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A TOPOLOGICAL SPACE ASSOCIATED TO CORANK 1 TROPICAL PHASED

MATROIDS

ULY ALVAREZ

Abstract. A consequence of the Topological Representation Theorem in [FL78] is that the geometric
realization of the order complex of the poset of non-zero covectors of a loopless rank n´ 1 oriented matroid
on rns is homeomorphic to an pn´ 2q-sphere. In this paper, we begin the study of an analogous theorem for
tropical phased matroids by proving that the topological order complex for a loopless rank n ´ 1 tropical
phased matroid on rns is homeomorphic to a p2n ´ 3q-sphere.

1. Introduction

Tropical phased matroids are examples of matroids over hyperfields [BB19], where a hy-
perfield is a field with a multivalued addition. A tropical phased matroid is a matroid over
the tropical phase hyperfield Φ, Φ is the union of the unit circle S1 and the origin t0u in the
complex plane C equipped with the complex multiplication and addition ‘ such that

(1) x ‘ 0 “ txu,
(2) x ‘ ´x “ S1 Y t0u whenever x ‰ 0 and
(3) x ‘ y is the smallest closed arc in S1 joining x and y when y ‰ ´x.

The notion of matroids over hyperfields is a generalization of oriented matroids, which can
be viewed as matroids over the sign hyperfield S, where S is t´1, 0, 1u equipped with the
multiplication inherited from R and addition ‘ such that

(1) x ‘ 0 “ txu,
(2) 1 ‘ ´1 “ t´1, 0, 1u whenever x ‰ 0 and
(3) x ‘ x “ txu.

We begin the study of carrying over the following result from the theory of oriented
matroids to the realm of tropical phased matroids.

Theorem 1.1 (The Topological Representation Theorem in [FL78]). Let M be a loopless
rank r oriented matroid. Then the poset of nonzero covectors of M is isomorphic to the
face poset of the cell decomposition induced by an arrangement of pseudospheres in Sr´1, the
standard unit sphere of dimension r ´ 1.

As a consequence, we have that the geometric realization of the order complex of the non-
zero covectors of M is homeomorphic to Sr´1. In this paper, we will prove the following.

Theorem 1.2. The topological order complex of the space of non-zero covectors of a given
loopless rank n ´ 1 tropical phased matroid on rns is homeomorphic to S2n´3.

The topological order complex, first defined in [Ž98], was not the first topological space
that was considered for this endeavor. In [AD19], the topological space considered arose
from the search for a topology on Φ such that the phase map

ph: C Ñ Φ, z ÞÑ

"

z{|z| if z ‰ 0,

0 otherwise

is continuous, namely, the open sets of Φ are the usual open sets of S1 together with the set
S1 Y t0u. Since the covectors of a tropical phased matroid on rns lives in Φn, this topology
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on Φ induces a topology on the set of covectors. However this space is significantly obscure
whereas, by viewing the set of covectors as a topological poset, its topological order complex
is more transparent. For example, the former is not generally Hausdorff but the latter is.
The following theorem allows us to choose to study the latter case.

Theorem 1.3 ([AG22]). Let V˚ be the set of covectors of a tropical phased matroid. The
topological order complex of V˚ is weak homotopy equivalent to V˚ endowed with the topology
considered in [AD19].

Acknowledgment. I am indebted to Laura Anderson and Ross Geoghegan for the time and
patience they invested in me, and for allowing me to grow under their guidance.

2. Background

2.1. Brief note on the piecewise linear category. The bulk of this paper is concerned
with polyhedra and their joins, so piecewise linear (PL) topology is the natural category for
us. However, it is often more convenient to name smooth “round” balls and their various
intersections, rather than explicitly describing polyhedral versions. The rule is that all
the constructions in the paper can easily be seen to be homeomorphic to corresponding
constructions among rectilinear polyhedra in such a way that standard theorems of PL
topology can be used. For example,

Lemma 2.1 ([RS82], Lemma 1.10). Let B1 and B2 be d-balls and h : BB1 Ñ BB2 be a
homeomorphism. Then h extends to a homeomorphism B1 Ñ B2.

Lemma 2.2 ([RS82], Corollary 3.16). Let B1 and B2 be d-balls such that

(1) B1 X B2 is a pd ´ 1q-ball and
(2) B1 X B2 “ BpB1q X BpB2q, where BpBkq is the boundary of Bk.

Then B1 Y B2 is a d-ball.

The following result is the main tool of this paper, a generalization of Lemma 2.2.

Theorem 2.3. Let B1, B2, ..., Bm be d-balls, where m ď d ` 1. If for every J Ď rms such
that |J | ą 1,

(1)
Ş

kPJ

Bk is a pd ´ |J | ` 1q-ball, and

(2) for every r P J ,
Ş

kPJ

Bk Ă B

˜

Ş

kPJ´tru

Bk

¸

,

then
Ť

kPrms

Bk is a d-ball.

Sketch of proof. We will induct on m. Lemma 2.2 is precisely the case when m “ 2.
Assume true for m ´ 1. Let tBk : k P rmsu be a collection of d-balls which satisfy the

hypotheses. Thus
m´1
Ť

k“1

Bk is a d-ball. By Lemma 2.2, it suffices to show that

ˆ

m´1
Ť

k“1

Bk

˙

XBm

is a pd ´ 1q-ball which follows from hypothesis (1), and
ˆ

m´1
Ť

k“1

Bk

˙

X Bm “ B

ˆ

m´1
Ť

k“1

Bk

˙

X BpBmq

which follows from hypothesis (2). Thus

ˆ

m´1
Ť

k“1

Bk

˙

Y Bm is a d-ball. �
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2.2. The set of covectors as a topological poset. To formally define the set of covectors
of a given matroid over Φ, one must first define the corresponding set of Φ-circuits. However,
since the general framework of matroids over hyperfields is not used in this paper, the set of
covectors will simply be given: let v “ pv1, . . . , vnq P pS1qn and define

vK :“ tx P Φn : 0 P v1x1 ‘ ¨ ¨ ¨ ‘ vnxnu

to be the set of covectors of a loopless rank n ´ 1 tropical phased matroid on rns. In order
to obtain the desired topological space, we endow vK with a topological poset structure.

A topological poset ([Ž98]) is a Hausdorff space P equipped with a partial ordering ď such
that tpx, yq : x ď y in Pu is closed in P2.

Example 2.1. Every discrete poset, that is, a poset given the discrete topology, is a topological
poset.

Example 2.2. Endow Φ with a partial ordering such that the only non-trivial relation is that
0 is less than every point in S1 and we equip it with the subspace topology inherited from
C. Then Φ is a topological poset.

Example 2.3. The topological poset structure on Φ described in the previous example induces
a topological poset structure on Φn by defining the partial ordering component-wise and
taking the product topology. Thus, we have a topological poset structure on vK ´ t0u by
restricting the partial ordering considering the subspace topology.

Given a topological poset P, we can associate another space called the topological order
complex ∆pPq of P. For an arbitrary topological poset P, its topological order complex is

the geometric realization of the simplicial space
8
Ů

k“0

NkpPq, where

NkpPq :“ tpx0, x1, . . . , xkq P P
k`1 : x0 ď x1 ď ¨ ¨ ¨ ď xk in Pu.

There is a more digestible description of ∆pPq provided that P is a mirrored poset, that
is, P is a topological poset with an associated a finite poset Q and a poset map µ : P Ñ Q
such that

(1) for every k P Q, µ´1pkq is a non-empty and closed subset of P and
(2) x ă y in P implies µpxq ă µpyq in Q.

For such a P, ∆pPq is homeomorphic to
#

ÿ

kPQ

tkxk P ˚
kPQ

µ´1pkq : txk : tk ‰ 0u is a chain in P

+

,

where ˚kPQ µ´1pkq is the topological join of the family of spaces tµ´1pkq : k P Qu, tk P r0, 1s
for every k P Q, and

ř

kPQ tk “ 1. Informally speaking, ∆pPq can be obtained by taking P

and gluing k-simplices along the k-chains of P.

Remark. If P is a discrete poset, ∆pPq is the geometric realization of the order complex of
P in the classical sense.

Example 2.4. Φ is a mirrored poset by defining µ : Φ Ñ t0 ă 1u which maps 0 to 0 and all
of S1 to 1. By definition, ∆pΦq “ t0u ˚ S1 which is homeomorphic to the (closed) unit ball
B Ă C via

g : ∆pΦq Ñ B, p1 ´ sq ¨ 0 ` s ¨ x ÞÑ sx,

where s¨x is the formal multiplication in a topological join and sx is the scalar multiplication
in C.
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Example 2.5. Φn is a mirrored poset by defining µ : Φn Ñ r0, nsZ by µpxq “ | supppxq|,
where supppxq :“ tk P r0, nsZ : xk ‰ 0u and | supppxq| is the cardinality of supppxq. Since
the partial ordering is defined component-wise, px1, . . . , xnq ă py1, . . . , ynq in Φn implies
xj “ yj for every j P supppxq. So if

ř

tkxk P ∆pΦnq, we know what txk : tk ‰ 0u must
satisfy. However, to see that ∆pΦnq is homeomorphic to Bn, we need the following result.

Lemma 2.4. ∆pΦnq and p∆Φqn are homeomorphic.

Proof. Given an element z “
řn

k“0 tkxk P ∆pΦnq, let xk,j be the j
th-coordinate of xk. Define

Npz, jq :“ mintk P r0, nsZ : tk ‰ 0 and xk,j ‰ 0u and

ℓpz, jq :“

"

Npz, jq if Npz, jq is non-empty,

n ` 1 otherwise.

Define γ : ∆pΦnq Ñ p∆pΦqqn by

γpzq :“

¨

˝

˜

ℓpz,jq´1
ÿ

k“0

tk

¸

¨ 0 `

¨

˝

n
ÿ

k“ℓpj,zq

tk

˛

‚¨ xk,ℓpj,zq

˛

‚

n

j“1

.

If ℓpz, jq “ n ` 1, we assert
´

řn

k“ℓpj,zq tk

¯

¨ xk,ℓpj,zq “ 0 .

When Φ is treated as a set, γ is bijective [Wal88, Theorem 3.2].
To show that γ is continuous, consider the diagram

8
Ů

k“0

NkpΦnq

ˆ

8
Ů

k“0

NkpΦq

˙n

∆pΦnq p∆Φqn

qn qn
1

γ

where q1 and qn are the appropriate quotient maps, and the top map is defined by

px0, . . . ,xkq ÞÑ ppxj,1q
k
j“0, . . . , pxj,nqkj“0q.

Since the diagram commutes, γ is continuous, and, thus, a homeomorphism. �

Furthermore, for every y P S1, we have gy : Φ
n Ñ Φn defined by gypxq “ pyx1, . . . , yxnq.

Clearly, this map preserves chains in Φn, i.e., if tx0 ă ¨ ¨ ¨ ă xku is a chain in Φn, then so is
tgypx0q ă ¨ ¨ ¨ ă gypxkqu. Thus the induced map

∆pgyq : ∆pΦnq Ñ ∆pΦnq,
ÿ

tkxk ÞÑ
ÿ

tkpgypxkqq

is a homeomorphism.

Example 2.6. For v “ pv1, . . . , vnq P pS1qn, vK ´ t0u is a mirrored poset by restricting the
domain of µ to vK ´ t0u and the codomain to r2, nsZ. Note that 0 is not in the codomain
since we removed 0 from the domain and 1 is not in the codomain since there does not exist
an element x “ px1, . . . , xnq such that | supppxq| “ 1 and 0 P v1x1 ‘ ¨ ¨ ¨ ‘ vnxn. Moreover,
we can define the homeomorphism

1K
n Ñ vK, px1, . . . , xnq ÞÑ pv1x1, . . . , vnxnq

where 1n “ p1, . . . , 1q P pS1qn. Though this map does not preserve chains, the preimage of
every k-chain in vK will be a unique pk ` 1q-set in 1K

n . Thus ∆pvKq is homeomorphic to
∆p1K

n q and, hence, it suffices to understand the case when v “ 1n.
4



3. Understanding ∆p1K
n ´ t0uq

3.1. When 0 P x1 ‘ ¨ ¨ ¨ ‘ xn. We have addressed in Example 2.6 why we are not interested
in the cases when n “ 0 nor when n “ 1.

Lemma 3.1. Let x “ px1, . . . , xnq P Φn ´ t0u, where | supppxq| ě 2, and let I be a closed
interval in S1 of minimal length containing all the non-zero xk. Then 0 P x1 ‘ ¨ ¨ ¨ ‘ xn if
and only if the length ℓpIq of I greater than or equal to π.

Proof. Without loss of generality, suppose x1 ‰ 0. This determines two closed half-circles,
C and C 1, namely the two closed arcs joining x1 and ´x1 both of length π.

It is not difficult to see that ℓpIq “ π if and only if

(1) at least one non-zero entry of x is ´x1 and
(2) every non-zero entry xk not equal to x1 nor ´x1 is contained in the interior of exactly

one of the half-circles C or C 1.

If every non-zero entry of x is either x1 or ´x1, then I can be either C or C 1. So assume
that all of the non-zero entries of x are distinct and not antipodal. Then all of the entries
either lie in the interior of C or of C 1. Without loss of generality, suppose x2 and x3 are the
furthest point from x1 in C and C 1, respectively. Thus, I is the union x1 ‘ x2 and x1 ‘ x3.
Then, ℓpIq ą π if and only if ´x2 P x1 ‘ x3 (or, equivalently, ´x3 P x1 ‘ x2) if and only if
0 P x1 ‘ x2 ‘ x3. �

The proof of this Lemma 3.1 implies the following.

Lemma 3.2. Let px1, . . . , xnq P Φn ´ t0u and n ě 3. If 0 P x1 ‘ ¨ ¨ ¨ ‘ xn, then there exists
j ă k ă ℓ such that 0 P xj ‘ xk ‘ xℓ.

3.2. Important subposets of 1K
n . We decompose 1K

n into the union of

tx P 1K
n : xn P S1u and tx P 1K

n : xn “ 0u.

Here we will address the former member of the union and assume n ě 3. (The case when
n “ 2 and the latter member of the union will be addressed in Section 4.)

By Lemma 3.2, we can write

tx P 1K
n : xn P S1u “

ď

jăkăℓ

tx P Φn ´ t0u : 0 P xj ‘ xk ‘ xℓ and xn P S1u.

In fact, if x P Φn ´ t0u such that xn P S1 and 0 P xj ‘ xk ‘ xℓ for some j ă k ă ℓ ă n, then
either 0 P xj ‘ xℓ ‘ xn or 0 P xk ‘ xℓ ‘ xn. Thus we can write

tx P 1K
n : xn P S1u “

ď

jăkăn

tx P Φn ´ t0u : 0 P xj ‘ xk ‘ xn and xn P S1u.

Furthermore, suppose x ă y in tx P 1K
n : xn P S1u. If 0 P xj ‘ xk ‘ xn for some j ă k ă n,

then 0 P yj ‘ yk ‘ yn. Thus every chain in tx P 1K
n : xn P S1u is entirely contained in

tx P Φn ´ t0u : 0 P xj ‘ xk ‘ xnu for some j ă k ă n. Hence

∆tx P 1K
n : xn P S1u “

Ť

jăkăn

∆tx P Φn ´ t0u : 0 P xj ‘ xk ‘ xnu.

This observation together with Lemma 2.4, ∆tx P 1K
n : xn P S1u can be identified with

the union of
ď

jăn

tz P B
n : pzj , znq P pS1q2 and zj “ ´znu

and
ď

jăkăn

tz P B
n : pzj , zk, znq P pS1q3 and 0 P zj ‘ zk ‘ znu.
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To understand how these pieces intersect, we will first analyze the case when zn “ 1.

3.3. Decomposition of ∆tx P 1K
n : xn “ 1u. Given the contents of the previous subsection,

we can identify ∆tx P 1K
n : xn “ 1u with the union of

(1)
Ť

jăntz P Bn : pzj , znq “ p´1, 1qu,
(2)

Ť

jăkăntz P Bn : pzj, zk, znq P U ˆ L ˆ t1u and 0 P zj ‘ zk ‘ 1u, and
(3)

Ť

jăkăntz P Bn : pzj, zk, znq P L ˆ U ˆ t1u and 0 P zj ‘ zk ‘ 1u.

Thus every member of the union in (1) is Bn´2 which is homeomorphic to a p2n ´ 4q-ball.
Since (2) can be written as

ď

jăkăn

tz P B
n : pzj , zk, znq “ peiπtj , eipπtk`πq, 1q and 0 ď tk ď tj ď 1u,

every member of this union is the product of a 2-ball and Bn´3 which is homeomorphic to a
p2n ´ 4q-ball.

Similarly, (3) can be written as
ď

jăkăn

tz P B
n : pzj , zk, znq P peipπtj`πq, eiπtk , 1q and 0 ď tj ď tk ď 1u,

a union of p2n ´ 4q-balls.
Consider poset P given by the Hasse diagram

t1u t´1u

U L

Φ

Elements of P n will be treated as functions rns Ñ P . Define Pn Ă pP ´ t0uqn so that
X P Pn if and only if the following hold:

(1) Xpαq “ t1u if and only if α “ n,
(2) Xpαq P tt´1u, U, Lu for some α P rn ´ 1s, and
(3) Xpαq P tU, Lu implies that there exists β P rn´ 1s ´ tαu such that Xpβq P tU, L,´1u

but Xpβq ‰ Xpαq.

Example 3.1. pU, L,Φ, 1q and pU, U,´1, 1q are in P4 but not pU, U,Φ, 1q.

Let X P Pn and define BpXq to be the space of elements z P Bn such that

(1) zα P ∆pXpαqq for each α P rns, and
(2) pzα, zβq P U ˆ L implies pzα, zβq “ peiπtα , eipπtβ`πqq, where 0 ď tβ ď tα ď 1.

Here we are identifying ∆pΦq with B and notice that the second condition implies that
0 P zα ‘ zβ ‘ 1.

An element z P BpXq is contained in the interior of BpXq, written as intpBpXqq, if

(1) zα P intp∆pXpαqqq for each α P rns, and
(2) pzα, zβq P U ˆ L implies pzα, zβq “

`

eiπtα , eipπtβ`πq
˘

such that 0 ă tβ ă tα ă 1.

Here intpUq “ teiπt : 0 ă t ă 1u, intpLq “ teipπt`πq : 0 ă t ă 1u, intptpointuq “ tpointu and
intpBq “ trei2π : r P r0, 1q and t P r0, 1su.

The boundary of BpXq is BpBpXqq “ BpXq ´ intpBpXqq.
Define ν : Pn Ñ r2, 2n ´ 4sZ by νpXq “ |X´1pUq| ` |X´1pLq| ` 2|X´1pΦq|.

Lemma 3.3. BpXq is a νpXq-ball.
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Proof. Clearly BpXq is homeomorphic to

tt P r0, 1sX
´1pUqYX´1pLq : pxα, xβq P U ˆ L implies tβ ď tαu ˆ BX´1pΦq.

Since the first member of the product is homeomorphic to a p|X´1pUq| ` |X´1pLq|q-ball and
the second is homeomorphic to a p2|X´1pΦq|q-ball, BpXq is a νpXq-ball. �

Notation. Notice that BpXq is a p2n ´ 4q-ball if and only if X is either of the form

Xpαq “

$

&

%

´1 if α “ j,

1 if α “ n,

Φ otherwise

or Xpαq “

$

’

’

&

’

’

%

U if α “ j,

L if α “ k,

1 if α “ n,

Φ otherwise

for some integers 1 ď j ă k ď n ´ 1. For convenience, we will denote Xpj,jq for the former
case and Xpj,kq for the latter case.

Lemma 3.4. Let X and Y be in Pn. If X ă Y in Pn, then BpXq Ă BpBpY qq.

Proof. Suppose X ă Y in Pn and z P BpXq. Then, Xpαq ď Y pαq for every α P rn ´ 1s
which implies zα P ∆pY pαqq. If there exists an pα, βq P X´1pUq ˆ X´1pLq, then either

(1) Xpαq “ Y pαq and Xpβq “ Y pβq which implies 0 ď tβ ď tα ď 1 must be satisfied, or
(2) Xpαq ă Y pαq or Xpβq ă Y pβq which implies 0 ď tβ ď tα ď 1 is not required.

In either case, z P BpY q. Furthermore, if Xpαq ă Y pαq, then we have the following cases:

(1) Xpαq “ t´1u and Y pαq P tU, L,Φu or
(2) Xpαq P tU, Lu and Y pαq “ Φ.

In either case, zα R intp∆pY pαqqq. Thus z cannot be contained in intpBpY qq. �

Clearly Pn is a lattice.

Lemma 3.5. Let j P rn ´ 1s and J Ď rn ´ 1s such that |J | ą 1. Then

č

kPJ

B
`

Xpj,kq
˘

“ B

˜

ľ

kPJ

Xpj,kq

¸

and
č

kPJ

B
`

Xpk,jq
˘

“ B

˜

ľ

kPJ

Xpk,jq

¸

.

The proof follows from Lemma 3.4 and definition.

Theorem 3.6. ∆tx P 1K
n : xn “ 1u is a p2n ´ 4q-ball.

Proof. For every j P rn ´ 1s, define Bj :“
Ť

kPrn´1s

B
`

Xpj,kq
˘

. Therefore

∆tx P 1K
n : xn “ 1u “

Ť

jPrn´1s

Bj .

To apply Theorem 2.3 on tBj : j P rn ´ 1su, fix j P rn ´ 1s.

Claim. Bj is a p2n ´ 4q-ball.

Proof. Consider
 

Xpj,kq : k P rn ´ 1s
(

. Since ν
`

Xpj,kq
˘

“ 2n ´ 4 for every k P rn ´ 1s, Bj is
a union of p2n ´ 4q-balls by Lemma 3.3.

Now fix J Ď rn ´ 1s, where |J | ą 1. Since
Ş

kPJ

B
`

Xpj,kq
˘

“ B

ˆ

Ź

kPJ

Xpj,kq

˙

by Lemma 3.5,

we have ν

ˆ

Ź

kPJ

Xpj,kq

˙

“ 2n ´ 3 ´ |J |. Thus
Ş

kPJ

B
`

Xpj,kq
˘

is p2n ´ 3 ´ |J |q-ball by Lemma

3.3.
7



Lastly, fix r P J . Since
Ź

kPJ

Xpj,kq ă
Ź

kPJ´tru

Xpj,kq andB

˜

Ź

kPJ´tru

Xpj,kq

¸

“
Ş

kPJ´tru

B
`

Xpj,kq
˘

by Lemma 3.5, we have

Ş

kPJ

B
`

Xpj,kq
˘

Ď B

˜

Ş

kPJ´tru

B
`

Xpj,kq
˘

¸

by Lemma 3.4. Thus, by Theorem 2.3, Bj is a p2n ´ 4q-ball. �

To show the first condition of Theorem 2.3, fix J Ď rn ´ 1s such that |J | ą 1.

Claim.
Ş

jPJ

Bj “
Ť

kPrn´1s

B

˜

Ź

jPJ

Xpj,kq

¸

and is a p2n ´ 3 ´ |J |q-ball.

Proof. To prove the first part of the claim, we will induct on the cardinality of J .
When |J | “ 2, without loss of generality, assume J “ t1, 2u. By definition

B1 X B2 “

¨

˝

ď

kPrn´1s

B
`

Xp1,kq
˘

˛

‚X

¨

˝

ď

lPrn´1s

B
`

Xp2,ℓq
˘

˛

‚

“
ď

kPrn´1s

ď

ℓPrn´1s

B
`

Xp1,kq
˘

X B
`

Xp2,ℓq
˘

If k “ ℓ, then B
`

Xp1,kq
˘

X B
`

Xp2,ℓq
˘

“ B
`

Xp1,kq ^ Xp2,kq
˘

by Lemma 3.5.
If k ‰ ℓ, then we must consider the cases when (1) k P r2s, (2) ℓ P r2s, or (3) neither k nor

ℓ are in r2s. In cases (1) and (2), it is easy to show that B
`

Xp1,kq
˘

X B
`

Xp2,ℓq
˘

the union of

B
`

Xp1,2q ^ Xp2,2q
˘

and B
`

Xp1,1q ^ Xp2,1q
˘

. In case (3), let z P B
`

Xp1,kq
˘

XB
`

Xp2,ℓq
˘

. Then

pz1, zk, z2, zℓq “ peiπt1 , eipπtk`πq, eiπt2 , eipπtℓ`πqq, where 0 ď tk ď t1 ď 1 and 0 ď tℓ ď t2 ď 1. If
tk ď tℓ, then z P B

`

Xp1,ℓq ^ Xp2,ℓq
˘

. If tℓ ď tk, then z P B
`

Xp1,kq ^ Xp1,kq
˘

. Thus

B1 X B2 “
Ť

kPrn´1s

B
`

Xp1,kq ^ Xp2,kq
˘

.

For the induction step, suppose that the claim is true for J “ rms, where 3 ď m ď n ´ 1,
i.e.,

Ş

jPrms

Bj “
Ť

kPrn´1s

B

˜

Ź

jPrms

Xpj,kq

¸

.

Thus
8



č

jPrm`1s

Bj “ Bm X

¨

˝

č

jPrms

Bj

˛

‚

“

¨

˝

ď

ℓPrn´1s

B
`

Xpm`1,ℓq
˘

˛

‚X

¨

˝

ď

kPrn´1s

B

¨

˝

ľ

jPrms

Xpj,kq

˛

‚

˛

‚

“
ď

ℓPrn´1s

ď

kPrn´1s

¨

˝B
`

Xpm`1,ℓq
˘

X B

¨

˝

ľ

jPrms

Xpj,kq

˛

‚

˛

‚.

If k “ ℓ, then B
`

Xpm`1,ℓq
˘

X B

˜

Ź

jPrms

Xpj,kq

¸

“ B

˜

Ź

jPrm`1s

Xpj,kq

¸

by Lemma 3.5.

If k ‰ ℓ, then we must consider the cases when

(1) k P rms which implies B
`

Xpm`1,ℓq
˘

XB

˜

Ź

jPrms

Xpj,kq

¸

is contained inB

˜

Ź

jPrm`1s

Xpj,kq

¸

,

(2) ℓ P rms which implies B
`

Xpm`1,ℓq
˘

XB

˜

Ź

jPrms

Xpj,kq

¸

is contained inB

˜

Ź

jPrm`1s

Xpj,ℓq

¸

,

(3) neither k nor ℓ are in rms.

In case (3), let z P BpXpm`1,ℓqqXB

˜

Ź

jPrms

Xpj,kq

¸

which implies pzℓ, zkq “
`

eipπtℓ`πq, eipπtℓ`πq
˘

,

where tℓ, tk P r0, 1s. Then, either tℓ ď tk which implies z P B

˜

Ź

jPrm`1s

Xpj,kq

¸

, or tk ď tℓ

which implies z P B

˜

Ź

jPrm`1s

Xpj,ℓq

¸

. Thus
Ş

jPJ

Bj “
Ť

kPrn´1s

B

˜

Ź

jPJ

Xpj,kq

¸

.

To prove that the second part of the claim, we are going to apply Theorem 2.3 on the

collection

#

B

˜

Ź

jPJ

Xpj,kq

¸

: k P rn ´ 1s

+

. Clearly, ν

˜

Ź

jPJ

Xpj,kq

¸

“ 2n ´ 3 ´ |J | for each

k P rn ´ 1s. Thus B

˜

Ź

jPJ

Xpj,kq

¸

is a p2n ´ 3 ´ |J |q-ball by Lemma 3.3.

To show that the first condition of Theorem 2.3 holds, fix I Ď rn ´ 1s, where |I| ą 1. It
is not difficult to see that

Ş

kPI

B

˜

Ź

jPJ

Xpj,kq

¸

“ B

˜

Ź

pj,kqPJˆI

Xpj,kq

¸

and ν

˜

Ź

pj,kqPJˆI

Xpj,kq

¸

“ 2n´2´|J |´ |I|. Hence,
Ş

kPI

B

˜

Ź

jPJ

Xpj,kq

¸

is a p2n´2´|J |´ |I|q-

ball by Lemma 3.3.
To show that the second condition holds of Theorem 2.3, fix r P I. We must show that
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Ş

kPI´tru

B

˜

Ź

jPJ

Xpj,kq

¸

Ď B

˜

Ş

kPI

B

˜

Ź

jPJ

Xpj,kq

¸¸

which follows immediately from Lemma 3.5 and Lemma 3.4. Thus, by Theorem 2.3,

Ť

kPrn´1s

B

˜

Ź

jPJ

Xpj,kq

¸

is a p2n ´ 3 ´ |J |q-ball. �

To show the second condition of Theorem 2.3 holds for tBj : j P rn ´ 1su, fix r P J .

Claim.
Ş

jPJ

Bj Ď B

˜

Ş

jPJ´tru

Bj

¸

.

Proof. We must show that

Ť

kPrn´1s

B

˜

Ź

jPJ

Xpj,kq

¸

“
Ş

jPJ

Bj Ď B

˜

Ş

jPJ´tru

Bj

¸

“ B

˜

Ť

kPrn´1s

B

˜

Ź

jPJ

Xpj,kq

¸¸

.

Fix k0 P rn´ 1s. It suffices to show that B

˜

Ź

jPJ

Xpj,k0q

¸

Ď B

˜

Ť

kPrn´1s

B

˜

Ź

jPJ

Xpj,kq

¸¸

which

follows from Lemma 3.5 and Lemma 3.4. Thus
Ş

jPJ

Bj Ď B

˜

Ş

jPJ´tru

Bj

¸

. �

Hence, by Theorem 2.3, ∆tx P 1K
n : xn “ 1u is a p2n ´ 4q-ball. �

4. Proof of Theorem 1.2

We will induct on n ě 2.
When n “ 2, we have p1, 1qK “ tp0, 0qu Y tpx,´xq : x P S1u. Since p1, 1qK ´ tp0, 0qu

contains no chains, ∆pp1, 1qK ´ tp0, 0quq “ p1, 1qK ´ tp0, 0qu which is clearly homeomorphic
to S1.

For n ą 2, assume that the Theorem 1.2 holds for n´1, that is, we have a homeomorphism
h : ∆

`

1K
n´1 ´ t0u

˘

Ñ S2n´5. As previously discussed, we can write

1K
n “ tx P 1K

n : xn P S1u Y tx P 1K
n : xn “ 0u.

By Theorem 3.6, ∆ptx P 1K
n : xn “ 1uq is a p2n ´ 4q-ball.

Claim. B
`

∆ptx P 1K
n : xn “ 1uq

˘

“ ∆tpy, 1q : y P 1K
n´1 ´ t0uu.

Proof. First we show that ∆tpy, 1q : y P 1K
n´1 ´ t0uu Ď B

`

∆
 

x P 1K
n : xn “ 1

(˘

. Let

z P ∆tpy, 1q : y P 1K
n´1 ´ t0uu Ď ∆

 

x P 1K
n : xn “ 1

(

. Since z P ∆
 

x P 1K
n : xn “ 1

(

,

we have that z P B

˜

Ź

jPJ

Xpj,kq

¸

for some J Ď rn ´ 1s and k P rn ´ 1s. To show that

z P B
`

∆
 

x P 1K
n : xn “ 1

(˘

, it suffices to show that z R int

˜

B

˜

Ź

jPJ

Xpj,kq

¸¸

. By way of

contradiction, suppose that z P int

˜

B

˜

Ź

jPJ

Xpj,kq

¸¸

, then it has to satisfy one of two lists

of conditions depending on k.
If k P J , then
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(1) zk “ ´1,
(2) zj P intU for every j P J ´ tku, and
(3) zℓ P intB for ℓ P rn ´ 1s ´ J .

If k P rn ´ 1s ´ J , then

(1) zk “ eipπtk`πq and zj “ eiπtj , where 0 ă tj ă tk for every j P J , and
(2) zℓ P intB for ℓ P rn ´ 1s ´ J .

In either case, 0 R zk
Ð

jPJ zj , a contradiction. Thus z P int

˜

B

˜

Ź

jPJ

Xpj,kq

¸¸

and, hence,

∆tpy, 1q : y P 1K
n´1 ´ t0uu Ď B

`

∆
 

x P 1K
n : xn “ 1

(˘

.

To obtain equality, it suffices to show that ∆tpy, 1q : y P 1K
n´1 ´ t0uu is homeomorphic to

S2n´5. Consider the map

πrn´1s : Φ
n Ñ Φn´1, x ÞÑ px1, x2, . . . , xn´1q.

We can restrict the domain and the codomain of πrn´1s to obtain

φ : tpy, 1q : y P 1K
n´1 ´ t0uu Ñ 1K

n´1 ´ t0u.

This map is an isomorphism of topological posets which induces a homeomorphism ∆pφq
between their topological order complexes. By the induction hypothesis of Theorem 1.2, we
have that

h ˝ ∆pφq : ∆tpy, 1q : 1K
n´1 ´ t0uu Ñ S2n´5

is a homeomorphism. Thus,

∆tpy, 1q : 1K
n´1 ´ t0uu “ B

`

∆
 

x P 1K
n : xn “ 1

(˘

.

�

We can extend h ˝ ∆pϕq to a homeomorphism H : ∆
 

x P 1K
n : xn “ 1

(

Ñ Bn´2. Since

p´1, . . . ,´1, 1q P int
`

∆
 

x P 1K
n : xn “ 1

(˘

, we can define the unique path

pz : r0, 1s Ñ Bn´2

t ÞÑ p1 ´ tqHp´1, . . . ,´1, 1q ` tHpzq

for every z P B
`

∆
 

x P 1K
n ´ t0u : xn “ 1

(˘

. Thus, we have a unique path from p´1, . . . ,´1, 1q
to z via H´1 ˝ pz. Furthermore, there is a unique path

p1
z
: r0, 1s Ñ ∆p1K

n ´ t0uq, t ÞÑ pz1, z2, . . . , p1 ´ tqznq.

from every z P B
`

∆
 

x P 1K
n ´ t0u : xn “ 1

(˘

to z1 P ∆tx P 1K
n : xn “ 0u, where z1 “ z

except z1
n “ 0. Therefore,

r0, 1s Ñ ∆p1K
n ´ t0uq, ÞÑ

"

H´1 ˝ pzp2tq if t P r0, 1{2s,

p1
z
p2t ´ 1q if t P r1{2, 1s.

is a unique path from p´1,´1, . . . ,´1, 1q to every z1 P ∆tx P 1K
n : xn “ 0u. Since, for every

x P S1, gx| : ∆p1K
n ´ t0uq Ñ ∆p1K

n ´ t0uq is a homeomorphism, we have a unique path from
p´x,´x, . . . ,´x, xq P gxp∆tx P 1K

n : xn “ 1uq to every point in ∆tx P 1K
n : xn “ 0u. In

other words, ∆p1K
n ´ t0uq is the join of the circle tp´x,´x, . . . ,´x, xq : x P S1u and the

p2n´5q-sphere ∆tx P 1K
n : xn “ 0u. Thus ∆p1K

n ´t0uq is homeomorphic to S1˚S2n´5 – S2n´3.
11
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