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THE VIRTUAL CACTUS GROUP AND LITTELMANN PATHS

JACINTA TORRES

Abstract. We define a virtual cactus group and show that the cactus group action
on Littelmann paths is compatible with the virtualization map defined by Pan–
Scrimshaw [PS18]. Our virtual cactus group generalizes the group with the same
name defined for the symplectic Lie algebra in [ATFT22].

1. Introduction

Let g be a finite dimensional, complex, semisimple Lie algebra. Let D be the
Dynkin diagram associated to the root system of g, R its root system, ∆ = {αi :
i ∈ D} ⊂ R the set of simple roots, W = W (R) its Weyl group, generated by the
simple reflections {ri : i ∈ D}, and w0 ∈ W the longest element of the Weyl group.
For a connected sub-diagram J ⊆ D, of D, denote by θJ : J → J the unique Dynkin
diagram automorphism that satisfies αθJ (j) = −wJ

0αj, for any node j ∈ J , where wJ
0

is the longest element of the parabolic subgroup W J ⊆ W (the Weyl group for g

restricted to J) [BB05]. This leads to the following definition by Halacheva.

Definition 1. [Hal20] The cactus group JD is the group with generators sJ , one for

each connected subdiagram J of D, and relations given as follows:

1. s2J = 1;
2. sIsJ = sJsI for I, J ⊆ D connected subsets if the union J ∪ I is disconnected;

3. sIsJ = sθI(J)sI if J ⊂ I.

Definition 1 is a generalization of the original definition of the cactus group defined
by Henriques–Kamnitzer in [HJK04], which was denoted by Jn and which corresponds
to the cactus group associated to the Dynkin diagram of type An−1.

1.1. Main results and aim of the paper. In this paper we will be concerned with
pairs of Dynkin diagrams (X,Y ) related by folding, that is, there is an injection of
sets of nodes X →֒ Y which induces an injection of the corresponding Lie algebras
gX →֒ gY as described in [BS17]. The main result and aim of this paper is the “vir-
tualization” of the cactus group JX , as defined by Halacheva in [Hal20], and of its
action on gX -crystals, transferring certain results obtained for the case Cn →֒ A2n−1 in
[ATFT22] to the more general setup described above. This is carried out in Theorem 2
and Theorem 4. It consists in defining a group monomorphism JX →֒ JY compatible
with the action of JX and JY on gX , respectively gY -crystals. Moreover, by using
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the virtualization map on Littelmann paths described by Pan–Scrimshaw in [PS18],
instead of the Baker virtualization map used in [ATFT22] for Kashiwara–Nakashima
tableaux, we obtain a simple rule to compute the partial Schützenberger–Lusztig invo-
lutions of Littelmann paths in gX-crystals in terms of partial Schützenberger–Lusztig
involutions of Littelmann paths in gY -crystals. This is carried out in Theorem 4.
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3. The cactus group and crystals

Let Λ be the integral weight lattice and Λ+ ⊂ Λ be the dominant weights. Recall
that irreducible finite-dimensional representations of g are in one-to-one correspon-
dence with the set of highest weights Λ+. We now recall the definition of a semi-normal
crystal as in [BS17].

Definition 2. A semi-normal g-crystal consists of a non-empty set B together with

maps

wt :B −→ Λ

ei, fi :B −→ B ⊔ {0} , i ∈ D

such that for all b, b′ ∈ B:

• b′ = ei(b) if and only if b = fi(b
′),

• if fi(b) 6= 0 then wt(fi(b)) = wt(b)− αi;

if ei(b) 6= 0, then wt(ei(b)) = wt(b) + αi, and

• ϕi(b)− εi(b) = 〈wt(b), α∨
i 〉,

where

εi(b) = max{a ∈ Z≥0 : e
a
i (b) 6= 0} and

ϕi(b) = max{a ∈ Z≥0 : f
a
i (b) 6= 0}.

To each such crystal B is associated a crystal graph, a coloured directed graph with

vertex set B and edges coloured by elements i ∈ D, where if fi(b) = b′ there is an

arrow b
i
→ b′. We say that a crystal is irreducible if its corresponding crystal graph is

connected and finite.
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The finite irreducible semi-normal g-crystals are labeled by the dominant weights
Λ+. Given a highest weight λ ∈ Λ+, the corresponding irreducible crystal is usually
denoted by B(λ). It encodes important information about the corresponding irre-
ducible finite dimensional representation of g, V (λ). For instance, dim(V(λ)) equals
the cardinality of B, and, in the weight decomposition V (λ) = ⊕

µ≤λ
V (λ)µ, dim(V (λ)µ)

equals the cardinality of the set of b ∈ B(λ) such that wt(b) = µ. Moreover, for a
subinterval J ⊂ D, the crystal corresponding to the Levi restriction of V (λ) corre-
sponds to the gJ -crystal B(λ)J with crystal graph obtained from the graph for B(λ)
by deleting edges with labels i /∈ J . In this paper, we will only deal with crystals
whose crystal graphs decompose into connected components, each of which is isomor-
phic to crystals of the form B(λ). These are also known in the literature as normal

crystals.

3.0.1. Schützenberger–Lusztig involutions. There is an elegant internal action of the
cactus group Jg on crystals via partial Schützenberger–Lusztig involutions, which are
generalizations of Schützenberger–Lusztig involutions originally studied by Berenstein–
Kirillov and generalized by Halacheva. For a subinterval J ⊂ D, the partial
Schützenberger–Lusztig involution is defined as follows on B(λ). Let v ∈ B(λ)J
be a highest weight element, and let vwJ

0

∈ B(λ)J be a lowest weight element. In

particular wt(vwJ
0

) = wJ
0 (wt(v)) Let b = fir · · · fi1(v) for ij ∈ J, j ∈ [1, r]. Then the

partial Schützenberger–Lusztig involution is the unique involution ξJ : B(λ) → B(λ)
which satisfies for each j ∈ J :

ξJ(ej(b)) = fθJ(j)(ξJ(b))

ξJ(fj(b)) = eθJ (j)(ξJ(b)) and

wt(ξJ(b)) = wJ
0 (wt(b)).

In fact, ξJ(b) = eθJ (ir) · · · eθJ (i1)(v). If J = D, ξJ is known as the Schützenberger–
Lusztig involution, and denoted simply by ξ. Each partial Schützenberger–Lusztig
involution acts as the corresponding Schützenberger–Lusztig involution applied to
each connected component of the Levi-branched crystal B(λ)J . If our normal crystal
B is not connected, partial Schützenberger–Lusztig involutions are defined in the same
way as above, on each connected component.

Theorem 1 (Halacheva, [Hal20]). Let B be a normal g-crystal. The cactus group

Jg acts on B via partial Schützenberger–Lusztig involutions, that is, for J ⊂ D a

subinterval, the assignment sJ 7→ ξJ induces a group action.

4. The virtual cactus group

Let X →֒ Y be an embedding of a twisted Dynkin diagram X into a simply-
laced Dynkin diagram Y given by folding. More precisely, there is a Dynkin diagram
automorphism aut : Y → Y of Y such that there is an edge-preserving bijection
σ : X → Y/ aut. The injection of Dynkin diagrams is reflected on the Lie algebras
as follows. Let gX , respectively gY be the complex simple Lie algebras with Dynkin



4 JACINTA TORRES

diagram X, respectively Y . Then the Dynkin diagram automorphism aut induces
a Lie algebra automorphism aut : gY → gY . The set of fixed points under this
automorphism has the structure of a Lie algebra isomorphic to gX [Kac90]. This
induces an injection gX →֒ gY . Below we list all such pairs, together with the values
of θX and θY . We use the numbering of the vertices given by [BS17].

X Y θX θY
Cn A2n−1 Id θY (i) = 2n− i

B2n−1 D2n Id Id

B2n D2n+1 Id θY (i) =

{

i if i < 2n

2n, 2n+ 1 if i = 2n+ 1, 2n resp.

G2 D4 Id Id

F4 E6 Id θY (i) =







6, 1 if i = 1, 6 resp.

5, 3 if i = 3, 5 resp.

i otherwise

We have aut = θY , except for the cases where Y = D2n, where

aut(i) =











i i < 2n− 1

2n i = 2n− 1

2n− 1 i = 2n.

We proceed to define a group monomorphism JX →֒ JY . Its image will be isomor-
phic to what we call the virtual cactus group, generalizing the concept of the virtual
symplectic cactus group defined in [ATFT22] for X = Cn and Y = A2n−1. We start
by stating the following lemma, which immediately follows from the description in
the previous section. We will abuse notation and consider the coset σ(I) ∈ Y/ aut,
as a subset of Y , for I ⊂ X. Each non-simply laced Dynkin diagram we consider has
what we will call in this note a branching point x0 ∈ X, described in the table below.

X x0
Cn n
F4 2
Bn n− 1
G2 2
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For the comfort of the reader we include the corresponding Dynkin diagrams as
well below.

X Y

Cn
1 n− 1 n

A2n−1
1 n 2n− 1

F4
1 2 3 4

E6
1

2

3 4 5 6

Bn
1 n− 1 n

Dn+1
1 n− 1

n

n+ 1

G2
1 2

D4
1 2

3

4

We now consider the following elements:

s̃I =
∏

sY
Ĩ

where sY
Ĩ
are the generators of the cactus group JY and the product is taken over the

connected components Ĩ of σ(I). Our aim for the rest of this section is to prove the
following result.

Theorem 2. The map defined by

Φ : JX → JY

sI 7→ s̃I

is a monomorphism of groups.

Lemma 1. Let I, J ⊂ X such that J ⊂ I. Then

s̃I s̃J = s̃θI(J)s̃I

Proof. First assume that θY = Id. This means Y = D2n for some n ≥ 2. If I = X
then σ(I) = Y , therefore the statement of Lemma 1 follows from θY = Id and the
defining Relation 3 for the cactus group JY . If I ⊂ X does not contain the branching
point x0 then σ|I : I → Ĩ = σ(I) is an isomorphism, hence the statement follows
trivially. If I is not X but contains the branching point, then either I is of type A,
σ(I) = Ĩ is of type A and σ|I : I → Ĩ is an isomorphism, which implies the claim as
in the previous case, or I is of type G2, in which case the claim also follows easily
since J is forced to consist of just one vertex.

Assume next that θY = aut. If I ⊂ X contains the branching point x0, then
θI = IdI and σ(I) = Ĩ is connected. Let us then assume first that x0 ∈ I. Now, if
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x0 ∈ J also, then σ(J) = J̃ is connected and θĨ(J̃) = J̃ . Now, if J ⊂ I does not
contain a branching point but I does, then either

• σ(J) = J̃1 ⊔ J̃2 has two isomorphic connected components, in which case

θĨ(J̃1) = J̃2 and θĨ(J̃2)) = J̃1, or

• σ(J) = J̃ is connected and isomorphic to J , in which case θĨ(J̃) = J̃ .

We conclude then that if x0 ∈ I and σ(J) = J̃ is connected, then

s̃I s̃J = sY
Ĩ
sY
J̃
= sY

θ
Ĩ
(J̃)
sY
Ĩ
= sY

J̃
sY
Ĩ
= s̃J s̃I = s̃θI(J)s̃I ,

as desired. Now, if x0 ∈ I and σJ = J̃1 ⊔ J̃2, then we still have θI = Id, so θI(J) = J .
We have in this case

s̃I s̃J = sY
Ĩ
sY
J̃1
sY
J̃2

= sY
θ
Ĩ
(J̃1)

sY
Ĩ
sY
J̃2

= sY
θ
Ĩ
(J̃1)

sY
Ĩ(J̃2)

sY
Ĩ
= s̃J s̃I = s̃θI(J)s̃I .

This concludes the proof in the case x0 ∈ I.

Now let us assume that x0 /∈ I. We have two cases: The case where σ(I) is
connected is trivial because since θY = aut, we conclude that necessarily θσ(I) =

aut |σ(I) = Idσ(I), also σ(J) ⊂ σ(I) is connected for each J ⊂ I, and s̃J = sY
σ(J) for

each J ⊂ I. It remains to consider the case where σ(I) has two connected components

σ(I) = Ĩ1⊔ Ĩ2. It follows that for each J ⊂ I we have a decomposition into connected

components σ(J) = J̃1 ⊔ J̃2, where J̃i ⊂ Ĩi, i = 1, 2. The following identity holds by
case-by-case analysis:

σ(θI(J)) = θĨ1(J̃1) ⊔ θĨ2(J̃2). (1)

Therefore we have in this case:

s̃I s̃J = sY
Ĩ1
sY
Ĩ2
sY
J̃1
sY
J̃2

= sY
Ĩ1
sY
J̃1
sY
Ĩ2
sY
J̃2

= sY
θ
Ĩ1
(J̃1)

sY
Ĩ1
sY
θ
Ĩ2
(J̃2)

sY
Ĩ2

= sY
θ
Ĩ1
(J̃1)

sY
θ
Ĩ2
(J̃2)

sY
Ĩ1
sY
Ĩ2

= s̃θI(J)s̃I ,

where the last equality follows from (1). This concludes the proof in the cases where
θY = aut and therefore the whole proof.

�

Definition 3. The virtual cactus group Jv
X is defined by generators sσ(I), for each

I ⊂ X connected subdiagram, and by the relations:

1. s2
σ(I) = 1;

2. sσ(I)sσ(J) = sσ(J)sσ(I) if the union J ∪ I is disconnected;
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3. sσ(I)sσ(J) = sσ(θI (J))sσ(I) if J ⊂ I.

It is clear from the definition that the virtual cactus group Jv
X is isomorphic to the

cactus group JX .

Proof of Theorem 2. To show that Φ is a group morphism, we need to show three
relations:

(1) s̃2I = Id,
(2) s̃I s̃J = s̃J s̃I ,
(3) s̃I s̃J = s̃θI(J)s̃I .

Note that the third relation has already been established in Lemma 1. To prove
(1), note that since the connected components of σ(I) are disjoint, the commutation
relation 2. in Definition 1 implies

s̃2I =
∏

sY
Ĩ

2
= Id

To show the second relation, let I, J ⊂ X be two disjoint, connected intervals. Then
necessarily σ(I) and σ(J) are mutually disjoint. We have then

s̃I s̃J =
∏

sY
Ĩ

∏

sY
J̃
=

∏

sY
J̃

∏

sY
Ĩ

where the third equality follows from relation 2. for JY . Note that the image Φ(JX)

is a group isomorphic to the virtual cactus group J̃X via the isomorphism s̃I 7→ sσ(I).
Note that this map is well defined because σ(I) = σ(J) ⇐⇒ I = J . �

5. Virtualization of the action of the cactus group on crystals of

Littelmann paths

In this section we will borrow most of our notation from [PS18] for practical pur-
poses as well as for the comfort of the reader. Let λ ∈ Λ+. We consider P(λ) to be
the Littelmann path model for λ with paths π : [0, 1] → ΛR of the form

π(t) =
∑

i∈D

Hi,π(t)Λi,

where Hi,π(t) = 〈t, α∨
i 〉 and where Λi ∈ Λ+ are the fundamental weights for i ∈ D.

The set P(λ) has the structure of a crystal isomorphic to B(λ) with weight map
wt(π) = π(1). We refer the reader to [PS18] for the definition of the crystal structure
using the notation we use in this section. The original and standard reference of the
topic is the paper [Lit95] by Littelmann.

Recall that in this paper we consider embeddings X →֒ Y given by folding. Let ΛX

and ΛY be the corresponding integral weight lattices. The bijection σ : X → Y/ aut
induces a map

Ψ : ΛX → ΛY

given by the assignment

ΛX
i 7→

∑

j∈σ(i)

γi(Λ
Y )j ,
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where γi is given by Table 5.1 in [BS17] and where ΛX
i and ΛY

j denote the fundamental
weights in ΛX , respectively ΛY .

Definition 4. Let B̃ be a normal gY -crystal, and a subset V ⊂ B̃. The virtual root

operators of type X are, for i ∈ X:

evi =
∏

j∈σ(i)

ẽγij (2)

f vi =
∏

j∈σ(i)

f̃γij , (3)

where ẽi, f̃i, i ∈ Y are the root operators for the gY -crystal B̃.

A virtual crystal is a pair (V, B̃) such that V has a gX -crystal structure defined by

ei := evi fi := f vi (4)

εi := γ−1
i ε̃jϕi := γ−1

i ϕ̃j , (5)

where ε̃j , ϕ̃jj ∈ Y denote the maps given by

ε̃i(b) = max{a ∈ Z≥0 : ẽ
a
i (b) 6= 0} and

ϕ̃i(b) = max{a ∈ Z≥0 : f̃
a
i (b) 6= 0}.

If gX-crystal B is crystal isomorphic to a virtual crystal V ⊂ B̃ via an isomorphism

φ : B → V , then the isomorphism φ is called a virtualization map.

For λ ∈ Λ+
X , the weight ψ(λ) ∈ λY , is dominant, that is, ψ(λ) ∈ Λ+

Y . Given
π ∈ P(λ), consider the path Ψ(π) : [0, 1] → ΛY defined by

Ψ(π)(t) =
∑

i∈D

Hi,π(t)ψ(Λi) (6)

One of the main results in [PS18] is the following theorem.

Theorem 3 (Pan–Scrimshaw, [PS18]). The assignment π 7→ Ψ(π) induces a virtual-

ization map

P(λ) → P(ψ(λ))

π 7→ Ψ(π).

The principal aim of this section is to describe the action of the cactus group
in terms of the virtualization map of Pan–Scrimshaw. For this, given a connected
subdiagram I ⊂ X, let

ξ̃σ(I) :=
∏

ξY
Ĩ

where ξY
Ĩ
are the partial Schützenberger–Lusztig involutions in P(ψ(λ)) and the prod-

uct is taken over the connected components Ĩ of σ(I). Our next aim is to prove the
following result, which generalizes [ATFT22, Theorem 5, Theorem 6, Section 9.5].
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Theorem 4. Let λ ∈ Λ+
X and P(λ) the corresponding Littelmann path model. Then

the following diagram commutes

P(λ) P(ψ(λ))

P(λ) P(ψ(λ))

Ψ

Ψ

ξXI ξ̃σ(I)

.

Moreover, the left inverse Ψ−1 can be explicitly computed on ξ̃Y
σ(I)(Ψ(P(λ))).

Proof. First note that since the Littelmann path model P(ψ(λ)) is stable under the

root operators ẽi, f̃i, it is also stable under the action of the operators ξ̃Y
σ(I) for I ⊂ X

connected. Therefore, all paths in ξ̃Y
σ(I)(Ψ(P(λ))) must be of the form (6), so the

left inverse Ψ−1 can be explicitly computed on ξ̃Y
σ(I)(Ψ(P(λ))), simply by writing out

the corresponding path in this form. We now proceed to show that the diagram
commutes. Let πν ∈ P(λ)I be a highest weight path of weight wt(πν) = πν(1) = ν
and π = fir · · · fi1πν for ij ∈ I, j ∈ [1, r]. Recall that

ξXI (π) = eθI (ir) · · · eθI (i1)πν .

Therefore by Theorem 3 we have

Ψ(ξXI (b)) = evθI (ir) · · · e
v
θI (i1)

Ψ(πν).

Now, by Definition 4 and Theorem 3 we have

ξ̃σ(I)(Ψ(b)) =
∏

ξY
Ĩ
(Ψ(π))

=
∏

ξY
Ĩ
(

∏

j∈σ(ir)

f̃
γir
j · · ·

∏

j∈σ(i1)

f̃
γi1
j (Ψ(πν)))

where the product is taken over the connected components Ĩ of σ(I). To continue our
computations we consider three cases separately:

(1) The subdiagram σ(I) = Ĩ ⊂ Y is connected. Then θI = Id, we have γij = 1 if

and only if σ(ij) =
{

ĩ1j , ĩ
2
j

}

or σ(ij) =
{

ĩ1j , ĩ
2
j , ĩ

3
j

}

and γij = 2, 3 if and only if

σ(ij) =
{

ĩj
}

. In case γij = 1 we have θĨ (̃i
1
j ) = ĩ2j and θĨ (̃i

2
j ) = ĩ1j . Moreover,

the root operators ẽĩ1j
and ẽĩ2j

commute. In case γij = 2, 3 we have θĨ (̃ij) = ĩj .

All together this implies:
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ξ̃σ(I)(Ψ(b)) = ξY
Ĩ
(f vir · · · f

v
i1
(Ψ(πν)))

= evθI(ir) · · · e
v
θI (i1)

Ψ(πν)

= Ψ(ξXI (b)).

(2) The subdiagram σ(I) ⊂ Y is disconnected. Assume θY = aut. In this case

we must have |σ(I)| = 2|I|, that is, σ(I) = Ĩ1 ⊔ Ĩ2 is a disconnected union. In

particular all root operators ẽs, f̃t with s, t ∈ Ĩ1 commute with the operators
ẽu, f̃v, with u, v ∈ Ĩ2. Moreover γij = 1 for all j ∈ [1, r]. Altogether, this
implies:

ξ̃σ(I)(Ψ(b)) = ξY
Ĩ1
ξY
Ĩ2
(f vir · · · f

v
i1
(Ψ(πν)))

= ξY
Ĩ1
ξY
Ĩ2
(f̃i1r f̃i2r · · · f̃i11 f̃i21(Ψ(πν)))

= ξY
Ĩ1
ξY
Ĩ2
(f̃i2r · · · f̃i21 f̃i1r · · · f̃i11(Ψ(πν)))

= ξY
Ĩ1
(ẽθ

Ĩ2
(i2r)

· · · ẽθ
Ĩ2
(i2

1
)f̃i1r · · · f̃i11(Ψ(πν)))

= ξY
Ĩ1
(f̃i1r · · · f̃i11 ẽθĨ2 (i

2
r)
· · · ẽθ

Ĩ2
(i2

1
)(Ψ(πν)))

= ẽθ
Ĩ1
(i1r)

· · · ẽθ
Ĩ
(i1

1
)ẽθĨ2 (i

2
r)
· · · ẽθ

Ĩ2
(i2

1
)(Ψ(πν))

= ẽθ
Ĩ1
(i1r)
ẽθ

Ĩ2
(i2r)

· · · ẽθ
Ĩ1

(i1
1
)ẽθ

Ĩ2
(i2

1
)(Ψ(πν)).

The case θY = Id is very similar. �

Corollary 1. The virtual cactus group Jv
X acts on P(ψ(λ)) and preserves the image

Ψ(P(λ)) of Ψ.
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