
Snakes and Ladders: a Treewidth Story

Steven Chaplick1, Steven Kelk1, Ruben Meuwese1, Matúš Mihalák1, and
Georgios Stamoulis1

Dept. Advanced Computing Sciences, Maastricht University, the Netherlands

Abstract. Let G be an undirected graph. We say that G contains a
ladder of length k if the 2 × (k + 1) grid graph is an induced subgraph
of G that is only connected to the rest of G via its four cornerpoints.
We prove that if all the ladders contained in G are reduced to length
4, the treewidth remains unchanged (and that this bound is tight). Our
result indicates that, when computing the treewidth of a graph, long
ladders can simply be reduced, and that minimal forbidden minors for
bounded treewidth graphs cannot contain long ladders. Our result also
settles an open problem from algorithmic phylogenetics: the common
chain reduction rule, used to simplify the comparison of two evolutionary
trees, is treewidth-preserving in the display graph of the two trees.

1 Introduction

This is a story about treewidth, but it starts in the world of biology. A phylo-
genetic tree on a set of leaf labels X is a binary tree representing the evolution
of X. These are studied extensively in computational biology [16]. Given two
such trees a natural aim is to quantify their topological dissimilarity [12]. Many
such dissimilarity measures have been devised and they are often NP-hard to
compute, stimulating the application of techniques from parameterized complex-
ity [7]. Recently there has been a growing focus on treewidth. This is because, if
one takes two phylogenetic trees on X and identifies leaves with the same label,
we obtain an auxiliary graph structure known as the display graph [6]. Crucially,
the treewidth of this graph is often bounded by a function of the dissimilarity
measure that we wish to compute [13]. This has led to the use of Courcelle’s The-
orem within phylogenetics (see e.g. [13,11]) and explicit dynamic programs run-
ning over tree decompositions; see [10] and references therein. In [14] the spin-off
question was posed: is the treewidth of the display graph actually a meaningful
measure of phylogenetic dissimilarity in itself - as opposed to purely being a
route to efficient algorithms? A closely-related question was whether parameter-
preserving reduction rules, applied to two phylogenetic trees to shrink them in
size, also preserve the treewidth of the display graph? The well-known subtree
reduction rule is certainly treewidth preserving [14]. However, the question re-
mained whether the common chain reduction rule [2] is treewidth-preserving.
A common chain is, informally, a sequence of leaf labels x1, . . . , xk that has
the same order in both trees. Concretely, the question arose [14]: is it possible
to truncate a common chain to constant length such that the treewidth of the

ar
X

iv
:2

30
2.

10
66

2v
1 

 [
m

at
h.

C
O

] 
 2

1 
Fe

b 
20

23



2 S. Chaplick et al.

display graph is preserved? Common chains form ladder-like structures in the
display graph, i.e., this question is about how far ladders can be reduced in
length without causing the treewidth to decrease.

In this article we answer this question affirmatively, and more generally.
Namely, we do not restrict ourselves to display graphs, but consider arbitrary
graphs. A ladder L of length k ≥ 1 of a graph G is a 2 × (k + 1) grid graph
such that L induces (only) itself and that L is only connected to the rest of
the graph by its four cornerpoints. First, we prove that a ladder L can be re-
duced to length 4 without causing the treewidth to decrease, and that this is
best possible: reducing to length 3 sometimes causes the treewidth to decrease.
We also show that if tw(G) ≥ 4 then reduction to length 3 is safe and, again,
best possible. These tight examples are also shown to exist for higher treewidths.
Returning to phylogenetics, and thus when G is a display graph, we leverage the
extra structure in these graphs to show that common chains can be reduced to
4 leaf labels (and thus the underlying ladder to length 3) without altering the
treewidth: this result is thus slightly stronger than on general G.

Our proofs are based on first principles: we directly modify a tree decompo-
sition to get what we need. In doing so we come across the problem that, unless
otherwise brought under control, the set of bags that contain a given ladder ver-
tex of G can wind and twist through the tree decomposition in very pathological
ways. Getting these snakes under control is where much of the hard work and
creativity lies, and is the inspiration for the title of this paper.

From a graph-theoretic perspective our results have the following significance.
First, it is standard folklore that shortening paths (i.e. suppressing vertices of
degree 2) is treewidth-preserving, but there is seemingly little in the literature
about shortening recursive structures that are slightly more complex than paths,
such as ladders. (Note that Sanders [15] did consider ladders, but only for rec-
ognizing graphs of treewidth at most 4, and in such a way that the reduction
destroys the ladder topology). Second, our results imply a new safe reduction rule
for the computation of treewidth; a survey of other reduction rules for treewidth
can be found in [1]. Third, we were unable to find sufficiently precise machinery,
characterisations of treewidth or restricted classes of tree decomposition in the
literature that would facilitate our results. Perhaps most closely related to our
ladders are the more general protrusions: low treewidth subgraphs that “hang”
from a small boundary [9, Ch. 15-16]. There are general (algorithmic) results [5]
wherein one can safely cut out a protrusion and replace it with a graph of
parameter-proportional size instead – these are based on a problem having finite
integer index [4]. Such techniques might plausibly be used to prove that there is
some constant to which ladders might safely be shortened, but our tight bounds
seem out of their reach. Finally, the results imply that minimal forbidden minors
for bounded treewidth cannot have long ladders.

The above context leads us to ask whether our results on ladders can be
(i) (elegantly) generalized to more complex structures than ladders; (ii) can
they be made constructive; (iii) can recognition of such structures be performed
efficiently? We hope that our results will stimulate new research in this direction.



Snakes and Ladders: a Treewidth Story 3

2 Preliminaries

We follow [14] for notation. A tree decomposition of an undirected graph G =
(V,E) is a pair (B,T) where B = {B1, . . . , Bq}, Bi ⊆ V (G), is a multiset of bags
and T is a tree whose q nodes are in bijection with B, and

(tw1) ∪qi=1Bi = V (G);
(tw2) ∀e = {u, v} ∈ E(G),∃Bi ∈ B s.t. {u, v} ⊆ Bi;
(tw3) ∀v ∈ V (G), all the bags Bi that contain v form a connected subtree of T.

The width of (B,T) is equal to maxqi=1 |Bi| − 1. The treewidth of G, denoted
tw(G), is the smallest width among all tree decompositions of G. Given a tree
decomposition T of a graph G, we denote by V (T) the (multi)set of its bags and
by E(T) the set of its edges. Property (tw3) is also known as running intersection
property. Without loss of generality, we consider only connected graphs G.

Note that subdividing an edge {u, v} of G with a new degree-2 vertex uv does
not change the treewidth of G. In the other direction, suppression of degree-2
vertices is also treewidth preserving unless it causes the only cycle in a graph to
disappear (e.g. if G is a triangle); unlike [14] we will never encounter this bound-
ary case. An equivalent definition of treewidth is based on chordal graphs. Recall
that a graph G is chordal if every induced cycle in G has exactly three vertices.
The treewidth of G is the minimum, ranging over all chordal completions c(G)
of G (we add edges until G becomes chordal), of the size of the maximum clique
in c(G) minus one. Under this definition, each bag of a tree decomposition of G
naturally corresponds to a maximal clique in a chordal completion of G [3].

We say that a graph H is a minor of another graph G if H can be obtained
from G by deleting edges and vertices and by contracting edges.

A ladder L of length k ≥ 1 is a 2× (k+ 1) grid graph. A square of L is a set
of vertices of L that induce a 4-cycle in L. We call the endpoints of L, i.e., the
degree-2 vertices of L, the cornerpoints of L. We say that a graph G contains L
if the following holds (see Fig. 1 for illustration):

1. The subgraph induced by vertices of L is L itself.
2. Only cornerpoints of L can be incident to an edge with an endpoint outside L.

Observe that a ladder of length k is a minor of the ladder of length (k + 1).
Treewidth is non-increasing under the action of taking minors, so reducing the
length of a ladder in a graph cannot increase the treewidth of the graph.

Suppose G contains a ladder L. We say that L disconnects G if L contains
a square {u, v, w, x} such that the two horizontal edges of the square (following
Fig. 1, these are the edges {u,w} and {v, x}) form an edge cut of the entire
graph G. Note that a square of L has this property if and only if all squares of L
do. Also, if we reduce the length of a ladder L to obtain a shorter ladder L′, L′
disconnects G if and only if L does. We recall a number of results from Section
5.2 of [14]; these will form the starting point for our work.

Lemma 1 ([14]). Suppose G contains a disconnecting ladder L. The ladder L
can be increased arbitrarily in length without increasing the treewidth of G.



4 S. Chaplick et al.

a

b

c

d

u w

v x

Fig. 1. A ladder L of length 3 with
corner points a, b, c, d.

a

b

c

d

u w

v x

u
′

v
′

Fig. 2. Inserting a new edge {u′, v′} into
ladder L results in ladder L′ of length 4.

For the more general case, the following weaker result is known.

Lemma 2 ([14]). Suppose G has tw(G) ≥ 3 and contains a ladder. If the ladder
is increased arbitrarily in length, the treewidth of G increases by at most one.

We now make the following (new) observation.

Observation 1 Suppose G contains a ladder L of length 2 or longer. If L is
not disconnecting, then tw(G) ≥ 3.

We can leverage Observation 1 to reformulate Lemma 2 without the tw(G) ≥
3 assumption. However it then only applies to ladders of size at least two.

Lemma 3. Suppose G contains a ladder L with length at least 2. If L is in-
creased arbitrarily in length, the treewidth of the graph increases by at most one.

If we start from a sufficiently long ladder, can the ladder be increased in length
without increasing the treewidth? Past research has the following partial result.

Theorem 1 ([14]). Let G be a graph with tw(G) = k. There is a value f(k) such
that if G contains a ladder of length f(k) or longer, the ladder can be increased
in length arbitrarily without altering (in particular: increasing) the treewidth.

Ideally we would like a single, universal value that does not depend on k. In this
article we will show that such a single, universal constant does exist.

3 Results

We first consider graphs of treewidth at least 4; we later remove this restriction.

Theorem 2. Let G be a graph with tw(G) ≥ 4. If G has a ladder L of length 3
or higher, the ladder can be lengthened arbitrarily without changing the treewidth.

Proof. Due to Lemma 1 we can assume that L is not disconnecting. Our general
strategy is to show that if G contains the ladder L shown in Fig. 1, we can insert
an extra ‘rung’ in the ladder without increasing the treewidth, thus obtaining
a ladder with one extra square (see Fig. 2). The extension of the ladder by one
square can then be iterated to obtain an arbitrary length ladder.



Snakes and Ladders: a Treewidth Story 5

Let L be the ladder shown in Fig. 1, and assume that G contains L. Let
(B,T) be a minimum-width tree decomposition for G. We proceed with a case
analysis. The cases are cumulative: we will assume that earlier cases do not hold.

Case 1. Suppose that B contains a bag B such that all four vertices
from one of the squares of L are in B. Let {u, v, w, x}, say, be the square
of L contained in bag B, where the position of the vertices is as in Fig. 1.
We prolong the ladder as in Fig. 2 and create a valid tree decomposition for
the new graph as follows: we introduce a new size-5 bag B′ = {u′, u, v, w, x}
which we attach pendant to B in the tree decomposition, and a new size-5 bag
B′′ = {u′, v′, v, w, x} which we attach pendant to B′. Observe that this is a
valid tree decomposition for the new graph. Due to the fact that tw(G) ≥ 4,
the treewidth does not increase, and the statement follows. Note that in this
construction B′′ contains all four of {u′, w, v′, x}, which is a square of the new
ladder, so the construction can be applied iteratively many times as desired to
produce a ladder of arbitrary length.

Case 2. Suppose that B contains a bag B such that |B ∩ {a, u, w, c}| ≥ 2
and |B∩{b, v, x, d}| ≥ 2. Let h1, h2 be two distinct vertices from B∩{a, u, w, c}
and l1, l2 be two distinct vertices from B ∩ {b, v, x, d}.

Observe that it is possible to partition the sequence a, u, w, c into two disjoint
intervals H1, H2, and the sequence b, v, x, d into two disjoint intervals L1, L2 such
that h1 ∈ H1, h2 ∈ H2, l1 ∈ L1 and l2 ∈ L2. If we contract the edges and vertices
in each of H1, H2, L1, L2 we obtain a new graph G′ which is a minor of G. Note
that G′ is similar to G except that the ladder now has two fewer squares – the
three original squares have been replaced by a square whose corners correspond
to H1, H2, L1, L2. This square might contain a diagonal but we simply delete
this. We have tw(G′) ≤ tw(G) because treewidth is non-increasing under taking
minors. Now, by projecting the contraction operations onto (B,T) in the usual
way1, we obtain a tree decomposition (B′,T′) for G′ such that the width of T′
is less than or equal to the width of T. The bag in (B′,T′) corresponding to B,
let us call this B′, contains all four vertices H1, H2, L1, L2. Clearly, T′ is a valid
tree decomposition for G′. We distinguish two subcases.

1. If T′ has width at least 4, we can repeatedly apply the Case 1 transformation
to B′ to produce an arbitrarily long ladder without raising the width of T′.
The resulting decomposition will thus have width no larger than T.

2. Suppose T′ has width strictly less than 4, and thus strictly less than the
width of T. The width of T′ is at least 3 because of the bag containing
H1, H2, L1, L2. Case 1 introduces size-5 bags and can thus raise the width
of the decomposition by at most 1. Hence we again obtain a decomposition
whose width is no larger than T for a graph with an arbitrarily long ladder.

This concludes Case 2. Moving on, any chordalization of Gmust add the diagonal
{w, v} and/or the diagonal {u, x}. Hence we can assume that there is a bag

1 In every bag of the decomposition vertices from H1 all receive the vertex label H1,
and similarly for the other subsets H2, L1, L2.



6 S. Chaplick et al.

containing {u,w, v} and another bag containing {v, w, x}. (If the other diagonal
is added we can simply flip the labelling of the vertices in the horizontal axis i.e.
a ⇔ b, u ⇔ v and so on). As Case 1 does not hold we can assume that the bag
containing {u,w, v} is distinct from the bag containing {v, w, x}.

For the benefit of later cases we impose extra structure on our choice of
minimum-width tree decomposition of G. The distance of decomposition (B,T)
is the minimum, ranging over all pairs of bags B1, B2 such that B1 contains
{u,w, v} and B2 contains {v, w, x}, of the length of the path in T from B1 to B2.

We henceforth let (B,T) be a minimum-width tree decomposition of
G such that, ranging over all minimum-width tree decompositions,
the distance is minimized. Clearly such a tree decomposition exists.

Let B1, B2 be two bags from B with {u,w, v} ⊆ B1, {v, w, x} ⊆ B2 which
achieve this minimum distance. Let P be the path of bags from B1 to B2, in-
cluding B1 and B2. We assume that P is oriented left to right, with B1 at the
left end and B2 on the right. As Case 2 does not hold, we obtain the following.

Observation 2 B1 does not contain b, x or d, and B2 does not contain a, u, c.

Case 3. B1 and B2 are adjacent in P . Although this could be subsumed into
a later case it introduces important machinery; we therefore treat it separately.

Subcase 3.1: Suppose a ∈ B1 (or, completely symmetrically, d ∈ B2). Note
that in this case all the edges in G incident to u are covered by B1. Hence,
we can safely delete u from all bags except B1. Next, we create a new bag
B∗ = {a, u, w, v} and attach it pendant to B1, and finally we replace u with x in
B1. It can be easily verified that this is a valid tree decomposition for G and that
the width is not increased, so it is still a minimum-width tree decomposition.
However, B1 is now a candidate for Case 2, and we are done. Note that replacing
u with x in B1 is only possible because B1 is next to B2 in P .

Subcase 3.2: Suppose Subcase 3.1 does not hold. Then a 6∈ B1 (and, symmet-
rically, d 6∈ B2). Putting all earlier insights together, we see a, b, x, d 6∈ B1 and
a, u, c, d 6∈ B2. Observe that a, which is not in B2, is not in any bag to the right
of B2. If it was, then the fact that some bag contains the edge {a, u}, and the
running intersection property, entails that B2 would contain at least one of a and
u, neither of which is permitted. Hence, if a appears in bags other than B1, they
are all in the left part of the decomposition. Completely symmetrically, if d is in
bags other than B2, they are all in the right part of the decomposition. Because
of this, b can only appear on the left of the decomposition (because the edge
{a, b} has to be covered) and c can only be on the right of the decomposition
(because of the edge {c, d}). Summarising, B1 (respectively, B2) does not contain
a or b (respectively, c or d) and all bags containing a or b (respectively, c or d)
are in the left (respectively, right) part of the decomposition. Note that c 6∈ B1.
This is because edge {c, d} has to be in some bag, and this must necessarily be
to the right of B2: but then running intersection puts at least one of c, d in B2,
contradiction. Symmetrically, b 6∈ B2. So a, b, c, d, x 6∈ B1 and a, b, c, d, u 6∈ B2.



Snakes and Ladders: a Treewidth Story 7

We now describe a construction that we will use extensively: reeling in (the
snakes) a and b. Observe that, due to coverage of the edge {a, u}, and running
intersection, there is a simple path of bags pua starting at B1 that all contain u
such that the endpoint of the path also contains a. The path will necessarily be
entirely on the left of the decomposition. Due to coverage of the edge {b, v} there
is an analogously-defined simple path pvb. (Note that pua and pvb both exit B1

via the same bag B′. If they exited via different bags, coverage of the edge {a, b}
would force at least one of a, b to be in B1, yielding a contradiction). Now, in the
bags along pua, except B1, we relabel u to be a, and in the bags along pvb, except
B1, we relabel v to be b. This is no longer necessarily a valid tree decomposition,
because coverage of the edges {u, a} and {v, b} is no longer guaranteed, but we
shall address this in due course. Next we delete the vertices u,w, v from all bags
on the left of the decomposition, except B1; they will not be needed. (The only
reason that w would be in a bag on the left, would be to meet c, since B1 and
B2 already cover the edges {u,w} and {w, x}. But then, due to coverage of the
edge {c, d} and the fact that d only appears on the right of the decomposition,
running intersection would put at least one of c, d in B1, contradiction.) Observe
that B′ contains {a, b}. We replace B1 with 5 copies of itself, and place these
bags in a path such that the leftmost copy is adjacent to B′, the rightmost copy
is adjacent to B2, and all other bags that were originally adjacent to B1 can
(arbitrarily) be made adjacent to the leftmost copy. In the 5 copied bags we
replace {u,w, v} respectively with: {a, u′, b}, {u′, b, v′}, {u′, u, v′}, {v′, u, v} and
{u,w, v}. It can be verified that this is a valid tree decomposition for G′, and our
construction did not inflate the treewidth - we either deleted vertices from bags
or relabelled vertices that were already in bags - so we are done. The operation
can easily be telescoped, if desired, to achieve an arbitrarily long ladder.
Case 4. P contains at least one bag other than B1 and B2.

Observation 3 All bags in P contain v, w, by the running intersection property.

We partition the bags of the decomposition into (i) B1, (ii) bags left of B1,
(iii) B2, (iv) bags right of B2, (v) all other bags (which we call the interior).

Recall that b, d, x 6∈ B1, a, c, u 6∈ B2 (because Case 2 does not hold).

Observation 4 No bag in the interior contains u or x. B1 does not contain x,
and no bag on the left contains x. Symmetrically, B2 does not contain u, and no
bag on the right contains u.

Observation 5 At least one of the following is true: a ∈ B1, a is in a bag on
the left. Symmetrically, at least one of the following is true: d ∈ B2, d is in a
bag on the right.

Now, suppose w is somewhere on the left. We will show that then either w can
be deleted from the bags on the left, or Case 2 holds. A symmetrical analysis
will hold if v is somewhere on the right. Specifically, the only possible reason for
w to be on the left would be to cover the edge {w, c} – all other edges incident
to w are already covered by B1 and B2. If no bags on the left contain c, we can



8 S. Chaplick et al.

simply delete w from all bags on the left. On the other hand, if some bag on the
left contains c, then c ∈ B1, because: d 6∈ B1, the need to cover the edge {c, d},
the presence of d on the other ‘side’ of the decomposition (Observation 5), and
running intersection. So we have that c, u, w, v ∈ B1. This bag already covers all
edges incident to w, except possibly the edge {w, x}. To address this, we replace
w everywhere in the tree decomposition with x - this is a legal tree decomposition
because some bag contains {w, x} - and then add a bag B′ = {u,w, x, c} pendant
to B. This new bag serves to cover all edges incident to w. But B1 now contains
u, v, c, x, so Case 2 applies, and we are done! Hence, we can assume that w is
nowhere on the left, and, symmetrically, that v is nowhere on the right. In fact,
the above argument can, independently of w, be used to trigger Case 2 whenever
c ∈ B1 or b ∈ B2. So at this stage of the proof we know: b, c, d, x 6∈ B1 (and c is
not on the left) and a, b, c, u 6∈ B2 (and b is not on the right).

Subcase 4.1: Suppose a 6∈ B1. Then, a must only be on the left. It cannot be
in the interior (or on the right) because the edge {u, a} must be covered, a 6∈ B1,
u ∈ B1, and u is not in the interior (Observation 4). Because a is on the left,
and because some bag must contain the edge {a, b}, b must also be on the left.
In fact b is only on the left. The presence of b both on the left and in the interior
(or on the right) would force b into B1 by running intersection, contradicting the
fact that b 6∈ B1. So a, b are only on the left. We are now in a situation similar to
Subcase 3.2. We use the same reeling in a and b construction and we are done.

Subcase 4.2: Suppose a ∈ B1. Note that here u has all its incident edges
covered by B1, so u can be deleted from all other bags. Recall that b 6∈ B1. Due
to edge {b, v} some bag must contain both v and b. Suppose there is such a bag
on the left. We attach a new bag {a, u, w, v} pendant to B1 and delete u from
B1. We put x in B1 and to ensure running intersection we replace v with x in
all bags anywhere to the right of B1. This is safe, because in the part of the
decomposition right of B1, v only needs to meet x (and not b, because v meets
b on the left). Thus, B1 now contains {a, v, w, x} and Case 2 can be applied.

Hence, we conclude that {v, b} is not in a bag on the left. Because of this
v can safely be deleted from all bags on the left. That is because any path pvb
that starts at B1 and finishes at a bag containing b must go via the interior. In
fact, such a path must avoid B2, and is thus entirely contained in the interior.
It avoids B2 because a, b 6∈ B2 and {v, b} cannot be in a bag to the right: if it
was, coverage of edge {a, b}, the fact that a ∈ B1 and running intersection would
mean that at least one of a and b is in B2, yielding a contradiction.

The only case that remains is a ∈ B1, {v, b} is not in a bag on the left and
thus pvb is in the interior. By symmetry, we assume that d ∈ B2, {w, c} is not in
a bag on the right and thus pwc is in the interior. Consider any path pab starting
at B1, defined in the now familiar way. Note that no bag on the left of B1 can
contain b. This is because {v, b} is in a bag in the interior: hence if b was also on
the left, b would then by running intersection be in B1 and we would be in an
earlier case. This means that pab must go via the interior. Suppose the following
operation gives a valid tree decomposition: delete u from B1, attach a new bag
B∗ = {a, u, w, v} pendant to B1, and relabel all occurrences of a along the path



Snakes and Ladders: a Treewidth Story 9

a
u
v
w

x
v
w

d
B1

B2

b, d, x /∈ B1 a, c, u /∈ B2

b
v

b
a d

c
some z /∈ L

Fig. 3. Path pab goes via the interior, but it cannot be relabelled to b because it is
used by other paths paz to some neighbour z of a that does not lie on the ladder.

pab (except in B1) with b. Then we are done, because we are back in Case 2. A
symmetrical situation holds for the path pdc.

Assume therefore that this transformation does not give a valid tree decom-
position. This is the most complicated case to deal with. It is depicted in Fig.
3. The issue here is that the path pab (respectively, pdc) necessarily goes via the
interior, but cannot be relabelled with b (respectively, c) because the path is also
part of paz (respectively, pdz) where z is some non-ladder vertex that is adjacent
to a (respectively d). We deal with this as follows. We argue that some bag in
the decomposition must contain a, b, v (and possibly other vertices). Suppose
this is not the case. By standard chordalization arguments, every chordalization
adds at least one diagonal edge to every square of the ladder. If {a, b, v} are
not together in a bag, then this is because the corresponding chordalization did
not add the diagonal {a, v} to square {a, u, b, v}. Hence, the chordalization must
have added the diagonal {u, b}. This would in turn mean that some bag contains
{a, u, b}. Such a bag must be on the interior, because this is the only place that
b can be found. However, no bags in the interior contain u – contradiction.

Hence, some bag B′ indeed contains {a, b, v}. Again, because b is only on
the interior, B′ must be in the interior. There could be multiple such bags, but
this does not harm us. Let Bv-done be the rightmost bag on the path P that is
part of a path, starting from B1, from a to some bag B′ containing {a, b, v}. Let
Ba-done be the rightmost bag on P that contains a. Note that Bv-done contains
a (because of running intersection: a ∈ B1 and a ∈ B′) and v, w (because it lies
on P ). We also have a, v, w ∈ Ba-done. By construction, Bv-done is either equal
to Ba-done or left of it. This is important because it means that the only reason
v might need to be in bags to the right of Ba-done is to reach a bag containing x
(i.e. to cover the edge {v, x}) – all other edges are already covered elsewhere in
the decomposition; in particular, edge {v, b} is covered by the bag B′ containing
{a, b, v}. See Fig. 4 for clarification. Recall that none of the bags on the path P
contain both a and d. (If they did, there would be a bag containing {a, d, v, w}
and we would be in Case 2, done.) We also know that some path pdc goes via
the interior and thus that the penultimate bag on P (i.e. the one before B2)
thus definitely contains d. (To clarify: c 6∈ B2, d ∈ B2, the edge {c, d} must be
covered, and c is only in the interior). Combining these insights tells us that this
penultimate bag definitely does not contain a, and hence Ba-done is not equal to



10 S. Chaplick et al.

a
u
v
w

x
v
w

d
B1

B2

b, c, d, x /∈ B1 a, b, c, u /∈ B2

b

v d
c

Bv-done Ba-done

aB′

Fig. 4. The bags B′, Bv-done and Ba-done illustrated. Note that Ba-done cannot be the
penultimate bag on the path P from B1 to B2, due to the presence of d in that bag.

the penultimate bag; it is further left. This fact is crucial. Consider Ba-done and
the bag immediately to its right on P . Between these two bags we insert a copy
of Ba-done, call it Br, remove a from Br (i.e. forget it), and add the element x
to it instead. Finally, we switch v to x in all bags on P right of Br, including B2

itself, and delete v from all bags in the tree decomposition that are anywhere
to the right of Br; there is no point having them there. It requires some careful
checking but this is a valid (minimum-width) tree decomposition. Moreover, Br

contains w, v, x. The fact that Ba-done was not the penultimate bag of P , means
that the length of the path from B1 to Br is strictly less than the length of the
path from B1 to B2: contradiction on the assumption that these were the closest
bags containing {u,w, v} and {w, v, x} respectively. We are done.

We now deal with the situation when the tw(G) ≥ 4 assumption is removed.

Lemma 4. If G has a ladder L of length 5 or longer, the ladder can be increased
in length arbitrarily without altering (in particular: increasing) the treewidth.
This holds irrespective of the treewidth of G.

Proof. Let L be a ladder of length 5 or longer. We can assume that L is not
disconnecting and tw(G) ≤ 3. We select the three most central squares and
label these as in Fig. 1. These are flanked on both sides by at least one other
square. Hence, a, b, c, d each has exactly one neighbour outside the 3 squares,
let us call these a′, b′, c′, d′ respectively, where {a′, b′} is an edge and {c′, d′} is
an edge. Now, tw(G) = 3 because L is not disconnecting. The only part of the
proof of Theorem 2 that does not work for tw(G) = 3 is Case 1 and (indirectly)
Case 2 because these create size-5 bags. We show that neither case can hold.

Consider Case 1. Let B be a bag containing one of the three most central
squares S of the ladder (these are the only squares to which Case 1 is ever ap-
plied). A small tree decomposition is one where no bag is a subset of another. If
a tree decomposition is not small, then by running intersection it must contain
two adjacent bags B†, B‡ such that B† ⊆ B‡. The two bags can then be safely
merged into B‡. By repeating this a small tree decomposition can be obtained
without raising the width of the original minimum-width decomposition. Fur-
thermore, some bag B will still exist containing S. If B has five or more vertices
we immediately have tw(G) ≥ 4 and we are done. Otherwise, let B′ be any bag
adjacent to B; such a bag must exist because G has more than 4 vertices. Due



Snakes and Ladders: a Treewidth Story 11

to the smallness of the decomposition we have B 6⊆ B′ and B′ 6⊆ B. Hence,
B ∩B′ ⊂ B and B ∩B′ ⊂ B′. A separator is a subset of vertices whose deletion
disconnects the graph. Now, B∩B′ is by construction, and the definition of tree
decompositions a separator of G. However, due to our use of the three central
squares, S is not a separator, and no subset of it is a separator either; the inclu-
sion of a′, b′, c′, d′ and the edges {a′, b′} and {c′, d}, alongside the fact that L is
not disconnecting, ensure this. This yields a contradiction. Hence Case 1 implies
tw(G) ≥ 4 i.e. it cannot happen when tw(G) = 3.

We are left with Case 2. This case replaces the three centremost squares
with a single square, and deletes any diagonals that this single square might
have, to obtain a new graph G′. We have tw(G′) ≤ tw(G), by minors. Note that
tw(G′) ≥ 3 because the shorter ladder in G′ (which has length at least 3) is still
disconnecting. Hence, tw(G′) = tw(G) = 3. The decomposition T′ of G′ obtained
by projecting the contraction operations onto the tree decomposition T of G, is a
valid tree decomposition (as argued in Case 2) with the property that the width
of T′ is less than or equal to the width of T. T′ cannot have width less than 3,
so it must have width 3. Hence it is a tree decomposition of G′ in which all bags
have at most four vertices. We then transform T′ into a small tree composition:
this does not raise the width of the decomposition, and every bag prior to the
transformation either survives or is absorbed into another. Consider the bag B′

containingH1, H2, L1, L2. The presence of a′, b′, c,′ , d′ in G′ and the fact that the
ladder in G′ is not disconnecting, means that H1, H2, L1, L2 is not a separator
for G′, and neither is any subset of those four vertices. But the intersection of
B′ with any neighbouring bag must be a separator. Hence B′ must contain a
fifth vertex, contradiction. So Case 2 cannot happen when tw(G) = 3.

We can, however, still do better. The following proof is in the appendix.

Theorem 3. If G has a ladder L of length 4 or longer, the ladder can be
increased in length arbitrarily without altering (in particular: increasing) the
treewidth. This holds irrespective of the treewidth of G.

Tightness. The constant 4 in the statement of Theorem 3 is equal to the con-
stant obtained for the ‘bottleneck’ case tw(G) = 3. An improved constant 3 for
this case is not possible, as Fig. 5 shows. It is natural to ask whether, when
tw(G) ≥ 4, we can start from ladders of length 2, rather than 3. This is also not
possible. See Fig. 6. In fact, we have examples up to treewidth 20. These can
be found at https://github.com/skelk2001/snakes_and_ladders. We con-
jecture that this holds for all treewidths, but defer this to future work.

Implications for phylogenetics. A phylogenetic tree is a binary tree whose
leaves are bijectively labelled by a set X. The display graph of T1, T2 on X is
obtained by identifying leaves with the same label. In [14] it was asked whether
common chains could be truncated to constant length without lowering the
treewidth of the display graph. Theorem 3 establishes that the answer is yes. In
fact, due to the restricted structure of display graphs, we can prove a stronger
result: truncation to 4 leaves (i.e. 3 squares) is safe, and this is best possible.
Theorem 4 summarizes this. We provide full details in the appendix.

https://github.com/skelk2001/snakes_and_ladders


12 S. Chaplick et al.

Theorem 4. Let T1, T2 be two unrooted binary phylogenetic trees on the same
set of taxa X, where |X| ≥ 4 and T1 6= T2. Then exhaustive application of the
subtree reduction and the common chain reduction (where common chains are
reduced to 4 leaf labels) does not alter the treewidth of the display graph. This is
best possible, because there exist tree pairs where truncation of common chains
to length 3 does reduce the treewidth of the display graph (see Fig 7).

Acknowledgements. We thank Hans Bodlaender and Bart Jansen for insight-
ful feedback. We also thank the members of our department for useful discus-
sions.

Fig. 5. A graph of treewidth 3 that contains a ladder with 3 squares, shown in red.
Increasing the length of the ladder by 1 square increases the treewidth to 4.

1

2

3

6

5

4

1

2

3

6

5

4

Fig. 6. These graphs have treewidth 4 (left) and 5 (right) and each one has a length 2
ladder, induced by {1, 2, 3, 4, 5, 6}. In each case increasing the length of the ladder to
length 3 increases the treewidth of the graph by one.

1 2
a b c

2 1
a b c

1 2
a b c

1 2
a b c

2 1
a b c

1 2
a b dc

Fig. 7. Lengthening the common chain {a, b, c} to {a, b, c, d} in these phylogenetic trees
causes the treewidth of the display graph to increase. Equivalently: shortening common
chains to 3 leaf labels is not guaranteed to preserve treewidth in the display graph.



Snakes and Ladders: a Treewidth Story 13

Ruben Meuwese was supported by the Dutch Research Council (NWO) KLEIN
1 grant Deep kernelization for phylogenetic discordance (OCENW.KLEIN.305).

References

1. Abu-Khzam, F.N., Lamm, S., Mnich, M., Noe, A., Schulz, C., Strash, D.: Recent
Advances in Practical Data Reduction, pp. 97–133. Springer Nature Switzerland,
Cham (2022)

2. Allen, B., Steel, M.: Subtree transfer operations and their induced metrics on
evolutionary trees. Annals of Combinatorics 5, 1–15 (2001)

3. Blair, J., Peyton, B.: Graph Theory and Sparse Matrix Computation, chap. An
Introduction to Chordal Graphs and Clique Trees, pp. 1–29. Springer New York,
New York, NY (1993)

4. Bodlaender, H.L., van Antwerpen-de Fluiter, B.: Reduction algorithms for graphs
of small treewidth. Information and Computation 167(2), 86–119 (2001). https:
//doi.org/10.1006/inco.2000.2958

5. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thi-
likos, D.M.: (meta) kernelization. Journal of the ACM 63(5), 44:1–44:69 (2016).
https://doi.org/10.1145/2973749

6. Bryant, D., Lagergren, J.: Compatibility of unrooted phylogenetic trees is FPT.
Theoretical Computer Science 351(3), 296–302 (2006)

7. Bulteau, L., Weller, M.: Parameterized algorithms in bioinformatics: An overview.
Algorithms 12(12), 256 (2019)

8. Fernández-Baca, D., Vakati, S.R.: On compatibility and incompatibility of collec-
tions of unrooted phylogenetic trees. Discrete Applied Mathematics 245, 42–58
(2018)

9. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of
Parameterized Preprocessing. Cambridge University Press (2019). https://doi.
org/10.1017/9781107415157

10. van Iersel, L., Jones, M., Weller, M.: Embedding phylogenetic trees in networks of
low treewidth. In: Chechik, S., Navarro, G., Rotenberg, E., Herman, G. (eds.) 30th
Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022,
Berlin/Potsdam, Germany. LIPIcs, vol. 244, pp. 69:1–69:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.ESA.
2022.69, arXiv preprint arXiv:2207.00574

11. Janssen, R., Jones, M., Kelk, S., Stamoulis, G., Wu, T.: Treewidth of display
graphs: bounds, brambles and applications. Journal of Graph Algorithms and Ap-
plications 23(4), 715–743 (2019)

12. John, K.S.: The shape of phylogenetic treespace. Systematic Biology 66(1), e83
(2017)

13. Kelk, S., van Iersel, L., Scornavacca, C., Weller, M.: Phylogenetic incongruence
through the lens of monadic second order logic. Journal of Graph Algorithms and
Applications 20(2), 189–215 (2016)

14. Kelk, S., Stamoulis, G., Wu, T.: Treewidth distance on phylogenetic trees. Theo-
retical Computer Science 731, 99–117 (2018)

15. Sanders, D.: On linear recognition of tree-width at most four. SIAM Journal on
Discrete Mathematics 9(1), 101–117 (1996)

16. Steel, M.: Phylogeny: Discrete and Random Processes in Evolution. SIAM (2016)

https://doi.org/10.1006/inco.2000.2958
https://doi.org/10.1006/inco.2000.2958
https://doi.org/10.1006/inco.2000.2958
https://doi.org/10.1006/inco.2000.2958
https://doi.org/10.1145/2973749
https://doi.org/10.1145/2973749
https://doi.org/10.1017/9781107415157
https://doi.org/10.1017/9781107415157
https://doi.org/10.1017/9781107415157
https://doi.org/10.1017/9781107415157
https://doi.org/10.4230/LIPIcs.ESA.2022.69
https://doi.org/10.4230/LIPIcs.ESA.2022.69
https://doi.org/10.4230/LIPIcs.ESA.2022.69
https://doi.org/10.4230/LIPIcs.ESA.2022.69


14 S. Chaplick et al.

A Omitted proofs

Observation 1. Suppose G contains a ladder L of length 2 or longer. If L is
not disconnecting, then tw(G) ≥ 3.

Proof. Let a, b, u, v, w, x be the six vertices in the ladder L with edges as shown
in Fig. 1. Observe that G contains a K4 minor. Specifically, take {a, b}, u, v and
{w, x} as the four corners of the minor pre-contraction. The fact that L is not
disconnecting means that there is a path from {a, b} to {w, x} that leaves the
ladder at one end and re-enters it via the other, inducing the minor edge between
{a, b} and {w, x}. K4 is the (unique) forbidden minor for graphs of treewidth at
most 2, so tw(G) > 2.

Observation 4. No bag in the interior contains u or x. B1 does not contain x,
and no bag on the left contains x. Symmetrically, B2 does not contain u, and no
bag on the right contains u.

Proof. Recall Observation 3. If some bag in the interior contained u or x, we
could due to running intersection (in particular: due to u ∈ B1, x ∈ B2) find two
bags on P containing {u, v, w} and {v, w, x} that were closer than B1 and B2,
contradiction. Next, we have already established that x 6∈ B1 and u 6∈ B2. If x
was on the left, then running intersection would put x ∈ B1 (because x ∈ B2),
contradiction. If u was on the right, then running intersection would put u ∈ B2

(because u ∈ B1), contradiction.

Observation 5. At least one of the following is true: a ∈ B1, a is in a bag
on the left. Symmetrically, at least one of the following is true: d ∈ B2, d is in
a bag on the right.

Proof. The edge {a, u} (respectively, the edge {d, x}) needs to be in a bag, and
from Observation 4 u and x are restricted in their possible locations.

Lemma 5. If G has tw(G) ≥ 3 and a ladder L of length 1 or longer whereby
at least one of the four cornerpoints of the ladder has degree 2, the ladder can
be increased in length arbitrarily without altering (in particular: increasing) the
treewidth.

Proof. Let {a, b, c, d} be the four cornerpoints of the ladder and let c be a degree-
2 cornerpoint. Assume as usual that c and d are part of square {w, x, c, d}. If
we suppress c and relabel vertex d as cd we create a triangle {w, x, cd} in G
without altering its treewidth. Take any minimum-width decomposition. This
triangle must be contained in some bag B of the decomposition. Pendant to
B we attach a new chain of bags {w, x,w′, cd}, {x,w′, x′, cd}. This is a valid
tree decomposition for the graph obtained from G by inserting a new rung in
the ladder {w′, x′} parallel to edge {w, x}. The construction can be iterated if
desired to insert more rungs in the ladder, by attaching bags pendant to bag
{x,w′, x′, cd}. Once completed the degree 2 vertex can be re-introduced via sub-
division, if desired.



Snakes and Ladders: a Treewidth Story 15

Theorem 3. If G has a ladder L of length 4 or longer, the ladder can be
increased in length arbitrarily without altering (in particular: increasing) the
treewidth. This holds irrespective of the treewidth of G.

Proof. As usual, if tw(G) ≥ 4 we can use Theorem 2, and if L is disconnecting
then we are done thanks to Lemma 1. So, let G be a graph with ladder L with
four squares that is not disconnecting. From Observation 1 we have tw(G) = 3.
Let a′, a, u, w, c be the vertices on the top of the ladder and b′, b, v, x, d be the
vertices on the bottom. Our goal as usual is to show that adding a square does
not increase the treewidth of G. We henceforth assume that G is (vertex) bi-
connected. This is because the treewidth of a graph is the maximum treewidth
ranging over all biconnected components of the graph. The ladder, both be-
fore and after lengthening, belongs to a single biconnected component. So we
henceforth focus only on that component.

As in the proof of Theorem 2 we focus on the three squares defined by vertices
a, u, w, c and b, v, x, d. We have an extra square on the left side - a′, a, b′, b - and
this has the same ‘buffer’ role as in the proof of Lemma 4. However, there is
no extra buffer square on the right of the ladder, and this causes some mild
complications.

We begin with several observations. Whenever, in the proof of Theorem 2,
Case 1 or Case 2 are shown to apply to four vertices from a, u, w, b, v, x (i.a.
avoiding c and d) then we are already done2. That is because, using exactly the
same argument as in Lemma 4, those four vertices or a subset thereof cannot
(after contraction, when Case 2 applies) be a separator, so there must be an
extra vertex in the bag: tw(G) > 3, and a contradiction on the assumption
tw(G) = 3 is obtained. The absence of a separator is due to the vertices a′, b′,
the edges {a′, b′}, {a′, a}, {b′, b} and the fact that we avoid vertices c, d, allowing
them to assume the same role as c′, d′ in the proof of Lemma 4. Hence, the main
headache is when Case 1 or Case 2 is applied to four vertices involving c and/or
d. The problem is that, due to not having any knowledge about the non-ladder
neighbours of c and d, we cannot guarantee that the four vertices (or a subset
thereof) do not form a separator. Hence, it is not possible to directly derive a
contradiction on tw(G) = 3. In such situations the size-5 bags introduced by
Case 1 and Case 2 might, therefore, inflate the treewidth. However, it is possible
to circumvent this, as we shall see.

The fact that G is biconnected and L is not disconnecting means that at
least one of the following holds:

– There is a simple path that starts at c, avoids all other vertices on the ladder
(in particular: d), and ends at a′ or b′;

– There is a simple path that starts at d, avoids all other vertices on the ladder
(in particular: c), and ends at a′ or b′;

2 When applying Case 2 in such a context, we leave c and d alone i.e. we only contract
two squares of the ladder, not three.



16 S. Chaplick et al.

(Note that it is permitted that these paths intersect, perhaps multiple times,
at vertices distinct from c and d). Now, suppose both these paths exist. In this
situation we are done, because Cases 1 and Case 2 can be applied in their un-
constrained form i.e. they do not even need to avoid c and d. This is because,
after contracting the three squares to one, the single square remaining (or a sub-
set thereof) cannot be a separator. This is because c and d are independently
of each other connected to the other side of the ladder (and as observed above
the square a′, a′, b, b′ basically has the same separator-preventing function at the
other end of the ladder). Hence, the proof of Theorem 2 goes through essen-
tially unchanged, the only difference being that Case 1 and Case 2 now generate
contradictions on the assumption tw(G) = 3.

Hence, we assume that only one such path exists. For now, suppose this path
starts at d. Due to biconnectivity, and the absence of the second path, there are
exactly two possibilities:

1. c has degree 2, in which case its only neighbours are d and w.
2. The edge {c, d} is a separator.

If {c, d} is a separator, then deleting this edge splits G into G1 and G2,
where G1 is the connected component containing the ladder. The treewidth of
G is equal to the maximum of tw(G1 ∪ {c, d}) and tw(G2 ∪ {c, d}). This is
because {c, d} is a clique separator. In particular, any tree decomposition of
G1 ∪ {c, d} (respectively, G2 ∪ {c, d}) must have {c, d} together in some bag, so
any two such tree decompositions can be linked together via a single extra bag
containing {c, d} in order to obtain a tree decomposition for G. Now, G2∪{c, d}
(and thus its treewidth) is unchanged if the ladder is extended, so we can focus
on the graph G1∪{c, d}. This brings us back into the situation that c has degree
2. (An exactly symmetrical argument holds if the path had started at c.)

Hence, at this point we can assume without loss of generality that exactly
one of c and d has degree 2. We can invoke Lemma 5 and we are done.

B Resolving an open problem from phylogenetics

B.1 The subtree and chain reduction rules are treewidth-preserving
in the display graph

The research in this article was originally inspired by a question arising in phy-
logenetics, a subfield of bioinformatics. An (unrooted, binary) phylogenetic tree
on a set of discrete labels X representing a set of species, is an undirected,
connected, binary tree whose leaves are bijectively labelled by X. Due to this
bijection we often refer to leaves and labels interchangeably. Two phylogenetic
trees T1, T2, both on X, are defined to be equal if there is an isomorphism from
one to the other that preserves the labels X.

The display graph D = D(T1, T2) of two unrooted binary phylogenetic trees
T1, T2 on X is obtained by identifying leaves with the same label. Display graphs
have been quite intensively studied in recent years, see e.g. [6,13,8,11,10]. We



Snakes and Ladders: a Treewidth Story 17

note that the assumption T1 6= T2 guarantees that |X| ≥ 4 and that the display
graph contains a K4 minor, and thus has treewidth at least 3. For convenience
we thus henceforth assume that T1 6= T2. This is a very reasonable assumption
because it is easy to check in polynomial time whether two phylogenetic trees are
equal (equivalently, that the display graph has treewidth at most 2). The fact
that the display graph has treewidth at least 3 is useful because it allows us to
suppress degree-2 nodes in the display graph without altering the treewidth or
worrying about the whole display graph vanishing. In particular, we can suppress
the degree-2 nodes that are created in the formation of the display graph when
vertices with the same leaf label are identified.

The subtree reduction is a data reduction rule very often used to simplify
phylogenetic trees when computing a dissimilarity measure between them. Let
x, y be distinct labels in X. If x, y have a common parent in T1 and a common
parent in T2, then the cherry reduction deletes the leaves x and y from both
trees and assigns label xy to the parent. The subtree reduction is simply when
the cherry reduction is applied to exhaustion.

It was shown in [14] that if one applies the subtree reduction rule to T1, T2 to
obtain new trees T ′1, T ′2 then tw(D(T ′1, T

′
2)) = tw(D(T1, T2)). The question arose

whether another frequently encountered data reduction rule, the common chain
reduction rule, is also treewidth-preserving in the display graph. The definition
of a common chain is rather technical3, but in essence it is an uninterrupted
sequence of leaves that exist in the same order in both trees. The main nuance is
that the first two leaves in the sequence, and the last two leaves in the sequence,
might be unordered in one or both trees. The common chain reduction rule
simply reduces common chains to length k, for some given constant k. It is well
known that reduction to length 3 preserves a number of commonly encountered
phylogenetic dissimilarity measures. Is there a constant k such that the common
chain reduction rule preserves the treewidth of the display graph?

Theorem 3 shows that such a k definitely exists. Specifically, common chains
with k leaves induce ladders in the display graph with k − 1 squares. Hence, if
we reduce common chains to length 5, we know that the corresponding ladder
in the display graph is reduced to length 4, and thus (via Theorem 3) that the
treewidth is preserved. The result can be summarized as follows:

Lemma 6. Let T1, T2 be two unrooted binary phylogenetic trees on the same
set of taxa X, where |X| ≥ 4 and T1 6= T2. Then exhaustive application of the
subtree reduction and the common chain reduction (where common chains are
reduced to 5 leaf labels) does not alter the treewidth of the display graph.

The subtree and chain reductions are the centrepiece of many kernelization
results in phylogenetics [7]. Now we have established that these two reduction
3 For n ≥ 2, let C = (`1, `2 . . . , `n) be a sequence of distinct taxa in X. We call
C an n-chain of T if there exists a walk p`1 , p`2 , . . . , p`n in T and the elements in
p`2 , p`3 , . . . , p`n−1 are all pairwise distinct. Note that `1 and `2 may have a common
parent or `n−1 and `n may have a common parent. Furthermore, if p`1 = p`2 or
p`n−1 = p`n holds, then C is said to be pendant in T . If a chain C exists in both
phylogenetic trees T1 and T2 on X, we say that C is a common chain of T1 and T2.



18 S. Chaplick et al.

rules also preserve treewidth in the display graph. We note that, when try-
ing to compute phylogenetic distance measures or parameters by exploiting low
treewidth in the display graph, this treewidth-preserving result does not help:
it is actually more advantageous if the treewidth decreases. Yet, if we are using
the treewidth of the display graph as a proxy for phylogenetic dissimilarity, as
proposed in [14], these results show that these two reduction rules are safe.

B.2 One step further: leveraging the restricted structure of display
graphs

Display graphs are a restricted subclass of graphs, and it is not obvious whether
the tight examples we discuss at the end of the main article are display graphs, so
it is natural to ask whether it is treewidth-preserving to reduce common chains
to 4 or perhaps even fewer labels (rather than the 5 labels stated in Lemma 6).
We note, by leveraging an example from [14], that truncation to 3 leaf labels
(inducing the shortening of ladders to 2 squares in the display graph) is not
treewidth preserving. If we take the display graph of the two phylogenetic trees
shown in Fig. 7 (far left), which have a common chain of length 3 on the leaf
labels {a, b, c}, we get a ladder in the display graph with 2 squares. The display
graph has treewidth 3. However, if we take the display graph of the two trees
shown in Fig. 7 (second from right), where the chain has been increased to length
4 (and the ladder thus to 3 squares), the treewidth of the display graph increases
to 4.

The question thus arises whether truncation to 4 leaf labels is safe. It turns
out that it is! With a little more effort we obtain the following theorem.

Theorem 4. Let T1, T2 be two unrooted binary phylogenetic trees on the same
set of taxa X, where |X| ≥ 4 and T1 6= T2. Then exhaustive application of the
subtree reduction and the common chain reduction (where common chains are
reduced to 4 leaf labels) does not alter the treewidth of the display graph. This is
best possible, because there exist tree pairs where truncation of common chains
to length 3 does reduce the treewidth of the display graph (see Fig 7).

Proof. We prove this by showing that if T1 and T2 have a common chain C with
4 leaves (a, b, c, d), and that this chain is then made longer to obtain new trees
T ′1 and T ′2, we have tw(D) = tw(D′) where D = D(T1, T2) and D′ = D(T ′1, T

′
2).

Note firstly that the chain C induces a ladder L with 3 squares in D4. Hence, if
tw(D) ≥ 4 we can use Theorem 2 and we are done. Similarly, if L is disconnecting
then we are done via Lemma 1. Hence, we can assume that L is not disconnecting,
and tw(D) < 4, so tw(D) = 3.

4 To remain consistent with the formal definition of a ladder - in particular to en-
sure that it has four cornerpoints - it might be necessary to leave some degree 2
vertices in the display graph unsuppressed, or even to introduce degree 2 vertices
via subdivision. However, as discussed in the preliminaries this will not alter the
treewidth.



Snakes and Ladders: a Treewidth Story 19

Now, we argue that there must exist a leaf label x 6∈ {a, b, c, d} such that in
one of the two trees, say T1, x is on the “a” side of the chain in the tree, and in
the other T2 on the “d” side of the tree. If this was not so then in D there would
be no path from the left of the ladder to the right that does not pass through
the chain i.e. L is disconnecting, contradiction. Now, suppose that C is pendant
in T1 and/or T2; recall that a chain is pendant if two of its outermost leaves
have a common parent (and this occurs if and only if the tree has no other leaf
labels on that side of the chain). This induces at least one degree-2 cornerpoint
in L, so by Lemma 5 we are done. Hence, assume that C is pendant in neither
tree. This means |X| ≥ 6 because each tree needs at least one leaf label on both
sides of the chain. Observe that if there is a leaf label y 6∈ {a, b, c, d, x} such that
in T1 y is on the d side of the chain and in T2 on the a side of the chain, then
tw(D) ≥ 4, yielding a contradiction. To see that it has tw(D) ≥ 4 observe that
the graph shown in Fig. 7 (far right) will be a minor of it. So, let y 6∈ {a, b, c, d, x}
be any taxon that is on the d side of the chain in T1; such a taxon must exist by
virtue of the assumption that the chain is pendant in neither tree. Given that y
cannot be on the a side of the chain in T2, it must - like x - thus be on the d
side of the chain in T2. But then we are in the situation as shown in Fig. 8. The
fact that the right end of the ladder is part of the yellow-highlighted cycle, has
exactly the same separator-blocking effect as the buffer square {a′, b′, a, b} used
in Theorem 3. Hence, the same proof can be used as that theorem, and we are
done.

a b c

a b c
T1

T2

d

d

x y

y

x

a b c d

x y

Fig. 8. If T1 and T2 have the shown structure, the 3 squares of the ladder induced in the
display graph are flanked on the right by the yellow-highlighted cycle. This functions
like the separator-blocking extra square in the proof of Theorem 3. This is one of the
reason why chain-induced ladders can be safely reduced to 3 squares in display graphs
(Theorem 4), rather than 4 as in general graphs.


	Snakes and Ladders: a Treewidth Story

