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Abstract. In this article, we determine the complexity function (configurational
entropy) of jammed configurations of Rydberg atoms on a one-dimensional lattice.
Our method consists of providing asymptotics for the number of jammed config-
urations determined by direct combinatorial reasoning. In this way we reduce
the computation of complexity to solving a constrained optimization problem for
the Shannon’s entropy function. We show that the complexity can be expressed
explicitly in terms of the root of a certain polynomial of degree b, where b is the
so-called blockade range of a Rydberg atom. Our results are put in a relation with
the model of irreversible deposition of k-mers on a one-dimensional lattice.

1. Introduction

Rydberg atom is a name given to an atom which has been excited into a high
energy level so that one of its electrons is able to travel much farther from the nu-
cleus than usual (up to 106 times more, see [20]). In physics community, Rydberg
atoms have been intensely studied and have become a testing ground for various
quantum mechanical problems in quantum information processing, quantum com-
putation and quantum simulation [53]. See [26] for a comprehensive description of
the physics of Rydberg atoms and their remarkable properties. Due to their large
size, Rydberg atoms can exhibit very large electric dipole moments which results in
strong interactions between two close Rydberg atoms. This causes a blockage effect
that prohibits the excitation of an atom located close to an atom that is already
excited to a Rydberg state [3, 31, 33, 42, 49, 58]. The simplest setting for studying
Rydberg atoms and their blockage effect is on a finite one-dimensional lattice. In
this setting, each atom occupies one site and each two excited atoms are at least
b ≥ 1 sites apart. The positive integer b is referred to as the blockade range of the
model. We will be interested in maximal (or jammed) configurations where no fur-
ther atoms can be excited. Note that in such a configuration each two excited atoms
are at most 2b sites apart. In physics literature, jammed states in similar deposi-
tion models have the interpretation of metastable states at low enough temperature
and/or high enough density, and are referred to as valleys, pure states, quasi-states,
and inherent structures [4, 5, 15,30,34,46,57].

These kinds of models are usually studied in the context of random sequential
adsorption (RSA). Initially all atoms are in the ground state, and are excited se-
quentially, at random, until a jammed configuration is reached. Of most interest is
the jamming limit, which is defined as the expected density of excited atoms in the
jammed configuration. This dynamical version of the problem was already studied
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in literature. In [37, §IV] it was found that the jamming limit is

ρb-Ryd
∞ =

∫ 1

0

exp

[
−2

b∑
j=1

1− yj
j

]
dy.

The jamming limit was also computed for an equivalent model of deposition of linear
polymers (k-mers) in [40, §7.1]

ρk-mer
∞ = k

∫ ∞
0

exp

[
−u− 2

k−1∑
j=1

1− e−ju
j

]
du = k

∫ 1

0

exp

[
−2

k−1∑
j=1

1− yj
j

]
dy.

The equivalence of models is reflected in the fact that ρk-mer
∞ = k ·ρb-Ryd

∞ for b = k−1.
In this context, the jammed configurations are sometimes called attractors, and

in the present article, we will be interested in the number of those attractors and in
details of their structure, above all in their density.

It is known that in similar models, the number of different jammed configurations
with density 0 ≤ ρ ≤ 1 tends to grow exponentially with the length L of configura-
tion, see [8, 9, 11–14, 16, 21, 25, 32, 36, 41, 43, 45, 48, 50, 51, 54]. Denoting this number
by JL(ρ), it is common to describe it using the so-called complexity function (also
called configurational entropy) f(ρ) for which it holds that JL(ρ) ∼ eLf(ρ). It turns
out (see e.g. Figure 9) that the density ρb-Ryd

? maximizing the complexity function is
slightly different than the expected density (jamming limit) of the dynamical model.
This falsifies the flatness hypothesis formulated by Edwards, see [2] for a recent re-
view. Note that ρb-Ryd

? is the limit (as L tends to infinity) of the most probable
densities in the equilibrium models that assign equal probabilities to all jammed
configurations.

Our main goal is to compute the complexity f(ρ) of jammed configurations of
Rydberg atoms using direct combinatorial reasoning. The problem reduces to solv-
ing a constrained optimization problem for the Shannon’s entropy function. We
show that the complexity function can be expressed explicitly in terms of the root
of a certain polynomial of degree b. This work has been carried out simultaneously
with [38]. The authors there introduce a novel method for determining the same
complexity function. Their method is inspired by the theory of renewal processes.

The described model of Rydberg atoms on a one-dimensional lattice is equivalent
to a number of other models already present in the literature. The case b = 1
is the famous model introduced by Flory [24] describing the mechanism of vinyl
polymerization. This is in turn essentially equivalent to the Page-Rényi car parking
problem [28,47] (which is a discrete version of the famous model introduced by Rényi
in [52]) describing the jammed configurations of cars of length 2. The equivalence is
obtained by replacing each excited atom with a car taking up both the atom’s and
its right neighbor’s site. Clearly, this only works for configurations not having an
excited atom at the rightmost site. This means that the total number of jammed
configurations is actually different in these two models, but only up to a constant
factor, which does not affect the shape of the complexity function of these models.
In chemistry, this model appears in the context of the irreversible deposition of
dimers [24], and in graph theory, the jammed configurations correspond to maximal
matchings in a path graph, see [19].
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Figure 1. A jammed configuration of Rydberg atom model with
blockade range b and the corresponding jammed configuration of the
k-mer deposition model when b = 3, k = 4.

Similarly, the general case b > 1 corresponds to irreversible deposition of k-mers
(k = b+1) in a linear polymer of length L. The equivalence (again, up to a constant
factor) is obtained by replacing each excited atom with a polymer taking up b + 1
consecutive sites, starting from the atom’s position, see Figure 1. In this, and all
the following figures, bullets (•) represent Rydberg atoms (in the Rydberg model)
or occupied sites (in the k-mer deposition model), while empty bullets (◦) represent
neutral atoms (in the Rydberg model) or vacant sites (in the k-mer deposition
model). Notice that the gaps between adjacent k-mers in jammed configurations of
this deposition model are of size at most k− 1. This equivalence allows us to easily
transfer our results on Rydberg atoms to the setting of k-mer deposition model. The
problem of irreversible deposition of k-mers was extensively studied in the literature,
see [1, 6, 22,29,37,40,56].

In graph theory, the k-mer deposition model is equivalent to Pk-packings of a path
graph PL, and jammed configurations in the former correspond to maximal packings
in the latter. The maximal Pk-packings of PL were previously studied in [17].

Another equivalent formulation of the Rydberg atom model appeared recently
in [18, §3.2.1] where the authors of the present paper considered the settlement
model consisting of k-story buildings on a one-dimensional tract of land. The tract
of land is oriented east-west and each story of each building has to receive the
sunlight from both east and west.

The rest of the paper is organized as follows. In Section 2 we calculate the asymp-
totics for the number of jammed configurations in the model of Rydberg atoms,
which is expressed in terms of the maximum of the Shannon’s entropy function over
a certain finite set determined by the constraints of the model. In Section 3 we use
these results in order to obtain the formula for the associated complexity function.
We derive the expression for the complexity f(ρ) which, for a chosen density ρ,
depends explicitly on a positive root of a certain polynomial whose degree coincides
with the blockade range of the model. Further on, in Section 4, we put our findings
in relation with the model for the deposition of k-mers on the linear polymer and
draw conclusions from the obtained results. There, we also provide some results on
the qualitative properties of the maximizers of mentioned complexity functions, for
various blockade ranges b, and put them in comparison with their counterparts in
the theory of RSA. Finally, in Section 5 we recapitulate our findings and indicate
several possible directions of future research.

Notation. We write ML ∼ NL if the two positive sequences (ML)L and (NL)L have
the same growth, as L→∞, up to a sub-exponential factor, i.e. if

lim
L→∞

lnML − lnNL

L
= 0.
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• ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ • ◦ ◦ •
◦ • ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ • ◦ ◦ •
• ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦

Figure 2. Three jammed configurations in the chain of L = 16 atoms
with blockade range b = 2. The number of Rydberg atoms in these
configurations is N = 6, 5, 4 (from top to bottom).

2. Jammed configurations of Rydberg atoms

As already stated in the introduction, the main goal of this paper is to compute
the complexity function f(ρ) of jammed configurations of Rydberg atoms. Crucial
step towards obtaining a complexity function of such models in general is to inspect
the set of all jammed configurations of a model. Each configuration is a binary 0/1
sequence which we sometimes interpret as a sequence of empty/occupied sites or, in
Rydberg model, as neutral/excited atoms. The total number of all configurations
of length L in the model is denoted by JL. The total number of configurations of
length L consisting of N ones (occupied sites, excited atoms) is denoted by JN,L.
The density (saturation, coverage) of any such configuration of length L with N
ones is defined as N/L ∈ [0, 1].

In order to determine the complexity function, it is not enough to work only with
JL. We need to be more precise. We need to know the behavior of the number of
different jammed configurations of length L, where precisely N atoms are excited
to the Rydberg state. The main result of this section (see Lemma 2.4) provides
asymptotics of the quantity JN,L for Rydberg atom model.

Let us first consider several concrete examples of jammed configurations of our
model to get a better feeling of their possible shapes. Figure 2 displays three different
jammed configurations in the chain of L = 16 atoms, where the blockade range b
is equal to two, i.e. each two excited atoms are at least two sites apart. Since
Rydberg atoms in a jammed configuration are separated by clusters of empty sites
whose length is at least b (so that the constraint imposed by the blockage effect is
satisfied), and at most 2b (since we can excite another atom in the middle of an
empty range of size 2b + 1, hence such a configuration would not be jammed), it is
easy to see that it holds

(2.1)

⌈
L

2b+ 1

⌉
≤ N ≤

⌈
L

b+ 1

⌉
,

where N is the number of excited atoms, L is the length of the configuration, and
b is the blockade range. In the particular case of L = 16 and b = 2, this implies
that 4 ≤ N ≤ 6. Hence, Figure 2 shows one jammed configuration for each possible
value of N . Notice that relation (2.1) implies that

(2.2)
1

2b+ 1
− 1

L
<
N

L
≤ 1

b+ 1
,

and this in turn implies that in the limit, as L → ∞, the density ρ = N/L, of
Rydberg atoms in jammed configurations, lies within the bounds

(2.3)
1

2b+ 1
≤ ρ ≤ 1

b+ 1
.
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• ◦ · · · ◦︸ ︷︷ ︸
b atoms

• ◦ · · · ◦︸ ︷︷ ︸
b+1 atoms

· · · • ◦ · · · ◦︸ ︷︷ ︸
2b atoms

Figure 3. Building blocks of jammed configurations of Rydberg
atoms with blockade range b.

As a first result in the direction of better understanding the double sequence
JN,L for Rydberg atom model, we provide the bivariate generating function for this
sequence in the general case of blockade range b ≥ 1.

Lemma 2.1. The bivariate generating function of the sequence JN,L associated with
jammed configurations of Rydberg atoms, when the blockade range is equal to b, is
given by

Fb(x, y) =
(1− y)2 + xy − xyb+1 − xyb+2 + xy2b+2

(1− y)(1− y − xyb+1 + xy2b+2)
,

where x is a formal variable associated with the number of atoms excited to the Ryd-
berg state, and y is a formal variable associated with the length of the configuration.

Proof. As already mentioned, configurations of Rydberg atoms can be represented
as 0/1 sequences. Due to the fact that we can determine whether the blockage effect
has been taken into account, and whether the configuration represented with such a
sequence is jammed, just by inspecting finite size patches of a given sequence, we can
apply the so-called transfer matrix method (see [55, §4.7] or [23, §V], and also [44, §2–
4]). This is a well known method for counting words of a regular language. Since
Rydberg atoms in a jammed configuration are separated with at least b, and at most
2b neutral atoms, every jammed configuration will be composed of blocks that start
with a Rydberg atom and then have a cluster of neutral atoms of length between b
and 2b. Such blocks are displayed in Figure 3. These building blocks are encoded
with the polynomial

pb(x, y) = xyb+1 + xyb+2 + · · ·+ xy2b+1.

Now we only need to take care of the beginning and the end of jammed configu-
rations. Notice that in front of the first block we can have some neutral atoms.
More precisely, the number of neutral atoms that can appear at the left end of the
jammed configuration is between 0 and b. These starting blocks are encoded with
the polynomial

sb(x, y) = 1 + y + y2 + · · ·+ yb.

Similarly, after the last block from the set of blocks shown in Figure 3 (if there are
any, i.e. if we want to have more than just one atom in the Rydberg state), we need
to have a block that again starts with a Rydberg atom, and then has a cluster of
neutral atoms of length between 0 and b. These ending blocks are encoded with the
polynomial

eb(x, y) = xy + xy2 + · · ·+ xyb+1.

Notice that each of the blocks shown in Figure 3 can be glued to any other block
listed in this figure. This implies that we do not even need to work with powers of
the transfer matrix, but we can directly take powers of the polynomial pb(x, y) in
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• · · · •︸ ︷︷ ︸
k sites

• · · · •︸ ︷︷ ︸
k sites

◦ • · · · •︸ ︷︷ ︸
k sites

◦ ◦ · · · • · · · •︸ ︷︷ ︸
k sites

◦ · · · ◦︸ ︷︷ ︸
k−1 sites

Figure 4. Building blocks of jammed configurations of k-mer depo-
sition model.

order to obtain the desired bivariate generating function. A simple calculation gives

Fb(x, y) = 1 +
∞∑
n=0

sb(x, y) · pb(x, y)n · eb(x, y)

= 1 +
sb(x, y) · eb(x, y)

1− pb(x, y)

=
(1− y)2 + xy − xyb+1 − xyb+2 + xy2b+2

(1− y)(1− y − xyb+1 + xy2b+2)
.

�

Remark 2.2. By using the same technique, we can easily compute the bivariate
generating function enumerating the number of jammed configurations of prescribed
length, and with some fixed number of occupied sites, in the k-mer deposition model.
The building blocks here are composed of a cluster of k consecutive sites occupied
by a single k-mer, followed by a cluster of empty sites of length between 0 and k− 1
(see Figure 4). These building blocks are encoded with a polynomial

pk(x, y) = xkyk + xkyk+1 + · · ·+ xky2k−1,

where x is again a formal variable associated with the number of occupied sites, and
y is a formal variable associated with the length of a configuration. Similarly as in
the case of the Rydberg atom model, at the left end of a jammed configuration, we
can have a cluster of vacant sites of length between 0 and k − 1. These starting
blocks are encoded with the polynomial

sk(x, y) = 1 + y + y2 + · · ·+ yk−1.

It is clear that we can end a jammed configuration with any of the building blocks
shown in Figure 4, so we can set ek(x, y) = 1. Using again the fact that each of the
blocks from Figure 4 can be glued to any other block listed in that figure, we can
work directly with powers of the polynomial pk(x, y) to obtain

(2.4) Fk(x, y) =
∞∑
n=0

ak(x, y) · pk(x, y)n =
ak(x, y)

1− pk(x, y)
=

1− yk
1− y − xkyk + xky2k

.

Notice that we are not adding 1 to the bivariate generating function in (2.4). The
reason is that starting with a cluster of 0 vacant sites and setting n = 0 already
counts the empty configuration.

The sequence JN,L has already been studied in the literature, but in the context
of maximal Pk-packings of a path graph PL (see [17]). The bivariate generating
function enumerating the total number of maximal k-packings in PL, with exactly
N copies of Pk, is given in [17, Corollary 2.4], and the only difference between
that bivariate generating function and the one we obtained in (2.4), is that x is not
raised to power k. The reason is that the author in [17] is interested in the number of
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B = • ◦ ◦ · · · ◦︸ ︷︷ ︸
b atoms

Figure 5. Block consisting of b + 1 adjacent atoms where only the
first one is excited to the Rydberg state.

◦ · · · ◦︸ ︷︷ ︸
a1 atoms

B ◦ · · · ◦︸ ︷︷ ︸
a2 atoms

B ◦ · · · ◦︸ ︷︷ ︸
a3 atoms

B · · ·B ◦ · · · ◦︸ ︷︷ ︸
aN atoms

B

Figure 6. The shape of jammed configurations in Rydberg model
with blockade range b and exactly N Rydberg atoms, ending with
a block B (displayed in Figure 5). Gaps between blocks B, and in
front of the first block B, consist of neutral atoms and are of length
0 ≤ ai ≤ b.

copies of Pk (i.e. the number of deposited k-mers) in jammed configurations, and we
are interested in the total number of sites occupied by those deposited k-mers. The
bivariate generating function from (2.4) is also obtained in [38, formula (5.3)], where
authors use a novel approach inspired by the theory of renewal processes. Using the
same technique, they also obtain the bivariate generating function which coincides
with the one we obtained in Lemma 2.1, which enumerates the total number of
jammed configurations of length L of Rydberg atoms with blockade range b, with
precisely N excited atoms (see [38, formula (6.5)]).

It is easy to see from the bivariate generating function from Lemma 2.1 that, for
b = 2, J16 = 96 (i.e. there are 96 jammed configurations in the chain of L = 16
atoms, when the blockade range is b = 2). Out of those 96 jammed configurations,
45 of them have 4 Rydberg atoms (J4,16 = 45), 50 of them have 5 Rydberg atoms
(J5,16 = 50), and only one has 6 Rydberg atoms (J6,16 = 1). This particular one is
exactly the first jammed configuration shown in Figure 2.

We could now proceed like the authors in [38] and use the bivariate generating
function developed in Lemma 2.1 to obtain the complexity function of jammed
configurations of Rydberg atoms by means of the Legendre transform. However,
we will use a direct combinatorial argument. To this end, we introduce a slightly
different way of counting jammed configurations in the Rydberg model with blockade
range b, than the one introduced in Lemma 2.1. Denote with B the block of b + 1
adjacent atoms where only the first one is excited to the Rydberg state (see Figure
5). Using again the fact that each two Rydberg atoms have at least b and at most 2b
neutral atoms separating them, it is clear that every jammed configuration consists
of blocks B separated by clusters of neutral atoms of length 0 ≤ a ≤ b (see Figure
6). Denote by Ma the number of gaps with a neutral atoms. The total number of
jammed configurations of the shape shown in Figure 6, with L atoms in total, out
of which precisely N atoms are excited to the Rydberg state, is given as

(2.5)

(
N

M0,M1, . . . ,Mb

)
=

N !∏
0≤a≤bMa!

,
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with Ma satisfying

b∑
a=0

Ma = N,(2.6)

b∑
a=0

aMa = L− (b+ 1)N.(2.7)

The constraint (2.6) expresses that the total number of gaps is N . Notice that we
have N blocks B (since we want to have precisely N Rydberg atoms), and that gaps
of size 0 ≤ a ≤ b can be added in front of the first block B, and between each two
blocks B. The constraint (2.7) implies that the total number of neutral atoms is
L−N . Clearly we need L−N neutral atoms in addition to N Rydberg atoms to have
a configuration of length L. Equation (2.5) accounts for the jammed configurations
ending precisely on B. There are also jammed configurations where the last block B
is truncated, and there are only 0 ≤ c < b neutral atoms after the last atom excited
to the Rydberg state. The contribution of such jammed configurations to the value
of JN,L is comparable to (2.5), but since complexity function ignores sub-exponential
factors, it suffices to determine the asymptotics of the sum

(2.8) JN,L ∼
∑

(M0,M1,...,Mb)∈RN,L

(
N

M0,M1, . . . ,Mb

)
,

where

(2.9) RN,L = {(M0,M1, . . . ,Mb) ∈ Nb+1
0 : M0 +M1 + · · ·+Mb = N and

M1 + 2M2 + · · ·+ bMb = L− (b+ 1)N}.
We write H for the Shannon’s entropy function given as

(2.10) H(p0, p1, . . . , pb) = −
b∑
i=0

pi ln pi,

where pi ≥ 0, for 0 ≤ i ≤ b, and p0 + p1 + · · ·+ pb = 1.

Remark 2.3. In case pi = 0 for some i, we set 0 · ln 0 = 0.

The following lemma is the key result of this section, and it constitutes a crucial
step in computing the complexity function of our model as it provides the asymp-
totics of JN,L in terms of the maximum of the entropy function.

Lemma 2.4.

JN,L ∼ exp

(
L · max

(M0,M1,...,Mb)∈RN,L

N

L
·H
(
M0

N
,
M1

N
, . . . ,

Mb

N

))
, as L→∞.

where the set RN,L is defined in (2.9), and the function H is defined in (2.10).

Proof. Note that

max
(M0,M1,...,Mb)∈RN,L

(
N

M0,M1, . . . ,Mb

)
≤

∑
(M0,M1,...,Mb)∈RN,L

(
N

M0,M1, . . . ,Mb

)

≤ |RN,L| max
(M0,M1,...,Mb)∈RN,L

(
N

M0,M1, . . . ,Mb

)
.
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As the number |RN,L| of terms in the sum is at most (N + 1)b+1 ≤ (L + 1)b+1,
which is polynomial in L, the sum, asymptotically, grows as its largest term. It is,
therefore, enough to determine the asymptotics of

JN,L ∼ max
(M0,M1,...,Mb)∈RN,L

(
N

M0,M1, . . . ,Mb

)
, as L (and N)→∞.

By following the proof of Lemma 2.2 in [10] we can conclude that(
N + b

b

)−1
NN

M0
M0M1

M1 · · ·Mb
Mb
≤
(

N

M0,M1, . . . ,Mb

)
≤ NN

M0
M0M1

M1 · · ·Mb
Mb
.

Note that in case any Ma is zero, the expression 00 is to be interpreted as 1. Since(
N+b
b

)
is of polynomial growth, we get

(2.11)

(
N

M0,M1, . . . ,Mb

)
∼ NN

M0
M0M1

M1 · · ·Mb
Mb

=

(
N

M0

)M0
(
N

M1

)M1

· · ·
(
N

Mb

)Mb

,

as N →∞. Note that(
N

M0

)M0
(
N

M1

)M1

· · ·
(
N

Mb

)Mb

= exp

(
N ·H

(
M0

N
,
M1

N
, . . . ,

Mb

N

))
.

Hence

JN,L ∼ max
(M0,M1,...,Mb)∈RN,L

exp

(
N ·H

(
M0

N
,
M1

N
, . . . ,

Mb

N

))
, as L→∞,

and consequentially

JN,L ∼ exp

(
L · max

(M0,M1,...,Mb)∈RN,L

N

L
·H
(
M0

N
,
M1

N
, . . . ,

Mb

N

))
, as L→∞,

which is exactly what we wanted to prove. �

Remark 2.5. One could obtain the asymptotics in (2.11) from Stirling’s approxi-
mation N ! ∼ (N/e)N , as N →∞, where sub-exponential factors are ignored.

3. Complexity function of jammed configurations of Rydberg atoms

In this section we compute the complexity function, sometimes referred to as
configurational entropy, of jammed configurations of Rydberg atoms. We first recall
the definition of complexity function of a certain model.

Definition 3.1. For a fixed density ρ ∈ [0, 1], let JbρLc,L denote the number of
configurations of length L with density bρLc /L ≈ ρ. The complexity function
f : [0, 1]→ R is then defined as

(3.1) f(ρ) = lim
L→∞

ln JbρLc,L
L

,

for each ρ ∈ [0, 1] for which this limit exists.

Remark 3.2. If the limit above does not exist for a certain ρ, one can still define
(upper) complexity at that point by replacing lim in the definition with lim sup.
And if there are no configurations with a certain density ρ, we still write f(ρ) = 0.
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Remark 3.3. This definition implies that the number of configurations with density
bρLc /L ≈ ρ grows as eLf(ρ) for large L.

The guiding idea behind introducing the complexity function is to describe what
portion of the total number of configurations take up configurations with a particular
density. The problem is that, as L grows to infinity, the actual proportions tend to
the delta distribution concentrated on the ‘most probable’ density ρ?.

As an example, the distribution of densities (the sum of digits divided by the
length) of binary sequences of length L is a symmetric binomial distribution re-
scaled to the interval [0, 1]. The limiting distribution is then the delta distribution
δ0.5 which is, essentially, the consequence of the law of large numbers.

This convergence to a delta distribution results from the fact that the number of
configurations with a certain density grows exponentially with a rate that depends
on the density. For large L, the number of configurations with density having the
largest rate overtakes, in proportion, configurations having any other density. The
complexity function then quantifies the distribution of all configurations with respect
to their densities in a more refined way.

Another consequence of the fact that the number of configurations having density
with the largest rate dominates, in proportion, any other density is that the total
number of all configurations grows at the same exponential rate as the number of
configurations having this ‘most probable density’. To be precise, if ρ? denotes the
density at which the complexity function f attains its maximum and if JL is the
total number of all configurations of length L, then JL ∼ eLf(ρ?) for large L.

Remark 3.4. In Lemma 2.1 we derived the generating function for the sequence
JN,L within the Rydberg atom model. Plugging x = 1 into this generating function
gives the generating function for JL, the total number of configurations of length L
in Rydberg atom model

Fb(1, y) =
(1− y)2 + y − yb+1 − yb+2 + y2b+2

(1− y)(1− y − yb+1 + y2b+2)

=
1 + y(1 + y + · · ·+ yb)(1 + y + · · ·+ yb−1)

1− yb+1(1 + y + · · ·+ yb)
.

From here, we can infer the asymptotics of JL for large L by inspecting the roots of
the polynomial 1− yb+1(1 + y + · · · + yb) in the denominator. More precisely, if yb
is the root with the smallest modulus, then the logarithm of wb = |yb|−1 gives the
exponential growth rate of the sequence JL

JL ∼ wLb = eL lnwb .

The discussion in the previous paragraph now implies the relation f(ρb-Ryd
? ) = lnwb.

The following theorem is the main result of this paper and provides an elegant
expression for the complexity function of jammed configurations of Rydberg atoms
f(ρ) in terms of a root of a certain polynomial.

Theorem 3.5. The complexity function of jammed configurations of Rydberg atoms
with blockade range b ∈ N is given as

f(ρ) =

{
ρ
[
− ln 1−z

1−zb+1 −
(

1
ρ
− (b+ 1)

)
ln z
]
, if 1

2b+1
< ρ ≤ 1

b+1
,

0, otherwise,
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where z ≥ 0 is a real root of the polynomial

(3.2) p(z) =
b∑
i=0

(
i+ b+ 1− 1

ρ

)
zi

for which the expression f(ρ) is the largest.

Remark 3.6. When 1
2b+1

< ρ < 1
b+1

the leading coefficient of the polynomial p(z)
given in (3.2) is positive, while the constant term is negative. This guaranties the
existence of at least one positive real root z > 0. If ρ = 1

b+1
, then z = 0 is the root

of p(z) and the formula gives f( 1
b+1

) = 0.

Remark 3.7. Since (3.2) is a polynomial of degree b, it is possible to find its roots
explicitly for b ≤ 4 and numerically for b > 4. The explicit expression for the
complexity in case b = 1 is

f 1-Ryd(ρ) = ρ ln ρ− (1− 2ρ) ln(1− 2ρ)− (3ρ− 1) ln(3ρ− 1),

and for b = 2

f 2-Ryd(ρ) = (3ρ− 1) ln

√
−44ρ2 + 24ρ− 3− 4ρ+ 1

10ρ− 2
−

ρ ln
−350ρ3 + (25ρ2 − 10ρ+ 1)

√
−44ρ2 + 24ρ− 3 + 215ρ2 − 44ρ+ 3

ρ2
√
−44ρ2 + 24ρ− 3− 134ρ3 + 57ρ2 − 6ρ

.

In the case b = 1, the function f 1-Ryd(ρ) recovers the result from [40, formula (7.20)]
and [39, §VII]. The graphs of the complexity function of jammed configurations of
Rydberg atoms with blockade range 1 ≤ b ≤ 10 are given in Figure 7. In that figure
we also see that, for each b, the maximum of the complexity function matches lnwb,
the growth rate of all jammed configurations. This was already discussed in Remark
3.4.

Proof of Theorem 3.5. Recall that in (2.2) we showed that

1

2b+ 1
− 1

L
<
N

L
≤ 1

b+ 1
,

and therefore, there are no jammed configurations with densities ρ > 1
b+1

nor with

densities ρ < 1
2b+1

, for sufficiently large L. Thus, f(ρ) = 0 when ρ > 1
b+1

or ρ < 1
2b+1

.

In case ρ = 1
2b+1

, it is not hard to see that the number of configurations Jb L
2b+1c,L is

Jb L
2b+1c,L =

{
1, if (2b+ 1) | L,
0, otherwise.

This implies f( 1
2b+1

) = 0 by the definition of complexity.

In the remainder, we fix 1
2b+1

< ρ ≤ 1
b+1

. By Lemma 2.4, and by using the
definition of the complexity function (3.1), we have

(3.3) f(ρ) = lim
L→∞

max
(M0,M1,...,Mb)∈RN,L

N

L
·H
(
M0

N
,
M1

N
, . . . ,

Mb

N

)
,
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Figure 7. The complexity function of jammed configurations of Ry-
dberg atoms with blockade range 1 ≤ b ≤ 10.

where N = bρLc, provided that this limit exists. By rewriting the constraint
(M0,M1, . . . ,Mb) ∈ RN,L as

M0

N
≥ 0,

M1

N
≥ 0, . . . ,

Mb

N
≥ 0

M0

N
+
M1

N
+ · · ·+ Mb

N
= 1

M1

N
+ 2

M2

N
+ · · ·+ b

Mb

N
=
L

N
− (b+ 1)

and denoting pi = Mi

N
∈ 1
bρLcZ, the complexity (3.3) can be written as

(3.4) f(ρ) = lim
L→∞

max
(p0,p1,...,pb)∈ 1

bρLcRbρLc,L

ρ̂H (p0, p1, . . . , pb) ,

where ρ̂ = ρ̂(L) = N
L

= bρLc
L

. We claim that this limit exists and is equal to the
maximum of the constrained optimization problem

(3.5) max
p0,p1,...,pb≥0

p0+p1+···+pb=1
p1+2p2+···+bpb= 1

ρ
−(b+1)

ρH (p0, p1, . . . , pb) ,

where pi ∈ R are no longer required to be fractions.
We argue as follows. Denote by (p∗0, p

∗
1, . . . , p

∗
b) the point at which the maximum

in (3.5) is attained. For each L ∈ N, let (p0(L), p1(L), . . . , pb(L)) be the point at
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which maximum in (3.4) is attained. Clearly,

ρ̂H (p0(L), p1(L), . . . , pb(L)) ≤ ρ̂H(p∗0, p
∗
1, . . . , p

∗
b) ≤ ρH(p∗0, p

∗
1, . . . , p

∗
b).

The first inequality follows by substituting ρ̂ for ρ in (3.5) and the fact that one is
now optimizing over a larger set. The second inequality follows from ρ̂ ≤ ρ. Note
that the right hand side no longer depends on L, and thus

lim sup
L→∞

ρ̂H (p0(L), p1(L), . . . , pb(L)) ≤ ρH(p∗0, p
∗
1, . . . , p

∗
b).

Next, for each L ∈ N, we consider the point (t0(L), t1(L), . . . , tb(L)) ∈ 1
bρLcRbρLc,L,

which is closest to the to the optimizer (p∗0, p
∗
1, . . . , p

∗
b). Note that, due to the density

argument, (t0(L), t1(L), . . . , tb(L)) → (p∗0, p
∗
1, . . . , p

∗
b) as L → ∞. This, along with

the continuity of H and the fact that ρ̂→ ρ implies the lower bound

ρH(p∗0, p
∗
1, . . . , p

∗
b) = lim

L→∞
ρ̂H(t0(L), t1(L), . . . , tb(L)) ≤

≤ lim inf
L→∞

ρ̂H (p0(L), p1(L), . . . , pb(L)) .

Putting everything together completes the argument that the limit

f(ρ) = lim
L→∞

ρ̂H (p0(L), p1(L), . . . , pb(L))

exists and that the complexity function is

f(ρ) = ρH(p∗0, p
∗
1, . . . , p

∗
b) = max

p0,p1,...,pb≥0
p0+p1+···+pb=1

p1+2p2+···+bpb= 1
ρ
−(b+1)

ρ ·H (p0, p1, . . . , pb) .

In order to obtain the expression for complexity f(ρ), it only remains to solve the
constrained optimization problem (3.5). We define the Lagrangian function

L(p0, . . . , pb;λ, µ) = ρ ·H(p0, p1, . . . , pb)− λ(p0 + p1 + · · ·+ pb − 1)

− µ(p1 + 2p2 · · ·+ bpb −
1

ρ
+ (b+ 1)),

and find the stationary point by solving the system

−ρ(ln pi + 1)− λ− µi = 0, for i = 0, 1, . . . , b;

p0 + p1 + · · ·+ pb = 1;

p1 + 2p2 · · ·+ bpb =
1

ρ
− (b+ 1).

(3.6)

By multiplying i-th of the first (b+ 1) equations by pi and adding them together we
get

−ρ
b∑
i=0

(pi ln pi + pi)− λ
b∑
i=0

pi − µ
b∑
i=0

ipi = 0,

and from here we obtain the expression for complexity in terms of the Lagrange
multipliers λ and µ which solve the system (3.6)

(3.7) f(ρ) = ρH(p0, p1, . . . , pb) = ρ+ λ+ µ

(
1

ρ
− (b+ 1)

)
.

Subtracting successive equations in (3.6) we get

−ρ(ln pi − ln pi−1)− µ = 0,
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or equivalently
pi
pi−1

= e−µ/ρ.

Therefore pi = p0e
−µi/ρ, for i = 1, . . . , b. From the very first equation in (3.6) we get

p0 = e−λ/ρ−1,

and the whole system (3.6) now reduces to just two equations

e−λ/ρ−1
b∑
i=0

e−µi/ρ = 1;(3.8)

e−λ/ρ−1
b∑
i=0

ie−µi/ρ =
1

ρ
− (b+ 1).(3.9)

Setting z = e−µ/ρ, and eliminating e−λ/ρ−1 from equations (3.8) and (3.9), gives a
single polynomial equation of degree b

(3.10) bzb + (b− 1)zb−1 + · · ·+ 2z2 + z =

[
1

ρ
− (b+ 1)

]
(zb + zb−1 + · · ·+ z + 1),

which can be written as p(z) = 0 where p(z) is given in (3.2).
Now, in order to obtain the complexity, all we need is, for a fixed 1

2b+1
< ρ < 1

b+1
,

to find a real root z > 0 of the polynomial p(z) for which the expression (3.7) is the
largest. The case ρ = 1

b+1
, which gives z = 0, has to be treated separately. From

relation z = e−µ/ρ and equation (3.8) we have

(3.11)

µ = −ρ ln z;

λ = −ρ
(

1 + ln
1− z

1− zb+1

)
.

Plugging (3.11) into (3.7), gives the complexity expressed in terms of the root of
p(z)

f(ρ) = ρ

[
− ln

1− z
1− zb+1

−
(

1

ρ
− (b+ 1)

)
ln z

]
.

Lastly, in case ρ = 1
b+1

, already from the last two equations in (3.6) we can
conclude p1 = p2 = · · · = pb = 0 and p0 = 1. This immediately gives f(ρ) = 0 as
H(1, 0, 0, . . . , 0) = 0, completing the proof. �

Remark 3.8. Using the standard summation formulas, we can rewrite (3.10) as

(3.12)
bzb+2 − (b+ 1)zb+1 + z

(1− z)2
=

[
1

ρ
− (b+ 1)

]
1− zb+1

1− z ,

or equivalently[
(2b+ 1)− 1

ρ

]
zb+2 −

[
(2b+ 2)− 1

ρ

]
zb+1 −

[
b− 1

ρ

]
z +

[
(b+ 1)− 1

ρ

]
= 0.

As discussed in the introduction, the complexity function is associated to equi-
librium (or static) models of a certain phenomena and ρ?, the point at which the
complexity function attains its maximum, is interpreted as the expected and most
probable density observed in such a model. This value ρ? is sometimes called the
equilibrium density of the model and Theorem 3.9 below shows how to calculate
it. A different (and perhaps more natural) way to look at Rydberg atom model is
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∞ for 1 ≤ b ≤ 99.

dynamically, within the framework of random sequential adsorption (RSA). Initially
neutral atoms are sequentially and at random excited (obeying the blockade range
constraint) until the jammed configuration is reached. The expected density of the
reached jammed configuration (the jamming limit) in this dynamical version of the
model, denoted by ρb-Ryd

∞ , was computed in [37, §IV]

ρb-Ryd
∞ =

∫ 1

0

exp

[
−2

b∑
j=1

1− yj
j

]
dy.

It is interesting to compare ρb-Ryd
? and ρb-Ryd

∞ for different blockade ranges b. Even
though they are not the same, they seem to match quite nicely, see Figure 8. Addi-
tionally, as one would expect, they both tend to zero for large b. One can see their
differences more clearly in Figure 9. This violation of Edwards flatness hypothesis
is even more pronounced when one inspects the asymptotics of the two sequences
more closely. In Figure 10 we see the graph of quantities b · ρb-Ryd

? and b · ρb-Ryd
∞ . It

can be shown that these two sequences approach different constants as b grows large

lim
b→∞

b · ρb-Ryd
∞ =

∫ ∞
0

exp

[
−2

∫ y

0

1− e−x
x

dx

]
dy = 0.7475979202 . . .

lim
b→∞

b · ρb-Ryd
? = 1.

(3.13)

The constant appearing in the first limit is known as Rényi’s parking constant
[52]. Both of these two limits are easier to understand in the context of irreversible
deposition of k-mers. We deal with the k-mer deposition model in the following
section where we revisit those limits.

The calculation below, showing how to obtain the first limit in (3.13), and which
we provide for completeness, appears in [29]. First note

b∑
j=1

1− yj
j

=
b∑

j=1

∫ 1

y

tj−1 dt =

∫ 1

y

b∑
j=1

tj−1 dt =

∫ 1

y

1− tb
1− t dt

=

[
x = b(1− t)
dx = −b dt

]
=

∫ b(1−y)

0

1− (1− x
b
)b

x
dx,
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and therefore

b · ρb-Ryd
∞ = b

∫ 1

0

exp

[
−2

b∑
j=1

1− yj
j

]
dy

= b

∫ 1

0

exp

[
−2

∫ b(1−y)

0

1− (1− x
b
)b

x
dx

]
dy

=

[
ỹ = b(1− y)
dỹ = −b dy

]
=

∫ b

0

exp

[
−2

∫ ỹ

0

1− (1− x
b
)b

x
dx

]
dỹ.
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The dominated convergence theorem now implies

lim
b→∞

b · ρb-Ryd
∞ =

∫ ∞
0

exp

[
−2

∫ y

0

1− e−x
x

dx

]
dy = 0.7475979202 . . .

Before we calculate the second limit in (3.13), we give a characterization of the
value ρb-Ryd

? in terms of a root of a certain polynomial. Compare this with the
same results obtained by Došlić [17, discussion after Theorem 2.10] and Krapivsky–
Luck [38, (3.4), (3.14) and (6.6)].

Theorem 3.9. The value ρb-Ryd
? , at which the complexity of the Rydberg atom model

with blockade range b, given in Theorem 3.5, attains its maximum, can be calculated
as

(3.14) ρb-Ryd
? =

(1− z)(1− zb+1)

1 + b− bz − 2zb+1 − 2bzb+1 + zb+2 + 2bzb+2
,

where z is the unique root of the polynomial

z2b+1 + · · ·+ zb+2 + zb+1 − 1,

on the interval 0 < z < 1.

Proof. We seek to find the density 1
2b+1

< ρb-Ryd
? < 1

b+1
at which the complexity

f = f b-Ryd in Theorem 3.5 attains its maximum. Again, we employ the Lagrangian
function method by setting

L(ρ, z;λ) = ρ

[
− ln

1− z
1− zb+1

−
(

1

ρ
− (b+ 1)

)
ln z

]
− λ

b∑
i=0

(
i+ b+ 1− 1

ρ

)
zi

= ρ ln
1− zb+1

1− z − (1− ρ(b+ 1)) ln z − λ
b∑
i=0

(
i+ b+ 1− 1

ρ

)
zi.

The stationary points of this function solve the following system

ln
1− zb+1

1− z + (b+ 1) ln z − λ

ρ2
· 1− zb+1

1− z = 0

−ρ(b+ 1)zb

1− zb+1
+

ρ

1− z −
(1− ρ(b+ 1))

z
− λ

b∑
i=1

i

(
i+ b+ 1− 1

ρ

)
zi−1 = 0

b∑
i=0

(
i+ b+ 1− 1

ρ

)
zi = 0.

Using standard summation formulas, as in (3.12), it is possible to express ρ from
the third equation as

ρ =
(1− z)(1− zb+1)

1 + b− bz − 2zb+1 − 2bzb+1 + zb+2 + 2bzb+2
.

Plugging this into the second equation gives

0 = λ

b∑
i=1

i

(
i+ b+ 1− 1

ρ

)
zi−1.
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From here, we conclude λ = 0. Finally, from the first equation we get

λ = ρ2
1− z

1− zb+1
ln
zb+1(1− zb+1)

1− z
and, combining this with λ = 0, gives

ln
zb+1(1− zb+1)

1− z = 0,

or
zb+1(1− zb+1) = 1− z.

We know from Theorem 3.5 that z 6= 1, so we can rewrite this equation as

z2b+1 + · · ·+ zb+2 + zb+1 − 1 = 0.

Clearly, there is a unique 0 < z < 1 solving this equation, and the corresponding

ρb-Ryd
? =

(1− z)(1− zb+1)

1 + b− bz − 2zb+1 − 2bzb+1 + zb+2 + 2bzb+2

is the density at which the complexity in the Rydberg atom model with blockade
range b is the largest. �

The previous theorem can be used to give a proof of the second limit in (3.13).

Corollary 3.10.
lim
b→∞

b · ρb-Ryd
? = 1.

Proof. Since 0 < z = z(b) < 1 solves the equation

(3.15)
zb+1(1− zb+1)

1− z = z2b+1 + · · ·+ zb+2 + zb+1 = 1

it follows
bz2b+1 < 1 < bzb+1

and therefore
lim
b→∞

z2b+1 = 0.

Multiplying by z and taking square root we also get

lim
b→∞

zb+1 = 0.

Finally, letting b→∞ in the identity zb+1(1− zb+1) = 1− z, gives

lim
b→∞

z = 1.

Note that

b · ρb-Ryd
? =

b(1− z)(1− zb+1)

1 + b(1− z)[1− 2zb+1]− 2zb+1 + zb+2

so in order to get limb→∞ b · ρb-Ryd
? = 1, it suffices to show limb→∞ b(1− z) =∞. To

see this, note that from (3.15) it follows

(b+ 1) ln z = ln(1− z)− ln(1− zb+1)

and hence

lim
b→∞

(b+ 1)(1− z) = lim
b→∞

1− z
ln z

·
[
ln(1− z)− ln(1− zb+1)

]
= −1 · [−∞− 0] = +∞

which completes the argument. �
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Figure 11. The complexity function of jammed configurations for
irreversible deposition of k-mers, for 2 ≤ k ≤ 11.

4. Complexity function of jammed configurations for irreversible
deposition of k-mers

It is easy to see that the Rydberg atom model with blockade range b is, up to
scaling all densities by a factor b + 1, equivalent to the irreversible deposition of
k-mers model where k = b + 1. As an immediate consequence of Theorem 3.5 we
get the complexity of jammed configurations for irreversible deposition of k-mers.

Corollary 4.1. For k ∈ N, k > 1, the complexity function of jammed configurations
for irreversible deposition of k-mers is

f(ρ) =

{
ρ
k

[
− ln 1−z

1−zk −
(
k
ρ
− k
)

ln z
]
, if k

2k−1 < ρ ≤ 1,

0, otherwise,

where z ≥ 0 is a real root of the polynomial

k−1∑
i=0

(
i+ k − k

ρ

)
zi

for which the expression f(ρ) is the largest.

Figure 11 shows the complexity function for all 2 ≤ k ≤ 11. Note that the
support of the complexity function is now contained in the interval [1/2, 1]. In Figure
12 we compare the equilibrium density ρk-mer

? and the jamming density ρk-mer
∞ , for

2 ≤ k ≤ 100. In this model it is even more obvious that the Edwards hypothesis is
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violated. The limits of these two sequences as k grows large are

(4.1)
lim
k→∞

ρk-mer
∞ =

∫ ∞
0

exp

[
−2

∫ y

0

1− e−x
x

dx

]
dy = 0.7475979202 . . .

lim
k→∞

ρk-mer
? = 1.

Note that these limits are equivalent to those in (3.13). The convergence of jamming
limits of k-mer deposition models (as k grows to infinity) to the Rényi’s parking
constant is discussed in [40, §7.1].

Clearly, the second limit from (4.1) follows from Corollary 3.10 as ρk-mer
? = k·ρb-Ryd

?

for b = k − 1. Below, we provide a direct alternative proof of this fact.

Theorem 4.2.

lim
k→∞

ρk-mer
? = 1.

Proof. The quantity we are interested in, ρk-mer
? , is equivalent to the quantity called

the efficiency ε(k) in the context of packing Pk into Pn. It was shown in [17] that
the efficiency is determined by the smallest singularity wk of the generating function
Fk(1, y), i.e., by the smallest zero of its denominator. Hence we start by setting
x = 1 into the rightmost expression in (2.4),

Fk(1, y) =
1− yk

1− y − yk − y2k =

1−yk
1−y

1− yk 1−yk
1−y

.

We rewrite its denominator as 1 − qk(y), where qk(y) = qk 1−y
k

1−y , and denote the

smallest solution of equation qk(y) = 1 by wk. This equation has only one positive
solution, since qk(0) = 0, qk(1) = k > 1 for large k and q′k(y) > 0 for all y > 0.
Moreover, the same reasoning provides a better lower bound for wk, since qk(

1
2
) =

2(1−k)(1− 2−k) < 1. Hence 1/2 < wk < 1.
Consider now the expression

ε(k) = ρk-mer
? =

k

wkq′k(x)

derived in [17]. First we rewrite q′k(wk) as

q′k(x) = xk
1− xk
1− x

[
2k

x
− k

x(1− xk) +
1

1− x

]
.

After plugging in x = wk, the term outside the brackets becomes equal to one, and
by multiplying through by wk we arrive at

wkq
′
k(wk) =

(
2− 1

1− wkk

)
k +

wk
1− wk

.

We are seeking upper bounds to the right-hand side. The first term is bounded from
above by k, since the expression in parentheses cannot exceed one. It remains to
bound the second term. As mentioned before, wk is the only positive solution of the
equation 1− qk(x) = 0. We claim that, for a given (large) positive a, wk < 1− a

k
for

large enough k. So let us suppose otherwise, that for a given a > 0, wk > 1 − a
k

is
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Figure 12. Comparison of ρk-mer
? and ρk-mer

∞ for 2 ≤ k ≤ 100.

valid for all k. It means that the function 1−qk(x) has a positive value for x = 1− a
k
.

By evaluating both sides, we obtain that(
1− a

k

)k
−
(

1− a

k

)2k
<
a

k

is valid for all k. This is a contradiction, since the left-hand side has a positive limit,
e−a− e−2a > 0, while the right-hand side tends to zero as k tends to infinity. Hence,
wk < 1− a

k
for large enough k. Now the second term can be bounded from above by

a
k
, and the whole expression for wkq

′
k(wk) is bounded from above by a+1

a
k. Since a

can be taken arbitrarily large, it means that the reciprocal value of wkq
′
k(wk), which

is equal to our ρk-mer
? , comes arbitrarily close to one, and our claim follows. �

The convergence is quite slow, most likely logarithmic. We note another unusual
thing in Figure 12. The equilibrium density ρk-mer

? attains the minimum value for
k = 9. The interpretation being that the polymers of length 9 pack the least
efficiently of all polymers assuming the equilibrium model. This phenomenon was
previously observed in [17].

5. Conclusions

In this paper we have computed the complexity function (or configurational en-
tropy) of jammed configurations of Rydberg atoms with a given blockade range on
a one-dimensional lattice. We employed a purely combinatorial method which al-
lowed us to compute the complexity function by solving a constrained optimization
problem. Along the way we have explored and elucidated numerous connections
between the considered problem and other models, such as, e.g., the random se-
quential adsorption and packings of blocks of a given length into one-dimensional
lattices. In most cases, we have not followed those links very far. We believe that
many interesting results could be obtained by deeper investigations of those connec-
tions. As an example, we mention here that explicit expressions for the number of
maximal packings of given size from reference [17] could be directly translated into
expressions for the number of jammed configurations of Rydberg atoms. By the
same reasoning one can show that the total number of all jammed configurations of
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N Rydberg atoms with blockade range b on all one-dimensional lattices is given by
(b+ 1)N+1.

The methods employed here could be easily adapted for other one-dimensional
structures with low connectivity such as, e.g., cactus chains. Another class of
promising structures could be various simple graphs decorated by addition of certain
number of vertices of degree one to each of their vertices.

Similar problems were considered under various guises also for finite portions of
rectangular lattices, mostly for narrow strips of varying length. Among the best
known problems of this type are the so-called unfriendly seating arrangements. See
[7, 27] for their history and some recent developments. To the same class belong
the problems concerned with privacy, such as the ones considered in [35]. All cited
references were concerned with one-dimensional lattices and/or narrow strips in the
square grid, mostly with ladders. It would be interesting to consider those problems
in finite portions of the regular hexagonal lattice.

Another interesting thing to do would be to study the behavior (and the difference)
of ρ∞ and ρ? for different lattices/substrates. In other words, to investigate the
difference between the jamming limit of dynamical models and the most probable
densities in the equilibrium models. A drastic example is presented by the expected
density of independent sets in stars: there are exactly two maximal independent sets
in Sn = K1,n−1, one of them with size 1 and the other with size n−1. If both of them
are equally probable, the expected size is n/2. Under dynamical model, however,
the smaller one is much less probable than the bigger one, and the expected size
is 1

n
+ n−1

n
(n − 1) = n − 2 + 2

n
. It would be interesting to know more about such

differences and to know for which classes of graphs they are extremal.
Our final remark is that the jammed configurations of Rydberg atoms with a

given blockade range b are known as maximal b-independent sets in the language of
graph theory. It might be worth investigating to what extent can similar problems
be formulated also in terms of b-dominance in graphs.
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