If $t=\lfloor\ell / 2\rfloor+1$ and ℓ is even, then $u_{2} v_{2} u_{3} v_{3} \cdots u_{t} v_{t}$ is a blue path of order ℓ. In both cases, a blue P_{ℓ} can be forced in $\lfloor 3 \ell / 2\rfloor$ rounds.

If $t=\lfloor\ell / 2\rfloor$, Builder joins v_{1} to v_{t+1}. If ℓ is even and $v_{1} v_{t+1}$ is blue, then we can find a blue P_{ℓ}, which is $u_{2} v_{2} u_{3} v_{3} \cdots u_{t} v_{t} v_{t+1} v_{1}$. If ℓ is even and $v_{1} v_{t+1}$ is red, then Builder chooses $v_{1} u_{2}$, and $v_{1} u_{2} v_{2} u_{3} v_{3} \cdots u_{t} v_{t} v_{t+1}$ is a blue P_{ℓ}. If ℓ is odd and $v_{1} v_{t+1}$ is blue, then Builder draws two edges $v_{1} x$ and $v_{1} y$, at least one of which is blue, say, $v_{1} x$ is blue. It follows that $u_{2} v_{2} u_{3} v_{3} \cdots u_{t} v_{t} v_{t+1} v_{1} x$ is a blue P_{ℓ}. If ℓ is odd and $v_{1} v_{t+1}$ is red, then Builder draws two edges $v_{1} x$ and $v_{1} u_{2}$, both of which are forced to be blue. Hence $x v_{1} u_{2} v_{2} u_{3} v_{3} \cdots u_{t} v_{t} v_{t+1}$ is a blue P_{ℓ}. It is not difficult to check that the total number of rounds is at most $\lfloor 3 \ell / 2\rfloor$. Thus, we assume that $3 \leq t \leq\lfloor\ell / 2\rfloor-1$.

Since $\ell-2 t \geq 2$, we have $\tilde{r}\left(K_{1,3}, P_{\ell-2 t}\right) \leq\lfloor 3(\ell-2 t) / 2\rfloor$ by induction. Thus, Builder can force a blue $P_{\ell-2 t}$ in the next $\lfloor 3(\ell-2 t) / 2\rfloor$ rounds. Assume that the end vertices of this $P_{\ell-2 t}$ is x and y. Builder joins v_{1} to v_{t+1}. If $v_{1} v_{t+1}$ is red, Builder chooses $x v_{1}$ and $v_{1} u_{2}$, which are forced to be blue. Hence $y P_{\ell-2 t} x v_{1} u_{2} v_{2} u_{3} v_{3} \cdots u_{t} v_{t} v_{t+1}$ is a blue P_{ℓ}. If $v_{1} v_{t+1}$ is blue, Builder draws two edges $v_{1} x$ and $v_{1} y$, at least one of which is blue, say, $v_{1} x$. It follows that $u_{2} v_{2} u_{3} v_{3} \cdots u_{t} v_{t} v_{t+1} v_{1} x P_{\ell-2 t} y$ is a blue P_{ℓ}. Extending the
path $x P_{\ell-2 t} y$ to a blue P_{ℓ}, we have used $2 t$ blue edges and t red edges. Accordingly, the total number of rounds is at most $\lfloor 3(\ell-2 t) / 2\rfloor+3 t$, which is $\lfloor 3 \ell / 2\rfloor$. Therefore, $\tilde{r}\left(K_{1,3}, P_{\ell}\right) \leq\lfloor 3 \ell / 2\rfloor$.

References

[1] G. Adamski, M. Bednarska-Bzdȩga, Online size Ramsey numbers: Odd cycles vs connected graphs (2022) arXiv:2111.14147v2.
[2] G. Adamski, M. Bednarska-Bzdȩga, Online size Ramsey numbers: Path vs C_{4} (2022) arXiv:2211.12204
[3] J. Beck, Achievement games and the probabilistic method, in: Combinatorics, Paul Erdős is Eighty, volume 1, János Bolyai Mathematical Society, Budapest Hungary, 1993, pp. 51-78.
[4] D. Conlon, On-line Ramsey numbers, SIAM J. Discrete Math. 23 (2010) 1954-1963.
[5] D. Conlon, J. Fox, A. Grinshpun, X. He, Online Ramsey numbers and the subgraph query problem, in: Building Bridges II, Springer, Berlin Heidelberg, 2019, pp. 159-194.
[6] J. Cyman, T. Dzido, A note on on-line Ramsey numbers for quadrilaterals, Opuscula Math. 34 (2014) 463-468.
[7] J. Cyman, T. Dzido, J. Lapinskas, A. Lo, On-line Ramsey numbers of paths and cycles, Electron. J. Combin. 22 (2015) \#P1.15.
[8] J. Dybizbański, T. Dzido, R. Zakrzewska, On-line Ramsey numbers for paths and short cycles, Discrete Appl. Math. 282 (2020) 265-270.
[9] T. Dzido, R. Zakrzewska, A note on on-line Ramsey numbers for some paths, Mathematics 9 (2021) 735.
[10] T. Gowers, The two cultures of mathematics, in: Mathematics: Frontiers and Perspectives, American Mathematical Society, Providence, RI, 2000, pp. 65-78.
[11] J.A. Grytczuk, H.A. Kierstead, P. Prałat, On-line Ramsey numbers for paths and stars, Discrete Math. Theor. Comput. Sci. 10 (3) (2008) 63-74.
[12] A. Kurek, A. Ruciński, Two variants of the size Ramsey number, Discuss. Math. Graph Theory 25 (2005) 141-149.
[13] F.N.N.B.M. Latip, T.S. Tan, A note on on-line Ramsey numbers of stars and paths, Bull. Malays. Math. Sci. Soc. 44 (2021) 3511-3521.
[14] P. Prałat, A note on small on-line Ramsey numbers for paths and their generalization, Australas. J. Combin. 40 (2008) 27-36.
[15] P. Prałat, $\bar{R}(3,4)=17$, Electron. J. Combin. 15 (2008) \#R67.
[16] P. Prałat, A note on off-diagonal small on-line Ramsey numbers for paths, Ars Combin. 107 (2012) 295-306.
[17] R. Song, Y. Zhang, Online and connected online Ramsey numbers of a matching versus a path, Symmetry 14 (2022) 2277.

[^0]: * Corresponding author.

 Email address: ybzhang@hebtu.edu.cn (Yanbo Zhang)

