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FRACTIONAL COLORINGS OF PARTIAL t-TREES WITH NO LARGE

CLIQUE

PETER BRADSHAW

Abstract. Dvořák and Kawarabayashi [2] asked, what is the largest chromatic number attainable
by a graph of treewidth t with no Kr subgraph? In this paper, we consider the fractional version
of this question. We prove that if G has treewidth t and clique number 2 ≤ ω ≤ t, then χf (G) ≤
t + ω−1

t
, and we show that this bound is tight for ω = t. We also show that for each value

0 < c < 1

2
, there exists a graph G of a large treewidth t and clique number ω = ⌊(1− c)t⌋ satisfying

χf (G) ≥ t + 1 + 1

2
log(1 − 2c) + o(1), which is approximately equal to the upper bound for small

values c.

1. Introduction

1.1. Background. Determining the number of colors needed to properly color a graph belonging
to a specific graph family is one of the oldest problems in graph theory. For many graph families G,
the maximum chromatic number χ(G) achieved by a graph G ∈ G is achieved when G is a clique.
For example, the maximum chromatic number attainable by a planar graph is 4, which is achieved
by K4. Similarly, the maximum chromatic number of a graph G of maximum degree ∆ is ∆ + 1,
which is achieved by K∆+1. Other graph classes satisfying this property include graphs of bounded
genus, bounded degeneracy, or bounded treewidth.

Given that the maximum chromatic number over all graphs in a family G is often attained by a
clique, it is natural to ask about the maximum value χ(G) attained by a graph G ∈ G whose clique
number ω(G) is bounded. When G is the family of graphs of maximum degree ∆, Brooks’ theorem
states that χ(G) ≤ ∆ whenever ω(G) ≤ ∆. Moreover, Borodin and Kostochka [1] conjectured that
if ∆ ≥ 9, then χ(G) ≤ ∆− 1 for all G ∈ G satisfying ω(G) ≤ ∆− 1, and Reed [13] proved that this
conjecture holds for ∆ ≥ ∆0, where ∆0 ≤ 1014 is some large constant. Reed conjectured further

that χ(G) ≤ ⌈∆+ω(G)+1
2 ⌉ for every graph G ∈ G, and he proved in [12] that there exists a universal

value ε > 0 such that χ(G) ≤ εω(G) + (1− ε)(∆+ 1). In the special case that ω(G) ≤ r for a fixed

constant r, Johansson [7] proved that χ(G) ≤ 200(r + 1)∆ log log∆
log∆ , and when G is triangle-free,

Molloy [11] proved that χ(G) ≤ (1 + o(1)) ∆
log ∆ .

When we consider families of graphs with bounded genus, we see a similar pattern in which
forbidding certain clique subgraphs reduces the maximum chromatic number attained by graphs
in our family. For instance, a planar graph G may satisfy χ(G) = 4, but Grötzsch’s theorem [4]
states that χ(G) ≤ 3 whenever G is triangle-free. Similarly, a graph G of genus g may satisfy

χ(G) = Θ(g1/2), but χ(G) = O
(

g
log g

)1/3
whenever G is triangle-free [3].

In this paper, we focus on graphs of bounded treewidth, which are defined as follows. First, we
define a t-tree as a graph G obtained by starting with a t-clique K and then iteratively adding
vertices v for which N(v) induces a Kt. When v is added to G, the t neighbors of v are called
back-neighbors of v. Note that by construction, each vertex of G has exactly t back-neighbors,
except for the vertices of the initial clique K. A partial t-tree is a subgraph of a t-tree. Then, given
a graph G, the treewidth of G is defined as the minimum value t for which G is a partial t-tree. For
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a more traditional definition of treewidth, see [14]. By ordering the vertices of a t-tree in the order
that they are added to the graph, one sees that every partial t-tree G is t-degenerate, and hence
χ(G) ≤ t+ 1. Furthermore, since Kt+1 is a t-tree, this upper bound is tight.

Dvořák and Kawarabayashi [2] considered the problem of determining the largest value χ(G)
obtained by a partial t-tree G when ω(G) is bounded. They found that when ω(G) ≤ 2, i.e. when
G is triangle-free, it holds that χ(G) ≤ ⌈ t+3

2 ⌉. They also found that for each value 3 ≤ ω ≤ t, there

exists a partial t-tree G of clique number ω satisfying χ(G) > (1− 1
2ω−3 )t, and they left the task of

determining upper bounds on χ(G) for these larger values of ω as an open problem.

1.2. Fractional chromatic number. The fractional chromatic number of a graph is defined as
follows [8]. Given a graph G, a fractional coloring is an assignment of a set φ(v) ⊆ R of Lebesgue
measure µ(φ(v)) = 1 to each vertex v ∈ V (G) so that φ(u) ∩ φ(v) = ∅ for each edge uv ∈ E(G).

Then, the fractional chromatic number of G, written χf (G), is the infimum of µ
(

⋃

v∈V (G) φ(v)
)

over all fractional colorings φ of G. Johnson and Rodger [8] point out that the infinum in this
definition is in fact a minimum; that is, a graph G satisfying χf (G) = k has a fractional coloring

φ : V (G) → 2R satisfying µ
(

⋃

v∈V (G) φ(v)
)

= k. Given a fractional coloring φ : V (G) → 2R, if
⋃

v∈V (G) φ(v) ⊆ C, then we say that G is colored using the color set C.

Equivalently, for an integer b ≥ 1, a proper b-coloring of G is an assignment φ : V (G) →
(

N

b

)

of
b distinct colors to each vertex v ∈ V (G) such that φ(u) ∩ φ(v) = ∅ for each edge uv ∈ E(G). If G

has a proper b-coloring φ : V (G) →
([k]
b

)

using the color set [k] = {1, . . . , k}, then we say that G
is (k, b)-colorable. We define χb(G) to be the minimum value k so that G is (k, b)-colorable; then,

χf (G) = infb→∞
χb(G)

b .
Since a proper graph coloring is a proper b-coloring with b = 1, it follows that χf (G) ≤ χ(G)

for every graph G. A graph’s chromatic number and fractional chromatic number may be equal;
for example, χ(Kr) = χf (Kr) = r for each r ≥ 1. On the other hand, the difference between the
chromatic number and the fractional chromatic number of a single graph may be arbitrarily large.
As an example, we consider the Kneser graph K(n, k), whose vertex set is the collection of subsets
of {1, . . . , n} of size k, and whose edge set consists of the pairs of vertices whose corresponding
subsets are disjoint. When G = K(n, k), the chromatic number of G is χ(G) = n − 2k + 2 [10],
while the fractional chromatic number of G is χf (G) = n/k.

Similarly to the chromatic number, it is natural to ask about the maximum value χf (G) attained
by a graph G in some family G when the clique number ω(G) is bounded. In this vein, Harris

[5] conjectured that χf (G) = O
(

d
log d

)

for every d-degenerate triangle-free graph G, and this

intriguing conjecture is still open. Additionally, one may ask for a fractional version of Borodin
and Kostochka’s conjecture—that is, whether χf (G) ≤ ∆− 1 for all graphs G of maximum degree
9 ≤ ∆ < ∆0 with no K∆ subgraph, where ∆0 is the value from Reed’s result [13]. Partial progress
has been been made toward answering this question; King, Lu, and Peng [9] showed that for all
such graphs G, χf (G) ≤ ∆ − 2

67 , and Hu and Peng [6] recently announced a better bound of

χf (G) ≤ ∆− 1
8 . In fact, these upper bounds hold even for all ∆ ≥ 4, except when G is the squared

cycle C2
8 or the strong product C5 ⊠K2.

1.3. Our results. In this paper, similarly to Dvořák and Kawarabayashi [2], we consider the
question of determining the largest value χf (G) obtained by a partial t-tree G when the clique
number of G is at most some fixed value ω. As in Borodin and Kostochka’s conjecture, we mainly
consider cases where ω is close to the maximum possible clique number, which in our case of partial
t-trees is t + 1. We find that whenever ω ≤ t, the maximum value χf (G) attainable by a partial
t-tree G with clique number ω is strictly less than t+1. Specifically, we prove the following theorem.
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Theorem 1.1. Let G be a graph of treewidth t ≥ 1, and let 2 ≤ ω ≤ t. If the largest clique in G
has at most ω vertices, then χf (G) ≤ t+ ω−1

t .

Theorem 1.1 tells us that when G has treewidth t and clique number ω, it holds that χf (Kt+1)−
χf (G) ≥ t−ω+1

t ; in other words, the fractional chromatic number of G is at least t−ω+1
t below

the maximum attainable fractional chromatic number of a partial t-tree. When ω = t, Theorem
1.1 gives an upper bound of χf (G) = t + 1 − 1

t , and we will see that this upper bound is tight.

Furthermore, when ω = ⌊(1 − c)t⌋ for a constant 0 < c < 1
2 , Theorem 1.1 gives an upper bound of

χf (G) < t+ 1− c, implying that χf (Kt+1)− χf (G) > c. The following theorem tells us that when
c is small, this gap of size c is close to best possible.

Theorem 1.2. Let 0 < c < 1
2 , and let t be a large integer. There exists a graph G of treewidth t

and clique number ⌊(1− c)t⌋ satisfying

χf (G) ≥ t+ 1 +
1

2
log(1− 2c)− o(1).

When c is small, the approximation log(1 − 2c) ≈ −2c − 2c2 tells us that this lower bound is
roughly equal to t + 1 − c − c2, meaning that the gap χf (Kt+1) − χf (G) cannot be much larger
than c+ c2.

The paper is organized as follows. In Section 2, we introduce an online coloring game between
Alice and Bob, in which Alice wishes to fractionally color a graph with a color set of small measure,
and Bob wishes to create a graph that requires a color set of large measure. This online coloring
game gives us a more convenient setting for proving Theorems 1.1 and 1.2. Our online coloring
game uses the same fundamental ideas as the online coloring game introduced by Dvořák and
Kawarabayashi [2]. In Section 3, we describe a strategy for Alice in our online coloring game that
succeeds with a color set of bounded measure, and we show that this strategy implies Theorem 1.1.
In Section 4, we describe a strategy of Bob in our game that forces Alice to use a color set of large
measure, and we show that this strategy implies Theorem 1.2.

2. An online coloring game

In this section, we describe an online coloring game which gives a convenient setting for con-
sidering fractional colorings of partial t-trees. The game we describe is fundamentally a fractional
equivalent of the game introduced by Dvořák and Kawarabayashi [2] to describe proper colorings
of partial t-trees. However, our formal approach is rather different, so we give a full exposition of
our game for the sake of completeness.

Given integers t ≥ 1 and 2 ≤ ω ≤ t, we define the online coloring game for Kω+1-free partial
t-trees. The game is played by two players, Alice and Bob. Throughout the game, a graph with red
and blue edges is constructed. As an initial step of the game (which we call Turn 0), Bob chooses a
positive integer N , which determines how many turns the game will last. Next, Alice constructs a
graph G consisting of a single Kt with red edges, and she assigns each of the t vertices u ∈ V (G) a
measure-1 color set φ(u) ⊆ R. Then, Alice and Bob begin taking turns. On each turn of the game,
Bob first adds a new uncolored vertex v to G, so that G[N(v)] is a clique of size t. Bob also colors
the edges incident to v with the colors red and blue. Then, Alice gives v a color set φ(v) ⊆ R of
measure 1 to this new vertex v. Alice must obey the rule that any two vertices joined by a blue
edge have disjoint color sets, and Bob must obey the rule that each Kω+1 subgraph of G has at
least one red edge. After N turns, the game ends. During the game, Alice tries to minimize the

value µ
(

⋃

v∈V (G) φ(v)
)

, which is the measure of the overall color set that she has used during the

game, and Bob tries to maximize this value.
3



If G is a graph whose edges are colored red and blue, then for each vertex v ∈ V (G), we write
NR(v) (NB(v)) for the set of vertices in G joined to v by a red (blue) edge. We say that vertices
in NR(v) are red neighbors of v, and we define blue neighbors similarly.

The following lemma shows a certain equivalence between the fractional coloring problem and
the online coloring game described above for partial t-trees of fixed clique number. The lemma uses
the same ideas as [2, Lemma 5].

Lemma 2.1. Let k, t ≥ 1 and 2 ≤ ω ≤ t be fixed integers. Every graph G of treewidth t and clique

number at most ω satisfies χf (G) ≤ k if and only if Alice has a strategy to complete the online

coloring game for Kω+1-free partial t-trees using some color set C of measure k.

Proof. First, suppose that χf (G) ≤ k for every graph G of treewidth t and clique number at most
ω. We show that Alice has a strategy to complete the online coloring game for Kω+1-free partial
t-trees using some color set C of measure k. Let N be the number of turns selected by Bob. We
define a t-tree H with a red-blue edge-coloring as follows. We let H begin with a single Kt with
red edges, which we call K ′. For notational purposes, we write V (K ′) = S0,K ′.

Then, for i = 1, . . . , N and for each t-clique K in H, we iterate the following:

Add a set Si,K of 2t new vertices to H. For each v ∈ Si,K , let N(v) = K. Then,
edge-color the sets {e : v ∈ e} for v ∈ Si,K with each of the 2t possible red-blue
edge-colorings—that is, so NR(v) 6= NR(w) holds for each distinct pair v,w ∈ Si,K .
Finally, if some v ∈ Si,K belongs to a blue Kω+1 in H, then delete v from H.

By definition, the graph H is a t-tree, and hence the spanning subgraph H ′ induced by the blue
edges of H is a Kω+1-free partial t-tree. Hence, there exists a color set C of measure k for which
there exists a fractional coloring ψ : V (H) → 2C of H ′.

We write G for the graph that Bob creates during the game, and we use φ to denote the coloring
function that Alice creates during the game. Now, we show that Alice has a strategy to complete
the game so that φ(v) ⊆ C for each vertex v that appears in G during the game. To show this, we
prove the stronger statement that Alice has a strategy such that after each Turn i, the graph G
constructed in the online coloring game appears as a vertex and edge-colored subgraph H∗ ⊆ H,
where each vertex of H∗ belongs to a set Sj,K for which j ≤ i. This statement implies that after
the end of Turn N , G is colored using the color set ψ(V (H)) ⊆ C, which is exactly what we need
to prove.

We prove this stronger statement by induction on i. Before Alice and Bob begin taking turns
(i.e. on Turn 0), Alice colors the initial Kt of G as ψ(S0,K ′), which completes the base case. Now,
suppose that i ≥ 1 and the statement holds for values up to i−1. At the beginning of Turn i, by the
induction hypothesis, G is isomorphic as a vertex and edge-colored subgraph H∗ ⊆ H consisting of
vertices belonging to sets Sj,K for j ≤ i−1. Now, on Turn i, Bob chooses a clique K in G and adds
a new vertex v so that N(v) = K, and Bob gives a red-blue edge-coloring to the edges incident to v.
Then, Alice finds the clique K∗ in H∗ corresponding to K and locates a vertex v∗ ∈ Si,K∗ so that
the edge colors incident to v∗ correspond with the edge colors that Bob has assigned to the edges
incident to v. We know that v∗ was not deleted while constructing H, since Bob is not allowed to
create a blue Kω+1 with his edge-coloring. Then, Alice sets φ(v) = ψ(v∗). After this, we observe
that G is isomorphic to H∗ ∪ {v∗} ⊆ H as a vertex and edge-colored graph, and each vertex of H
belongs to a set Sj,K for which j ≤ i. Hence, induction is complete, and Alice completes the game
using the color set C.

On the other hand, suppose Alice has a strategy to complete the online coloring game for Kω+1-
free partial t-trees using some color set C of measure k. We show that every Kω+1-free partial t-tree
has a fractional coloring using the color set C. To this end, let G be a Kω+1-free partial t-tree. By
definition, there exists a t-tree H for which G is a spanning subgraph. We give H a red-blue edge-
coloring so that the blue subgraph of H is isomorphic to G. Furthermore, since H is a t-tree, H may
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be constructed by starting with a Kt with vertices v1, . . . , vt and then iteratively adding vertices
whose neighborhoods induce cliques of size t in the existing graph, giving an ordering v1, . . . , vn for
V (H). For technical reasons, we add a set U = {u1, . . . , ut} of t more vertices to H, and we add a
red edge between each pair of vertices in U . Furthermore, for each vertex vi ∈ {v1, . . . , vt}, we add
a red edge from vi to ui, . . . , ut. Then, we order V (H) as (u1, . . . , ut, v1, . . . , vn). We observe that
for each vertex vi ∈ V (H), the back-neighbors of vi form a t-clique in H, so H is still a t-tree.

Now, we give a fractional coloring φ : V (H) → 2C to the vertices of H by using Alice’s strategy
in the online coloring game, as follows. We assume that Bob chooses to play for N = n turns.
First, we let Alice choose arbitrary measure-1 subsets φ(ui) ⊆ C for each i ∈ {1, . . . , t}. Then,
we consider the vertices v1, . . . , vn one at a time. When each vertex vi is considered, we interpret
this vertex as a move from Bob in the online game, and we let Alice assign a measure-1 subset
φ(vi) ⊆ C. We observe that as H has no blue Kω+1, each vertex that we consider corresponds with
a possible move from Bob in the online coloring game for Kω+1-free t-trees. Hence, by following
Alice’s strategy, we fractionally color H with a function φ so that φ(u) ⊆ C for each u ∈ V (H),
and so that φ(u) ∩ φ(v) = ∅ for each vertex pair u, v ∈ V (H) joined by a blue edge. Then, since
the blue subgraph of H is isomorphic to G, we find a fractional coloring of G using the color set C.
Hence, χf (G) ≤ k, and the proof is complete. �

3. An upper bound

In this section, we show that a partial t-tree G with clique number at most 2 ≤ ω ≤ t satisfies
χf (G) ≤ t+ ω−1

t , proving Theorem 1.1. In order to prove this upper bound, we define a strategy
for Alice in the online coloring game for Kω+1-free partial t-trees, and then we apply Lemma 2.1.
Before proving our upper bound, we need the following lemma.

Lemma 3.1. Let K be a clique on t vertices with a red-blue edge coloring. Suppose that each vertex

v ∈ V (K) is assigned a set γ(v) of exactly t colors, subject to the following:

• If u, v ∈ V (K) are joined by a blue edge, then γ(u) ∩ γ(v) = ∅, and
• If u, v ∈ V (K) are joined by a red edge, then |γ(u) ∩ γ(v)| = 1.

If the largest blue clique in K is of order ω for some 0 ≤ ω ≤ t, then
∣

∣

∣

⋃

v∈V (K) γ(v)
∣

∣

∣
≤ t2 − t+ ω.

Proof. We order the vertices of K as v1, . . . , vt so that v1, . . . , vω induce a maximum blue clique. For

each value j ∈ {1, . . . , t}, we let Sj =
⋃j

i=1 γ(vi). Observe that |Sω| = tω. Furthermore, for each
value i > ω, vi is joined to at least one neighbor in v1, . . . , vω by a red edge, as otherwise v1, . . . , vω, vi
would form a blue clique of size ω+1, a contradiction. Therefore, for each i > ω, γ(vi) contains at
least one color from Si−1, and hence |Si| ≤ |Si−1|+(t−1). Hence, |St| ≤ ωt+(t−ω)(t−1) = t2−t+ω,
completing the proof. �

Now, we are ready to prove Theorem 1.1, which states that χf (G) ≤ t+ ω−1
t for every Kω+1-free

partial t-tree G.

Proof of Theorem 1.1. By Lemma 2.1, it suffices to show that Alice has a strategy in the online
coloring game for Kω+1-free partial t-trees by which each vertex v receives a measure-1 set φ(v) ⊆
(0, t + ω−1

t ). We let Alice give each vertex v a set φ(v) equal to the union of t intervals from the

discrete set {( i−1
t ,

i
t) : 1 ≤ i ≤ t2 + ω − 1}. For ease of presentation, we say that Alice assigns

each vertex v a set γ(v) of exactly t colors from the set {1, . . . , t2 + ω − 1}. Then, we will let
φ(v) =

⋃

i∈γ(v)(
i−1
t ,

i
t).

We prove the stronger statement that Alice has a strategy to assign color sets γ(v) of size t to
vertices v in the graph G created throughout the game while satisfying the additional condition that
γ(v)∩γ(w) = ∅ for any two vertices v,w ∈ V (G) joined by a blue edge, and so that |γ(v)∩γ(w)| = 1
for any two vertices v,w ∈ V (G) joined by a red edge.

5



When the game begins, G consists of vertices v1, . . . , vt forming a red clique. Alice gives each
vertex vi a set γ(vi) so that γ(vi) ∩ γ(vj) = {1} holds for each distinct vertex pair vi, vj . This is
possible, as Alice needs only t(t− 1) + 1 < t2 + ω − 1 colors for this step. After this initial phase
of the game, Alice’s coloring satisfies our condition.

Now, suppose that Bob has added a vertex v to G so that N(v) induces a t-clique K in G.
We observe that for each red neighbor u of v, u has t − 1 neighbors w ∈ V (K), and γ(v) shares
at most one color with each set γ(w); thus, γ(u) contains some color cu that does not appear in
γ(V (K) \ {u}). For each red neighbor u of v, Alice adds such a color cu to γ(v).

Next, we claim that Alice can complete γ(v) to a set of t colors from {1, . . . , t2 + ω − 1} while
satisfying our condition. We let ℓ = |NB(v)|. Since Alice’s previous step puts t− ℓ colors in γ(v),
Alice still needs to give ℓ additional colors to γ(v). We say that the colors of

⋃

u∈NR(v) γ(u) are

forbidden, as these colors cannot further be added to γ(v). There are at most t(t−ℓ) such forbidden
colors. Next, we consider two cases.

(1) If ℓ ≤ ω− 1, then the ℓ blue neighbors of v have color sets altogether containing at most tℓ
colors, and we say that these colors are forbidden. In total, at most t(t− ℓ)+ tℓ = t2 colors
are forbidden. Since any color that is not forbidden can still be added to γ(v), Alice has at
least ω − 1 ≥ ℓ legal colors available with which to complete the set γ(v).

(2) If ℓ ≥ ω, then we consider the clique K ′ induced by the ℓ blue neighbors of v. Since the
largest blue clique in G has ω vertices, K ′ cannot contain a blue Kω-subgraph, and hence
the largest blue clique in K ′ is of order at most ω − 1. By Lemma 3.1, the set γ(V (K ′))
contains at most ℓ2−ℓ+ω−1 colors, and we say that these colors are forbidden. Therefore,
considering the at most t(t − ℓ) colors which are already forbidden, altogether at most
t(t− ℓ) + ℓ2 − ℓ+ ω − 1 colors are forbidden. However, it holds that

(t2 + ω − 1)− (t(t− ℓ) + ℓ2 − ℓ+ ω − 1) ≥ ℓ,

since simplification shows that this inequality is equivalent to ℓ(t− ℓ) ≥ 0. Therefore, since
any color that is not forbidden can still be added to γ(v), Alice has at least ℓ legal colors
with which to complete the set γ(v).

Therefore, for any move that Bob makes, Alice has a legal response that maintains the condition

that γ(v) ∈
([t2−ω+1]

t

)

for each v ∈ V (G) and |γ(v) ∩ γ(w)| = 1 for each red edge vw ∈ E(G).

Therefore, letting φ(v) =
⋃

i∈γ(v)(
i−1
t ,

i
t) for each v ∈ V (G), Alice can complete the online coloring

game for Kω+1-free partial t-trees with the color set (0, t + ω−1
t ). Then, by Lemma 2.1, every

partial t-tree of clique number ω has fractional chromatic number at most t+ ω−1
t , completing the

proof. �

4. Lower bounds

In this section, we construct partial t-trees with clique number (12 + ε)t < ω ≤ t and with
large fractional chromatic number. Our constructions imply Theorem 1.2. Rather than directly
constructing these partial t-trees, we describe strategies by which Bob can force Alice to use a color
set of large measure in the online coloring game. Then, the partial t-trees attaining large fractional
chromatic numbers can be obtained from the method of Lemma 2.1.

When we describe Bob’s strategies in the online coloring game, it will often be convenient to
allow Bob to add vertices v to the constructed graph G so that N(v) forms a clique with fewer
than t vertices. The following lemma shows that the online coloring game does not change even if
we give Bob this extra freedom.

Lemma 4.1. Let t ≥ 1 be an integer. If H is a t-tree, then every clique K in H of size at most t
is a subgraph of a t-clique K ′.

6



Proof. We induct on the number of vertices in H. If H has t vertices, then H ∼= Kt, so the claim
clearly holds. Now, suppose that the claim holds for a t-tree H. We show that if we add a vertex
v to H so that N(v) induces a t-clique, then the claim holds for H ∪ {v}. Consider a clique
K ⊆ H ∪{v}. If K ⊆ H, then the claim holds by the induction hypothesis. Otherwise, v ∈ K, and
hence V (K) ⊆ N [v]. Then, K is a subgraph of the (t+ 1)-clique with vertex set N [v], and thus K
can be extended to a t-clique K ′ obtained by deleting some vertex from N [v]. �

Hence, by Lemma 4.1, if Bob wishes to add a vertex v to G so that N(v) induces a clique K on
fewer than t vertices, Bob may first add v in this way, and then he may choose a clique K ′ ⊇ K
on t vertices and add a red edge between v and each vertex of K ′ \K. These extra red edges do
not affect Alice’s legal moves, and they can only help Bob later in the game. Therefore, when we
describe Bob’s strategies in this section, we often let Bob add vertices v to G so that |N(v)| < t,
and we will tacitly assume that Bob adds extra red edges incident to v so as to make his move legal
within the game’s formal rules.

For integers t ≥ 1 and 1 ≤ ω ≤ t + 1, we define the function f(t, ω) = sup{χf (G) : G ∈ Gt,ω},
where Gt,ω is the set of all graphs of treewidth t and clique number at most ω. Theorem 1.1 shows

that f(t, ω) ≤ t + ω−1
t . We will be interested in finding constructions that give lower bounds for

f(t, ω).
In the following theorem, we describe a recursive construction for a partial t-tree which gives a

recursive lower bound for f(t, ω).

Theorem 4.2. If t+1
2 ≤ ω ≤ t, then

f(t, ω) ≥ t+ 1−
t−ω+1
∑

i=1

1

f(t− 2i+ 1, ω − i+ 1)
.

Proof. We choose ε > 0 to be an arbitrarily small value. We consider the online coloring game for
Kω+1-free partial t-trees, and we write φ for Alice’s coloring function. We show that Bob can force
Alice to use a color set of measure at least

t+ 1−
t−ω+1
∑

i=1

1

f(t− 2i+ 1, ω − i+ 1)− ε
.

Bob iterates through i = 1, . . . , t−ω+1, completing iteration i as follows. At the beginning of iter-
ation i, we assume that Bob has already added vertices forming a set U = {u1, . . . , ui−1, v1, . . . , vi−1}.
We also assume that Bob has colored every edge ujvj red for j ∈ {1, . . . , i − 1}, and we assume
that Bob has colored every other edge of G[U ] blue. Bob begins iteration i by adding a vertex
vi and letting every vertex of U be a blue neighbor of vi. Next, Bob constructs a graph Hi of
treewidth t− 2i+1 and clique number at most ω− i+1 with fractional chromatic number at least
f(t−2i+1, ω− i+1)−ε, in which each vertex of Hi has vi as a red back-neighbor and every vertex
of U as a blue back-neighbor. Since the largest blue clique induced by U has size i − 1, and since
the largest blue clique in Hi contains at most ω − i+ 1 vertices, Bob does not create a blue Kω+1.
Furthermore, each time Bob adds a new vertex u to Hi, u has at most t− 2i+1 back-neighbors in
Hi, as well as 2i− 1 back-neighbors U ∪ {vi}, so u altogether has at most t back-neighbors. Since
each vertex of U is adjacent to each vertex of Hi, the back-neighbors of u form a clique. Therefore,
each of Bob’s moves is legal. We make the following claim.

Claim 4.3. Hi contains some vertex ui satisfying µ(φ(ui) ∩ φ(vi)) ≤
1

f(t−2i+1,ω−i+1)−ε .

Proof. Suppose that the claim does not hold. Then, since |V (Hi)| is finite, it holds that for a suffi-
ciently small value α > 0, each vertex of Hi shares at least

1
f(t−2i+1,ω−i+1)−ε−α colors with φ(vi). We

define, for each vertex w ∈ V (Hi), the set Sw = φ(w)∩φ(vi) of measure at least 1
f(t−2i+1,ω−i+1)−ε−α ,
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so that Sw ∩ Sw′ = ∅ for each pair of neighbors w and w′ and so that µ
(
⋃

w∈Hi
Sw

)

≤ 1. Then, for

each w ∈ V (Hi), we assign the color set

ψ(w) = {(f(t− 2i+ 1, ω − i+ 1)− ε− α)x : x ∈ Sw} .

We note that µ(ψ(w)) ≥ 1 for each w ∈ V (Hi), and ψ(w) ∩ ψ(w
′) = ∅ for each edge ww′ ∈ E(Hi).

We note further that since φ(vi) has measure 1, µ
(
⋃

w∈Hi
ψ(w)

)

≤ f(t− 2i+ 1, ω − i+ 1)− ε− α.
This implies that χf (Hi) < f(t− 2i + 1, ω − i + 1) − ε, which is a contradiction. Thus, the claim
holds. �

By the claim, Bob chooses some vertex ui ∈ V (Hi) for which |φ(ui)∩ φ(vi)| ≤
1

f(t−2i+1,ω−i+1)−ε .

This completes iteration i. We observe that by construction, all edges induced by the set {u1, . . . , ui, v1, . . . , vi}
are blue, except for the edges ujvj for 1 ≤ j ≤ i, so the condition that we assumed at the beginning
of iteration i is still valid for the next iteration.

After completing all t − ω + 1 iterations, Bob adds vertices vertices w1, . . . , w2ω−t−1 so that wi

has back-neighbors
v1, . . . , vt−ω+1, u1, . . . , ut−ω+1, w1, . . . wi−1.

We observe that the vertices u1, . . . , ut−ω+1, v1, . . . , vt−ω+1, w1, . . . , w2ω−t−1 form a clique K ′ in G
with a red perfect matching of size t− ω + 1 and all other edges colored blue. Therefore, no three
vertices of K ′ have a nonempty intersection of their color sets, and hence by the inclusion-exclusion
principle,

µ
(

φ(V (K ′))
)

≥ t+ 1−
t−ω+1
∑

i=1

1

f(t− 2i+ 1, ω − i+ 1)− ε
.

Hence, by Lemma 2.1, f(t, ω) ≥ t + 1 −
∑t−ω+1

i=1
1

f(t−2i+1,ω−i+1)−ε . Letting ε tend to 0 completes

the proof. �

While Theorem 4.2 appears slightly unwieldy, it has a number of corollaries that are clearer to
state. First, we can use the trivial lower bound f(t, ω) ≥ ω and the construction in Theorem 4.2
to obtain the following corollary.

Corollary 4.4. For t ≥ 1 and 1
2(t + 1) ≤ ω ≤ t, there exists a graph G of treewidth t and clique

number ω satisfying

χf (G) ≥ t+ 1−
t−ω+1
∑

i=1

1

ω − i+ 1
.

Corollary 4.4 shows that the upper bound of t + 1 − 1
t for the fractional chromatic number of

graphs of treewidth t and clique number t is tight. For a fixed value r ≥ 0 and large t, Corollary
4.4 also tells us that there exists a graph G of treewidth t and clique number t− r satisfying

χf (G) ≥ t+ 1−
(1 + o(1))(r + 1)

t
.

Furthermore, using a harmonic sum, Corollary 4.4 shows that for all values t ≥ 1 and 1
2(t + 1) ≤

ω ≤ t,

(1) f(t, ω) > t− log t = (1 + o(1))t,

which gives us the asymptotic growth rate of f(t, ω) for all ω ≥ 1
2 (t + 1). Using this fact, we can

obtain the following tighter corollary, which implies Theorem 1.2,

Corollary 4.5. Let 0 < c < 1
2 , and let t be a large integer. If ω = ⌊(1− c)t⌋, then

f(t, ω) ≥ t+ 1 +
1

2
log(1− 2c) − o(1).
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We compare this lower bound with the upper bound f(t, ω) ≤ t + 1 − c given by Theorem 1.1.
Using the approximation log(1− 2c) ≈ −2c− 2c2, we see that when c is small, this lower bound is
within roughly c2 of being best possible.

Proof of Corollary 4.5. We set ω = ⌊(1− c)t⌋ and prove that f(t, ω) ≥ t+1+ 1
2 log(1− 2c)− o(1).

We begin with the recursive bound from Theorem 4.2.

f(t, ω) ≥ t+ 1−
t−ω+1
∑

i=1

1

f(t− 2i+ 1, ω − i+ 1)
.

Since ω > 1
2t, it follows that ω − i + 1 > 1

2 (t − 2i + 2). Furthermore, for each value i in our
sum, t − 2i + 1 = Ω(t). Therefore, it follows from Equation (1) that for each value i in the sum,
f(t− 2i+ 1, ω − i) = (1 + o(1))(t − 2i+ 1). Therefore, we find that

f(t, ω) ≥ t+ 1− (1 + o(1))
t−ω+1
∑

i=1

1

t− 2i+ 1
≥ t+ 1− (1 + o(1))

⌊ t−1

2
⌋

∑

x=⌊ 2ω−t−1

2
⌋

1

2x
.

For a strictly decreasing positive function g(x), it holds that
∑b

x=a g(x) < g(a) +
∫ b
a g(x)dx, so we

approximate the sum in our bound with an integral and find that

f(t, ω) > t+ 1− (1 + o(1))

∫ ⌊ t−1

2
⌋

⌊ 2ω−t−1

2
⌋

1

2x
dx

= t+ 1 +

(

1

2
+ o(1)

)

log(1− 2c).

This completes the proof. �
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