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Abstract –Many fascinating properties of biological active matter crucially depend on the ca-
pacity of constituting entities to perform directed motion, e.g., molecular motors transporting
vesicles inside cells or bacteria searching for food. While much effort has been devoted to mim-
icking biological functions in synthetic systems, such as transporting a cargo to a targeted zone,
theoretical studies have primarily focused on single active particles subject to various spatial and
temporal stimuli. Here we study the behavior of a self-propelled particle carrying a passive cargo
in a travelling activity wave and show that this active-passive dimer displays a rich, emergent tac-
tic behavior. For cargoes with low mobility, the dimer always drifts in the direction of the wave
propagation. For highly-mobile cargoes, instead, the dimer can also drift against the traveling
wave. The transition between these two tactic behaviors is controlled by the ratio between the
frictions of the cargo and the microswimmer. In slow activity waves the dimer can perform an
active surfing of the wave maxima, with an average drift velocity equal to the wave speed. These
analytical predictions, which we confirm by numerical simulations, might be useful for the future
efficient design of bio-hybrid microswimmers.

Introduction. – The ability to self-propel at the ex-
pense of fuel consumption is a fundamental property of ac-
tive matter [1–4]. In the biological context, self-propelling
microscopic systems perform functions that require accu-
rate directed transport, for instance, white blood cells
chase intruders [5], motor proteins transport RNA in-
side cells [6] and microswimmers such as E. coli [7] and
sperm cells [8] steer themselves towards sources of nu-
trients. Directed transport is a highly desirable prop-
erty, in particular for applications in drug delivery at the
nanoscale [9–13]. For this purpose, bio-hybrid microswim-
mers have been designed by integrating biological entities
with synthetic constructs, e.g., bacteria capable to trans-
port and drop off passive microscopic cargo to specific tar-
get locations [14–17].

Bacteria and eukaryotic cells [18,19] generally navigate
in dynamic activating media and react in vivo to time-
dependent tactic stimuli of various nature. Such an in-
teraction with travelling activity signals, e.g., chemical
waves [20], leads to fascinating collective behavior [21] and
sometimes to unexpected migration phenomena, as in the
case of the so-called chemotactic wave paradox [20, 22].

While synthetic active particles mimic the basic features of
self-propulsion and persistence of actual biological active
matter, they lack the information processing capacity and
motoric control which is essential for directed transport in
biological and bio-hybrid systems. Despite their memory-
less response to tactic signals, artificial self-propelled par-
ticles exhibit directed transport when immersed in travel-
ling waves controlling locally their degree of activity (e.g.
their self propulsion velocity), as shown experimentally
with phototactic Janus particles exposed to propagating
optical pulses [23]. Several theoretical studies have focused
on controlling and directing the motion of a single self-
propelled particle in a fluctuating environment [24–28].
However, a fundamental understanding of the behavior of
cargo-carrying microswimmers in time-dependent activity
is still lacking.

Cargo-carrying self-propelled particles have been ana-
lyzed in a stationary, but spatially inhomogeneous activ-
ity [29]. While a single self-propelled particle always ac-
cumulates in regions with low activity, attaching a passive
cargo reverses this tendency. In fact, beyond a certain
threshold cargo, the particle accumulates in regions with
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larger activity [29]. While preferential accumulation could
be regarded as a signature of the tactic behavior [29], in
the case of stationary activity, it causes no transport of the
dimer. By contrast, for a time-dependent activity, such as
a source emitting activity pulses, the tactic behavior of an
active particle can result in motion towards or away from
the source. With this motivation, in this paper we study
active-passive dimers subject to a time-dependent activity
in the form of a travelling wave. We analytically show that
the dimer exhibits directed transport, characterized by a
wave-induced drift. The direction of this drift depends on
the wave speed, being opposite to its propagation direction
for a slow wave but along it for a fast wave. Interestingly,
the opposite drift vanishes at a threshold cargo upon in-
creasing its friction, beyond which the dimer only shows
drift along the propagation direction. We show that the
threshold value of the cargo coincides with that existing
in the stationary activity. Our theoretical treatment of
the active-passive dimer is based on the active Ornstein-
Uhlenbeck particle (AOUP) model of activity [30–33]. Our
analysis shows that the AOUPs are completely equivalent
to active Brownian particles [29] (ABPs) in terms of their
tactic behavior.

The model. – In this section we introduce a minimal
model for the dynamics of an active microswimmer drag-
ging a passive load in d spatial dimensions within an in-
homogeneous and time-dependent environment. The mi-
croswimmer at position r and time t interacts with a tactic
signal described by the activity field va(r − vwt), which
propagates with velocity vw = vwe0 along the direction of
the unit vector e0, as depicted in fig. 1.
As usually done for µm-sized colloidal particles in a liq-

uid, we assume that viscous forces dominate over inertial
effects and therefore we consider an overdamped dynam-
ics for the active-passive dimer, which is governed by the
following Langevin equations:

ṙ1 = − 1

γ
∇r1U(r1 − r2) + va(r1 − vwt)η +

√
2Dξ1,(1a)

ṙ2 = − 1

qγ
∇r2U(r1 − r2) +

√

2D

q
ξ2, (1b)

τ η̇ = −η +

√

2τ

d
ξ3; (1c)

where r1 and r2 denote the positions of the active mi-
croswimmer and the passive cargo, respectively. The inter-
action U(r1−r2) between them is modeled by an isotropic
parabolic potential U(r) = κr2/2, with stiffness κ > 0
and zero rest length. The stochastic forces ξ1, ξ2, ξ3 are
three independent zero-mean Gaussian white noises ac-
counting for thermal fluctuations. Moreover, the active
carrier exploits local energy injections to self-propel along
the direction of the propulsion vector η which is given by
a set of d independent Ornstein-Uhlenbeck processes with
variance 1/d and correlation time τ . It follows that η is
a zero-mean Gaussian colored noise with autocorrelation

Vw

High-friction cargo

Low-friction

cargo

e0

e1

Fig. 1: Sketch of the stochastic model described by eqs. (1)
in two spatial dimensions. A self-propelled active microswim-
mer (blue ellipse) in a fluid drags a passive cargo (gray circle)
via a harmonic interaction (blue spring). The instantaneous
self-propulsion velocity of the microswimmer (blue arrow) is lo-
cally controlled by a sinusoidal traveling wave of activity, which
propagates through the fluid with phase velocity vw along the
unit vector e0. For illustration we sketch here two examples of
active-passive dimers, one with a low-friction cargo (q small,
left) and the other with a high-friction cargo (q large, right).

function 〈ηα(t)ηβ(s)〉 = (δα,β/d) exp (−|t− s|/τ), where
δα,β denotes Kronecker’s delta. This normalization en-
sures that the average modulus squared of the propulsion
vector is

〈

‖η‖2
〉

= 1 for all values of d. While the time
scale τ sets the persistence of the self-propulsion force, its
strength is modulated in space by the activity field va. In
order to recover an equilibrium dynamics in the absence of
activity va = 0, we connect the mobility γ and the diffu-
sivity D via the Einstein relation D = kBT/γ. Moreover,
the cargo and the active carrier are assumed to have dif-
ferent friction coefficients, the ratio of which is given by
the parameter q. In a Newtonian fluid and for spherical
colloidal carrier and cargo, q equals the ratio of the radius
of the cargo to that of the carrier.
The Langevin dynamics in eqs. (1) can be more conve-

niently written in terms of the dimer position in the co-
moving frame, which we identify with the centre of friction
χ = (r1+ qr2)/(1+ q)−vwt and the distance r = r1−r2.
Changing variables (r1, r2,η) → (χ, r,η) to the new coor-
dinate system, the Fokker-Planck equation for the proba-
bility density P (χ, r,η, t) associated to the stochastic dy-
namics in eqs. (1) reads:

∂tP (χ, r,η, t) =
1

dτ
L̂ηP +

−∇χ ·
[

−vwP +
1

1 + q
va (χ

′)ηP − D

1 + q
∇χP

]

+

−∇r ·
[

−1 + q

qγ
∇rUP + va (χ

′)ηP − 1 + q

q
D∇rP

]

,

(2)

with χ′ = χ+ qr/(1 + q) and L̂ηP = ∇2
η
P + d∇η · (ηP ).

Transport properties for slow activity waves. –

In order to estimate the extent to which the propagat-
ing tactic signal affects the directed motion of the cargo-
carrying microswimmer, we focus on transport properties
induced by the activity travelling wave. With the help of
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a mean-field hydrodynamic theory, we derive an effective
dynamics which describes the evolution of the dimer at
time scales longer than τ and length scales larger than
the persistence length lp ∼ vaτ [34]. In particular, the
predictions deriving from such hydrodynamic theory are
expected to be valid for activity fields which are slowly
varying on the length scale lp (large wavelength approxi-
mation). In order to identify all relevant hydrodynamic
variables, i.e., those fields the relaxation time of which
grows indefinitely upon increasing the wavelength (slow
modes), we perform a moment expansion analogous to,
e.g., refs. [34–36].
The evolution of the modes is described by a hierar-

chical structure, the detailed derivation of which is re-
ported in sec. 1 of Supplementary Material (SM). Impor-
tantly, we note that the zeroth order mode ϕ(χ, r, t) =
∫

dη P (χ, r,η, t), which describes the density related to
the spatial marginal variables χ and r, is the only slow
mode of the system. Indeed, ϕ(χ, r, t) is associated with
a conservation law and its dynamics has the form of a
continuity equation:

∂tϕ(χ, r, t) = −∂α
[

−vwδα,0ϕ+
va (χ

′)σα
(1 + q)

− D

1 + q
∂αϕ

]

− ∂′α

[

− (1 + q)

qγ
∂′αUϕ+ va (χ

′)σα − (1 + q)D

q
∂′αϕ

]

,

(3)

where we introduced the shorthand notation ∂α ≡ ∂χα

and ∂′α ≡ ∂rα , while repeated indices imply summation.
Furthermore, σα is the α-th component of the first-order
mode σ(χ, r, t) =

∫

dη ηP (χ, r,η, t), which is related to
the conditional average polarization at fixed spatial vari-
ables. Its dynamics is governed by

∂tσα(χ, r, t) = −∂α [va (χ
′)ϕ]

(1 + q)d
− ∂′α [va (χ

′)ϕ]

d

+
(1 + q)

qγ
∂′β

[

∂′βUσα
]

− τ−1σα +O(∂2) ,

(4)

where dependencies on higher-order modes are included
in O(∂2). Notably, the decay rate due to the sink term
−τ−1σα makes σα(χ, r, t) a fast mode which does not obey
a conservation law and which can be described by a quasi-
static approximation. Moreover, the contributionO(∂2) of
higher-order gradients is negligible under the assumption
of a slowly varying activity field.
The combination of large-wavelength approximation

and quasi-stationarity of σ(χ, r, t) at time scales longer
than τ provides a closure scheme for the hierarchy without
needing information about higher-order modes. In partic-
ular, after integrating out the relative coordinate r, we
derive an effective drift-diffusion equation for the marginal
density ρ(χ, t) =

∫

drϕ(χ, r, t) (see sec. 2 of SM for the
detailed derivation), which reads:

∂tρ(χ, t) = −∇χ · [Veff(χ)ρ(χ, t)−∇χ(Deff(χ)ρ(χ, t))] ,
(5)
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Fig. 2: Stationary density ρ(χ) of the dimer (left axis), in
the comoving frame of the traveling activity wave va(χ) with
sinusoidal shape (green dashed line, eq. (11), right axis), as
obtained from numerical simulations (symbols) and from an-
alytical predictions (eq. (12), solid lines). The latter hold
under the assumption of long wavelength and slow traveling
wave and they are reported for both a high-friction cargo
with q = qhigh > qth (blue) and a low-friction cargo with
q = qlow < qth (red). Both analytical and numerical predictions
have been obtained by assuming periodic boundary conditions.
The numerical data were obtained from a single Langevin-
dynamics simulation of duration 108 using Euler-Maruyama
scheme with time step ∆t = 0.01. Other simulation parame-
ters: vw = 10−2, v0 = 1.0, τ = 0.1, κ = 5, γ = 1.0, D = 10−3,
λ = 10/(4π), qhigh = 4 and qlow = 1.

where the effective drift and effective diffusivity are given,
respectively, by

Veff(χ) = (1− ǫ/2)∇χDeff(χ)− vw, (6)

Deff(χ) =
D

1 + q
+

τv2a(χ)

d(1 + q)2
. (7)

This expression of Deff reveals an enhancement of the dif-
fusivity D/(1 + q) of the center of friction induced by the
activity via a term ∝ v2a(χ).
Interestingly, the alignment of the effective drift with

the activity gradient is controlled by the tactic coupling

ǫ = 1− q

1 + 1+q
q

τ
τr

, (8)

where τr = γ/κ is the characteristic spring relaxation time.
The role of ǫ can be understood by considering the case
of static activity field. In fact, for vw = 0, the stationary
density obtained from eq. (5) is

ρ(χ) = N−1

[

1 +
τv2a (χ)

dD(1 + q)

]−ǫ/2

. (9)

Accordingly, ǫ determines the preferential accumulation
of the dimer in the regions with high or low activity de-
pending on its sign. Here, N is a normalization constant.
Equation (8) implies that for a fixed τ/τr, the tactic cou-
pling ǫ is entirely determined by the friction ratio q, be-
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cause it changes sign at the threshold value

qth =
1

2

[

1 + τ/τr +

√

(1 + τ/τr)
2
+ 4τ/τr

]

≥ 1. (10)

For highly mobile cargoes with q < qth one has ǫ > 0 and
thus the dimer preferentially accumulates in low-activity
regions. For slow cargoes with q > qth, instead, ǫ < 0 and
the dimer preferentially accumulates in high-activity re-
gions. Interestingly, as in the single-particle case (see, e.g.,
ref. [37]), the equivalence with a cargo-carrying ABP [29]
with rotational diffusivity Dr is fully recovered by impos-
ing τ−1 = (d− 1)Dr.
In order to analyze the general case of an activity trav-

elling wave (vw 6= 0), we assume for simplicity that the
activity field va varies only along e0. Accordingly, we de-
note the effective drift and diffusivity with Deff(χ0) and
Veff,α(χ0) as they now depend only on χ0 = χ · e0. As an
example, we hereafter consider the sinusoidal wave

va(χ0) = v0 [1 + sin(χ0/λ)] , (11)

with wavelength λ. The resulting stationary density ρ(χ)
in the comoving frame can be determined by considering
an ensemble of non-interacting dimers with initial bulk
density ρb = L−d, L being their typical interparticle dis-
tance. In this way, from eq. (5) we find

ρ(χ)

ρb
=

LD−1
eff (χ0)

∫ L

0
dx exp

{

−
∫ χ0+x

χ0
dy

Veff,0(y)
Deff (y)

}

∫ L

0 du
∫ L

0 dxD−1
eff (u) exp

{

−
∫ u+x

u dy
Veff,0(y)
Deff (y)

} ,

(12)
which is illustrated in fig. 2 and which also features
the transition in the preferential accumulation illustrated
above for vw = 0. Moreover, the interaction with a prop-
agating activity field induces a non-trivial tactic response
in the microswimmer, which is now able to sustain a non-
vanishing stationary flux J0 in the comoving frame, acquir-
ing an average drift velocity vd = (〈ṙ1〉+ q〈ṙ2〉)/(1+ q) =
J0/ρb + vw along e0 in the lab frame. This drift is given
by [38, 39]

vd =
L
[

1− exp
{

−
∫ L

0
dy

Veff,0(y)
Deff (y)

}]

∫ L

0 du
∫ L

0 dxD−1
eff (u) exp

{

−
∫ u+x

u dy
Veff,0(y)
Deff (y)

} + vw,

(13)
and it strongly depends on the tactic coupling ǫ and there-
fore on q. More precisely, it can be shown analytically
that vd vanishes at the static threshold value q = qth in
eq. (10) (see sec. 3 of SM). Additionally, for sufficiently
small thermal diffusivity D, the threshold value q = qth
also separates two distinct tactic regimes with respect to
the wave propagation: positive taxis for q > qth, where the
microswimmer navigates along the propagating tactic sig-
nal with vd/vw > 0, and negative taxis for q < qth, where
the microswimmer navigates against it, with vd/vw < 0,
see fig. 3(a). This predicted negative taxis as well as the
fact that its magnitude decreases upon increasing D are
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Fig. 3: (a) Average drift vd as a function of the phase velocity
vw in the slow-wave regime vw < v0 (eq. (13)). For low-friction
cargoes with q = qlow < qth (red line), the microswimmer ex-
hibits a negative tactic behavior. At the threshold value qth
(black line), the average drift vanishes for all wave velocities vw,
whereas for q = qhigh > qth (blue solid line), the dimer is char-
acterized by positive taxis. Numerical results (symbols) have
been obtained by computing the quantity (χ(t)+vwt−χ(0))/t
for each of the N = 103 independent stochastic trajectories of
length t, and averaging over different realizations. The remain-
ing simulation parameters are v0 = 1.0, τ = 0.1, κ = 5, γ = 1.0,
D = 10−2, λ = 10/(4π), qhigh = 4 and qlow = 1. In the inset,
we report the slope of the linear relation vd ≈ cvw (blue dashed
line) at small wave velocities as a function of q, and for ther-
mal diffusivity D ∈ {0.05, 0.03, 0.01, 0.001} (solid lines from
bottom to top). (b) Stochastic trajectory of a cargo-carrying
microswimmer in the comoving frame (χ0, χ1) in two spatial
dimensions. For a high-friction cargo (q = 20) and small ther-
mal diffusivity D = 10−3 the dimer “surfs” the propagating
activity wave by localizing around its maximum while travel-
ing with the same velocity, i.e., vd = vw.

consistent with what occurs for a single active particle
[24,25], which is retrieved as the limit q → 0 of our model.
Conversely, when q > qth, the cargo-carrying microswim-
mer travels along the sinusoidal wave due to its tendency
to localize close to the propagating activity crests, per-
forming the active surfing shown in fig. 3(b). Interestingly,
an analogous effect was observed experimentally with sin-
gle self-polarizing phototactic particles in traveling light
pulses [23]. While in ref. [23] this behavior is caused by an
aligning torque, in our model it emerges as a cooperative
effect between the active carrier and the passive cargo.
Note, however, that the ability of the microswimmer to
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catch up with the travelling wave crests, i.e., vd ≃ vw is
limited to the case of slowly propagating activity wave,
which explains the non-monotonicity of the blue curve in
fig. 3(a). In order to quantify the efficiency of this surfing,
we determine the slope c of the linear relation vd ≈ cvw,
which holds at small wave velocities vw. Its dependence
on q and the thermal diffusivity D is reported in the inset
of fig. 3, which shows, as expected, that c ≤ 1 and that
the directed transport is highly efficient (i.e., c ≃ 1) for
D ≪ τv20 .
We recall here that the predictions presented above fol-

low from a coarse graining which assumes that the activity
field varies slowly on a length scale of the order of lp = v0τ .
In the static case vw = 0, this condition is met for λ≫ lp.
However, for a traveling wave, the coarse graining addi-
tionally requires that the distance ∼ vwτ traveled by the
active wave on a time scale ∼ τ does not exceed ∼ lp,
which happens for vw < v0. Accordingly, in order to
investigate the transport properties in the opposite case
vw > v0, we pursue below an alternative analytical ap-
proach.

Transport properties for fast activity waves. –

For simplicity, and without loss of generality, we restrict
the analysis of the case vw > v0 to one-dimensional sys-
tems and to a sinusoidal traveling wave as in eq. (11).
The main difference compared to the slow-wave approx-
imation discussed above lies in the closure scheme used
to combine the mode eqs. (3) and (4). More precisely, as
the small gradients approximation is no longer applicable
for vw > v0, we explore this regime by considering small
self-propulsion forces by keeping in the effective dynamics
only contributions of the lowest order in v0 [28,40,41]. To
this aim, we rewrite eq. (4) in the more convenient form

L̂σσ(χ, r, t) = −∂χ [va(χ
′)ϕ]

(1 + q)
− ∂r [va(χ

′)ϕ] + Υ(χ, r, t),

(14)
where χ′ = χ + qr/(1 + q) is the position of the active
carrier in the comoving frame, Υ(χ, r, t) includes all con-
tributions of higher-order modes, and the operator L̂σ is
defined as

L̂σ = ∂t +
1

τ
− vw∂χ − D

1 + q
∂2χ − (1 + q)D

q

[

∂2r +
1

ℓ2
∂rr

]

,

(15)
with the characteristic length ℓ =

√
Dτr.

To solve for σ(χ, r, t), we then determine the Green func-
tion of L̂σ and compute the convolution with the r.h.s. of
eq. (14). In doing this, we assume that the contribution
Υ(χ, r, t) of higher-order modes is negligible in the limit
of small self-propulsion forces, thus closing the hierarchy.
Analogously to the previous approach, after integrating
over the relative coordinate r, we obtain a continuity equa-
tion for the marginal density ρ(χ, t), i.e.,

∂tρ(χ, t) = −∂χ
[

I(χ, t)− D

1 + q
∂χρ− vwρ

]

, (16)

100 101 102

vw/v0

0

1

2

3

4

5

6

v
d
/v
0

} Analytical predictions

Simulations

(x
1

0
-3

)

Fig. 4: Average drift velocity vd as a function of the phase
velocity vw of the activity wave for vw > v0 (eq. (18)). The
cargo-carrying microswimmer acquires a positive drift indepen-
dently of the value of the friction ratio q, which takes here the
same values as those of the corresponding curves in fig. 3. The
results from numerical simulations and analytical predictions
have been obtained as described in the caption of fig. 3, with
the same set of parameters.

where

I(χ, t) =

∫ ∞

−∞

dr
va (χ

′)σ(χ, r, t)

(1 + q)
=

〈va(χ′)η |χ〉
1 + q

ρ(χ, t),

(17)
and 〈·|χ〉 denotes the conditional average at fixed χ. We
derive a close yet cumbersome analytical expression for
I(χ, t) which is related to the local average swim speed of
the center of friction due to self-propulsion, see eq. (17)
and sec. 4 of SM). Similarly, we also derive in the SM
analytical expressions for the stationary density and the
flux in the comoving frame, which we use to analyze the
directed transport in the regime of fast active traveling
waves. In particular, for Dτr ≪ λ2, the average drift
velocity vd reads

vd
v0

=
lp

2λ(1 + q)2

[

sinψ0

|z0|
+ q

sinψ1

|z1|

]

, (18)

where we recall that lp = v0τ is the persistence length of
the microswimmer, while ψn and |zn| are the phase and
the modulus, respectively, of the complex number

zn = 1 +
τD

λ2(1 + q)
+

(1 + q)τD

qℓ2
n+ i

τvw
λ
, (19)

where i is the imaginary unit. A general expression of the
drift velocity for an arbitrary thermal diffusivity is given
in sec. 4 of SM.
Figure 4 shows the behavior of the average drift vd as a

function of the wave velocity vw in the regime vw > v0 of
fast traveling waves. Unlike the case of vw < v0 (see fig. 3),
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the tactic behavior of the microswimmer does not exhibit
a qualitative change as a function of the friction ratio q,
with the drift occurring always along the direction of the
active wave. However, as q increases, this drift decreases
because of the reduced mobility of the dimer. The drift
velocity of the microswimmer attains its maximum value
at a wave speed which scales as vw/v0 ∼ λ/lp. This can
be qualitatively understood as following. Consider a single
pulse of activity of spatial extent λ travelling with a speed
vw. A microswimmer with its polarization against the
direction of the travelling pulse will rapidly exit the pulse
from the receding front. However, when the polarization
is along the direction of the pulse, the microswimmer will
be carried along with it until it switches its polarization
which will cause it to exit the pulse. The optimum scenario
corresponds to the condition vwτ − v0τ ∼ λ in which the
microswimmer effectively traverses the whole pulse before
switching polarization. This results in a maximum of the
drift speed at vw ∼ λ/τ .

While the drift velocity of the dimer in fig. 4 features a
single peak, we find both analytically and via numerical
simulations that a second peak may appear at larger vw,
for large values of q and persistence time τ . The location
of this additional peak depends on the spring relaxation
time scale τr but we defer a thorough investigation of its
features and microscopic origin to future investigations.

Discussion. – Our work shows that self-propelled
cargo-carrying microswimmers interacting with a travel-
ing wave of activity display a rich tactic behavior. Their
response to such a wave is actually independent of the
details of the activity, as evidenced by the equivalence of
cargo carrying AOUPs and ABPs in terms of their coarse
grained dynamics. The tactic transition which emerges
in the presence of slowly propagating waves relies on the
possibility to control the preferential accumulation of the
microswimmer in high/low activity regions, by tuning the
friction of its cargo. In particular, we find a surfing ef-
fect when the directed migration along the activity wave
is induced by an effective localization around the wave
maxima. Considering, e.g., the experimental realization
of Janus microswimmers as in ref. [23], eq. (10) implies
qth ≃ κ/(0.02 pN/µm) for qth & 1. Accordingly, as-
suming for the cargo-carrier binding an elastic constant
κ ≃ 0.1 pN/µm, typical for soft matter, the tactic transi-
tion is predicted to occur at a cargo radius ≃ 8µm, which
is within experimental reach. We speculate that a quali-
tatively similar tactic behavior may emerge spontaneously
in a binary mixture of mutually attractive active and pas-
sive particles, upon formation of clusters of different sizes.
It has been recently shown that also molecules composed
of two rigidly connected active particles [42] and dimers
made of two active chiral particles [43] exhibit a transition
in their effective localization in high/low activity regions.
It will be interesting to study such active-matter systems
subject to active traveling waves, and in the presence of
external potentials [44, 45].

We expect our predictions to have an impact on ex-
perimental studies on soft matter, biophysics, and nan-
otechnology. Important examples include cases in which
synthetic Janus particles [46] and bacteria [47] have been
used to efficiently transport and deliver microscopic ob-
jects in specific target sites. Moreover, our investigation
could inspire future optimal design of existing biohybrid

micromachines such as spermbots formed by assembling
syntetic materials with sperm cells [48,49]. The taxis tran-
sition unveiled by our minimal stochastic model may also
have implications in biological processes at the microscale
in which traveling waves play a key role, e.g., sound trans-
duction in the cochlea [50, 51] and signaling waves in cell
development [52].
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[1] Jülicher F., Ajdari A. and Prost J., Rev. Mod. Phys.,
69 (1997) 1269.

[2] Hänggi P. and Marchesoni F., Rev. Mod. Phys., 81

(2009) 387.
[3] Marchetti M. C., Joanny J.-F., Ramaswamy S., Liv-

erpool T. B., Prost J., Rao M. and Simha R. A., Rev.
Mod. Phys., 85 (2013) 1143.

[4] Bechinger C., Di Leonardo R., Löwen H., Reich-
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Wang J., Nanoscale, 5 (2013) 1325.

[13] Sánchez S., Soler L. and Katuri J., Angewandte

Chemie International Edition, 54 (2015) 1414.
[14] Singh A. V., Hosseinidoust Z., Park B.-W., Yasa O.

and Sitti M., ACS Nano, 11 (2017) 9759.
[15] Alapan Y., Yasa O., Schauer O., Giltinan J., Tabak

A. F., Sourjik V. and Sitti M., Sci. Robot., 3 (2018)
4423.

[16] Vaccari L., Molaei M., Leheny R. L. and Stebe

K. J., Soft Matter, 14 (2018) 5643.
[17] Sentürk O. I., Schauer O., Chen F., Sourjik V. and

Wegner S. V., Adv. Health. Mat., 9 (2020) 1900956.
[18] Fisher P. R., Merkl R. and Gerisch G., J. Cell. Biol.,

108 (1989) 973.
[19] Martiel J.-L. and Goldbeter A., Biophys. J., 52

(1987) 807.
[20] Tomchik K. J. and Devreotes P. N., Science, 212

(1981) 443.

p-6



Taxis of cargo-carrying microswimmers in traveling activity waves

[21] Gregor T., Fujimoto K., Masaki N. and Sawai S.,
Science, 328 (2010) 1021.

[22] Höfer T., Maini P., Sherratt J., Chaplain M.,

Chauvet P., Metevier D., Montes P. and Murray

J., App. Math. Lett., 7 (1994) 1.
[23] Lozano C. and Bechinger C., Nat. Commun., 10

(2019) 2495.
[24] Geiseler A., Hänggi P., Marchesoni F., Mulhern

C. and Savel’ev S., Phys. Rev. E, 94 (2016) 012613.
[25] Geiseler A., Hänggi P. andMarchesoni F., Sci. Rep.,

7 (2017) 41884.
[26] Geiseler A., Artificial Microswimmers in Spatio-

Temporally Modulated Activating Media Ph.D. thesis Uni-
versity of Augsburg (2017).

[27] Sharma A. and Brader J. M., Phys. Rev. E, 96 (2017)
032604.

[28] Merlitz H., Vuijk H. D., Brader J., Sharma A. and
Sommer J.-U., J. Chem. Phys., 148 (2018) 194116.

[29] Vuijk H. D., Merlitz H., Lang M., Sharma A. and
Sommer J.-U., Phys. Rev. Lett., 126 (2021) 208102.

[30] Caprini L., Hernández-Garćıa E., López C. and
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Abstract –Supplementary Material to “Taxis of cargo-carrying microswimmers in traveling activity
waves”. We provide here a detailed derivation of the analytical predictions reported in the main
text. In particular, in sec. 1 we derive the mode equations [eqs. (3) and (4) in the main text] using
the moment expansion technique. In sec. 2 we describe how a closure relation can be obtained within
the small-gradient approximation, which allows one to obtain an equation of motion for the coarse-
grained density of microswimmer [eq. (5) in the main text]. In sec. 3 we prove analytically that the
drift velocity of the microswimmer vanishes at q = qth. In sec. 4 we derive an equation of motion
for the coarse-grained density of the microswimmer by using an alternative closure relation which
is applicable to fast activity waves. We derive analytical expressions for the stationary density,
stationary flux and average drift velocity.

1. Deriving the mode equations. – In this section, we show how to derive the
mode equations using the moment expansion technique [1–3]. We start the derivation from
the Fokker-Planck equation (FPE) describing the evolution of P (χ, r,η, t) (eq. (2) in the
main text):

∂tP (χ, r,η, t) = −∇χ ·
[

−vwP +
1

1 + q
va (χ

′)ηP − D

1 + q
∇χP

]

+

−∇r ·
[

−1 + q

qγ
∇rUP + va (χ

′)ηP − 1 + q

q
D∇rP

]

+
1

dτ
L̂ηP ,

(1)

where

χ′ = χ+ qr/(1 + q), (2)

and the operator L̂η is defined as

L̂ηf(η) = ∇2
η
f(η) + d∇η · [ηf(η)] . (3)
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We now expand the joint probability density as

P (χ, r,η, t) =
∑

n

φn(χ, r, t)un(η) , (4)

where n = {n1, n2, . . . , nd} is a set of non-negative integers, while {un(η)} is the corre-
sponding set of eigenfunctions of the operator L̂η, given by

un(η) = exp

{

−dη
2

2

} d
∏

i=1

Hni
(
√
d ηi); (5)

where Hn(x) is the n-th Hermite polynomial in the probabilist convention [4]. They satisfy
the following eigenvalue equation

L̂ηun(η) = λnun(η), (6)

where the eigenvalues λn are given by

λn = −d
d

∑

i=1

ni. (7)

Moreover, it is convenient to introduce the family of functions {ũn(η)} as

ũn(η) = (2π)−d/2
d
∏

i=1

Hni
(
√
d ηi)

ni!
, (8)

which are orthogonal to the eigenfunctions {un(η)}, i.e.,
∫

dη un(η)ũm(η) = d−d/2δn,m, (9)

where δn,m =
∏d

i=1 δni,mi
. Multiplying eq. (4) by ũ0(η) and integrating over η, we get

∫

dη ũ0(η)P (χ, r,η, t) =
∑

n

φn(χ, r, t)

∫

dη ũ0(η)un(η) = d−d/2φ0(χ, r, t) , (10)

and after using the definition of ũ0(η):

ϕ(χ, r, t) ≡
∫

dη P (χ, r,η, t) = (2π/d)d/2φ0(χ, r, t) , (11)

Accordingly, the first coefficient φ0(χ, r, t) of the expansion in eq. (4) is related to the
marginal density ϕ(χ, r, t). For later purposes, we recall that Hermite polynomials satisfy
the recurrence relation [4]

Hn+1(x) = xHn(x) −H ′
n(x), (12)

and they form an Appell sequence, as they satisfy

H ′
n(x) = nHn−1(x). (13)

In order to lighten the notation, below we will denote by nα± the vector (n1, .., nα±1, ..., nd).
Then, by using eqs. (12) and (13) in eq. (5) one can write

ηαun(η) =
1√
d
exp

{

−dη
2

2

}√
dηαHnα

(√
dηα

)

∏

β 6=α

Hnβ

(√
dηβ

)

=
1√
d
exp

{

−dη
2

2

}

[

Hnα+1

(√
dηα

)

+ nαHnα−1

(√
dηα

)]

∏

β 6=α

Hnβ

(√
dηβ

)

=
1√
d
unα+(η) +

nα√
d
unα−

(η) .

(14)
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At this point we can project the FPE onto the {ũn(η)} and obtain a set of equations for
the coefficients {φn(χ, r, t)}. In the following, summation over repeated indices is implied.
For convenience, we will split the Fokker-Planck operator into the three contributions

∂tP (χ, r,η, t) =

(

L̂χ + L̂r +
1

dτ
L̂η

)

P, (15)

where L̂η is defined in eq. (3), while

L̂χP = −∂α
[

1

1 + q
va

(

χ+
q

1 + q
r

)

ηαP − D

1 + q
∂αP − vwδα,0P

]

,

L̂rP = −∂′α
[

−1 + q

qγ
∂′αU(r)P + va

(

χ +
q

1 + q
r

)

ηαP − (1 + q)

q
D∂′αP

]

,

(16)

where we introduced the shorthand notation ∂α ≡ ∂χα
and ∂′α ≡ ∂rα . We separately project

the various terms of the FPE onto ũm(η), starting from its l.h.s.:

∫

dη ũm(η)∂tP (χ, r,η, t) = ∂tφn(χ, r, t)

∫

dη ũm(η)un(η) = d−d/2∂tφm(χ, r, t) . (17)

For the first term on the r.h.s., i.e., L̂χP , we have (for simplicity, we do not indicate below
the dependence of φn on χ and r):

∫

dη ũm(η)L̂χP =

= −∂α
[

va (χ
′)φn

1 + q

∫

dη ũm(η)ηαun(η)−
(

D∂αφn
1 + q

+ vwδα,0φn

)
∫

dη ũm(η)un(η)

]

= −∂α
{

va (χ
′)φn√

d(1 + q)

∫

dη ũm(η)
[

unα+(η) + nαunα−

(η)
]

− Dd−d/2

1 + q
∂αφm − vwδα,0

dd/2
φm

}

= −∂α
{

d−(d+1)/2

1 + q
va (χ

′)
[

φnδm,nα+ + nαφnδm,nα−

]

− Dd−d/2

1 + q
∂αφm − vwδα,0d

−d/2φm

}

= −∂α
{

d−(d+1)/2

1 + q
va (χ

′)
[

φmα−

+ (mα + 1)φmα+

]

− Dd−d/2

1 + q
∂αφm − vwδα,0d

−d/2φm

}

,

(18)

where we used δm,nα−

= δmα+,n and δm,nα+ = δmα−
,n. Similarly, the projection of the

second term on the r.h.s. of eq. (15), i.e., L̂rP , reads

∫

dη ũm(η)dd/2L̂rP =

= −∂′α
{

− (1 + q)

qγ
∂′αU(r)φm + d−1/2va (χ)

[

φmα−

+ (mα + 1)φmα+

]

− (1 + q)D

q
∂′αφm

}

.

(19)

Finally, the last term in eq. (15), i.e., 1
dτ L̂ηP , contributes as

1

dτ

∫

dη ũm(η)L̂ηP =
1

dτ
φn

∫

dη ũm(η)L̂ηun(η) =
d−d/2−1

τ
λmφm. (20)
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Collecting the contributions in eqs. (18), (19), and (20), the FPE projection onto ũm(η)
yields the following set of coupled equations for the coefficients

∂tφm(χ, r, t) =

− ∂α

{

1√
d(1 + q)

va (χ
′)
[

φmα−

+ (mα + 1)φmα+

]

− D

1 + q
∂αφm − vwδα,0φm

}

+
λm
dτ

φm

− ∂′α

{

− (1 + q)

qγ
∂′αU(r)φm +

va (χ
′)√
d

[

φmα−

+ (mα + 1)φmα+

]

− (1 + q)D

q
∂′αφm

}

.

(21)

In particular, the dynamics of the first two modes ϕ(χ, r, t) and

σα(χ, r, t) ≡
∫

dη ηαP (χ, r,η, t) =

(

2π

d

)d/2 φ0α+(χ, r, t)√
d

, (22)

can be obtained by specialising eq. (21) to the cases m = 0 and m = 0α+, finding

∂tϕ(χ, r, t) = −∂α
[

−vwδα,0ϕ+
va (χ

′) σα
(1 + q)

− D

1 + q
∂αϕ

]

− ∂′α

[

− (1 + q)

qγ
∂′αUϕ+ va (χ

′)σα − (1 + q)D

q
∂′αϕ

]

,

(23)

and

∂tσα(χ, r, t) = −∂β
[

va (χ
′)ϕδα,β

d(1 + q)
− D

1 + q
∂βσα − vwδβ,0σα

]

− ∂′β

[

− (1 + q)

qγ
∂′βU(r)σα +

va (χ
′)ϕδα,β
d

− (1 + q)D

q
∂′βσα

]

− τ−1σα +Υ(χ, r, t),

(24)

with Υ(χ, r, t) denoting the contributions due to higher-order modes. In order to simplify
the notation, in the previous expression and in those which follow, the dependence on (χ, r, t)
of ϕ and σα is understood if not explicitly indicated.

In order to treat this hierarchy of equations, we adopt below two different approaches
depending on the value of the phase velocity vw of the activity wave compared to the activity
field va itself.

2. Slow active traveling waves. – In the case of slowly propagating waves vw ≪ v0,
the hierarchy in eqs. (23) and (24) can be closed by assuming that the activity field va
varies on length scales much larger than the persistence length lp = τv0 (small gradients
approximation), and considering quasi-stationary higher-order modes at time scales longer
than τ [1–3] Under these approximations, eq. (24) for the polarization field σα can be
rewritten as

τ−1σα(χ, r, t) = −∂α [va (χ
′)ϕ]

(1 + q)d
− ∂′α [va (χ

′)ϕ]

d
+

(1 + q)

qγ
∂′β

[

∂′βUσα
]

+O(∂2) , (25)

where O(∂2) denotes the contributions coming from higher-order powers of the gradient.
This equation for σα(χ, r, t) can be plugged into the continuity equation for the marginal
density ρ(χ, t) =

∫

dr ϕ(χ, r, t), which can be obtained by integrating eq. (23) over the
coordinate r, finding

∂tρ(χ, t) = −∂α
[

1

1 + q

∫

dr va (χ
′)σα(χ, r, t)− vwδα,0ρ(χ, t)−

D

1 + q
∂αρ(χ, t)

]

. (26)

On the r.h.s. of this equation one recognizes the probability current Jα(χ, t), corresponding
to the expression in square brackets. In addition to the diffusive term ∝ ∇ρ (with a
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renormalized diffusion coefficient D/(1 + q), as it refers to the diffusion of the center of
friction) and to the current ∝ vwρ due to the change of reference system, the additional
contribution

Iα(χ, t) ≡
1

1 + q

∫

dr va (χ
′)σα(χ, r, t) (27)

appears. By using eq. (25), Iα(χ, t) can be written as

Iα(χ, t) =
τ

1 + q

∫

dr va (χ
′)

{

−∂α [va (χ
′)ϕ]

d(1 + q)
− ∂′α [va (χ

′)ϕ]

d
− (1 + q)

qγ
∂′β [Fβ(r)σα]

}

,

(28)
where Fβ(r) = −∂rβ

U(r). Integrating by part and using ∂′αva(χ
′) = q

1+q∂αva(χ
′) [which

follows from eq. (2) and the definitions of ∂′α and ∂α given after eq. (16)], we can rewrite
the previous expression as:

Iα(χ, t) =
τ

1 + q

∫

dr va (χ
′)

[

−∂α [va (χ
′)ϕ]

d(1 + q)

]

+
τ

1 + q

∫

dr
q

(1 + q)d
[va (χ

′)ϕ] ∂αva (χ
′)

+
τ

1 + q

1

γ

∫

dr Fβ(r)σα∂βva (χ
′) .

(29)

We define now the quantity Σ as

Σ(χ, t) ≡
∫

dr Fβ(r)σα(χ, r, t)∂βva (χ
′) . (30)

By using eq. (25) into this expression for Σ and by neglecting all terms O(∂2), we obtain:

Σ = τ

∫

dr Fβ(r)∂βva (χ
′)

{

−∂
′
α [va (χ

′)ϕ]

d
− (1 + q)

qγ
∂′γ [Fγ(r)σα]

}

= τ

∫

dr

{

va (χ
′)ϕ

d
∂′α [Fβ(r)∂βva (χ

′)] +
(1 + q)

qγ
Fγ(r)σα∂

′
γ [Fβ(r)∂βva (χ

′)]

}

.

(31)

The last line can be further simplified by considering separately

∂′α [Fβ(r)∂βva (χ
′)] = ∂′αFβ(r)∂βva (χ

′) + Fβ(r)∂
′
α∂βva (χ

′)

= ∂′αFβ(r)∂βva (χ
′) +

q

1 + q
Fβ(r)∂α∂βva (χ

′)

= ∂′αFβ(r)∂βva (χ
′) +O(∂2) .

(32)

Moreover, since the interaction potential is modeled by a spring with stiffness κ and zero
rest length, we have that

∂′αFβ(r) = −κδα,β = ∂′βFα(r). (33)

Accordingly, eq. (32) can be written as

∂′α [Fβ(r)∂βva (χ
′)] ≃ −κδα,β∂βva (χ′) = −κ∂αva (χ′) , (34)

and thus eq. (31) becomes

Σ = −κτ
∫

dr

[

va (χ
′)ϕ

d
∂αva (χ

′) +
(1 + q)

qγ
Fγ(r)σα∂γva (χ

′)

]

=

= −κτ
2d

∫

drϕ∂αv
2
a (χ

′)− κτ
(1 + q)

qγ
Σ,

(35)
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where, in the last line, we used the definition of Σ, see eq. (30). Accordingly, the previous
equation can be solved and yields

Σ(χ, t) = − 1

2d

γτ/τr

1 + 1+q
q

τ
τr

∫

dr ϕ(χ, r, t)∂αv
2
a (χ

′) , (36)

where, as in the main text, we introduced τr = γ/κ.

This expression of Σ(χ, t) can be used in eq. (29), finding

Iα(χ, t) = − τ

d(1 + q)2

∫

dr v2a (χ
′) ∂αϕ− 1

2

τ

d(1 + q)2
ǫ

∫

drϕ∂αv
2
a (χ

′) , (37)

where we introduced the tactic coupling

ǫ = 1− q

1 + 1+q
q

τ
τr

, (38)

reported in eq. (8) of the main text.

Moreover, if the typical distance between the active carrier and the cargo is small com-
pared to the persistence length, we can approximate ϕ = ϕ(χ, r, t) in the integrands above
as:

ϕ(χ, r, t) ≈ ρ(χ, t)δ(r) . (39)

Within this approximation, the total current Jα(χ, t) introduced after eq. (26) can be written
as

Jα(χ, t) = Veff,α(χ)ρ(χ, t)− ∂α [Deffρ(χ, t)] , (40)

where the effective drift and diffusivity are, respectively, given by

Veff,α(χ) = (1− ǫ/2)∂αDeff(χ)− vwδα,0 and Deff(χ) =
D

1 + q
+

τv2a(χ)

d(1 + q)2
, (41)

which are reported in eqs. (6) and (7) of the main text. The stationary solution of the
effective Fokker-Planck equation

∂tρ(χ, t) = −∇χ · [Veff(χ)ρ(χ, t)−∇χ(Deff(χ)ρ(χ, t))] (42)

can be easily proved to be [5–7]:

ρ(χ)

ρb
=

LD−1
eff (χ0)

∫ L

0 dx exp
{

−
∫ χ0+x

χ0
dy

Veff,0(y)
Deff (y)

}

∫ L

0
du

∫ L

0
dxD−1

eff (u) exp
{

−
∫ u+x

u
dy

Veff,0(y)
Deff (y)

} , (43)

in the case of periodic boundary conditions, as reported in the main text. Moreover, the
system can sustain a finite stationary flux in the comoving frame

J0 =
ρbL

[

1− exp
{

−
∫ L

0
dy

Veff,0(y)
Deff (y)

}]

∫ L

0 du
∫ L

0 dxD−1
eff (u) exp

{

−
∫ u+x

u dy
Veff,0(y)
Deff (y)

} (44)

in the direction e0, which can be used in order to compute the average drift velocity vd =
J0/ρb + vw in the lab frame, which is reported in eq. (13) of the main text.
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3. Drift velocity at qth. – In this section we show that the drift velocity vd [see
eq. (13) in the main text], derived in the limit of slow propagating activity fields vw ≪ v0,
vanishes if q takes the threshold value qth reported in eq. (10) of the main text. In particular,
when q = qth, the tactic coupling ǫ in eq. (38) [alternatively, see eq. (8) of the main text]
vanishes and the effective drift in eq. (41) becomes

Veff,α(χ) = ∂αDeff(χ)− vwδα,0 . (45)

This expression can be used in eq. (44) in order to calculate the stationary current in the
comoving frame. In particular, the denominator of that expression reads:

∫ L

0

du

∫ L

0

dxD−1
eff (u) exp

{

−
∫ u+x

u

dy

[

∂α lnDeff(y)−
vw

Deff(y)

]}

=

∫ L

0

du

∫ L

0

dxD−1
eff (u+ x) exp

{
∫ u+x

u

dy
vw

Deff(y)

}

=
1

vw

∫ L

0

du

[

exp

{

∫ u+L

u

dy
vw

Deff(y)

}

− 1

]

=
L

vw

[

exp

{

∫ L

0

dy
vw

Deff(y)

}

− 1

]

,

(46)

where in the last equality we used that the effective drift Deff(y) is a periodic function with
period L. Analogously the numerator of eq. (44) is given by:

ρbL

[

1− exp

{

−
∫ L

0

dy
∂αDeff(y)− vw

Deff(y)

}]

= ρbL

[

1− exp

{

∫ L

0

dy
vw

Deff(y)

}]

. (47)

Combining eqs. (46) and (47), the average drift velocity vd, given after eq. (44), reads:

vd =
J0
ρb

+ vw = vw
ρbL

[

1− exp
{

∫ L

0
dy vw

Deff (y)

}]

ρbL
[

exp
{

∫ L

0 dy vw
Deff (y)

}

− 1
] + vw = 0 (48)

4. Fast active traveling waves. – In this section we derive analytical expressions
for the stationary density, stationary current and average drift velocity in the regime of
fast active traveling waves, i.e., for vw ≫ v0. To this aim, we adopt a different strategy to
close the hierarchy of equations governing the dynamics of the modes given by Eqs (23) and
(24), which hinges on assuming a small activity v0 compared to the wave velocity vw. For
simplicity, we present the derivation for the one-dimensional case d = 1 with the sinusoidal
activity field reported in eq. (11) of the main text. The extension to the case with d 6= 1 is
straightforward. To implement the new closure scheme, we start from the dynamics of the
polarisation field given by eq. (24), which can be conveniently rewritten as:

L̂σσ(χ, r, t) = −∂χ [va(χ
′)ϕ]

(1 + q)
− ∂r [va(χ

′)ϕ] + Υ(χ, r, t) , (49)

where ϕ = ϕ(χ, r, t), the position χ′ of the active carrier in the comoving frame is defined
as in eq. (2), specialized to d = 1, and Υ(χ, r, t) includes the contributions of higher-order
modes. In the previous equation, the operator L̂σ is defined as

L̂σ = ∂t +
1

τ
− vw∂χ − D

1 + q
∂2χ − (1 + q)D

q

[

∂2r +
1

ℓ2
∂rr

]

, (50)

p-7



P. L. Muzzeddu et al.

with the characteristic length ℓ =
√
Dτr and τr = γ/k. We first determine the Green

function G(χ, r, t;χ0, r0, t0) of the operator L̂σ, defined as:

L̂σG(χ, r, t;χ0, r0, t0) = δ(χ− χ0)δ(r − r0)δ(t− t0) . (51)

Note that, due to the translational invariance of the operator L̂σ in the variables χ and t,
one expects G(χ, r, t;χ0, r0, t0) to be a function of χ − χ0 and t − t0. The presence of the
interparticle potential, instead, breaks the transaltional invariance of L̂σ with respect to r
and therefore G(χ, r, t;χ0, r0, t0) depends separately on r and r0. Accordingly, we can write
G(χ, r, t;χ0, r0, t0) = G(χ − χ0, r, t − t0; 0, r0, 0) ≡ G(χ − χ0, r, t − t0; r0) where in the last
equality we introduce a convenient shorthand notation. The function G(χ, r, t; r0) can be
conveniently determined by expanding it in the Fourier-Hermite basis

G(χ, r, t; r0) =
1

ℓ

∞
∑

n=0

∫

dω

2π

∫

dq̃

2π
G̃n(q̃, ω; r0)e

iq̃χ+iωtun(r), (52)

where un(r) is given by

un(r) = e−r2/(2ℓ2)Hn(r/ℓ) , (53)

and Hn(x) is the n-th probabilist’s Hermite polynomial. With this expansion, the l.h.s. of
eq. (51) becomes

1

ℓ

∞
∑

n=0

∫

dω

2π

dq̃

2π

[

iω + τ−1 +
D

1 + q
q̃2 + ivwq̃ +

(1 + q)D

q

n

ℓ2

]

G̃n(q̃, ω; r0)e
iq̃χ+iωtun(r),

(54)
while its r.h.s. is

1

ℓ

∞
∑

n=0

∫

dω

2π

∫

dq̃

2π
ũn(r0)e

iq̃χ+iωtun(r), (55)

where we used the fact that δ(r − r0) in eq. (51) can be written as

1

ℓ

∞
∑

n=0

ũn(r0)un(r) = δ(r − r0) , (56)

and the functions ũn(r) are defined as:

ũn(r) =
1√
2πn!

Hn(r/ℓ). (57)

Accordingly, by comparing eq. (54) with eq. (55), the Green function in reciprocal space
turns out to be given by

G̃n(q̃, ω; r0) =
ũn(r0)

iω + τ−1 + D
1+q q̃

2 + ivw q̃ +
(1+q)D

q
n
ℓ2

. (58)

After inserting this expression of G̃n(q̃, ω; r0) into eq. (52), one can readily calculate the
integral in ω via the residue theorem. The corresponding residue is a Gaussian function of
q̃ and thus the corresponding integral is also straightforward, with the final result

G(χ, r, t; r0) = Θ(t)

exp

{

− t
τ − (χ+vwt)2

4 D
1+q

t

}

√

4π D
1+q t

1

ℓ

∞
∑

n=0

exp

{

− (1 + q)Dn

qℓ2
t

}

ũn(r0)un(r), (59)
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where the Heaviside function Θ is defined such that Θ(t > 0) = 1 and Θ(t ≤ 0) = 0. Before
considering the last summation, we introduce the quantity

s = exp

{

− (1 + q)

q

Dt

ℓ2

}

< 1. (60)

In terms of s the remaining sum in eq. (59) can be written as

1

ℓ

∞
∑

n=0

snũn(r0)un(r) =
1

ℓ
√
2π

exp

{

− r2

2ℓ2

} ∞
∑

n=0

sn

n!
Hn

(r0
ℓ

)

Hn

(r

ℓ

)

=
1

√

2πℓ2(1− s2)
exp

{

− (r − sr0)
2

2(1− s2)ℓ2

}

(61)

where we used the expression of un and ũn given in eqs. (53) and (57), respectively, and, in
the second equality, we used Mehler’s formula [4] for probabilist’s Hermite polynomials, i.e.,

∞
∑

n=0

sn

n!
Hn(x)Hn(y) =

1√
1− s2

exp

{

−s
2(x2 + y2)− 2sxy

2(1− s2)

}

for − 1 < s < 1. (62)

Accordingly, by using eqs. (59), (60), and (61) the the Green function in eq. (51) reads:

G(χ, r, t; r0) = Θ(t) exp {−t/τ}
exp

{

− (χ+vwt)2

4Dt/(1+q)

}

√

4πDt/(1 + q)

exp
{

− (r−sr0)
2

2(1−s2)ℓ2

}

√

2πℓ2(1− s2)
. (63)

Once this Green function is known, one can determine σ(χ, r, t) by computing the convo-
lution integral over χ0, t0, and r0 of the product between G(χ − χ0, r, t − t0; r0) and the
r.h.s. of eq. (49) evaluated for χ = χ0, r = r0, and t = t0. Once σ(χ, r, t) is known, we
can calculate the current contribution to eq. (26) given by eq. (27), specialized to the case
d = 1. In particular, one has

I(χ, t) =

−
∫

dr va (χ
′)

∫ ∞

−∞

dχ0dr0dt0G(χ− χ0, r, t− t0; r0)
∂χ0

[

va(χ0 +
qr0
1+q )ϕ(χ0, r0, t0)

]

(1 + q)2

−
∫

dr va (χ
′)

∫ ∞

−∞

dχ0dr0dt0G(χ− χ0, r, t− t0; r0)
∂r0

[

va(χ0 +
qr0
1+q )ϕ(χ0, r0, t0)

]

(1 + q)

+

∫

dr va (χ
′)

∫ ∞

−∞

dχ0dr0dt0G(χ− χ0, r, t− t0; r0)
Υ(χ0, r0, t0)

(1 + q)
.

(64)

The latter integral can be computed under the approximation of small activity field compared
to vw, by keeping only terms of the lowest order in v0. For this reason, we neglect the
contribution coming from higher-order modes Υ(χ, r, t), thus closing the hierarchy, and we
evaluate the first two integrals by assuming that the density field

ϕ(χ0, r0, t0) = ρb
e−r20/(2ℓ

2)

√
2πℓ2

+O(v0/vw) (65)

is approximately equal to the one in equilibrium, i.e., for va ∝ v0 = 0, and ρb is the bulk
density. In this way, all integrals appearing in the first two lines are standard Gaussian
integrals, and can be easily calculated. As a result, I(χ, t) is actually independent of time
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(as ϕ in eq. (65)) and is given by

I(χ) = −ρbτv
2
0e

−
q2ℓ2

2λ2(1+q)2

λ(1 + q)2

{

cos(χ/λ+ ψ0)

|z0|
− q

cos (χ/λ)
(

1 + (1+q)τD
qℓ2

)

+ e
−

q2ℓ2

2λ2(1+q)2

∞
∑

n=0

[

q2ℓ2

λ2(1+q)2

]n

n!
[fn(χ) + qfn+1(χ)]

}

,

(66)

with

fn(χ) =
(−1)n sin(2χ/λ+ ψn)− sinψn

2|zn|
, (67)

and where ψn and |zn| are the phase and the modulus, respectively, of the complex number
zn defined in eq. (19) of the main text. In order to compute the marginal probability
density ρ(χ) in the steady state, we impose that the probability current in eq. (26) equals
the constant J . Accordingly, one has to solve the following differential equation,

D

1 + q
∂χρ(χ) + vwρ(χ) = I(χ)− J, (68)

with I(χ) given in eq. (66). This can be done by first computing the Green function G1,
defined by

(

D

1 + q
∂χ + vw

)

G1(χ− χ0) = δ(χ− χ0), (69)

which reads (in the case of vw > 0)

G1(χ− χ0) =
(1 + q)

D
Θ(χ− χ0) exp

{

− (1 + q)vw
D

(χ− χ0)

}

, (70)

and then the following convolution:

ρ(χ) =
(1 + q)

D

∫ χ

−∞

dχ′ exp

{

− (1 + q)vw
D

(χ− χ′)

}

I(χ′)− J

vw
. (71)

The contribution coming from the homogeneous solution of eq. (68) vanishes under periodic
boundary conditions. Also in this case, the convolution involves Gaussian integrals, the
standard calculation of which is not reported here for the sake of space. As a result, the
stationary density ρ(χ) can be expressed as

ρ(χ) = − ρbτv
2
0

Dλ(1 + q)
e
−

q2ℓ2

2λ2(1+q)2

[

cos(χ/λ+ ψ0 + ϕ(λ))

|ζ(λ)||z0|
− q

cos (χ/λ+ ϕ(λ))

|ζ(λ)|
(

1 + (1+q)τD
qℓ2

)+

+ e
− q2ℓ2

2λ2(1+q)2

∞
∑

n=0

(

q2ℓ2

λ2(1+q)2

)n

n!
[gn(χ) + qgn+1(χ)]

]

− J

vw
,

(72)

where the functions gn(χ) are defined as

gn(χ) =
(−1)n sin(2χ/λ+ ψn + ϕ(λ/2))

2|ζ(λ/2)||zn|
− sin(ψn)

2 (1+q)vw
D |zn|

, (73)

and where ϕ(λ) and |ζ(λ)| are the phase and the modulus, respectively, of the λ-dependent
complex number

ζ(λ) =
(1 + q)vw

D
− iλ−1. (74)
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Moreover, by imposing the normalization of the marginal density ρ(χ), we find the expression
of the stationary current in the comoving frame J :

J = −vw
L



1− τv20
2vwλ(1 + q)2

e
−

q2ℓ2

λ2(1+q)2

∞
∑

n=0

(

q2ℓ2

λ2(1+q)2

)n

n!

(

sin(ψn)

|zn|
+
q sin(ψn+1)

|zn+1|

)



 , (75)

and, as a consequence, the average drift velocity:

vd
v0

=
lp

2λ(1 + q)2
e
−

q2ℓ2

λ2(1+q)2

∞
∑

n=0

(

q2ℓ2

λ2(1+q)2

)n

n!

(

sin(ψn)

|zn|
+
q sin(ψn+1)

|zn+1|

)

. (76)

The previous equation is reported in the main text (see eq. (18)) in the limit of small
thermal diffusivity Dτr ≪ λ2.
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