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Abstract

Given two graphs G and H , the online Ramsey number r̃(G,H) is defined to be the minimum number

of rounds that Builder can always guarantee a win in the following (G,H)-online Ramsey game between

Builder and Painter. Starting from an infinite set of isolated vertices, in each round Builder draws an edge

between some two vertices, and Painter immediately colors it red or blue. Builder’s goal is to force either

a red copy of G or a blue copy of H in as few rounds as possible, while Painter’s goal is to delay it for as

many rounds as possible. Let K1,3 denote a star with three edges and Pℓ a path with ℓ vertices. Latip and

Tan conjectured that r̃(K1,3, Pℓ) = (3/2 + o(1))ℓ [Bull. Malays. Math. Sci. Soc. 44 (2021) 3511–3521]. We

show that r̃(K1,3, Pℓ) = ⌊3ℓ/2⌋ for ℓ ≥ 2, which verifies the conjecture in a stronger form.
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1. Introduction

We are concerned with a game-theoretic notion called online Ramsey number in this paper. Given two

graphs G and H , the (G,H)-online Ramsey game is a combinatorial game played on an infinite set of vertices

between two players, Builder and Painter. Starting from an edgeless graph, in each round Builder draws an

edge between two nonadjacent vertices, and Painter colors it red or blue immediately. Builder’s goal is to

force either a red copy of G or a blue copy of H in as few rounds as possible, while Painter’s goal is to delay

it for as many rounds as possible. The online Ramsey number r̃(G,H) is the smallest number of rounds

needed to create either a red copy of G or a blue copy of H , assuming that both Builder and Painter play

optimally.

The online Ramsey number was introduced by Beck [3] and owes its name to Kurek and Ruciński [12].

It can be viewed as the online version of size Ramsey number. Recall that the Ramsey number r(G,H) and

the size Ramsey number r̂(G,H) are the smallest number of vertices and edges, respectively, in a graph F

such that for any red-blue edge coloring of F , there is either a red copy of G or a blue copy of H . Clearly

r̃(G,H) ≤ r̂(G,H) ≤
(

r(G,H)
2

)

.

In the classical case where both G and H are complete graphs, we write m, n instead of Km, Kn for

simplicity of notation. It is well known that the Ramsey number r(n, n) is between 2n/2 and 22n. Both

bounds have seen no exponential improvements in decades [10]. For size Ramsey numbers, a result attributed

to Chvátal shows that r̂(m,n) =
(

r(m,n)
2

)

. While for online Ramsey numbers, Conlon [4] showed that for

infinitely many n, r̃(n, n) ≤ 1.001−nr̂(n, n), which is an exponential improvement for infinite numbers.
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For the lower bound, Beck [3] described an elegant proof of r̃(n, n) ≥ r(n, n)/2 which was found by Alon.

Recently Conlon, Fox, Grinshpun, and He [5] proved that r̃(n, n) ≥ 2(2−
√
2)n+O(1), which is an exponential

improvement to the lower bound. The basic conjecture, attributed by Kurek and Ruciński [12], is to show

that r̃(n, n) = o(r̂(n, n)). This conjecture is at present far from being solved. For the exact values, only two

nontrivial ones were obtained: r̃(3, 3) = 8 by Kurek and Ruciński [12], and r̃(3, 4) = 17 by Pra lat [15].

For sparse graphs, the online Ramsey numbers involving paths, stars, trees, and cycles have been studied

[1, 2, 6, 7, 8, 9, 11, 13, 14, 16, 17]. In general, however, exact results are rare. Most results are upper or

lower bounds, between which there is always a challenging gap. We are interested in exploring the following

problem.

Question 1.1. Determine the exact expressions of some online Ramsey functions f(n) = r̃(G,Hn), where

G is a small fixed graph, and Hn is a graph from a class of sparse graphs such as paths, stars, and cycles.

Let Pn and Cn denote a path of order n and a cycle of order n, respectively. In 2015, Cyman, Dzido,

Lapinskas, and Lo [7] obtained the exact online Ramsey numbers of P3 versus all paths and all cycles, which

are r̃(P3, Pn) = ⌈5(n− 1)/4⌉ for n ≥ 3 and r̃(P3, Cn) = ⌈5n/4⌉ for n ≥ 5. In the same paper they showed

that 2n − 2 ≤ r̃(C4, Pn) ≤ 4n− 8 for n ≥ 5. Dybizbański, Dzido, and Zakrzewska [8] improved the upper

bound of r̃(C4, Pn) from 4n − 8 to 3n − 5. Finally, Adamski and Bednarska-Bzdȩga [2] closed the gap by

proving that r̃(C4, Pn) = 2n−2 for n ≥ 8. Their proof involves a technical inductive argument, in which the

base case is computer-assisted. In 2022, Song and Zhang [17] showed that r̃(P3, nK2) = ⌈3n/2⌉ for n ≥ 2;

r̃(P4, nK2) = ⌈9n/5⌉ for n ≥ 2; r̃(mK2, Pn) = n + 2m − 4 for m = 2, 3 and n ≥ 5. Here, nK2 denotes a

matching with n edges.

In 2021, Latip and Tan [13] studied the function r̃(K1,3, Pℓ) and obtained that ⌈3(ℓ−1)/2⌉ ≤ r̃(K1,3, Pℓ) ≤

5ℓ/3 + 2. Here we use the clearer notation K1,3 rather than S3 to denote a star with three edges, because

Sn may denote a star with n vertices or a star with n edges in different literatures. Latip and Tan believed

that the lower bound is close to the exact expression and posed the following conjecture.

Conjecture 1.2. [13] r̃(K1,3, Pℓ) = (3/2 + o(1))ℓ.

In this paper, we determine the exact value of r̃(K1,3, Pℓ) for all ℓ ≥ 2, which verifies the above conjecture

in a stronger form.

Theorem 1.3. r̃(K1,3, Pℓ) = ⌊3ℓ/2⌋ for ℓ ≥ 2.

The remainder of this paper is organized as follows. Section 2 shows the lower bound of r̃(K1,3, Pℓ). We

will prove the upper bound by induction for ℓ ≥ 7. Thus we divide the proof of the upper bound into two

sections: Section 3 for 2 ≤ ℓ ≤ 6 and Section 4 for ℓ ≥ 7.

2. The lower bound

During the whole game Painter uses a blocking strategy: she always colors an edge red unless doing so

would create either a red K1,3 or a red cycle Ck for 3 ≤ k ≤ ⌊ℓ/2⌋. More specifically, let Ri be the graph

induced by all red edges before the ith round, and let ei be the edge chosen by Builder in his ith move. If

Ri + ei contains a K1,3 or a cycle whose length is at most ⌊ℓ/2⌋, then Painter colors ei blue. Otherwise she

colors ei red.

Let G, R, and B be the graphs induced by all edges, all red edges, and all blue edges before the ⌊3ℓ/2⌋th

round, respectively. We will prove that G contains neither a red K1,3 nor a blue Pℓ. Hence Builder can not

win the game in ⌊3ℓ/2⌋ − 1 rounds, and the lower bound follows.

If R has at least ⌊ℓ/2⌋ + 1 edges, then B has at most ⌊3ℓ/2⌋ − 1 − (⌊ℓ/2⌋ + 1) edges, which is ℓ− 2. In

this way, B can not contain a path Pℓ. So we assume that R contains no cycle with length at least ⌊ℓ/2⌋+1.

2



Combining it with the Painter’s strategy, we see that R contains no cycle, and has maximum degree at most

two. Consequently, R consists of a disjoint union of paths. Assume that the number of components in R is

s. Let X be the set of vertices which have degree two, and {y2i−1, y2i} the ends of the ith path for 1 ≤ i ≤ s.

Thus, R has |X | + s edges, which is at most ⌊ℓ/2⌋.

Let P be a longest blue path in G. Since each vertex is incident to at most two edges of a path, P contains

at most 2|X | edges incident to X . Recall that each blue edge is forced to appear, to avoid either a red K1,3

or a red cycle. In other words, each blue edge is either incident to a vertex of X , or y2i−1y2i for some i with

1 ≤ i ≤ s. Therefore, the total number of edges in P is at most 2|X | + s. Since |E(R)| + |E(P )| ≤ |E(G)|,

we have

3|X | + 2s ≤ ⌊3ℓ/2⌋ − 1.

Suppose to the contrary that there is a blue path of order ℓ, then

2|X | + s ≥ ℓ− 1. (1)

If s ≥ 2, then we have

⌊3ℓ/2⌋ − 1 ≥ 3|X | + 2s

≥ 3(2|X | + s)/2 + 1

≥ 3(ℓ− 1)/2 + 1

= (3ℓ− 1)/2,

which is a contradiction. So we have s = 1. The inequality (1) implies that 2|X | ≥ ℓ − 2. It follows that

|X | + s ≥ ℓ/2. Since R has |X | + s edges, we see that ℓ/2 ≤ |X | + s ≤ ⌊ℓ/2⌋. Thus, ℓ is even, and R is a

red path with ℓ/2 edges (and ℓ/2 + 1 vertices). If Builder joins the two end vertices of this path, he creates

a cycle of length ℓ/2 + 1. Painter will color this edge red by her strategy. Thus, the blue edges can only be

forced by the vertices with degree two in R. Hence G contains only ℓ− 2 blue edges, which contradicts our

assumption that there is a blue Pℓ. Thus we have the lower bound.

3. The upper bound for 2 ≤ ℓ ≤ 6

We start with the following simple lemma.

Lemma 3.1. If there is a blue Pk in the online Ramsey game, then in the next three rounds, there is either

a blue Pk+1 or a red K1,3.

Proof. Let v be an end vertex of the blue Pk. Builder joins v to three new vertices in the next three rounds.

If none of the three edges is blue, we have a red K1,3. Otherwise, we have a blue Pk+1.

For ℓ = 2, 3, Builder draws a star with ℓ + 1 edges. Then there is either a red K1,3 or a blue Pℓ. Hence

r̃(K1,3, Pℓ) ≤ ℓ + 1 = ⌊3ℓ/2⌋ for ℓ = 2, 3. For ℓ = 4, Builder joins v0 to v1, v2, . . . one by one, until a blue

K1,2 appears. This blue K1,2 can be obtained in at most four rounds, since otherwise a red K1,3 shows up

and our proof is done. If the blue K1,2 is obtained in three rounds, by Lemma 3.1, our proof is done. If the

blue K1,2 shows up in the fourth round, we assume that v0v1, v0v2 are red, and v0v3, v0v4 are blue. Builder

chooses v1v3 and v1v4 in the next two moves. If neither of them is blue, then there is a red K1,3. Otherwise,

there is a blue P4. Thus r̃(K1,3, P4) ≤ 6.

For 5 ≤ ℓ ≤ 6, Builder first draws a path P4, denoted by v1v2v3v4. It has five color patterns up to

symmetry: bbb, bbr, brb, brr, rrr. In fact, the path may have another color pattern rbr, which is avoided as

follows. If the first two edges v1v2 and v2v3 are colored blue and red respectively, then Builder joins v4 to
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v3. On the other hand, if v1v2 is red and v2v3 is blue, then Builder joins v4 to v1. Thus rbr can not show

up in the first three rounds.

We assume that there is no red K1,3 in ⌊3ℓ/2⌋ rounds, since otherwise our proof is done. If v1v2v3v4
has color pattern bbb, by Lemma 3.1, r̃(K1,3, Pℓ) ≤ ⌊3ℓ/2⌋ for ℓ = 5, 6. If it has color pattern brb, Builder

joins a new vertex v5 to v2 and v3 in the next two moves. If both v2v5 and v3v5 are blue, then v1v2v5v3v4
is a blue P5. By Lemma 3.1, Builder forces a blue P6 in the next three rounds. If both v2v5 and v3v5 are

red, then for ℓ = 5, Builder chooses two edges v1v5 and v4v5, both of which are forced to be blue. Hence

v2v1v5v4v3 is a blue P5. For ℓ = 6, Builder chooses three edges v2v6, v5v6, and v4v5, all of which are forced

to be blue. Hence v1v2v6v5v4v3 is a blue P6. If v2v5 and v3v5 have different colors, say, v2v5 is red and v3v5
is blue, then Builder joins v2 to v4 and hence v1v2v4v3v5 is a blue P5. By Lemma 3.1, Builder forces a blue

P6 in the next three rounds.

If v1v2v3v4 has color pattern bbr, Builder joins v3 to a new vertex v5. If v3v5 is blue, then Builder chooses

v1v4 and v4v5 in the next two moves. At least one of the two edges is blue. Thus, we have a blue P5 in six

rounds. By Lemma 3.1, Builder forces a blue P6 in the next three rounds. If v3v5 is red, then Builder joins

v4 to two new vertices v6 and v7. At least one of the two new edges is blue. If exactly one of them is blue,

say, v4v6 is blue and v4v7 is red, then Builder chooses v3v6 for ℓ = 5, and then joins v4 to a new vertex v8
for ℓ = 6. As a result, v1v2v3v6v4 is a blue P5 and v1v2v3v6v4v8 is a blue P6. If both v4v6 and v4v7 are blue,

then Builder chooses v3v6, which has to be blue. Hence we obtain a blue P6 (and also a blue P5) in seven

rounds, which is v1v2v3v6v4v7.

4○

5 6

4○

5 6 7 8 4 5 6 7

Figure 1: The color patterns brr and rrr of the first three edges.

For the other two color patterns brr and rrr, we illustrate Builder’s strategy as in Figure 1. In the

pattern brr, we use a circled number to denote that Painter has a choice in that move. Since there is a blue

P5 in six rounds in the left graph, it follows that a blue P6 can be forced in nine rounds. In the pattern rrr,

at least one of the black dotted edges is blue. To summarize, Builder can always force a blue P5 in seven

rounds and a blue P6 in nine rounds.

4. The upper bound for ℓ ≥ 7

In this section we show that r̃(K1,3, Pℓ) ≤ ⌊3ℓ/2⌋ for ℓ ≥ 7. Assume that Painter always avoids a red

K1,3. When an edge is ‘forced’ to be blue in the following, it means that there is a red K1,3 if the edge is

colored red. We shall find a blue Pℓ in ⌊3ℓ/2⌋ rounds. In the first two moves Builder draws a star K1,2,

which has three possible color patterns up to symmetry: bb, br, rr. For the last two patterns, Builder then

joins the center of K1,2 to a new vertex. Thus, there are three cases in total: the first two rounds form a

blue path of order three; the first three rounds form a star with two edges blue and one edge red; the first

three rounds form a star with two edges red and one edge blue. In most cases, the Builder’s strategy is as

follows. First he creates a small graph H . Then for some integer k with 4 ≤ k ≤ ℓ− 2, Builder forces a blue

path Pℓ−k that is vertex-disjoint with H by induction. Finally, he combines H and Pℓ−k to a blue path Pℓ.

Case 1. The first two rounds form a blue path of order three.

Assume that the blue path is v1v2v3. Builder extends it to a longer path v1v2v3v4v5 in the next two

moves. We distinguish three subcases by the colors of v3v4 and v4v5.
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Case 1 Case 2 Case 3

Figure 2: We distinguish three cases.

Subcase 1.1. The edge v4v5 is red.

x y

v1 v2 v3 v4 v5

Pℓ−5

x y

v1 v2 v3 v4 v5

v6

Pℓ−6

x y

v1 v2 v3 v4 v5

Pℓ−4

Figure 3: Force a Pℓ in Subcase 1.1.

If v3v4 is red, Builder then chooses v3v5. If v3v5 is blue, Builder forces a blue Pℓ−5 in ⌊3ℓ/2⌋− 7 rounds

by induction, whose end vertices are denoted by x and y. Next Builder draws two edges yv4 and v4v1, both

of which are forced to be blue. Thus, there is a blue path xPℓ−5yv4v1v2v3v5 of order ℓ in ⌊3ℓ/2⌋ rounds. If

v3v5 is red and ℓ = 7, Builder draws four edges yv5, v5v6, v6v4, and v4v1, all of which are blue. Here, v6
and y are two new vertices. Thus, yv5v6v4v1v2v3 is a blue P7. If v3v5 is red and ℓ ≥ 8, Builder forces a blue

Pℓ−6 with two ends x and y in ⌊3ℓ/2⌋ − 9 rounds by induction. Next Builder draws four edges yv5, v5v6,

v6v4, and v4v1. Here, v6 is a new vertex, and the four edges are forced to be blue. Thus, there is a blue

path xPℓ−6yv5v6v4v1v2v3 of order ℓ in ⌊3ℓ/2⌋ rounds.

If v3v4 is blue, Builder then forces a blue Pℓ−4 with two ends x and y in ⌊3ℓ/2⌋− 6 rounds by induction.

Next Builder draws two edges xv4 and yv4, at least one of which is blue. Without loss of generality, assume

that yv4 is blue. Thus, there is a blue path xPℓ−4yv4v3v2v1 of order ℓ in ⌊3ℓ/2⌋ rounds.

Subcase 1.2. The edge v3v4 is red and v4v5 is blue.

x y

v1 v2 v3 v4 v5

v6

v7

Pℓ−7

v7

x y

v1 v2 v3 v4 v5

v6

Pℓ−6

x y

v1 v2 v3 v4 v5

v6

Pℓ−6

x y

v1 v2 v3 v4 v5

v6

Pℓ−6

Figure 4: Force a Pℓ in Subcase 1.2.

Builder joins both v3 and v4 to a new vertex v6. If v3v6 and v4v6 are red, and ℓ = 7, then v1v2v3v7v4v5v6
is a blue P7, where v7 is a new vertex. If v3v6 and v4v6 are red, and ℓ = 8, then v1v2v3v7v4v5v6y is a

blue P8, where v7 and y are two new vertices. If v3v6 and v4v6 are red, and ℓ ≥ 9, then Builder forces a

blue Pℓ−7 in ⌊3ℓ/2⌋ − 10 rounds by induction, whose end vertices are denoted by x and y. It follows that

v1v2v3v7v4v5v6yPℓ−7x is a blue Pℓ, where v7 is a new vertex. Thus, we obtain a blue Pℓ in the required

rounds.
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If v3v6 is red and v4v6 is blue, and ℓ = 7, then Builder chooses v3v5, which has to be blue. He then joins

v6 to two new vertices x and y. Either v6x or v6y is blue. Thus, we have a blue P7, which is v1v2v3v5v4v6x

or v1v2v3v5v4v6y. If v3v6 is red and v4v6 is blue, and ℓ ≥ 8, then Builder forces a blue Pℓ−6 with two ends

x and y in ⌊3ℓ/2⌋ − 9 rounds by induction. Next Builder chooses v3v5, xv6, and yv6. The edge v3v5 has

to be blue, and at least one of xv6 and yv6, say yv6, is blue. As a result, v1v2v3v5v4v6yPℓ−6x is a blue Pℓ.

We obtain a blue Pℓ in ⌊3ℓ/2⌋ rounds again. If v3v6 is blue and v4v6 is red, applying the same argument as

above, we can obtain a blue Pℓ.

If both v3v6 and v4v6 are blue, and ℓ = 7, we have obtained a blue P6 in six rounds, which is v1v2v3v6v4v5.

Thus, it is easy to obtain a blue P7 in nine rounds. If both v3v6 and v4v6 are blue, and ℓ ≥ 8, then Builder

forces a blue Pℓ−6 with two ends x and y in ⌊3ℓ/2⌋− 9 rounds by induction. Next Builder chooses the edge

v1v5. If v1v5 is blue, Builder joins v4 to x and y. At least one of xv4 and yv4, say, yv4 is blue. Accordingly,

v5v1v2v3v6v4yPℓ−6x is a blue Pℓ. Hence we obtain a blue Pℓ in ⌊3ℓ/2⌋ rounds. If v1v5 is red, Builder then

joins v5 to x and y. At least one of xv5 and yv5, say, yv5 is blue. Accordingly, v1v2v3v6v4v5yPℓ−6x is a blue

Pℓ. We obtain a blue Pℓ in the required rounds.

Subcase 1.3. Both edges v3v4 and v4v5 are blue.

x y

v1 v2 v3 v4 v5 v6

Pℓ−6

x y

v1 v2 v3 v4 v5 v6

Pℓ−6

x y

v1 v2 v3 v4 v5 v6

Pℓ−5

Figure 5: Force a Pℓ in Subcase 1.3.

Builder joins v5 to a new vertex v6 in the next move. If v5v6 is blue and ℓ = 7, Builder joins v6 to three

new vertices v7, v8, v9. At least one of the three edges, say v6v7, is blue. Thus we obtain a blue P7 in nine

rounds. If v5v6 is blue and ℓ ≥ 8, Builder forces a blue Pℓ−6 in ⌊3ℓ/2⌋ − 9 rounds by induction, whose end

vertices are denoted by x and y. Builder joins v1 and v6 in the next move. If v1v6 is blue, then all vi’s for

1 ≤ i ≤ 6 form a cycle. Builder joins x to v1, v2, v3 respectively. At least one of xv1, xv2, xv3 is blue. We

may assume that xv1 is blue without loss of generality. Accordingly, v2v3v4v5v6v1xPℓ−6y is a blue Pℓ. If

v1v6 is red, Builder chooses v6x and v6y in the last two moves. We may assume that v6y is blue without

loss of generality. It follows that v1v2v3v4v5v6yPℓ−6x is a blue Pℓ.

If v5v6 is red, Builder forces a blue Pℓ−5 with end vertices x and y in ⌊3ℓ/2⌋ − 7 rounds by induction.

Builder chooses v5x and v5y in the last two moves. To avoid a red K1,3, we may assume that v5y is blue

without loss of generality. It follows that v1v2v3v4v5yPℓ−5x is a blue Pℓ. In all three cases, we obtain a blue

Pℓ in at most ⌊3ℓ/2⌋ rounds.

Case 2. A star with two edges blue and one edge red appears in the first three rounds.

Assume that the blue path is v1v2v3, and the red edge is v2v4. Since r̃(K1,3, Pℓ−4) ≤ ⌊3ℓ/2⌋ − 6 by

induction, Builder forces a blue Pℓ−4 in the next ⌊3ℓ/2⌋ − 6 rounds, whose end vertices are denoted by x

and y. Then he chooses v3v4 in the next move. If v3v4 is red, he draws two edges v1v4 and v4x, both of

which are forced to be blue. Hence there is a blue path v3v2v1v4xPℓ−4y of order ℓ in ⌊3ℓ/2⌋ rounds. If v3v4
is blue, he draws two edges v4x and v4y. To avoid a red K1,3, at least one of v4x and v4y is blue, say, v4x

is blue. Thus, there is a blue path v1v2v3v4xPℓ−4y of order ℓ in ⌊3ℓ/2⌋ rounds.

Case 3. A star with two edges red and one edge blue appears in the first three rounds.

Assume that the red path is v1v2v3, and the blue edge is v2u2. We extend this red path in the following

6



v1 v2 v3

v4
x y

Pℓ−4

v1 v2 v3

v4
x y

Pℓ−4

Figure 6: Force a Pℓ in Case 2.

way. First Builder joins v3 to two new vertices u3 and v4. If both v3u3 and v3v4 are blue, then we have

found the required red path. If not, the two edges v3u3 and v3v4 have to be one red and one blue, since

otherwise there is a red K1,3, which contradicts our assumption. Without loss of generality, assume that

v3u3 is blue and v3v4 is red. For each i ≥ 4, if vi−1vi is red, Builder joins vi to two new vertices ui and

vi+1. If both viui and vivi+1 are blue, then we stop the procedure. Otherwise, assume that viui is blue and

vivi+1 is red. The procedure stops when either the red path has length ⌊ℓ/2⌋ + 1, or both vtut and vtvt+1

are blue for some t with 3 ≤ t ≤ ⌊ℓ/2⌋ + 1.

v1 v2 v3 v4 vt

u2 u3 u4 ut

vt+1

Figure 7: The graph that Builder constructs in the first phase of Case 3.

If the red path has length ⌊ℓ/2⌋ + 1, Builder joins ui to vi+1 for each i with 2 ≤ i ≤ ⌊ℓ/2⌋. All edges

uivi+1 have to be blue to avoid a red K1,3. Thus, if ℓ is even, v2u2v3u3 · · · vℓ/2+1uℓ/2+1 is a blue Pℓ, and if

ℓ is odd, u1v2u2v3u3 · · · v(ℓ−1)/2+1u(ℓ−1)/2+1 is a blue Pℓ, where u1 is a new vertex. In both cases, Builder

can force a blue Pℓ in ℓ− 1 + ⌊ℓ/2⌋ + 1 rounds, which is ⌊3ℓ/2⌋ rounds.

Now we consider the other case that there exists an integer t with 3 ≤ t ≤ ⌊ℓ/2⌋+ 1 such that both vtut

and vtvt+1 are blue edges. Builder joins vi to ui+1 for each i with 2 ≤ i ≤ t−1. If t = ⌊ℓ/2⌋+1 and ℓ is odd,

then u2v2u3v3 · · ·utvtvt+1 is a blue path of order ℓ. If t = ⌊ℓ/2⌋ + 1 and ℓ is even, then u2v2u3v3 · · ·utvt is

a blue path of order ℓ. In both cases, a blue Pℓ can be forced in ⌊3ℓ/2⌋ rounds.

If t = ⌊ℓ/2⌋, Builder joins v1 to vt+1. If ℓ is even and v1vt+1 is blue, then we can find a blue Pℓ, which is

u2v2u3v3 · · ·utvtvt+1v1. If ℓ is even and v1vt+1 is red, then Builder chooses v1u2, and v1u2v2u3v3 · · ·utvtvt+1

is a blue Pℓ. If ℓ is odd and v1vt+1 is blue, then Builder draws two edges v1x and v1y, at least one of which is

blue, say, v1x is blue. It follows that u2v2u3v3 · · ·utvtvt+1v1x is a blue Pℓ. If ℓ is odd and v1vt+1 is red, then

Builder draws two edges v1x and v1u2, both of which are forced to be blue. Hence xv1u2v2u3v3 · · ·utvtvt+1

is a blue Pℓ. It is not difficult to check that the total number of rounds is at most ⌊3ℓ/2⌋. Thus, we assume

that 3 ≤ t ≤ ⌊ℓ/2⌋ − 1.

Since ℓ − 2t ≥ 2, we have r̃(K1,3, Pℓ−2t) ≤ ⌊3(ℓ − 2t)/2⌋ by induction. Thus, Builder can force a blue

Pℓ−2t in the next ⌊3(ℓ − 2t)/2⌋ rounds. Assume that the end vertices of this Pℓ−2t is x and y. Builder

joins v1 to vt+1. If v1vt+1 is red, Builder chooses xv1 and v1u2, which are forced to be blue. Hence

yPℓ−2txv1u2v2u3v3 · · ·utvtvt+1 is a blue Pℓ. If v1vt+1 is blue, Builder draws two edges v1x and v1y, at least

one of which is blue, say, v1x. It follows that u2v2u3v3 · · ·utvtvt+1v1xPℓ−2ty is a blue Pℓ. Extending the
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path xPℓ−2ty to a blue Pℓ, we have used 2t blue edges and t red edges. Accordingly, the total number of

rounds is at most ⌊3(ℓ− 2t)/2⌋ + 3t, which is ⌊3ℓ/2⌋. Therefore, r̃(K1,3, Pℓ) ≤ ⌊3ℓ/2⌋.
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