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3 COMBINATORIAL LOCAL CONVEXITY IMPLIES CONVEXITY

IN FINITE DIMENSIONAL CAT(0) CUBED COMPLEXES

SHUNSUKE SAKAI AND MAKOTO SAKUMA

Abstract. We give a proof of the following theorem, which is well-known among
experts: A connected subcomplex W of a finite dimensional CAT(0) cubed com-
plex X is convex if and only if Lk(v,W ) is a full subcomplex of Lk(v,X) for every
vertex v of W .

1. introduction

The purpose of this note is to give a proof of the following theorem, which is
well-known among experts.

Theorem 1.1. Let X be a finite dimensional CAT(0) cubed complex and W a
connected subcomplex of X. Then W is convex in X if and only if it satisfies the
condition (CLC) below:

(CLC) Lk(v,W ) is a full subcomplex of Lk(v,X) for every vertex v of W .

Recall that a subcomplex K of a simplicial complex L is full if any simplex of
L whose vertices are in K is in fact entirely contained in K. The condition (CLC)
is nothing other than the definition for W to be “combinatorially locally convex”
in X, in the sense of Haglund-Wise [9, Definition 2.9] (cf. Haglund [8, Definitions
2.8 and 2.9]). (Their terminology does not contain the adjective combinatorial.) In
fact, they introduced the concept of a “combinatorial local isometry”, and define
W to be combinatorially locally convex in X if the inclusion map j : W → X is a
combinatorial local isometry. As (implicitly) suggested in [16], Theorem 1.1 is an
immediate consequence of [9, Lemma 2.11] concerning combinatorial local isometries
from cube complexes to finite dimensional non-positively curved cube complexes.

In [9, Proof of Lemma 2.11] appealing to [1, Proposition II.4.14] (which is deduced
from the classical Cartan-Hadamard theorem), it is implicitly assumed that a combi-
natorial local isometry is a local isometry in the usual sense (Definition 2.1(2)). On
the other hand, Haglund writes in [8, the paragraph preceding Theorem 2.13] that in
the finite dimensional case it can be checked that combinatorial local isometries are
precisely local isometries of the ℓ2 (Euclidean) metrics. Moreover, Petrunin notes
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in [16] that combinatorial local convexity implies local convexity and that this can
be proved the same way as the flag condition (Gromov’s link condition) for CAT(0)
spaces. Thus Theorem 1.1 is established by [9, Lemma 2.11], though we could not
find a reference that includes a proof of the implicit assertion.1

The purpose of this note is to give a full proof of Theorem 1.1 by writing down
a proof of the assertion (Theorem 2.2). Our proof totally depends on Bridson-
Haefliger [1], and it may be regarded as a relative version of the proof of Gromov’s
link condition included in the book (see [1, Proofs of Theorems II.5.2 and II.5.20]).

The main bulk of this note was originally written as a part of [15]. After learning
from [16] that Theorem 1.1 is well-known among experts (as we had expected) and
that it is essentially contained in Haglund-Wise [9, Lemma 2.11], we decided to move
that part of [15] into this separate note. We hope this note is of some use to those
who are not so familiar with the relation between the two concepts concerning local
convexity.

We note that Theorem 1.1 may be regarded as a Euclidean metric version of
the combinatorial result by Haglund [8, Theorem 2.13], which shows that combi-
natorial convexity [8, Definition 2.9] is a local combinatorial property. However,
Theorem 1.1 is weaker than [8, Theorem 2.13], in the sense that the former assumes
finite dimensionality whereas the latter does not.2

As is summarized in [13], local convexity implies (global) convexity in various
settings, including the following:

- closed connected subsets in a Euclidean space (Nakajima [11] and Tietze [17]),
- closed connected subsets (whose diameter is less than π/

√
κ when κ > 0)

in a complete CAT(κ) space (Bux-Witzel [2, Theorems 1.6 and 1.10] and
Ramos-Cuevas [13, Theorem 1.1]), and

- closed connected (by rectifiable arcs) subsets of proper Busemann spaces
(Papadopoulos [12, Proposition 8.3.3]).

The following well-known fact is the simplest non-trivial example of such results.

- A local geodesic in a CAT(κ) space (of length less than π/
√
κ when κ > 0)

is a geodesic [1, Proposition I.1.4(2)].

This fact is repeatedly (though implicitly) used in this note.

Acknowledgement. We thank Hirotaka Akiyoshi for his criticism and helpful
discussion. The second author is supported by JSPS KAKENHI Grant Number
JP20K03614 and by Osaka Central Advanced Mathematical Institute (MEXT Joint
Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849).

1It turned out that the assertion immediately follows from the result [5, Theorem 1(2)] due to
Crisp and Wiest. Moreover, Leary’s article [10] includes a direct proof of Theorem 1.1 and so that
of the assertion. See Late Additions (Section 4) for the details.

2Leary gives a proof in the infinite dimensional case, too.
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2. Basic definitions and outline of the proof of Theorem 1.1

We first recall basic facts concerning non-positively curved spaces following Bridson-
Haefliger [1].

Let X = (X, d) be a metric space. In this paper, we mean by a geodesic in X an
isometric embedding g : J → X where J is a connected subset of R. If J is a closed
interval, we call g a geodesic segment. We do not distinguish between a geodesic and
its image. X is a geodesic space if every pair of points can be joined by a geodesic
in X. It is said to be uniquely geodesic if for every pair of points there is a unique
geodesic joining them. For points a and b in a geodesic space X, we denote by [a, b]
a geodesic segment joining a and b. The symbols (a, b), [a, b) and (a, b] represent
open or half-open geodesic segments, respectively. The distance d(a, b) is equal to
ℓ([a, b]), the length of the geodesic segment [a, b]. Thus the geodesic space X is a
length space in the sense that the distance between two points is the infimum over
the lengths of rectifiable curves that join them [1, I.1.18 and I.3.1].

A geodesic space X is a CAT(0) space if any geodesic triangle is thinner than a
comparison triangle in the Euclidean plane E

2, that is, the distance between any
points on a geodesic triangle is less than or equal to the corresponding points on a
comparison triangle [1, Definition II.1.1]. A CAT(0) space is uniquely geodesic [1,
Proposition II.1.4(1)]. A geodesic space X is said to be non-positively curved if it
is locally a CAT(0) space, i.e., for every x ∈ X there exists r > 0 such that the
open r-ball BX(x, r) := {y ∈ X | d(x, y) < r} in X with center x, endowed with the
induced metric, is a CAT(0) space [1, Definition II.1.2].

A cubed complex is a metric space X = (X, d) obtained from a disjoint union of

unit cubes X̂ =
⊔

λ∈Λ(I
nλ × {λ}) by gluing their faces through isometries. To be

precise, it is an Mκ-polyhedral complex with κ = 0 in the sense of [1, Definition
I.7.37] that is made up of Euclidean unit cubes, i.e., the set Shapes(X) in the
definition consists of Euclidean unit cubes. (See [1, Example (I.7.40)(4)].) The
metric d on X is the length metric induced from the Euclidean metric of the unit
cubes. See [1, I.7.38] for a precise definition. Every finite dimensional cubed complex
is a complete geodesic space [1, Theorem in p.97 or I.7.33], where the dimension
of the cubed complex is defined to be max{nλ}. Note that the restriction of the

projection p : X̂ → X to Inλ × {λ} is not necessarily injective. Thus a cubed
complex is not necessarily a cubical complex in the sense of [1, Definition I.7.32],
i.e., a cube complex which is simple in the sense of [8, 9]. However, the difference is
not essential for non-positively curved cubed complexes, because the second cubical
subdivision of a non-positively curved cubed complex is a cubical complex by [10,
Corollary C.11], and because the metric of the cubed complex and that of its cubical
subdivision (after rescaling) are identical (cf. [1, Lemma I.7.48]). (A cube complex
in [10, Appendix C] is a cubed complex in this note, i.e., in the sense of [1, Example
I.7.40(4)], as noted in [10, the first sentence in Appendix C].)
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Two non-trivial geodesics issuing from a point x ∈ X are said to define the same
direction if the Alexandrov angle between them is zero. This defines an equivalence
relation on the set of non-trivial geodesics issuing from x, and the Alexandrov angle
induces a metric on the set of the equivalence classes. The resulting metric space is
called the space of directions at x and denoted Sx(X) [1, Definition II.3.18].

Suppose x is a vertex v of the cubed complex X. Then the space Sv(X) is
obtained by gluing the spaces {Svλ(I

nλ × {λ})}vλ∈p−1(v). Here Svλ(I
nλ × {λ}) is

the space of directions in the cube Inλ × {λ} at the vertex vλ; so it is an all-right
spherical simplex, a geodesic simplex in the unit sphere Snλ−1 all of whose edges have
length π/2. Hence Sv(X) has a structure of a finite dimensional all-right spherical
complex, namely an Mκ-polyhedral complex with κ = 1 in the sense of [1, Definition
I.7.37] that is made up of all-right spherical simplices, i.e., the set Shapes(X) in
the definition consists of all-right spherical simplices. This complex is called the
geometric link of v in X, and is denoted by Lk(v,X) [1, (I.7.38)]. It should be noted
that Lk(v,X) is not necessarily a simplicial complex: it is a simplicial complex if X
is a cubical complex. The geometric link Lk(v,X) is endowed with the length metric
dLk(v,X) induced from the spherical metrics of the all-right spherical simplices. Let
dπLk(v,X) be the metric defined by

dπLk(v,X)(u1, u2) := min{dLk(v,X)(u1, u2), π}.
Then the metric dSv(X) on Sv(X) = Lk(v,X) is equal to the metric dπLk(v,X) (see [1,

the second sentence in p.191] or [15, Lemma 5.5]).

Definition 2.1. Let X be a uniquely geodesic space and W a subset of X.
(1) W is convex in X if, for any distinct points a and b in W , the unique geodesic

segment [a, b] in X is contained in W .
(2) W is locally convex in X if, for every x ∈ W , there is an ǫ > 0 such that

W ∩BX(x, ǫ) is convex in X, where BX(x, ǫ) is the open ǫ-ball in X with center x.
(3) Assume that X is a cubed complex and W is a subcomplex of X. Then W

is combinatorially locally convex in X if it satisfies the the condition (CLC), i.e.,
Lk(v,W ) is a full subcomplex of Lk(v,X) for every vertex v of W .

In the next section, we prove the following theorem.

Theorem 2.2. Let X be a finite dimensional CAT(0) cubed complex and W a
subcomplex of X. Then W is locally convex in X if and only if it is combinatorially
locally convex in X.

In the reminder of this section, we give a proof of Theorem 1.1 by using the above
theorem and following [9, the proof of Lemma 2.11]. The starting point of the proof
is the following version of the Cartan-Hadamard theorem.

Proposition 2.3. [1, Special case of Theorem II.4.1(2)] Let X be a complete, con-

nected, geodesic space. If X is non-positively curved, then the universal covering X̃
(with the induced length metric) is a CAT(0) space.
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See [1, Definition I.3.24] for the definition of the induced length metric on X̃.
The Cartan-Hadamard theorem implies the following result [1, Proposition II.4.14],
which plays an essential role in [9, Proof of Lemma 2.11] and so in the proof of
Theorem 1.1.

Proposition 2.4. [1, Proposition II.4.14] Let X and Y be a complete, connected
metric space. Suppose that X is non-positively curved and that Y is locally a length
space. If there is a map f : Y → X that is locally an isometric embedding, then Y
is non-positively curved and:

(1) For every y0 ∈ Y , the homomorphism f∗ : π1(Y, y0) → π1(X, f(y0)) induced by
f is injective.

(2) Consider the universal coverings X̃ and Ỹ with their induced length metrics.

Every continuous lifting f̃ : Ỹ → X̃ of f is an isometric embedding.

In the above proposition, f : Y → X being locally an isometric embedding means
that, for every y ∈ Y , there is an ǫ > 0 such that the restriction of f to the open
ǫ-ball BY (y, ǫ) in Y is an isometry onto its image in X [1, the sentence preceding
Proposition II.4.14].

We now give a proof of Theorem 1.1 following [9, Proof of Lemma 2.11] and
assuming Theorem 2.2.

Proof of Theorem 1.1. Let X be a finite dimensional CAT(0) cubed complex and W
a connected subcomplex of X. Suppose W is combinatorially locally convex. Then
W is locally convex by Theorem 2.2.

Claim 2.5. The inclusion map i : W → X, regarded as a map between cubed
complexes, is locally an isometric embedding, namely, for every x ∈ W , there is an
ǫ > 0 such that the restriction of j to the open ǫ-ball BW (x, ǫ) in W (with respect to
the metric dW of the cubed complex W ) is an isometry onto its image in the cubed
complex X.

Proof. Let ǫ > 0 be such that W ∩ BX(x, ǫ) is convex in X. Then for any a, b ∈
W∩BX(x, ǫ), the geodesic [a, b] inX is contained inW∩BX(x, ǫ). By the definitions
of dX and dW as length metrics induced from the Euclidean metrics of the unit
cubes, we see that [a, b] is also a geodesic in W and dX(a, b) = dW (a, b). Hence
the restriction of i : W → X to the subspace W ∩ BX(x, ǫ) ⊂ W is an isometry
onto its image W ∩ BX(x, ǫ) ⊂ X. The above observation also implies that W ∩
BX(x, ǫ) ⊂ BW (x, ǫ). Since BW (x, ǫ) ⊂ W ∩ BX(x, ǫ) obviously holds, we have
W ∩ BX(x, ǫ) = BW (x, ǫ). Hence, the restriction of i : W → X to the subspace
BW (x, ǫ) ⊂ W is an isometry onto its image in X. �

Since bothX andW are complete [1, Theorem in p.97 or I.7.33] and since (W,dW )
is a length metric space, Claim 2.5 enables us to apply Proposition 2.4 ([1, Propo-
sition II.4.14]) to i : W → X, and so the following hold.
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(0) W is non-positively curved.
(1) i∗ : π1(W ) → π1(X) is injective.

(2) Consider the universal coverings X̃ and W̃ with their induced length metrics.

Every continuous lifting ĩ : W̃ → X̃ of i is an isometric embedding.

Since X is a CAT(0) space, π1(X) = 1 and so π1(W ) = 1 by the conclusion (1).

Thus W = W̃ and it is a CAT(0) space by the conclusion (0) and the Cartan-
Hadamard theorem (Proposition 2.3). Hence, by the conclusion (2), i : W → X

is an isometric embedding of the cubed complex W = W̃ into the cubed complex
X = X̃. Thus, for any a, b ∈ W , the unique geodesic [a, b] in the CAT(0) space W
is also a geodesic in X. This means that W = i(W ) is convex in X, completing the
proof of the if part.

The only if part immediately follows from the only if part of Theorem 2.2. �

Remark 2.6. (1) In [1, Proof of Proposition II.4.14], the proof of the assertion
that Y is non-positively curved is rather involved, because it only assumes that the
complete metric space Y is locally a length space. However, in our setting Y = W
is a connected subcomplex of the CAT(0) cubed complex which is combinatorially
locally convex. So, the assertion in our setting is an immediate consequence of
Gromov’s link condition [1, Theorem II.5.20] (cf. Lemma 3.4(2)).

(2) If we appeal to the relatively new results by Bux-Witzel [2, Theorems 1.6 and
1.10] and Ramos-Cuevas [13, Theorem 1.1], which in particular imply that a closed
connected subset of a complete CAT(0) space is convex if and only if it is locally
convex, then Theorem 1.1 immediately follows from Claim 2.5.

3. Proof of Theorem 2.2

We begin by recalling basic properties of CAT(1) spaces. A metric space L =
(L, d) is a CAT(1) space if it is a geodesic space all of whose geodesic triangles of
perimeter less than 2π are not thicker than its comparison triangle in the 2-sphere
S2 [1, Definition II.1.1].

Proposition 3.1. (1) ([1, Theorem II.5.4]) Any CAT(1) space is uniquely π-geodesic,
namely, for any points a and b of the space with d(a, b) < π, there is a unique geo-
desic [a, b] joining a to b.

(2) ([1, Theorem II.5.18]) A finite dimensional all-right angled spherical complex
is CAT(1) if and only if it is a flag complex.

Recall that a flag complex is a simplicial complex in which every finite set of
vertices that is pairwise joined by an edge spans a simplex.

Definition 3.2. ([1, Definition I.5.6]) For a metric space Y = (Y, dY ), the 0-cone
(or the Euclidean cone) C0(Y ) over Y is the metric space defined as follows. As
a set C0(Y ) is obtained from [0,∞) × Y by collapsing 0 × Y into a point. The
equivalence class of (t, y) is denoted by ty, where the class of (0, y) is denoted by 0
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and is called the cone point. The distance d(ty, t′y′) between two points ty and t′y′

in C0(Y ) is defined by the identity

d(ty, t′y′)2 = t2 + t′
2 − 2tt′ cos(dπY (y, y

′)),

where dπY (y, y
′) = min{dY (y, y′), π}.

For a vertex v in a cubed complex X, we denote the 0-cone C0(Lk(v,X)) by
Tv(X) and call it the tangent cone at v [1, Definition II.3.18].

We have the following fundamental relation between CAT(0) spaces and CAT(1)
spaces, where the second statement (Gromov’s link condition) is proved by using
the first statement (Berestovskii’s theorem).

Proposition 3.3. (1) (Berestovskii [1, Theorem II.3.14]) Let Y = (Y, dY ) be a
metric space. Then the 0-cone C0(Y ) over Y is a CAT(0) space if and only if Y is
a CAT(1) space.

(2) (Gromov’s link condition) [1, Theorem II.5.20] A finite dimensional cubed
complex X is non-positively curved if and only if, for every vertex v ∈ X, the
geometric link Lk(v,X) is a CAT(1) space.

The following lemma is a simple consequence of the above results.

Lemma 3.4. Let X be a finite dimensional CAT(0) cubed complex and W a con-
nected subcomplex of X. Then the following hold.

(1) For a vertex v of W , if Lk(v,W ) is a full subcomplex of Lk(v,X) then the
tangent cone Tv(W ) is a CAT(0) space.

(2) If Lk(v,W ) is a full subcomplex of Lk(v,X) for every vertex v of W , then the
cubed complex W is non-positively curved.

Proof. (1) Since X is a CAT(0) cubed complex, Lk(v,X) is a flag complex by Propo-
sition 3.3(2). If Lk(v,W ) is a full subcomplex of Lk(v,X), then Lk(v,W ) is also a
flag complex. So, the all-right spherical complex Lk(v,W ) is CAT(1) by Proposi-
tion 3.1(2). Hence, Tv(W ) is a CAT(0) space by Proposition 3.3(1).

(2) is proved by a similar argument by using Proposition 3.3(2) instead of Propo-
sition 3.3(1) in the last step. �

Next, we prove the following key lemma for the proof of Theorem 2.2.

Lemma 3.5. Let L = (L, d) be a finite dimensional all-right spherical complex that
is a flag complex, and let K be a subcomplex of L. Then the following conditions
are equivalent.

(1) K is π-convex in L, namely, for any points a and b of K with d(a, b) < π, the
unique geodesic segment [a, b] in L is contained in K.

(2) K is a full subcomplex of L.

Proof. We first prove that (1) implies (2). Suppose that K is not full in L. Then
there is a simplex σ of L\K such that ∂σ is contained in K. Pick a vertex v of σ,
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and let τ be the codimension 1 face of σ that does not contain the vertex v. Pick
a point y in the interior of τ . Then d(v, y) = π/2 and the interior of the geodesic
segment [v, y] is contained in the interior of σ. Thus [v, y] is not contained in K
though both v and y are contained in K. Hence K is not π-convex.

We next prove that (2) implies (1). Suppose to the contrary that K is not π-
convex though K is a full subcomplex of L. Then there is a geodesic segment [a, b]
in L of length < π such that a, b ∈ K but [a, b] 6⊂ K. If necessary, by replacing
[a, b] with a sub geodesic segment, we may assume K ∩ [a, b] = {a, b}. Let σ be
the simplex of L whose interior intersects the germ of [a, b] at a. Then σ is not
a simplex of K. Since K is a full subcomplex of L by the assumption, there is a
vertex v of σ that is not contained in K. Let St(v, L) (resp. st(v, L)) be the closed
star (resp. open star) of v in L, i.e., the union of the simplices (resp. the interior of
the simplices) of L that contain v. Note that St(v, L) = st(v, L) ⊔ lk(v, L), where
lk(v, L) is the simplicial link of v in L, i.e., the union of the simplices τ of L such
that v /∈ τ and {v} ∪ τ is contained in a simplex of L. Then st(v, L) ∩K = ∅ and
therefore there is a point b′ ∈ (a, b] such that b′ ∈ lk(v, L) and (a, b′) ⊂ st(v, L).

Case 1. v ∈ (a, b′). Then d(v, a) = d(v, b′) = π/2 and hence d(a, b) ≥ d(a, b′) =
d(a, v) + d(v, b′) = π, a contradiction.

Case 2. v /∈ (a, b′). We consider the “development” of [a, b′] ⊂ St(v, L) in the
northern hemisphere S2

+, the closed ball of radius π/2 centered at the north pole
N = (0, 0, 1) in S2, that is defined as follows (cf. [1, Definition I.7.17]). Let a =
y0, y1, · · · , yn = b′ be points lying in [a, b′] in this order, such that (yi−1, yi) is
contained in the interior of a simplex σ(i) of L for each i (1 ≤ i ≤ n). Note
that σ(i) contains v as a vertex. Let ȳ0 = (1, 0, 0), ȳ1 , · · · , ȳn be the points in S2

+

satisfying the following conditions.

(1) dS2(N, ȳi) = dσ(i)(v, yi) = d(v, yi) and dS2(ȳi−1, ȳi) = dσ(i)(yi−1, yi) =
d(yi−1, yi) for each i.

(2) If N, ȳi−1, ȳi are not aligned, the initial vectors of the geodesic segments
[N, ȳi−1] and [N, ȳi] in S2

+ occur in the order of a fixed orientation of S2.

We call the union γ := ∪n
i=1[ȳi−1, ȳi] ⊂ S2

+ the development of [a, b′] ⊂ St(v, L) in
S2
+. It should be noted that n ≥ 2 and ȳ1, · · · , ȳn−1 are contained in intS2

+.

Claim 3.6. γ is a local geodesic in S2.

Proof. Though this is used without proof in [1, the 4th paragraph in the proof of
Theorem II.5.18], we give a proof for completeness. If γ is not a local geodesic, then
ℓ([ȳi−1, ȳi] ∪ [ȳi, ȳi+1]) > ℓ([ȳi−1, ȳi+1]) for some i. Let ȳ′i be the intersection of the
geodesic segment [ȳi−1, ȳi+1] and the maximal geodesic segment in S2

+ emanating
from N and passing through ȳi. Let y

′
i be the point in the maximal geodesic segment

in σ(i)∩σ(i+1) ⊂ L emanating from v and passing through yi, such that d(v, y′i) =
dS2(N, ȳ′i). Then we have the following isometries among spherical triangles.

∆(v, yi−1, y
′
i)
∼= ∆(N, ȳi−1, ȳ

′
i), ∆(v, y′i, yi+1) ∼= ∆(N, ȳ′i, ȳi+1)
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Hence the following hold.

ℓ([yi−1, y
′
i] ∪ [y′i, yi+1]) = ℓ([ȳi−1, ȳ

′
i] ∪ [ȳ′i, ȳi+1])

= ℓ([ȳi−1, ȳi+1])

< ℓ([ȳi−1, ȳi] ∪ [ȳi, ȳi+1])

= ℓ([yi−1, yi] ∪ [yi, yi+1]) = ℓ([yi−1, yi+1])

This contradicts the fact that [yi−1, yi+1](⊂ [a, b′] ⊂ [a, b]) is a geodesic. �

Since γ is a local geodesic with length ℓ(γ) < π, it is a geodesic in S2
+ by [1,

Proposition II.1.4(2)]. Since yn = b′ ∈ lk(v, L), we see d(v, yn) = π/2 and so
ȳn ∈ ∂S2

+. Thus the endpoints ȳ0 and ȳn of the geodesic γ ⊂ S2
+ are contained

in ∂S2
+. Since ℓ(γ) < π, this implies γ ⊂ ∂S2

+. This contradicts the fact that

ȳ1, · · · , ȳn−1 are contained in intS2
+. This completes the proof of Lemma 3.5. �

In addition to Lemma 3.5, we need Lemma 3.8 below which gives relative versions
of two results included in [1] concerning the local shape of polyhedral complexes.

Notation 3.7. For a vertex v of a subcomplexW of a cubed complex X, the symbol
j : Tv(W ) → Tv(X) denotes the natural injective map from the tangent cone Tv(W )
of the cubed complex W into the tangent cone Tv(X) of the cubed complex X. Note
that j is not necessarily an isometric embedding.

Lemma 3.8. Let X be a finite dimensional cubed complex and W a subcomplex of
X. Then the following hold.

(1) (Relative version of [1, Theorem I.7.39]) Let v be a vertex of W . Then
there is a natural isometry ϕ from the open ball BX(v, 1/2) in X onto the open
ball BTv(X)(0, 1/2) in the tangent cone Tv(X) that carries W ∩ BX(v, 1/2) onto
j(Tv(W )) ∩BTv(X)(0, 1/2).

(2) (Relative version of [1, Lemma I.7.56]) Let x and y be points of W contained
in the same open cell of W . Then, for sufficiently small ǫ > 0, there exists a natural
isometry between the open balls BX(x, ǫ) and BX(y, ǫ) in X that carries W∩BX(x, ǫ)
onto W ∩BX(y, ǫ).

Proof. (1) By [1, Theorem I.7.39], there is a natural isometry from BX(v, 1/2) onto
BTv(X)(0, 1/2). (The radius 1/2 is the half of the length 1 of the unit interval I,
and it corresponds to ε(x)/2 in [1, Theorem I.7.39].) The isometry is defined as
follows (see [1, the first paragraph in the proof of Theorem I.7.16 in p.104]). If
x ∈ BX(v, 1/2) then there is a direction u ∈ Lk(v,X) such that x is a distance
t < 1/2 along the geodesic issuing from v in the direction u. (Here u is uniquely
determined by x except when x = v, i.e., t = 0.) Then x ∈ BX(v, 1/2) is mapped
to the point tu ∈ BTv(X)(0, 1/2). By this definition of the isometry, we see that it
carries W ∩BX(v, 1/2) onto j(Tv(W )) ∩BTv(X)(0, 1/2).
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(2) By [1, Lemma I.7.56], there is a natural isometry from BX(x, ǫ) onto BX(y, ǫ)
that restricts to an isometry from C ∩ BX(x, ǫ) onto C ∩ BX(y, ǫ) for every closed
cell C of X containing x and y. Obviously the isometry carries W ∩BX(x, ǫ) onto
W ∩BX(y, ǫ). �

We now give a proof of the main Theorem 2.2.

Proof of Theorem 2.2. Let X be a finite dimensional CAT(0) cubed complex and
W a subcomplex of X. Assume that W is combinatorially locally convex in X, i.e.,
Lk(v,W ) is a full subcomplex of Lk(v,X) for every vertex v of W . Then we have
the following claim.

Claim 3.9. For any vertex v of W , the map j : Tv(W ) → Tv(X) is an isometric
embedding, and j(Tv(W )) is convex in Tv(X).

Proof. Let v be a vertex ofW . Then, by the assumption and Lemma 3.5, Lk(v,W ) is
π-convex in Lk(v,X). This implies that the distance function dπLk(v,W ) on Lk(v,W ) is

equal to the restriction of the distance function dπLk(v,X) on Lk(v,X) to the subspace

Lk(v,W ). Hence j : Tv(W ) → Tv(X) is an isometric embedding. On the other hand,
Tv(W ) is a CAT(0) space by Lemma 3.4(1). Hence, any two points of Tv(W ) are
joined by a unique geodesic in the metric space Tv(W ). Its image in Tv(X) is also
a geodesic in the metric space Tv(X), because j : Tv(W ) → Tv(X) is an isometric
embedding. Hence j(Tv(W )) is convex in Tv(X) as desired. �

Now let x be an arbitrary point in W . Pick a vertex v of the open cell of W
that contains x. Then, by Lemma 3.8(2), we can find a small real ǫ > 0 and
x′ ∈ BX(v, 1/2) with BX(x′, ǫ) ⊂ BX(v, 1/2), such that (BX(x, ǫ),W ∩ BX(x, ǫ))
is isometric to (BX(x′, ǫ),W ∩ BX(x′, ǫ)). Recall the following isometry given by
Lemma 3.8(1).

ϕ : (BX(v, 1/2),W ∩BX(v, 1/2)) → (BTv(X)(0, 1/2), j(Tv (W )) ∩BTv(X)(0, 1/2))

Since BX(x′, ǫ) ⊂ BX(v, 1/2), we have the following identities.

ϕ(BX(x′, ǫ)) = BTv(X)(ϕ(x
′), ǫ),

ϕ(W ∩BX(x′, ǫ)) = j(Tv(W )) ∩BTv(X)(ϕ(x
′), ǫ).

Since j(Tv(W )) is convex in Tv(X) by Claim 3.9 and since BTv(X)(ϕ(x
′), ǫ) is convex

in the CAT(0) space Tv(X) by [1, Proposition II.1.4(3)], these identities imply that
ϕ(W ∩ BX(x′, ǫ)) is convex in the convex subset BTv(X)(ϕ(x

′), ǫ) of Tv(X). Since
we have the isometries

(BX(x, ǫ),W ∩BX(x, ǫ)) ∼= (BX(x′, ǫ),W ∩BX(x′, ǫ))

∼= (ϕ(BX (x′, ǫ)), ϕ(W ∩BX(x′, ǫ))),
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this in turn implies that W ∩ BX(x, ǫ) is convex in the convex subset BX(x, ǫ) of
X. Hence W ∩ BX(x, ǫ) is convex in X, completing the proof of the if part of
Theorem 2.2.

Though the only if part of Theorem 2.2 may be trivial, we include a proof for
completeness. Suppose that Lk(v,W ) is not a full subcomplex of Lk(v,X). Then
Lk(v,W ) is not π-convex by Lemma 3.5, and so there is a geodesic segment [a, b]
in Lk(v,X) such that [a, b] ∩ Lk(v,W ) = {a, b}. Pick a small t > 0 so that the
geodesic [ta, tb] in Tv(X) is contained in the open ball BTv(X)(0, 1/2). (In fact,
any positive t < 1/2 works.) Since the geodesic [ta, tb] intersects j(Tv(W )) only at
the endpoints, the inverse image of [ta, tb] by the isometry ϕ in Lemma 3.8(1) is a
geodesic in BX(v, 1/2) that intersects W only at the endpoints. Hence W is not
locally convex. �

4. Late additions

Immediately after submission of the first version of this note to the arXiv, we were
informed by Ian Leary that his paper [10] is relevant to the note. In fact, Appendix
B of the paper includes a very simple proof of the main theorem, Theorem 1.1.
Moreover, he extends the theorem to the infinite dimensional case. His aim in that
appendix, suggested by Michah Sageev, was to establish Gromov’s flag criterion [1,
Theorem II.5.20] for infinite dimensional cubical complexes, and he needed the above
result in his argument. He also informed us that Yael Algom-Kfir gave a proof of
Gromov’s flag criterion for infinite dimensional cubical complexes in her master
thesis under the supervision of Sageev.

Shortly after correspondence with Leary, we learned from Takuya Katayama that
the main technical result, Theorem 2.2, which plays a key role in the proof of
Theorem 1.1, immediately follows from the result [5, Theorem 1(2)] due to Crisp
and Wiest. He also informed us of the paper [6] by Farley, which includes a proof
of the fact that a hyperplane in a CAT(0) cubed complex X is convex and that it
divides X into two convex subspaces. (To be precise, it is an immediate consequence
of [6, Section 4], and it is also proved by a slight modification of [6, Proof of Theorem
4.4]. The fact plays a key role in our paper [15]. The desire to give its proof was
the real motivation of this note, because we did not know a reference for that fact
though we knew its combinatorial version established by Sageev [14, the first line in
p.612]).

We thank Ian Leary and Takuya Katayama for these invaluable informations.
Though we do not intend to submit this note to a journal, we upload this revised
version to the arXiv for our record. In this added section of the revised version, we
give (i) a simple proof of the main result following the arguments by Leary [10, Proof
of Theorems B.7 and B.9], (ii) a proof of an assertion in the proof in Crisp-Wiest [5,
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Theorem 1(2)] whose proof is omitted, and (iii) a proof of the convexities of hyper-
planes and the half-spaces bounded by hyperplanes in CAT(0) cubed complexes by
using Theorem 1.1, and its much simpler proof by using Farley’s work [6].

4.1. A simple proof of Theorem 1.1 due to Leary

As we note in the above, it turned out that a very simple proof of Theorem 1.1 (and
so that of Theorem 2.2) had already been given by Leary [10, Theorem B.9]. The
key idea is to consider the double of X along W . We include the proof following his
arguments in [10, Proof of Theorems B.7 and B.9].

Proof of Theorem 1.1 following Leary [10]. Since the only if part is obvious, we prove
the if part. Let X ∗W X be the double of X along W , that is, the quotient space
obtained from two copies of X by identifying the two copies of W . Each of the two
inclusions X → X ∗W X is a map that does not increase distance (since a rectifiable
path in X is mapped to a rectifiable path in X ∗W X of the same length). The
composite map

X → X ∗W X → X ∗X X = X

is the identity, and hence each inclusion map X → X ∗W X is an isometric embed-
ding. Moreover, there is an isometric involution of X ∗W X swapping the copies of
X whose fixed point set is W .

It is easily seen that the assumption that W is combinatorially locally convex
implies that the link of each vertex of X ∗W X is a flag complex. By Gromov’s flag
criterion [1, Theorem II.5.20], it follows that X ∗W X is non-positively curved. Since
X ∗W X is simply-connected by van Kampen’s theorem, this implies that X ∗W X
is a CAT(0) space by the Cartan-Hadamard theorem [1, Theorem II.4.1(2)].

Given any two points x, y ∈ W , consider the unique geodesic [x, y] in the CAT(0)
space X. Then its image in X ∗W X by each of the isometric embeddings is also a
geodesic in X ∗W X. If [x, y] did not lie entirely inside W , its image by the isometric
involution gives another geodesic in the CAT(0) space X ∗W X joining x to y, a
contradiction. Hence [x, y] does lie entirely inside W , and so W is convex in X. �

Leary actually establishes an infinite dimensional versions of Theorem 1.1 and
Gromov’s flag criterion. See his very careful and reader-friendly treatment [10,
Appendices B and C] for the details.

4.2. A supplementary to Crisp-Wiest [5, Theorem 1(2)]

Theorem 2.2 is a direct consequence of the following theorem due to Crisp and
Wiest [5].

Theorem 4.1. [5, Theorem 1(2)] Let X and Y be finite dimensional cubed complexes
and f : X → Y a cubical map. Suppose that Y is locally CAT(0). Then the map
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f is locally an isometric embedding if and only if, for every vertex v ∈ X, the
simplicial map fv : Lk(v,X) → Lk(f(v), Y ) induced by f is injective with image a
full subcomplex of Lk(f(v), Y ).

Here a cubical map is a continuous map induced by a combinatorial map which
takes the interior of each cube onto that of a cube of the same dimension locally
isometrically. See [5, p.443] for a precise definition, and see [6, Definition 2.9] for
a simpler definition when X and Y are cubical complexes. The proposition implic-
itly assumes that Lk(v,X) is a simplicial complex, and we do assume this in the
remainder. If f : X → Y is equal to the inclusion map i : W → X under the setting
of Theorem 2.2, then the assumption is certainly satisfied.

Theorem 4.1 is proved in [5] as a consequence of the following three assertions.

(1) f : X → Y is locally an isometric embedding if and only if, for every point
x ∈ X, the map fx : Sx(X) → Sf(x)(Y ) between the space of directions in-

duced by f is π-distance preserving, i.e., dSf(x)(Y )(f(u), f(u
′)) = π whenever

dSx(X)(u, u
′) = π.

(2) The latter condition in (1) holds if and only if, for every vertex v ∈ X, the
map fv : Sv(X) → Sf(v)(Y ) is π-distance preserving.

(3) The latter condition in (2) holds if and only if, for every vertex v ∈ X, the
simplicial map fv : Lk(v,X) → Lk(f(v), Y ) induced by f is injective with
image a full subcomplex of Lk(f(v), Y ).

The assertion (1) directly follows from Charney [3, Lemma 1.4]. The assertion (3)
corresponds to the key Lemma 3.5 in this note. As noted in [5, the first paragraph
in p.444], the proof of (3) (and our proof of Lemma 3.5) are based on the fact that
any locally geodesic segment in the closed half hemi-sphere S2

+ which has endpoints
in ∂S2

+ and intersect intS2
+ has length at least π, which in turn is a key element of

Gromov’s proof of his flag condition for non-positively curved cubed complexes.
For the assertion (2), Crisp-Wiest [5] only writes that it is an easy consequence

of [3, Lemmas 1.4 and 1.5]. Katayama taught us a detailed proof of (2), which is
essentially a refinement of Lemma 3.8. We present another proof below.

Let x be a point of the cubed complex X in Theorem 4.1, and let C be the cell of
X whose relative interior contains x. Let Lk(C,X) be the subspace of Sx(X), the
space of directions of X at x, consisting of those directions that are normal to C.
(If C is a vertex, Lk(C,X) is defined to be Lk(v,X).) By the (implicit) assumption
that Lk(v,X) is a simplicial complex for every vertex v, we see that Lk(C,X) is
naturally regarded as an (all-right spherical) simplicial complex, and the following
hold.

(a) If k := dimC > 0, then Sx(X) is isometric to the spherical join Sk−1 ∗
Lk(C,X), where Sk−1 is the unit (k − 1)-sphere (see [4, Lemma 2.5]).
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(b) For a vertex v of C, we have the following isomorphism between simplicial
complexes.

Lk(C,X) ∼= Lk(Lk(v,C),Lk(v,X))

Here Lk(Lk(v,C),Lk(v,X)) is the (simplicial) link of the simplex Lk(v,C)
of the simplicial complex Lk(v,X).

The assertion (2) is proved as follows. By (a) and [3, Lemma 1.5], fx : Sx(X) →
Sf(x)(Y ) is π-distance preserving if and only if fx : Lk(C,X) → Lk(f(C), Y ) is
π-distance preserving, where the second fx is the restriction of the first one to the
subspace Lk(C,X) ⊂ Sx(X). By [3, Lemma 1.6], the latter condition holds if and
only if fx : Lk(C,X) → Lk(f(C), Y ) is injective and its image fx(Lk(C,X)) is a
full subcomplex of Lk(f(C), Y ). By (b), the last condition holds for every x ∈ X,
if and only if, for every vertex v and for every cell C of X containing v, (i) the
simplicial map fv : Lk(v,X) → Lk(f(v), Y ) is injective, (ii) fv(Lk(v,X)) is full in
Lk(f(v), Y ), and (iii) fv(Lk(C,X)) is full in Lk(f(C), Y ). We can easily see that
(iii) is a consequence of (i) and (ii). Hence, we obtain the assertion (2).

4.3. Convexities of hyperplanes and their complementary halfspaces in CAT(0)
cubical complexes

We give a proof of the following theorem by using Theorem 1.1.

Theorem 4.2. Let X be a finite dimensional CAT(0) cubical complex and Σ a
hyperplane in X. Then Σ is convex in X. Moreover, Σ divides X into two closed
convex subspaces.

Recall that a cubical complex is a cubed complex such that each cell is isometric
to a cube Inλ and that the link of every vertex is a simplicial complex [1, Exam-
ple I.7.40(3)]. By [10, Theorem C.4], every CAT(0) cubed complex is cubical. A
hyperplane in a CAT(0) cubical complex X is a subspace of X which is obtained
as the union of a family of midcubes of cells (cubes) in X, that satisfies a certain
maximality condition. (Here a midcube of a cube In is the subspace of the form
In1 × {1/2} × In2 with n1 + n2 = n − 1.) For a precise definition of a hyper-
plane, see [6, Definition 4.5] (cf. [14, Section 2.4], [9, Definition 2.2]). The following
fundamental theorem is proved by Sageev [14, Theorem 4.10].

Theorem 4.3. Suppose X is a CAT(0) cubical complex and Σ is a hyperplane in
X. Then Σ does not self-intersect, namely, for each cube of X, its intersection with
Σ is either empty or a single midcube. Moreover, X \Σ has exactly two components.

Proof of Theorem 4.2. Let X ′ be the first cubical subdivision of X. Then the hy-
perplane Σ is regarded as a subcomplex of X ′. Let v be a vertex of Σ ⊂ X ′. Then,
by using the first assertion of Theorem 4.3, we see that Lk(v,X ′) is the spherical
join (or the spherical suspension) S0 ∗Lk(v,Σ). Hence Lk(v,Σ) is a full subcomplex
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of Lk(v,X ′). By Theorem 1.1, this implies that Σ is convex in X ′, completing the
proof of the first assertion.

To prove the second assertion, recall the second assertion of Theorem 4.3, and
let X1 and X2 be the closures of the components of X ′ \ Σ. Regard X1 and X2 as
subcomplexes of X ′, Then we can easily check that the link of each vertex v of each
of X1 and X2 is a full subcomplex of Lk(v,X ′). Hence, X1 and X2 are convex in
X ′ by Theorem 1.1, completing the proof of the second assertion. �

Finally, we recall Farley’s results in [6] that immediately imply Theorem 4.2. For
every finite dimensional CAT(0) cubical complex X, Farley constructs a cubical
complex B(X) and a map πB : B(X) → X that satisfy the following conditions for
every component B of B(X).

(1) The map πB embeds B isometrically into X ([6, Theorem 4.1]).
(2) There is a hight function h : B → [0, 1], such that, for each t ∈ [0, 1],

Bt := h−1(t) is a closed convex set of B(X). The space πB(Bt) is a closed
convex subset of X ([6, lemma 4.3(1)]). Moreover, πB(B1/2) is a hyperplane
([6, Definition 4.5]).

(3) π0 × h : B → B0 × [0, 1] is an isometry, where π0 is the projection onto the
closed convex subspace B0 ([6, lemma 4.3(2)]).

(4) Each subspace πB(Bt) (0 < t < 1) separates X into two open convex com-
plementary half-spaces ([6, Theorem 4.3]).

Theorem 4.2 immediately follows from these results. In fact, the convexity of a
hyperplane is included in (2), and the convexity of closed half-spaces bounded by a
hyperplane follows from the fact that every such closed half-space is the intersection
of a family of convex open half-spaces in (4). It can be also proved directly by a
slight modification of the final step of [6, Proof of Theorem 4.4].

We note that the assertion (1) is obtained by a nice application of Crisp-Wiest [5,
Theorem 1(2)], which we explained in Subsection 4.2. Moreover, he observes that
the result of Crisp-Wiest and so Theorem 4.2 hold under the weaker assumption that
the cubical complex X is locally finite-dimensional, i.e., the link of each vertex is a
finite-dimensional simplicial complex [6, Definition 2.1]. According to [10, Theorem
A.6], this is a necessary and sufficient condition for a cubical complex to be complete.
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xii+287 pp.

[13] C. Ramos-Cuevas, Convexity is a local property in CAT(κ) spaces, Mexican mathematicians
abroad: recent contributions, 189–196, Contemp. Math., 657, Aportaciones Mat., Amer. Math.
Soc., Providence, RI, 2016.

[14] M. Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London Math.
Soc. (3) 71 (1995), no. 3, 585–617.

[15] S. Sakai and M. Sakuma Two-parabolic-generator subgroups of hyperbolic 3-manifold groups,
arXiv:2302.11031 [math.GT].

[16] StackExchanges, Convex subcomplexes of CAT(0) cubical complexes, https://mathoverflow.
net/questions/194235/convex-subcomplexes-of-cat0-cubical-complexes
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