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ON PICARD GROUPS AND JACOBIANS OF DIRECTED GRAPHS

JAIUNG JUN, YOUNGSU KIM, AND MATTHEW PISANO

ABSTRACT. The Picard group of an undirected graph is a finitely generated abelian group, and the Ja-

cobian is the torsion subgroup of the Picard group. These groups can be computed by using the Smith

normal form of the Laplacian matrix of the graph or by using chip-firing games associated with the

graph. One may consider its generalization to directed graphs based on the Laplacian matrix. We com-

pute Picard groups and Jacobians for several classes of directed trees, cycles, wheel, and multipartite

graphs.

1. INTRODUCTION

In this paper, we compute Picard groups and Jacobians for several classes of directed graphs, in-

cluding undirected graphs as directed graphs having all bi-directional edges. Our results are based on

the explicit description of Smith normal forms of Laplacian matrices, and our proofs utilize the prop-

erties of both graphs and algebra, including classical theorems such as Cramer’s rule. Smith normal

forms arise naturally in several area of mathematics. For instance, when computing homology groups

of simplicial complexes and the structure theorem of a finitely generated abelian group1. Further,

Stanley introduces Smith normal form and its applications in combinatorics in [9].

For an undirected graph2 G, one may define the Picard group and Jacobian of G by using a com-

binatorial game, called a chip-firing game, played on the graph G. The game can be completely

described by the Laplacian matrix LG, and this allows one to alternately define the Picard group and

the Jacobian of G from LG without referring the game. In this paper, we use Laplacian matrices of

directed graphs to define their Picard groups and Jacobians (Definitions 2.1 and 2.5).

We first introduce the chip-firing game for undirected graphs. Consider an undirected graph G. To

play a chip-firing game, one starts by placing chips (possibly negative as “debt”) at each vertex of G.

At each turn, a vertex borrows or lends chips from or to all its adjacent vertices simultaneously. One

wins the game if one can reach at a chip configuration such that every vertex is debt-free after finitely

many turns.

Whether one can win a game or not depends on the initial chip configuration. For instance, if

the total number of chips is negative, then such a game is not winnable since borrowing and lending

moves preserve the total number of chips. It is natural to ask whether one can determine a given chip

configuration is winnable or not. In some cases, one can determine a winning chip configuration by

using divisor theory on graphs by a result of by Baker and Norine [1, Theorem 1.9].

The chip-firing game can be studied algebraically as follows. One can write any chip configuration

on a graph G as an element of the free abelian group generated by the set of vertices V (G) of G. The

collection of all configurations is denoted by Div(G). An element of Div(G) is called a divisor, and a

divisor D is effective if it is of the form D = ∑v∈V (G) avv, where av ≥ 0. Divisors D and D′ in Div(G)
are equivalent if D′ can be obtained from D in a finite sequence of borrowing and lending moves.

Under this correspondence, a chip configuration is winnable if and only if its corresponding divisor
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D is equivalent to an effective divisor. This equivalence is in fact an congruence relation and defines

a group

Pic(G) := Div(G)/∼, (1)

called the Picard group of G. The torsion subgroup of Pic(G), denoted by Jac(G), is called the

Jacobian of G.3

For an undirected graph G with the vertices V (G) = {v1,v2, . . . ,vn}, one defines an n× n matrix

LG, called the Laplacian matrix of G, as follows.

(LG)i j =

{

degree of vi if i = j;

−(# of edges between vi and v j) if i 6= j,

where (LG)i j denotes the (i, j)th entry of the matrix LG, and the degree of a vertex v is the number

of edges incident to v. For more details and background, refer to [3, Section 2.1]. We note that for

directed graphs, one can define LG by using out-degrees (Definition 2.1).

One can use the Laplacian matrix LG to compute Pic(G) of a graph G in eq. (1): Any chip configu-

ration corresponds to a vector v ∈ Z
V(G). The chip configuration v′ obtained by a lending move (resp.

borrowing move) at a vertex vi from v corresponds to the following computations in Z
V(G).

v′ = v−LT
G ei (resp. v′ = v+LT

G ei), (2)

where ei denotes the ith standard (column) basis of ZV (G) and the superscript T denotes the transpose

of a matrix. Under this setting, the matrix LT
G corresponds to a linear map Z

V(G)→ Z
V(G), and one

has the following isomorphisms.

Pic(G)∼= Z× Jac(G) and Pic(G)∼= coker(LT
G). (3)

See [3, Proposition 1.20, pp 17-18] for the isomorphisms in eq. (3). Eq. (2) allows one to extend the

game to an arbitrary n× n integer matrix, replacing the role of LG, and this direction of study was

conducted under the name of Avalanche-finite matrices in [8, Section 6].

The abelian sandpile model is another combinatorial game on graphs. The rule is similar to the

chip-firing game. A noticeable difference is that for the abelian sandpile model, each vertex should

maintain a nonnegative number of chips throughout the game. The game stops when one can no

longer fire chips. See [3, Section 6] for details and [6] for its generalizations for directed graphs.

In this paper, we define the Picard group for a directed graph G by using the second isomorphism

in eq. (3), and the Jacobian of G the torsion subgroup of the Picard group, see Definition 2.5. Our

definition generalizes the definition for undirected graphs, but we no longer have the isomorphism

Pic(G)∼= Z× Jac(G) in general. That is, the rank of Pic(G) need not be 1.

There has been a body of work devoted to the study of Picard groups and Jacobians for undirected

graphs. Though their extensions to directed graphs may diverge depending on one’s purpose, most

generalizations agree for the class of a directed graphs having a global sink (or a vertex that can play

the role of a “sink”) 4, see [6, Remark 2.12]. Several subclasses of our results satisfies this global

sink condition. Such a tight interplay between combinatorics and algebra was the one of the key

motivations of our research.

Our study focuses on the understanding both the free and torsion part of Picard groups. In partic-

ular, how these groups vary in families and how they compare to the Picard groups and Jacobians of

their underlying directed graphs. Below we summarize our main results.

Wagner in [11, Corollary 3.5] proved that the rank of the Picard group of a directed graph is the

number of terminal strong components. We prove that the Picard group of a directed tree is torsion

free. By combining these results, we have the following theorem.

3Depending on the literature, Jac(G) is also called as a critical group or a sandpile group. See [1, Section 5.6].
4Here the word “sink” means that a vertex of a directed graph that can be reached from any other vertex. In some books

such as [5, pp 201], this is the defintion of a (global) sink.
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Theorem (Theorem 3.2). The Picard group of any directed tree is free, and its rank is determined by

the number of terminal strong component.

The Picard group of the undirected cycle graph Cn is Z×Zn [4, Corollary 4]. We prove that for

any k such that 1 ≤ k ≤ n, there exists a directed cycle graph on n-vertices whose Picard group is

isomorphic to Z×Zk.

Theorem (Theorem 4.1). Let n≥ 3 and Cn be a cycle graph with n vertices. For any 1≤ k≤ n, there

exists an orientation of Cn such that Pic(Cn)∼= Z× Jac(Cn), where Jac(Cn) = Zk.

In addition, we provide a way to determine the Picard group of a directed cycle graph having a

global sink based on an invariant of the graph, see Lemma 4.20.

Biggs determined the Jacobian of undirected wheel graphs in [2, Theorem 9.2]. Consider the three

classes of wheel graphs denoted by Wn,W
′
n, and W ′′n . The rims of all three classes have bi-directional

edges.5 All the edges to the spokes in Wn,W
′

n, and W ′′n , are bi-directions, pointed to the axle, and

pointed away from the axle, respectively. See Example 5.2 for pictorial examples. Biggs’ result

corresponds to the class Wn.

Theorem (Propositions 5.3 and 5.4). With the above notations, we have the following.

(1) The Laplacian matrices of Wn and W ′n are row equivalent. In particular, one has

Pic(Wn)∼= Pic(W ′n).

(2) One has

Pic(W ′′n )
∼=

{

Z×Zn−1×Zn−1 if n is even;

Z×Z(n−1)/2×Z2(n−1) if n is odd.

It is interesting to note that the key arguments in item (2) use Cramer’s rule. Indeed, we solve a

certain quadratic equation whose solutions correspond to the minors of a matrix in question, and this

explains the even and odd pattern, see Lemma 5.5.

Our last result is on certain multipartite directed graphs, named single-flow directed multipartite

graphs. A single-flow directed multipartite graph is a multipartite directed graph, where edges are

directed to a single direction such as the forward propagation of a neural network. In the case where a

single-flow directed multipartite graph has two or three layers, we provide a complete description of

their Picard groups in terms of the number of vertices in each layer (Proposition 6.3 and Theorem 6.6).

This paper is organized as follows. In Section 2, we review basic definitions and properties. In

Sections 3–6, we prove the results on tree, cycle, wheel and multipartite directed graphs listed above,

respectively.

Acknowledgments: This research was supported in part by the high performance computing re-

sources provided by Information Technology Services at California State University San Bernardino.6

J. Jun and M. Pisano were partially supported by Research and Creative Activities (RSCA) at SUNY

New Paltz. Lastly, several examples were computed with the help of SageMath [10].

2. PRELIMINARIES

For a graph G, we use V (G) and E(G) to denote the vertex set and edge set of the graph G,

respectively, and V (G) is non-empty and finite. In the sequel, we treat undirected graphs as directed

graphs having bi-directional edges. To emphasize this, we use the term arrow for directed edges of

directed graphs. Thus, an undirected graph is a directed graph with all its arrows are bi-directional.

5In our notation the subscript n denotes the number of vertices of a directed wheel graph.
6This work was supported in part by NSF awards CNS-1730158, ACI-1540112, ACI-1541349, OAC-1826967, OAC-

2112167, CNS-2120019, the University of California Office of the President, and the University of California San Diego’s

California Institute for Telecommunications and Information Technology/Qualcomm Institute. Thanks to CENIC for the

100Gbps networks.
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For a graph G, an arrow evw between vertices v and w of G can be one-directional or bi-directional.

We use the notation of e−→vw for the arrow from v to w and e←→vw for a bi-directional arrow. For a vertex

set V (G) = {v1, . . . ,vn}, we also use {1, . . . ,n} to denote the same vertex set.

For a matrix M, we use the notation of M = (mi j), where mi j denotes the (i, j)th entry of M. The

bold symbols 1k and 0k denote the row matrix of size k consisting of 1’s and 0’s, respectively. We

also use 1 and 0 if the size is clear from context. Lastly, the symbols 0k×k and 1k×k denote the zero

matrix and the matrix consisting of 1’s of size k× k.

Definition 2.1 (Laplacian matrix). For a directed graph G with vertex set V (G) = {v1,v2, . . . ,vn}, the

Laplacian matrix of G, denoted by LG = (li j), is an n×n matrix whose (i, j)th entry is defined by

li j =

{

the number of outgoing arrows of vi if i = j,

−(the number of arrows from vi to v j) if i 6= j.

Remark 2.2. For a directed graph G, the Laplacian LG equals DG−AG, where DG is the (out-)degree

matrix and AG is the adjacency matrix of G. Note that for directed graphs, we only record the outgoing

arrows in DG and AG.

Definition 2.3 (Sink [6, pp 3]). A vertex of a directd graph G is called a sink if it does not have any

outgoing arrows (including bi-directional arrows). That is, the out-degree of the vertex is zero. We

say a sink v is global (or a global sink) if there exists a directed path from any vertex, which is not v,

of G to v.

We note that if a directed graph has a global sink, then it is the unique sink of the directed graph.

Let G be a directed graph. The underlying undirected graph or simply underlying graph is the

graph G having the same vertex set as G and for vi and v j of G, there exist a bi-directional arrow

between vi and vi if and only if there exists an arrow between vi and vi (regardless of the direction).

By the orientation of a graph, we mean the edge (or arrow) set of the graph.

Example 2.4. The graphs below have the same underlying undirected graph with different orienta-

tions.

T =










1

2 3 4

5










T ′ =









1

2 3 4

5









T ′′ =









1

2 3 4

5









LT =









1 0 −1 0 0

0 1 −1 0 0

−1 −1 4 −1 −1

0 0 −1 1 0

0 0 −1 0 1









L′T =









1 0 −1 0 0

0 1 −1 0 0

0 0 0 0 0

0 0 −1 1 0

0 0 −1 0 1









L′′T =









0 0 0 0 0

0 0 0 0 0

−1 −1 4 −1 −1

0 0 0 0 0

0 0 0 0 0









.

Definition 2.5 (Picard group and Jacobian). Let G be a directed graph. The Picard group Pic(G) is

the cokernel of LT
G up to isomorphism. The Jacobian Jac(G) of G is the torsion subgroup of Pic(G).

Remark 2.6. Since the Picard group is the cokernel of the map LT
G : Z|V (G)|→ Z

|V (G)|, it is a finitely

generated abelian group. This in turn implies that Jacobian is also finitely generated.

Definition 2.7. We say m by n matrices M and N are equivalent if there exist invertible matrices P of

size m and Q of size n such that M = PNQ.

Definition 2.8 (Smith normal form). Suppose M ∈Matn×n(R), where R is a commutative ring. The

Smith normal form of M, denoted by SNF(M) = (di j), is an n by n diagonal matrices with entries in

R such that
4



(1) SNF(M) is equivalent to M,

(2) dii|di+1,i+1 for i = 1, . . . ,n−1, and

(3) di j = 0 if i 6= j.

Remark 2.9. The Smith normal form of a matrix is unique up to associates if exists. The existence of

the Smith normal form of a matrix M depends on M and the ring R. Though M need not have a Smith

normal form in general, Smith normal forms exist for all matrices over a principal ideal domain, for

instance, Z. Thus, one can compute the Picard group of a graph G, by computing the Smith normal

form of LT
G.

There exists an algorithm to compute the Smith normal form of a matrix over a principal ideal

domain. The following theorem is an ideal theoretic characterization of the Smith normal form, and

we use this fact several times in this note. For M ∈Mm×n(R), Ik(M) denotes the ideal generated by

k× k minors of M, where Ik(M) = 0 if k > min{m,n} and Ik = 〈1〉 if k ≤ 0.

Theorem 2.10 (cf. [9, Theorem 2.4]). Let R be a principal ideal domain, M ∈ Matn×n(R), and

SNF(M) = (di j). Then we have the following.

(1) For 1≤ k ≤ n, Ik(M) = 〈d11 · · ·dkk〉 and

(2) SNF(M) = SNF(MT ).

Proof. Item (1) is in [9, Theorem 2.4], and item (2) follows from item (1) since Ik(M) = Ik(M
T ) for

any matrix M. �

By this theorem, when determining Picard groups we use LG instead of LT
G. The following remark

is straightforward but useful for reducing the size of a matrix.

Remark 2.11. Suppose M and N are matrices such that N =

[
M ∗
0 ±1

]

or

[
M 0

∗ ±1

]

, where ∗

denotes arbitrary entries. For any k, Ik(M) = Ik+1(N), and the cokernels of M and N are isomorphic.

Example 2.12. Let T,T ′, and T ′′ be as in Example 2.4. Their the Smith normal forms are the follow-

ing matrices.

SNF(LT ) = SNF(LT ′) =

[
I4 0

0 0

]

and SNF(LT ′′) =

[
I1 0

0 04×4

]

.

In particular, Pic(T )∼= Pic(T ′)∼= Z and Pic(T ′′)∼= Z
4.

Theorem 2.13. Let G be a directed graph. Then LG ·1
T = 0.

Remark 2.14. In addition, if G is connected and undirected, then we have

(1) LG is symmetric and 1T ·LG = 0 ([4, Theorem 1]),

(2) rkLG = |V (G)|−1 (cf. eq. (3)), and

(3) |Jac(G)| is the number of spanning trees ([3, Proposition 2.37 and Remark 2.38]).

3. PICARD GROUPS AND JACOBIANS OF DIRECTED TREES

In this section, we show that the Picard group of any directed tree is torsion free7 (Theorem 3.2),

and it allows one to determine the Picard group (Corollary 3.6), thanks to a result of Wagner (Theo-

rem 3.5).

Lemma 3.1. Let G be a directed graph. Suppose that G′ is the directed graph having the following

vertex set and edge set:

V (G′) =V (G)⊔{w} and E(G′) = E(V )⊔{α},

7A torsion free finitely generated abelian group is free.
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where α is either an arrow from w to some v in E(V ) or a bi-directional arrow. Then we have

Pic(G)∼= Pic(G′).

Proof. Let |V (G)| = n. We label the vertices of G as v1,v2, . . . ,vn. First, suppose α = e−→wv. Let

LG = (li j) (resp. LG′) be the Laplacian matrix of G (resp. G′). Then the matrix LG′ is of the following

form.

LG′ =











l11 l12 · · · l1n 0

l21 l22 · · · l2n 0
...

...
. . .

...
...

...
... · · · lnn 0

0 0 · · · −1 1











. (4)

Thus, LG′ is of the form
[

LG 0

∗ 1

]

,

and one has Pic(G)∼= Pic(G′) by Remark 2.11.

Next, suppose α = e←→wv . Then we obtain the following Laplacian matrix for G′.

LG′ =











l11 l12 · · · l1n 0

l21 l22 · · · l2n 0
...

...
. . .

...
...

...
... · · · lnn +1 −1

0 0 · · · −1 1











. (5)

After adding the last row to the second last row, the matrix in eq. (5) becomes the matrix in eq. (4).

Therefore, one has Pic(G)∼= Pic(G′), and this completes the proof. �

For undirected trees T , one has Pic(T ) ∼= Z. This directly follows from the matrix-tree theorem

([3, Theorem 9.3]). However, for directed trees, the rank of Pic(T ) can be arbitrarily large depending

the number of terminal strong components (Definition 3.3) of T . We show that Picard groups are

torsion free in both cases.

Theorem 3.2. Any directed tree graph T has a torsion-free Picard group. That is Jac(T ) = 0.

Proof. We use induction on the number of vertices. The base case consists of a single vertex with the

empty edge set, and one has Pic(T )∼= Z and Jac(T ) = 0.

Suppose T has n vertices. Choose a leaf vertex8 v and let Tdel be the tree graph obtained by deleting

the vertex v and all the arrows incident to v. If the out-degree of v is 1, then by Lemma 3.1, we have

Pic(T )∼= Pic(Tdel) and Jac(T )∼= Jac(Tdel).

By the induction hypothesis, we have Jac(Tdel) = 0, and hence Jac(T ) = 0.

Now, assume that the out-degree of v is 0. Let w be the vertex incident to v and e−→wv the arrow from

w to v. By labeling w and v to be the last two vertices, we have the following Laplacian matrix.

LT =











l11 l12 · · · l1,n−1 0

l21 l22 · · · l2,n−1 0
...

...
. . .

...
...

...
... · · · ln−1,n−1 +1 −1

0 0 · · · 0 0











.

8By a leaf vertex we mean a leaf vertex of the underlying undirected graph of T .
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By subtracting a suitable multiple of the last column of LT from the rest, one sees that LT is

equivalent to the left matrix below which in turn is equivalent to L below:









l11 l12 · · · l1,n−1 0

l21 l22 · · · l2,n−1 0
...

...
. . .

...
...

0 0 · · · 1 −1

0 0 · · · 0 0










∼ L =










l11 l12 · · · l1,n−1 0

l21 l22 · · · l2,n−1 0
...

...
. . .

...
...

0 0 · · · 1 −1

0 0 · · · −1 1










.

Notice that L is the Laplacian matrix of a directed tree graph T ′ which may or may not be connected.9

Suppose first that T ′ is not connected. The Picard group and Jacobian of T ′ are the direct sums of

the Picard groups and Jacobians of its connected component. Since the connected components of T ′

are also directed trees, by the induction hypothesis we are done. Suppose T ′ is connected. Let T ′del

denote the graph obtained by deleting the vertex v from T ′ and its adjacent arrow. Then T ′ is obtained

by attaching a bi-directional arrow to T ′del . By induction and Lemma 3.1

Pic(T ′)∼= Pic(T ′del) and Jac(T ′)∼= Jac(T ′del) = 0.

Now the result follows as L is the Laplacian matrix of T ′ and is equivalent to LT . This completes the

proof. �

Definition 3.3 (Terminal strong component). Let G be a directed graph.

(1) A strong component C of G is a non-empty subgraph of G such that for any pair of vertices

vi and v j of C, there exist directed paths from vi to v j and from v j to vi, respectively.

(2) A strong component C of G is called terminal if there is no arrow from any vertex v of C to

another vertex in VG \VC.

(3) G is said to be strongly connected if G itself is a strong component.

Example 3.4. (1) In each of the directed graphs below, the red subgraphs denote their strong

terminal components.






• •

• • •







and







•

• •

• •






.

(2) For graphs in Example 2.4, the terminal strong components are the subgraphs whose vertex

sets are V (T ),{3}, and {{1},{2},{4},{5}}, respectively.

Theorem 3.5 ([11, Corollary 3.5]). For any directed graph G, the rank of Pic(G) is the number of

terminal strong components of G.

Combining the result of D. Wagner and Theorem 3.2, we have a characterization of the Picard

group of a directed tree.

Corollary 3.6. Let T be a directed tree and r the number of terminal strong components of T . Then

the Picard group of T is free of rank r.

In the next two examples, we demonstrate that adding a vertex and an arrow may change the rank

of the Picard group.

Example 3.7. The directed tree T

T =






1 2 3

4 5 6






9We mean that the underlying graph T ′ may or may not be connected.
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has Pic(T )∼= Z
2 and Jac(T ) = 0.

Example 3.8. We add vertex v7 and an arrow to the directed tree T in Example 3.7 in two different

ways. For T ′, the rank of the Picard group increases by 1. This can be seen from direction calculations

or by observing that T ′ has one more terminal strong component than T . For T ′′, the rank stays the

same by Lemma 3.1 or by counting the number of terminal strong compoenents. In all cases, their

Picard groups are free.

T ′ =







1 2 3

7 4 5 6α







T ′′ =








1 2 3

7 4 5 6
β







.

4. PICARD GROUPS OF CYCLE GRAPHS

By a directed cycle graph, we mean a directed graph whose underlying undirected group is a cycle

graph. Let Cn denote an arbitrary directed cycle graph with n-vertices. In this section, we prove a few

theorems on Picard groups of directed cycle graphs Cn. When Cun
n is undirected, Pic(Cun

n ) ∼= Z×Zn

([4, Corollary 4]). We first show that for any n and k such that 1≤ k≤ n, there exists a directed cycle

graph Cn whose Jacobian is Zk (Theorem 4.1). Note that Z1 = {0}. As an application, we identity

a subclass for which there is a combinatorial invariant that determines their Jacobians while keeping

the rank of the Picard group to be 1 (Theorem 4.21). Throughout this section, we assume that n ≥ 3

for Cn.

Theorem 4.1. For each n and k such that 1 ≤ k ≤ n, there exists a directed cycle graph Cn whose

Picard group is isomorphic to Z× Jac(Cn), where Jac(Cn)∼= Zk.

Indeed, we prove Theorem 4.1 by induction as follows: Let ∑n be the set of all cycle graphs with

n-vertices and Cun
n the underlying undirected graph of Cn. We construct a map

Φ : ∑
n

→ ∑
n+1

(6)

such that if Cn 6=Cun
n , then

Pic(Cn)∼= Pic(Φ(Cn)). (7)

With this map and Example 4.2 (as a base case), to complete the proof by induction, one needs to

find cycle graphs with n+ 1 vertices having Zn and Zn+1, respectively. The cycle graph Cun
n+1 has

Pic(Cun
n+1)
∼= Z×Zn+1, and we construct Cn+1 having Pic(Cn+1) ∼= Z×Zn in Lemma 4.5. Based on

the statements, in Subsection 4.1, we show how to determine the Picard group and Jacobian of a

directed cycle graph having a global sink.

The following example serve as the base case.

Example 4.2. With the following orientations of C3

G1 =







• •

•







G2 =







• •

•







G3 =







• •

•






,

we have Jac(G1) = 0, Jac(G2) ∼= Z2, and Jac(G3) ∼= Z3. In all three cases, the rank of the Picard

group is 1. This proves the case n = 3 for Theorem 4.1.
8



Recall that we use e−→
i j

and e←→
i j

to denote one-directional and bi-directional arrows from a vertex

vi to a vertex v j, respectively. We also use e←−
ji

to denote e−→
i j

if the order of vertices provides a better

presentation.10

Let Cn be a directed cycle graph with V (G) = {v1, . . . ,vn}. If Cn has a sink, then we may relabel

the vertices of Cn such that vn is the sink vertex with directed arrows e−−−→
n−1,n

and e←−
n,1

. Let C′n+1 be the

directed cycle graph whose vertex and edge sets are given as follows:

V (C′n+1) =V (Cn)⊔{vn+1} and E(C′n+1) = E(Cn)\{e←−n,1}⊔{e−−−→n,n+1
,e←−−−

n+1,1
}. (8)

Pictorially, we have the following

Cn =
(

· · · vn−1 vn v1 · · ·
)

=⇒ C′n+1 =
(

· · · vn−1 vn vn+1 v1 · · ·
)

.

In this case, we call C′n+1 a degree zero extension of Cn.

Suppose now that Cn has a vertex of (out-)degree 1. We may relabel the vertices of Cn such that

the vertex vn is of degree 1 and Cn has directed arrows e−−−→
n−1,n

and e−→
n,1

or that Cn has directed arrows

e−−−→
n−1,n

and e←→
n,1

. In both cases, we write C′′n+1 for the directed cycle graph whose edge set is given as

follows.

V (C′′n+1) =V (Cn)⊔{vn+1} and E(C′′n+1) =

{

E(Cn)\{e−→n,1}⊔{e−−−→n,n+1
,e−−−→

n+1,1
} or

E(Cn)\{e←→n,1}⊔{e−−−→n,n+1
,e←−−→

n+1,1
}.

(9)

Pictorially, we have the following

Cn =
(

· · · vn−1 vn v1 · · ·
)

=⇒ C′′n+1 =
(

· · · vn−1 vn vn+1 v1 · · ·
)

or

Cn =
(

· · · vn−1 vn v1 · · ·
)

=⇒ C′′n+1 =
(

· · · vn−1 vn vn+1 v1 · · ·
)

.

In this case, we call C′′n+1 a degree one extension of Cn.

Since a graph may have multiple vertices having degree 0 or 1 simultaneously, a single cycle

graph Cn may have both types of extensions, and these extensions depend on the choice of a vertex.

However, we will show in Lemma 4.4 that Picard groups are stable under these extensions, i.e.,

Pic(Cn)∼= Pic(C′n+1) and Pic(Cn)∼= Pic(C′′n+1).

Example 4.3. Here are examples of degree 0 and 1 extensions of C5 graphs.

C5 =









5

4 1

3 2









=⇒ C′6 =









5 6

4 1

3 2









C5 =









5

4 1

3 2









=⇒ C′′6 =









5 6

4 1

3 2









Lemma 4.4. Let Cn be a directed cycle graph. Suppose that not every arrow of Cn is bi-directional.

Then Cn has a vertex v of degree 0 or 1. Furthermore, the Picard group does not change under degree

extensions at v, i.e., Pic(Cn)∼= Pic(C′n+1) and Pic(Cn)∼= Pic(C′′n+1).

10We view a bi-directional arrow e←→
i j

as a single arrow. Some authors view e←→
i j

as a union of two one-directional arrows.

In our work, our proofs use induction on the number of vertices. This difference does not cause any issue and we believe

that our choice was more suitable for our statements.

9



Proof. Suppose that Cn is a directed cycle graph such that not all arrows of Cn are bi-directional. Let

V (Cn) = {v1, . . . ,vn} and DCn
= (di j) be the vertex set and the degree matrix of Cn, respectively. Since

not every arrow is bi-directional, there exists i such that dii = 0 or 1. We may assume i = n so that the

adjacent vertices are vn−1 and v1.

Suppose that dnn = 0. In this case, the Laplacian matrix of Cn is of the following form.

LCn
=








l+1 −l 0 · · · 0 −1
...

...
... · · ·

...
...

0 · · · 0 −k k+1 −1

0 · · · 0 0 0 0







.

where l,k ∈ {0,1}. Then we have the following Laplacian matrix LC′n+1
for C′n+1.

LC′n+1
=










l +1 −l 0 · · · 0 −1
...

...
... · · ·

...
...

0 · · · −k k+1 −1 0

0 · · · 0 0 1 −1

0 · · · 0 0 0 0










.

Let r1, . . . ,rn+1 and c1, . . . ,cn+1 denotes the rows and columns of LC′n+1
, respectively. After replacing

r1 with r1− rn, replacing cn with cn + cn+1, and switching rn and rn+1 in sequence, we obtain the

following matrix.









l +1 −l 0 · · · −1 0
...

...
... · · ·

...
...

0 · · · −k k+1 −1 0

0 · · · 0 0 0 0

0 · · · 0 0 0 −1










=

[
LCn

0

0 −1

]

.

Now, the claim follows from Remark 2.11.

Suppose dnn = 1. First, we consider the case where the vertex vn has an outgoing arrow to v1.

Thus, we have the following Laplacian matrices for Cn and C′′n+1, respectively.

LCn
=








l −l 0 · · · 0 0
...

...
... · · ·

...
...

0 · · · 0 −k k+1 −1

−1 · · · 0 0 0 1







, LC′′n+1

=










l −l 0 · · · 0 0 0
...

...
... · · ·

...
...

...

0 · · · 0 −k k+1 −1 0

0 · · · 0 0 0 1 −1

−1 · · · 0 0 0 0 1










(10)

where l,k ∈ {0,1}. Let r1, . . . ,rn+1 and c1, . . . ,cn+1 denote the rows and columns of LC′′n+1
, respec-

tively. By switching rn+1 and rn, replacing rn with rn + rn+1, and replacing cn with cn + cn+1 in

sequence, we have the following matrix.









l −l 0 · · · 0 0 0
...

...
... · · ·

...
...

...

0 · · · 0 −k k+1 −1 0

−1 · · · 0 0 0 1 0

0 · · · 0 0 0 0 −1










=

[
LCn

0

0 −1

]

.

Again, our claim follows from Remark 2.11.

Finally, we assume that there exists a bi-directional arrow between the vertices vn and v1. In

this case by adding the last row of the Laplacian matrices LCn
and LC′′n

to the first one, we have the

Laplacian matrices as in eq. (10). This completes the proof. �
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Lemma 4.5. Let Cn be a directed cycle graph with the following edge set.

E(Cn) = {e−→n1
,e←−

12
,e←−

23
}∪{e←→

i j
| i 6= j and {i, j} 6⊆ {n,1,2,3}}. (11)

Pictorially, we have

Cn =
(

· · · vn v1 v2 v3 · · ·
)

and all other arrows are bi-directional. Then we have

Pic(Cn)∼= Z×Zn−1 and Jac(Cn)∼= Zn−1.

Proof. The Laplacian matrix of Cn is of the following form.

LCn
=












0 0 0 0 0 0 0 0

−1 1 0 · · · 0 0 0 0

0 −1 2 −1 · · · 0 0 0

0 0 −1 2 −1 · · · 0 0
...

...
...

...
...

. . .
...

...

−1 0 0 0 0 · · · −1 2












.

Let r1, . . . ,rn and c1, . . . ,cn denote the rows and columns of LCn
, respectively. Replace rn with rn− r2

and then c2 with c2 + c1. Further, switch r1 and r2. As a result, we obtain the following matrix.

Mn =












−1 0 0 · · · 0 0 0 0

0 0 0 0 0 0 0 0

0 −1 2 −1 · · · 0 0 0

0 0 −1 2 −1 · · · 0 0
...

...
...

...
...

. . .
...

...

0 −1 0 0 0 · · · −1 2












.

Now, it follows from Remark 4.6 below, one can observe that Mn is equivalent to the following matrix:

M′n =












−1 0 0 · · · 0 0 0 0

0 2 −1 0 0 0 0 −1

0 −1 2 −1 · · · 0 0 0

0 0 −1 2 −1 · · · 0 0
...

...
...

...
...

. . .
...

...

0 −1 0 0 0 · · · −1 2












=

[
−1 0

0 L

]

,

where the (n− 1)× (n− 1) bottom right submatrix denoted by L is the Laplacian matrix of Cun
n−1,

a directed cycle graph corresponding the undirected cycle graph on (n− 1)-vertices. In particular,

Pic(Cun
n−1)
∼= Zn−1×Z. Now, the statement follows from Remark 2.11. �

Remark 4.6. The Laplacian of the undirected cycle graph Cn is of the form

L =










2 −1 0 0 0 0 −1

−1 2 −1 · · · 0 0 0

0 −1 2 −1 · · · 0 0
...

...
...

...
...

...
...

−1 0 0 0 · · · −1 2










.

Since [1 · · ·1]L = 0 by Remark 2.14, the first row is a Z-linear combination of the next (n−1) rows.

This justifies the last equivalence in the proof above.

Remark 4.7. We note that when n = 3, Cn in Lemma 4.5 corresponds to G2 in Example 4.2.
11



Proof of Theorem 4.1. We induct on the number of vertices. The base case is when n = 3 which is

Example 4.2. Suppose that the statement holds for n. For n+1 and for 1≤ k≤ n−1, by the induction

hypothesis on Cn, there exists a directed cycle graph Cn having Pic(Cn) ∼= Z×Zk. Furthermore, not

all arrows of Cn are bi-directional; if so, then Jac(Cn)∼= Zn. Therefore, by Lemma 4.4, there exists a

directed cycle Cn+1 which is a degree extension of Cn so that Pic(Cn+1)∼= Pic(Cn)∼= Z×Zk.

By Lemma 4.5, there exists a directed cycle graph Cn+1 whose Picard group is Z×Zn, and Cun
n+1,

corresponding to the undirected cycle graph, has Pic(Cun
n+1)
∼= Z×Zn+1. This completes the proof.

�

For any given n ≥ 3, let Γ(n) denote the set of all Picard groups of Cn. Indeed, the proof shows

that Γ(n) ⊂ Γ(n+ 1). It would be interesting to study the numbers associated to Γ(n),Γ(n+ 1), and

Γ(n+1)\Γ(n) as n grows infinity.

Question 4.8. What are the members of Γ(n)? Is there a pattern that depends on n only? What about

the case for their Jacobians?

4.1. Cycle graphs having a global sink. In this subsection, we present an application of our results

on directed cycle graphs having a global sink. We show that these graphs have a rank one Picard

group and their Jacobian is determined by the number of bi-directional arrows in a certain position

(Theorem 4.21). We first prove the statement for a special case (Theorem 4.12).

Definition 4.9. Let Cn be a directed cycle graph.

(1) By a path of Cn, we mean a connected subgraph of Cn in which all arrows are oriented in a

single direction. We do not allow any bi-directional arrows in a path.

(2) By a Cn with two opposite paths, we mean a directed cycle graphs Cn which has exactly two

paths sharing a sink, i.e., Cn has two paths P1 = (vi → ··· → v j) and P2 = (vℓ ← ··· ← vk)
such that v j = vℓ, and all the other arrows not in P1 and P2 are bi-directional.

Example 4.10. The following is an example of C5 with two opposite paths.

C5 =










1

5 2

4 3










We have the following two paths.

P1 =
(

5 4
)

, P2 =
(

4 3 2 1
)

.

Remark 4.11. Any Cn with two opposite paths has a global sink. Therefore, for these graphs the

notions of different chip firing games agree, see [6, Remark 2.12].

Theorem 4.12. Let Cn be a directed cycle graph with two opposite paths. Then we have

Pic(Cn)∼= Z×Zk+2 and Jac(Cn)∼= Zk+2.

Here, k denotes the number of bi-directional arrows in Cn.

Example 4.13. Consider the following orientations of C5 with two paths. The counter-clockwise path

is in red and the clockwise path is in blue. The bi-directional arrows are shown in black.

G1 =










1

5 2

4 3










, G2 =










1

5 2

4 3










, G3 =










1

5 2

4 3









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Then we have Jac(C5)∼= Z3, Jac(G1)∼= Z4, Jac(G2)∼= Z5, and Jac(G3) = Z2, where C5 is the graph

in Example 4.10. All these graphs have rank 1 Picard groups.

Lemma 4.14 will be useful for the proof of Theorem 4.12.

Lemma 4.14. For n ≥ 2, let Mn denote the n× n matrix whose diagonal entries are 2 and sub-

diagonals are −1, i.e.,

Mn =












2 −1 0 0 · · · · · · 0

−1 2 −1 0 · · · · · · 0

0 −1 2 −1 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · 0 −1 2 −1

0 0 0 · · · 0 −1 2












. (12)

Then one has det(Mn) = n+1.

Proof. We use induction on the size of Mn. When n = 2, we have

M2 =

[
2 −1

−1 2

]

whose determinant is 3.

Suppose the statement is true for all k≤ n−1. To compute det(Mn), we use the Laplace expansion

along the first row. Thus, one has

det(Mn) = 2det(Mn−1)+det(N),

where N is the following (n−1)× (n−1) matrix.

N =

[
−1 −1 0 · · · 0

0 Mn−2

]

. (13)

In particular, det(N) =−det(Mn−2) (cf. by Remark 2.11), and hence by the induction hypothesis, we

have

det(Mn) = 2det(Mn−1)+det(N) = 2((n−1)+1)+ (−1)((n−2)+1) = n+1. �

Remark 4.15. Note that the (n−1)× (n−1) minor of Mn after deleting the first row and last column

is (−1)n−1. Hence the Smith normal form of Mn is
[

In−1 0

0 n+1

]

.

Lemma 4.16. Let Cn be a directed cycle graph and V (Cn) = {v1, . . . ,vn}. Suppose that the vertex v1

does not have any outgoing arrows, and all other vertices have two outgoing arrows. Then we have

Pic(Cn)∼= Z× Jac(Cn), where Jac(Cn)∼= Zn.

Proof. The Laplacian matrix of Cn is the matrix following.

LCn
=












0 0 · · · · · · 0 0

−1 2 −1 · · · · · · 0

0 −1 2 −1 · · · 0
...

...
...

...
...

...

0 · · · 0 −1 2 −1

−1 0 · · · 0 −1 2












. (14)

By Remark 2.13, LCn
is equivalent to the following matrix

[
0 0

0 Mn−1

]

, (15)
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where Mn−1 is the matrix in Lemma 4.14. Thus, by Remark 4.15, we have

Pic(Cn)∼= Z×Zn and Jac(Cn)∼= Zn. �

Proof of Theorem 4.12. The graph Cn has a global sink. Recall k denotes the number of bi-directional

arrows. We induct on n. When n = 3, G2 in Example 4.2 verifies the case of k = 0. For C3 with two

opposite paths having one bi-directional arrow, its Laplacian matrix and its Smith normal form are

the following.




0 0 0

−1 2 −1

−1 −1 2



 and





1 0 0

0 3 0

0 0 0



 .

This proves the base case.

Suppose the statement holds true for two opposite paths directed cycle graphs on n− 1 vertices.

For the directed cycle graphs Cn on n vertices, if k = n− 2, then we are done by Lemma 4.16. If

k < n− 2, our Cn can be obtained as a degree 0 extension of a Cn−1 with two opposite paths. Both

Cn and Cn−1 are with two opposite paths having the same number of bi-directional arrows. Thus, by

Lemma 4.4 and induction, we have Pic(Cn)∼= Pic(Cn−1)∼= Z×Zk+2. This completes the proof. �

Lemma 4.17 is easy to prove but key to the proof of Theorem 4.21. It is in the same vein as

Lemma 3.1.

Lemma 4.17. Let G be a directed graph having and v,w vertices of G. Suppose e←→vw is in E(G), and

the (out-)degree of v is 1. Let G′ be a directed graph such that

V (G′) =V (G) and E(G′) = E(G)\{e←→vw}∪{e−→vw}.

Then LG and LG′ are row equivalent. Thus, they have the same Picard group and Jacobian.

Proof. Without loss of generality, assume v,w be the first two vertices. Then their Laplacians only

differ in the second row. The row equivalence now follows by subtracting the first row of LG to the

second. �

Example 4.18. Consider the following directed graph.

G =













1 2

3 4 5

6 7 8

9

α













Then, we have Pic(G)∼=Z×Z2. Change α to an one-directional arrow to obtain the following graph:

G′ =













1 2

3 4 5

6 7 8

9













Then, we have Pic(G′)∼= Z×Z2.
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Definition 4.19. By a double chain graph, we mean a directed graph G whose underlying graph is

a linear (or path) graph such that for the vertex set {v0, . . . ,vk+1} of G, the edge set is defined as

follows.

E(G) = {e←−
0,1
,e←→

1,2
, . . . ,e←−−→

k−1,k
,e−−−→

k,k+1
}.

Pictorially, G is the graph

G =
(

v0 v1 v2 · · · vk−1 vk vk+1

)

.

In this case, we say G is a double chain of length k.

Lemma 4.20. Let Cn be a directed cycle graph. If Cn has a global sink, then there exists at most one

double chain subgraph contained in Cn.

Proof. Suppose Cn has more than one double chain subgraphs. Choose distinct double chain sub-

graphs and label them as G and G′. Let V (G) = {v0, . . . ,vk+1} and V (G′) = {w0, . . . ,wl+1}. Further,

let v denote the global sink vertex. Without loss of generality, we may assume that vk+1 ≤ v≤ w0 in

the vertex order of Cn. Then there does not exist a directed path from wl+1 to the global sink vertex

v. If there is a directed path P from wl+1 to v, then wl 6∈ P. This implies that G is a subgraph of P. In

particular, v0 and v1 are in P. Since the there is no arrow from v0 to v1, v1 cannot be in P. This is a

contradiction. �

By Lemma 4.20, a directed cycle graph Cn having a global sink, we can say the length of the double

chain of Cn. This length determines the Picard group and Jacobian of such Cn.

Theorem 4.21. Let Cn be a directed cycle graph with a global sink. Suppose k is the length of the

double chain subgraph contained in Cn. Then one has

Pic(Cn)∼= Z× Jac(Cn) and Jac(Cn)∼= Zk+2.

Proof. Let Cn be a directed cycle graph with a global sink. We claim that there exists another directed

cycle graph C′n such that C′n is with two opposite paths having the same double chain subgraph and

the Laplacian of C′n is (row)-equivalent to the Laplacian of Cn. Once we have shown the claim, the

proof will follow from Theorem 4.12. By Lemma 4.17, we know that the following replacement of

an arrow keeps the Laplacian matrix up to row equivalence.
(

vi−1 vi vi+1

)

→
(

vi−1 vi vi+1

)

.

By inductively applying this procedure to all bi-directional arrows that are not part of the double

chain, we will arrive to the desired C′n. This completes the proof. �

5. PICARD GROUPS OF DIRECTED WHEEL GRAPHS

In this section, we use the following notation for directed wheel graphs and determine their Picard

groups.

Definition 5.1 (Wheel graph). By the directed wheel graph Wn, we mean a directed graph obtained

by connecting a single universal vertex to all vertices of a cycle graph Cn−1 whose arrows are bi-

directional arrows. This is the graph corresponding to the undirected wheel graph.

(1) By W ′n, we mean a directed wheel graph such that the arrows of the rim are bi-directional and

all its spoke arrows point to the axle.

(2) By W ′′n , we mean a directed wheel graph such that the arrows of the rim are bi-directional and

all its spoke arrows point away from the axle.

Note that W ′n and W ′′n have the same underlying undirected graph Wn.
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Example 5.2. Here are examples demonstrating our definitions.

W7 =

• •

• • •

• •

W ′4 =

•

•

• •

W ′′4 =

•

•

• •.

Proposition 5.3. Let LWn
(resp. LW ′n

) be the Laplacian matrix of Wn (resp. W ′n). Then LWn
and LW ′n

are

row equivalent. In particular, one has Pic(Wn)∼= Pic(W ′n).

Proof. We use the labeling convention that v1 is the axle and the vertices on the rim are v2, . . . ,vn.

The Laplacian matrices are as follows:

LWn
=
















n−1 −1 −1 · · · · · · · · · · · · −1

−1 3 −1 0 · · · · · · 0 −1

−1 −1 3 −1 · · · · · · 0 0

−1 0 −1 3 −1 · · · 0 0

−1 0 0 −1 3 −1 · · · 0

−1
...

...
...

...
...

...
...

−1 0 0 0 · · · −1 3 −1

−1 −1 0 0 · · · 0 −1 3
















LW ′n
=
















0 0 0 · · · · · · · · · · · · 0

−1 3 −1 0 · · · · · · 0 −1

−1 −1 3 −1 · · · · · · 0 0

−1 0 −1 3 −1 · · · 0 0

−1 0 0 −1 3 −1 · · · 0

−1
...

...
...

...
...

...
...

−1 0 0 0 · · · −1 3 −1

−1 −1 0 0 · · · 0 −1 3
















.

Since 1n ·Lwn
= 0 (Remark 2.14), LW ′n

is obtained from LWn
by adding all other rows from the first

row. This completes the proof. �

Proposition 5.4. The Smith normal form of the Laplacian of W ′′n is of the following form.







In−3 0 0 0

0 a 0 0

0 0 b 0

0 0 0 0






, where (a,b) =

{

(n−1,n−1) if n is even;

(n−1
2
,2(n−1)) if n is odd.

Proof. We use the labeling convention that v1 is the axle and the vertices on the rim are v2, . . . ,vn.

Then we have the following Laplacian matrix LW ′′n
of W ′′n .

LW ′′n
=
















n−1 −1 −1 · · · · · · · · · · · · −1

0 2 −1 0 · · · · · · 0 −1

0 −1 2 −1 · · · · · · 0 0

0 0 −1 2 −1 · · · 0 0

0 0 0 −1 2 −1 · · · 0

0
...

...
...

...
...

...
...

0 0 0 0 · · · −1 2 −1

0 −1 0 0 · · · 0 −1 2
















.

Let r1, . . . ,rn and c1, . . . ,cn denote the rows and columns of LW ′′n
. First, In−3(LW ′′n

) = 〈1〉. This follows

by taking the (n− 3)× (n− 3) minor after deleting r1,r2,rn and c1,cn−1,cn. By Theorem 2.13, we

have det(LW ′′n
) = 0. Hence, by Theorem 2.10, it suffices to show that

In−1(LW ′′n
) = 〈(n−1)2〉 and In−2(LW ′′n

) =

{

〈n−1〉 if n is even

〈(n−1)/2〉 if n is odd.
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Now, we reduce the Laplacian matrix LW ′′n
. By replacing c1 with c1 + · · ·+ cn, multiplying −1 to r1,

and then replacing rn with r2 + · · ·+ rn, we obtain the following matrix.















0 1 1 · · · · · · · · · · · · 1

0 2 −1 0 · · · · · · 0 −1

0 −1 2 −1 · · · · · · 0 0

0 0 −1 2 −1 · · · 0 0

0 0 0 −1 2 −1 · · · 0

0
...

...
...

...
...

...
...

0 0 0 0 · · · −1 2 −1

0 0 0 0 · · · 0 0 0
















. (16)

By abuse of notation, we use c1, . . . ,cn to denote the columns of the matrix in eq. (16). After replacing

cn with c2 + · · ·+ cn, we obtain the following matrix.















0 1 1 · · · · · · · · · 1 n−1

0 2 −1 0 · · · · · · 0 0

0 −1 2 −1 · · · · · · 0 0

0 0 −1 2 −1 · · · 0 0

0 0 0 −1 2 −1 · · · 0

0
...

...
...

...
...

...
...

0 0 0 0 · · · −1 2 0

0 0 0 0 · · · 0 0 0
















. (17)

Since the first column and the last row are zero, to compute the Smith normal form of LW ′′n
, it suffices

to find the Smith normal form of the (n−1) by (n−1) matrix N.

N :=

[
1n−2 n−1

Mn−2 0T
n−1

]

,

where Mn−2 is the matrix eq. (12) in Lemma 4.14. Note that det(Mn−2) = n−1 and this shows that

In−1(LW ′′n
) = In−1(N) = 〈det(N)〉= 〈(n−1)2〉.

To compute the (n−2) minors, first note that if the last column is a part of a minor, then it is divisible

by (n− 1). Since det(Mn−2) = (n− 1) ∈ In−2(N), we only need to consider the (n− 2) minors of

the first (n− 2) columns of N. In other words, In−2(LW ′′n
) is generated by (n− 1) and the (n− 2)-

determinants of the matrix which is obtained from Mn−2 by replacing the ith row by 1n−2.

Note that Mn−2 is symmetric. By Cramer’s rule, these (n−2) minors are the entries of the solution

matrix x of the following matrix equation (up to sign):

Mn−2x = det(Mn−2) ·1
T
n−2. (18)

By Lemma 5.5, the greatest common divisor of the solutions to eq. (18) is (n− 1) if n is even and

(n−1)/2 if n is odd. This completes the proof. �

Lemma 5.5. Consider the matrix equation

Mnx = (n+1)1n
T ,

where Mn is as in Lemma 4.14. Let xk denote the kth entry of x. Then xk = ak2 +bk, where

a =−
(n+1)

2
, b =

(n+1)2

2
.

Furthermore, gcd(x1, . . . ,xn) is (n+1) if n is even and (n+1)/2 if n is odd.
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Proof. Note that det(Mn) = n+ 1 by Lemma 4.14. Consider a sequence f (k) = fk = ak2 + bk. For

any k, we have

− fk−1 +2 fk− fk+1 =−2a.

First, we set a =−(n+1)/2. In addition, the equations 2x1−x2 = n+1 and −xn−1+2xn = n+1 are

equivalent to the conditions f0 = fn+1 = 0. These conditions imply b = (n+1)2/2 since 0,−b/a are

the roots of f (k).
We compute the gcd of f1, . . . , fn. First, we claim that gcd( f1, . . . , fn) = gcd( f1,n+ 1). Since

gcd( f1, . . . , fn) divides 2 f1− f2 = n+1, it suffices to show that gcd( f1,n+1) divides f2, . . . , fn. This

follows by induction since for k = 2, . . . ,n, we have

fk = 2 fk−1− fk−2− (n+1).

Here we use the fact that f0 = 0 for the base case of the induction. Moreover, since

f1 =−(n+1)/2+(n+1)2/2 =
n(n+1)

2

is an integer, the expressions fk =−2 fk−1 + fk−2 also prove that f1, . . . , fn are integers.

Finally, we show that gcd( f1,n+ 1) is n+ 1 when n is even and (n+ 1)/2 when n is odd. Recall

f1 =
n(n+1)

2
. If n is even, then n+1 divides f1. Thus, gcd( f1,n+1) = n+1. If n is odd, then

gcd( f1,n+1) = gcd(
n+1

2
·n,n+1) = gcd(

n+1

2
,n+1) =

n+1

2
.

The second last equality follows from the fact that n+1
2

is an integer and for integers a,b,c, gcd(ab,c)=
gcd(a,c) if b,c are relatively prime.

Thus, x =
[

f1 · · · fn

]T
is a solution having the asserted gcd. This completes the proof. �

6. ON CERTAIN DIRECTED MULTIPARTITE GRAPHS

In this section, we study Picard groups of a class of directed multipartite graphs. We call mem-

bers of this class as single-flow directed multipartite graphs. The structure of the graphs that we

investigate are designed to resemble artificial neural networks. Our results provides patterns in for

Perceptron style model with two layers (Proposition 6.3) and a Hidden Layer model with three layers

(Theorem 6.6). Thus, Question 6.7 can be though of as an attempt to understand the “deep” neural

networks.

Definition 6.1. By a single-flow directed multipartite graph (G,P), we mean a directed graph G

together with a partition P of the vertex set V (G) = V1(G)⊔ ·· · ⊔Vt(G) satisfying the following

conditions.

(1) There is no empty partition. That is, |Vi(G)|> 0 for all i ∈ {1, . . . , t}.
(2) For any i ∈ {1, . . . , t} and u,v ∈Vi(G), there is no arrow between u and v,

(3) For any i ∈ {1, . . . , t−1}, u ∈Vi(G), and v ∈Vi+1(G), there exists an arrow e−→uv.

For a single-flow directed multipartite graph (G,P), we call t the number of layers of (G,P).

The Picard group of a undirected multipartite graph is determined in [7].

Example 6.2. When a = 2 and b = 3, we have the following:

G =









3

1 4

2 5









.
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Then we have

LG =









3 0 −1 −1 −1

0 3 −1 −1 −1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0









=⇒ SNF(LG) =









1 0 0 0 0

0 3 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0









Hence Pic(G)∼= Z
3×Z3.

Proposition 6.3. Let (G,P) be a single-flow directed multipartite graph with two layers. Let

|V1(G)|= a and |V2(G)|= b. Then we have

Pic(G)∼= Z
b×Z

a−1
b .

Proof. The Laplacian matrix of G is the following form.

LG =

[
bIa −1a×b

0 0

]

.

By subtracting the (a+ 1)th column from the columns right to it, LG is equivalent to the following

matrix. [
bIa −1T

a 0

0 0 0

]

.

Note that Ik(LG) = Ik(Lsub), where Lsub =
[
bIa 1T

a

]
. Thus, it suffices to study Lsub. Let c1, . . . ,ca+1

denote the columns of Lsub. Replace c1 with −(c2 + · · ·+ca)+bca+1 and then switch the first and the

last columns. One has the following equivalences of Lsub.









b 0 · · · · · · 0 1

0 b 0 · · · 0 1

0 0
. . . 0 0 1

...
...

...
. . .

...
...

0 · · · 0 0 b 1










∼










0 0 · · · · · · 0 1

0 b 0 · · · 0 1

0 0
. . . 0 0 1

...
...

...
. . .

...
...

0 · · · 0 0 b 1










∼










1 0 · · · · · · 0 0

1 b 0 · · · · · · 0

1 0
. . . 0 · · · 0

...
...

...
. . .

...
...

1 · · · 0 0 b 0










(19)

By subtracting the first row from all other rows, we have the following matrix.
[

1 0 0

0 bIa−1 0

]

.

Now, the result follows from the Smith normal form of LG.

SNF(LG) =





1 0 0

0 bIa−1 0

0 0 0



 . �

Remark 6.4. Let (G,P) be a single-flow directed multipartite graph with t layers and |Vi(G)| = ai.

Then the Laplacian matrix LG is of the following block matrix form












a2Ia1
−1a1×a2

0 0 · · · 0

0 a3Ia2
−1a2×a3

· · · 0 0
...

...
. . .

. . .
...

...
...

...
...

. . .
. . .

...

0 0 · · · 0 at Iat−1
−1at−1×at

0 0 · · · 0 0 0













,

where the (i, j)th block is of size ai×a j.
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From this one can deduce that the rank of the Picard group of G is at .
11 This follows since the

number of non-zero rows is r := a1 + · · ·+ at−1 and the determinant of the principal r× r minors is

a
a1

2 · · ·a
at−1
t 6= 0. Here the principal minor of size k of a matrix M is the minor of the first k rows and

columns. We note that this minor is not equal to |Jac(G)| in general, see Lemma 6.5.

Lemma 6.5. Let (G,P) be a single-flow directed multipartite graph with three layers, and let

|V1(G)|= a, |V2(G)|= b, and |V3(G)|= c. Then |Jac(G)|= ba · cb−1.

Proof. We have the following Laplacian matrix of G.

LG =





bIa −1a×b 0

0 cIb −1b×c

0 0 0



 .

Since the rank of LG is a+b, it suffices to show that Ia+b(LG) = 〈b
a · cb−1〉. First observe that

Ia+b(LG) = Ia+b

([
bIa −1a×b 0

0 cIb 1T
b

])

.

We apply the modifications in eq. (19) to the second row block of LG. Note that in this case we also

need to keep track of the (1,2) and (1,3) sub-blocks.

[
bIa −1a×b 0

0 cIb 1T
b

]

∼

[
bIa N b ·1T

a

0 N ′ 0

]

,

where N and N ′ are the following matrices.

N =
[

0T
a −1a×(b−1)

]
and N ′ =

[
1 0

0 cIb−1

]

Note that the last column is the sum of the first a columns. Therefore, Ia+b(L) = 〈det(bIa) ·det(N ′)〉=
〈ba · cb−1〉 and |Jac(G)|= ba · cb−1. �

Indeed, one can further reduce to a simpler case by reducing the block matrix

L =

[
bIa N

0 N ′

]

,

and it will provide a way to determine the Smith normal form of LG.

Since the (1,1)-entry of N ′ is 1, Ik+1(L) = Ik(L
′), where L′ is the matrix obtained by deleting the

row and column of containing the (1,1) entry of N ′. That is,

L′ =

[
bIa −1a×(b−1)

0 cIb−1

]

.

If b= 1, then by Lemma 6.5, |Jac(G)|= 0. This implies that the non-zero diagonal entries of SNF(LG)
consists of 1’s. In the rest, we assume that b > 1, so the expression Ib−2 is valid. Let r1, . . . ,ra+b−1

and c1, . . . ,ca+b−1 denote the rows and columns of L′. By subtracting ra from each of r1, . . . ,ra−1 and

11One can also see in this case that each vertex in Vt(G) is a terminal strong component. Hence, this directly follows

from Theorem 3.5.
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by subtracting ca+1 from each of ca+2, . . . ,ca+b−1, we have

L′ ∼























b 0 · · · 0 −b 0 · · · · · · · · · 0

0 b · · · 0 −b
... · · · · · · · · ·

...
...

...
. . .

...
...

...
...

. . .
...

...

0 · · · 0 b −b 0 0 · · · · · · 0

0 · · · · · · 0 b −1 0 · · · · · · 0

0 · · · · · · · · · 0 c −c −c · · · −c
... · · · · · · · · ·

... 0 c · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...
... · · · · · · · · ·

... 0 · · · 0 c 0

0 · · · · · · · · · 0 0 · · · · · · 0 c























.

Further column and row operations will reduce to the case of having bIa for the (1,1)-block and cIb−1

for the (2,2)-block, respectively. Last reduction is done on the sub-block

[
b −1

0 c

]

by replacing it

with its Smith normal form

[
1 0

0 bc

]

. Therefore, L′ is equivalent to the following matrix

L′′ =







1 0 0 0

0 bc 0 0

0 0 bIa−1 0

0 0 0 cIb−2






.

Hence LG is equivalent to the following matrix

LG ∼ L′G =









I2 0 0 0 0

0 bc 0 0 0

0 0 bIa−1 0 0

0 0 0 cIb−2 0

0 0 0 0 0









.

Though L′G is a diagonal matrix, it is not in its Smith normal form in general. However, since L′G is a

diagonal matrix, we can determine the cokernel of LG from L′G. That is,

coker LG
∼= Pic(G)∼= Zbc×Z

a−1
b ×Z

b−2
c ×Z

c. (20)

This determines the Picard group of G. We note that by the well-known correspondence between the

elementary divisors and invariant factors of a finitely generated abelian group, one can deduce the

Smith normal form of LG from eq. (20). Another method is direct though it is essentially the same as

the correspondence. Note that the Smith normal form of the matrix

[
b 0

0 c

]

is

[
gcd(b,c) 0

0 lcm(b,c)

]

,

where gcd and lcm denotes the greatest common divisor and the least common multiple. Therefore,

the non-zero diagonal entries of the Smith normal form of LG consists of 1,gcd(b,c), lcm(b,c),b,c,

and bc. It is clear that 1 | gcd(b,c) | b,c | lcm(b,c) | bc. Recall if b = 1, then the non-zero diagonal

entries of SNF(LG) consists of 1’s. In eq. (21), we write g = gcd(b,c) and l = lcm(b,c), and let

the exponential notation a[b] denote a, . . . ,a
︸ ︷︷ ︸

b−times

. With this notation, the non-zero diagonal entries of the

Smith normal form of LG follow the following pattern.

1[a+b] if b = 1,

1[2],g[(b−2)],b[a−b+1], l[(b−2)],bc if a−1≥ b−2≥ 0, and

1[2],g[(a−1)],c[b−a−1], l[(a−1)],bc if a−1≤ b−2.

(21)
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Thus, we have proved the following theorem.

Theorem 6.6. Let (G,P) be a single-flow directed multipartite graph with three layers, and let

|V1(G)|= a, |V2(G)|= b, and |V3(G)|= c. Then the Picard group of G is isomorphic to

Z
c× Jac(G),

where

Jac(G)∼=







0 if b = 1,

Z
b−2
g ×Z

a−b+1
b ×Z

b−2
l ×Zbc if a≥ b−1 and b≥ 2,

Z
a−1
g ×Z

b−a−1
c ×Z

a−1
l ×Zbc if a≤ b−1.

Here, g and l denote the greatest common divisor and the least common multiple of b and c, respec-

tively.

The structure of the graphs that we investigate are designed to resemble artificial neural networks.

Question 6.7. Let (G,P) be a single-flow directed multipartite graph with t layers. What is the

Smith normal form of the Laplacian matrix LG of G? That is, what is their Picard groups?
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