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Abstract

The fluctuation-dissipation theorem, in the Kubo original formulation, is based on the decompo-

sition of the thermal agitation forces into a dissipative contribution and a stochastically fluctuating

term. This decomposition can be avoided by introducing a stochastic velocity field, with correlation

properties deriving from linear response theory. Here, we adopt this field as the comprehensive

hydrodynamic/fluctuational driver of the kinematic equations of motion. With this description, we

show that the Langevin equations for a Brownian particle interacting with a solvent fluid become

particularly simple and can be applied even in those cases in which the classical approach, based on

the concept of a stochastic thermal force, displays intrinsic difficulties e.g., in the presence of the

Basset force. We show that a convenient way for describing hydrodynamic/thermal fluctuations is

by expressing them in the form of Extended Poisson-Kac Processes possessing prescribed correla-

tion properties and a continuous velocity density function. We further highlight the importance of

higher-order correlation functions in the description of the stochastic hydrodynamic velocity field

with special reference to short-time properties of Brownian motion. We conclude by outlining some

practical implications in connection with the statistical description of particle motion in confined

geometries.
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I. INTRODUCTION

One of the major results of statistical physics for systems at thermal equilibrium is the

fluctuation-dissipation theorem, formulated by Einstein in 1905 to 1906 in the analysis of

Brownian motion [1], generalized by Callen and Welton using a quantum formalism [2] and

extended by Kubo to generalized Langevin processes [3]. In its essence, the fluctuation-

dissipation theorem is based on the decomposition of the thermal fluctuations into two main

contributions: a dissipative force proportional to velocity that, in the Einstein-Langevin

theory, coincides with the Stokesian friction [1, 4], and a stochastic force accounting for the

thermal fluctuations. The same setting characterizes the Kubo approach that involves a

generalized Langevin equation of the form

v̇(t) = −
∫ t

0

h(t− τ) v(τ) dτ +
R(t)

m
(1)

for a particle of mass m and velocity v(t) in a still liquid at thermal equilibrium, where

v̇(t) = dv(t)/dt. In eq. (1), h(t) is the dissipative response kernel and R(t) the stochastic

fluctuating contribution. Starting from this formulation, Kubo generalized Einstein’s result,

connecting the velocity autocorrelation function 〈v(t)v(0)〉 and the autocorrelation function

of the stochastic forcing term 〈R(t)R(0)〉, t ≥ 0, to the dissipative response kernel h(t),

namely
1

iω + h[ω]
=

1

kB T

∫ ∞

0

〈v(t)v(0)〉 e−iωt dt , (2)

i =
√
−1, and

〈R(t)R(0)〉 = mkB T h(t) , (3)

where T is the temperature, kB the Boltzmann constant and h[ω] the Fourier-Laplace trans-

form of h(t), i.e., the Laplace transform of h(t) when the Laplace variable s is set equal to

iω. Equation (3) is valid if h(t) is not impulsive. Equation (2) is customarily referred to

as the first Fluctuation-Dissipation (FD) theorem, while eq. (3) holds for the second FD

theorem [5].

As observed by Kubo et al. [5]: “... the random force appearing in the fluctuation-

dissipation theorem is not simple, because the separation of the force into frictional and

random forces is itself a complex problem of statistical physics.“ This observation indicates

that some level of arbitrariness resides in this decomposition [6]. A similar remark is also

stressed by Tothova and Lisy [7], who correctly observe that a “physical” thermal force,
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namely R(t) in eq. (1), should in principle be measurable independently of the hydrodynamic

interactions, while in experiments it is just a byproduct of the reprocessing of particle

trajectory time series [8–10].

The problem is even more complex for particles moving in a fluid whenever the fluid

inertia is accounted for, e.g., by considering the time-dependent Stokes regime, so that

eq. (1) is replaced by [11, 12]

v̇(t) = −
∫ t

0

h(t− τ) v(τ)dτ −
∫ t

0

k(t− τ) v̇(τ) dτ +
R(t)

m
. (4)

This equation is valid assuming v(0) = 0, otherwise the additional term −k(t) v(0) should
be added, as addressed in the remainder (Section III). In eq. (4), the inertial effects appear

as a memory integral defined by the kernel k(t) acting on the time derivative of the veloc-

ity. This inertial term in an incompressible fluid is expressed by the dynamic added mass,

corresponding to the superposition of the impulsive contribution of the added mass ma and

of the Basset force [13]

k(t) = ma δ(t) + β
1√
t
. (5)

For a spherical particle of radius Rp it is β = 6
√
πρµR2

p, where ρ and µ are the density and

the viscosity of the fluid, respectively, and ma = mρ/(2ρp), where ρp is the particle density.

Note that in this case, the Kubo formulation of the FD theorem does not strictly apply [5].

Nevertheless, enforcing Linear Response Theory (LRT) it is possible to recover the velocity

autocorrelation function, and out of it, the autocorrelation function of the stochastic forcing

R(t) [5]. Phenomenologically, the above mentioned inertial effects correspond to the back-

action to the particle of the correlated motion of the fluid elements in its neighbourhood [14].

Viewed in this perspective, it is even more difficult to separate conceptually their influence

from that of the stochastic forcing R(t).

The importance of the FD theorem is essentially two-fold: (i) to provide a unified frame-

work for fluctuations and dissipation, at least for systems at thermal equilibrium. This

has been originally expressed by the Stokes-Einstein relation, connecting the main physical

quantity accounting for the intensity of thermal fluctuations, namely the particle diffusivity

D, to the strength of the dissipative action, given by the Stokesian friction factor η, and to

the thermodynamic state of the system (characterised by the temperature T ), D = kBT/η;

(ii) to make possible direct stochastic simulations of particle trajectories, via the concept of

Wiener-Langevin equations (with the caveat of breaking Galilei invariance which, however,
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can be cured by suitably adapted methods [15]). Thanks to the introduction of Wiener

processes, compactly expressing the long-term properties of Brownian fluctuations [16, 17],

and to the seminal work by Ito on stochastic analysis and integration [18], this powerful

numerical tool was made available, and soon became a cornerstone in the investigation of

large-scale molecular systems starting from the analysis of individual trajectories. The pos-

sibility of making stochastic simulations of particle motion paved the way to the last 70 years

of research and elaborations, not only in classical statistical physics, but also in quantum

physics (path-integrals on Wiener trajectories [19]), condensed-matter physics and quantum

field theory [20]. Accordingly, new fields of physics have been opened, for instance, the frac-

tal theory for processes and objects controlled by fluctuational dynamics (diffusion-limited

processes, random fractals) [21], where numerical simulations played a central role for the

development of the theory of disordered and fractal systems.

Back to FD theory, out of the two main conceptual and practical implications pointed out

above, the second one is probably the most delicate, as, within this framework, a generalized

Stokes-Einstein relation is essentially a very general and elementary property of equilibrium

and dissipation (see the discussion in Section III). The goal of this article is to show that

this classical decomposition into dissipative and fluctuational forces can be overcome, as a

comprehensive description of the hydrodynamic and thermal fluctuations is embedded in

the concept of a stochastic hydrodynamic/thermal velocity field vs(t;x), introduced in this

article. Consequently, the main physical problem is the determination and the representation

of the statistical properties of the hydrodynamic fluctuations for generic fluids and flow

devices. This approach answers the doubts and reflections of Kubo et al. [5] on the real

physical meaning of dissecting the complex interaction of a particle with a fluid continuum

into dissipative/inertial/fluctuating contributions. In the unitary and compact description

of the stochastic velocity field vs(t;x) lies the essence of the indecomposable relation between

fluctuation, dissipation and fluid medium inertia.

In this respect, the formulation that we put forward in this paper provides a completely

different point of view compared to FD theory, in the sense that in this approach the con-

cept of a stochastic thermal force is redundant. This simplifies, in turn, the application to

hydrodynamic problems, involving, e.g., fluid inertial effects. The practical implementation

of this approach for the simulation of stochastic particle motion finally implies the reduc-

tion of the comprehensive stochastic velocity field into generic stochastic processes. Using
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Poisson-Kac processes [23, 24], Generalized Poisson-Kac Processes [25–27] or Lévy Walks

[28] is a simple and computionally efficient way of expressing the stochastic velocity field

for this purpose. All these processes can be unified into the class of Extended Poisson-Kac

processes as recently formulated in Ref. [29].

The article is organized as follows. Section II introduces the velocity splitting for generic

stochastic dynamics described by equations of the form of eq. (4) into a “deterministic”

velocity term, accounting for the deterministic interactions, and a stochastic velocity field

for the hydrodynamical/thermal fluctuating contributions. In Section III, we derive the

velocity autocorrelation function of the fluctuating part using LRT. In Section III, we de-

scribe the simple problem of a Brownian particle influenced by inertial fluid effects. Section

V compares and contrasts the present formulation of the hydrodynamic Langevin equa-

tion based on the definition of a stochastic hydrodynamic velocity field with the classical

approach based on eq. (4). We also discuss the experimental determination of this field

and how this approach leads to a different and alternative interpretation of FD theory. The

comprehensive description of hydrodynamic/thermal interactions within a unique stochastic

velocity field shifts the modeling focus from the classical Wiener-based description of ther-

mal forces to the use of stochastic processes possessing either exponentially or power-law

decaying correlation functions of time, corresponding, in their more general setting, to the

class of Extended Poisson-Kac processes analyzed in Ref. [29]. In Section VI, we explore this

aspect by explictly addressing how these extended processes can be equipped, in a simple

way, with a generic velocity density function, still keeping unchanged their correlation prop-

erties. Furthermore, we also show how the present formulation hinges on a more detailed

description of the statistical properties of thermal velocity fluctuations, beyond the analysis

of second-order correlation functions. Experimental validation of the theoretical predictions

may be obtained from the analysis of Brownian motion at short time scales, using the tech-

niques addressed in Refs. [8–10, 30, 31]. We discuss the application of this approach to

microfluidic problems in Appendix C. Apart from the practical relevance to microfluidics,

this analysis opens interesting theoretical perspectives connected with the extension of LRT

to the nonlinear case.
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II. DETERMINISTIC-STOCHASTIC VELOCITY SPLITTING

Consider eq. (4) in its more general setting,

v̇ = Ld[v;x] + Li[v̇;x] + a(x) +
R(t)

m
, (6)

where Ld and Li are linear functionals of the particle velocity, {v(τ)}tτ=0, acceleration,

{v̇(τ)}tτ=0, and position, {x(τ)}tτ=0. These operators are associated with dissipative and

inertial effects. The dependence on the position history is relevant for studying particle

motion in confined geometries, wherein both frictional and inertial effects depend on the

particle position and are described by tensor-valued quantities [32, 33]. In eq. (6), a(x) is the

acceleration deriving either from external potentials or from externally-driven hydrodynamic

flows. Equation (6) is completed by the kinematic equation ẋ = v.

We postulate the decomposition of the particle velocity into a term accounting for all

deterministic perturbations, vd, and a term accounting for all stochastic perturbations, vs.

Accordingly, we adopt the notation with suffix “d” denoting deterministic terms and “s”

stochastic ones. We remark that this velocity splitting technique has been proposed in

Ref. [34] to study the Langevin equation of a particle moving in a tilted potential. We set

therefore

v = vd + vs . (7)

Substituting this decomposition into eq. (6) and invoking the linearity of the operators, we

obtain the following two dynamical evolution equations,

v̇d = Ld[vd;x] + Li[v̇d;x] + a(x) (8a)

v̇s = Ld[vs;x] + Li[v̇s;x] +
R(t)

m
(8b)

The two velocity contributions are coupled via the kinematic equation,

ẋ(t) = vd(t;x(t)) + vs(t;x(t)) . (9)

We note that vd(t;x) should be regarded as a “weakly perturbed” stochastic process. Albeit

its evolution equation is deterministic, it is coupled to the stochastic term vs(t,x) via eq. (9).

Equations (8a), (8b), (9) deserve further discussion and explanation, as they represent

the core of this, otherwise elementary, transformation of variables. In the transformed sys-

tem of variables, the phase-space independent coordinates of the particle are its position
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vector x(t) and its “deterministic” velocity component vd(t;x(t)). These are stochastic pro-

cesses dependent on time t. The interpretation of the term vs(t;x) is altogether different. In

essence, it is a stochastic field of fluctuations providing the overall description of the hydro-

dynamic/thermal fluctuations exerted by the fluid/molecular environment on the particle.

In practice, it is a stochastic process, governed by eqs. (8a),(8b), whose statistical properties

are modulated by the position x.

The statistical description of this field involves the characterization of its properties con-

ditional to a fixed value of the position. This approach is identical to the determination

of the position-dependent friction tensor in microfluidic channels for fixed x, and the equa-

tions of motion follow by superimposing to the so-determined friction forces the influence of

external perturbations, while assuming that the latter do not modify the former [32]. The

validity of this method relies on the ansatz that the statistical structure of vs(t;x) does not

depend on the externally forcing deterministic perturbations, gathered in the term a(x).

Conversely, if both Ld and Li do not depend on the particle position x, a situation that

occurs in free space or in microfluidic channels far away from solid boundaries, vs(t) is

independent on vd. In consequence, it is simply prescribed as a stochastic process in time.

III. LINEAR RESPONSE THEORY

In this section, we show how to derive the statistical properties of vs(t;x). We consider

the statistics of this field conditional to a given value of the position vector x. Henceforth, to

simplify the notation, we omit any explicit dependence on x. From LRT [3, 5, 6, 35, 36], the

correlation function of vs can be derived by considering the linear response of the dynamics

to an initial condition v0
s , averaging it with respect to the equilibrium measure of v0

s by

assuming independence between R(t) and v0
s . As observed by Tothova et al. [37, 38] the

original formulation of this approach is due to V. Vladimirsky [39] in a scarsely known paper

from 1942 written in Russian. Equation (8b) can thus be rewritten in operatorial form as

(I − Li)v̇s(t) = Ldvs(t) +
R(t)

m
, (10)

where I is the identity operator, equipped with the initial condition vs(t = 0) = v0
s . The

solution of eq. (10) is

vs(t) = e(I−Li)
−1Ldtv0

s +
1

m
e(I−Li)

−1Ldt ∗R(t) , (11)
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where “∗” denotes the convolution operation. Indicating with vs,h(t) the h-entry of vs(t), it

follows that vs,h(t)vs,k(0) can be expressed as vs,h(t)vs,k(0) =
∑

j

(
e(I−Li)−1Ldt

)
h,j
vs,j(0)vs,k(0)+

∑
j

(
e(I−Li)

−1Ldt
)
h,j

∗Rj(t)vs,k(0). If 〈. . .〉 holds for the average with respect to the equilib-

rium probability measure for the velocities and random fluctuations, from the independence

of R(t) and v0 it follows that 〈Rj(t)vs,k(0)〉 = 0. Moreover,

〈v0s,jv0s,k〉 =
kBT

m
δj,k . (12)

We remark that added mass effects can be relevant in experimental settings [41]. These

can be accounted for in the formalism by adding the added mass term to the particle mass

m. In any case, the entries of the velocity autocorrelation tensor can be expressed as

〈vs,h(t)vs,k(0)〉 =
kBT

m
.
(
e(I−Li)

−1Ldt
)
h,k

(13)

In tensorial form, therefore, the velocity autocorrelation function attains the expression

Cvs(t) = 〈vs(t)⊗ vs(0)〉 =
kBT

m
e(I−Li)−1Ldt . (14)

We now restore all the functional dependencies on the position x. From eq. (14), it follows

that the entries Cvs
h,k(t |x), h, k = 1, 2, 3, of the conditional correlation tensor Cvs(t |x) for

vs(t;x) at a given position x can be expressed as

Cvs
h,k(t |x) =

kBT

m
c
(k)
h (t |x) (15)

where c
(k)
h (t |x), for fixed k, are the entries of the vector-valued function c(k)(t |x) satisfying

the initial value problem

ċ(k)(t |x) = Ld[c
(k)(t |x);x] + Li[c

(k)(t |x);x] (16a)

c
(k)
h (0 |x) = δh,k . (16b)

The solution of eqs. (16) determines the spatio-temporal correlation properties of the stochas-

tic velocity field vs(t;x). Equations (16) are analogous to the evolution equation for the

correlation function deriving from the original Vladimirsky approach that considers, instead

of c(t |x), the integral of the correlation function V (t |x) = 〈v2〉
∫ t
0
c(τ |x)dτ (see eq. (6) in

[7] and the related discussion).

A final comment concerns generalized Stokes-Einstein FD relations. Consider eq. (4) for

a Brownian particle in a still fluid in the scalar approximation, motivated by the isotropy of
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the problem. In this case vs(t) = v(t) and vd = 0. Let ĥ(s), k̂(s) be the Laplace transforms

of the dissipative and inertial memory kernels, respectively. These two functions satisfy the

following properties: (i) ĥ(0) =
∫∞

0
h(t) dt = η∞ > 0, where η∞ is the effective friction factor

of the model that we assume it is bounded. (ii) lims→0 sk̂(s) = 0, i.e., there are no dissipative

contributions. We also assume that k(t) does not contain any impulsive contribution (i.e., no

added mass) corresponding to the condition limε→0

∫ ε
0
k(t) dt = 0. This latter condition can

be easily removed, because it does not alter the final result. From eqs. (16), the normalized

correlation function c(t) admits a Laplace transform ĉ(s) as a solution of the equation

ms ĉ(s)−m = −ĥ(s) ĉ(s)− k̂(s) s ĉ(s) (17)

and thus

ĉ(s) =
m

ms+ ĥ(s) + s k̂(s)
. (18)

The diffusion coefficient D is the time integral of the correlation function 〈v(t) v(0)〉 =

〈vs(t) vs(0)〉 and is thus equal to the value ĉ(s = 0), namely

D =

∫ ∞

0

〈vs(t)vs(0)〉 dt = 〈v2〉
∫ ∞

0

c(t) dt = 〈v2〉 ĉ(0) = 〈v2〉m
η∞

. (19)

Further assuming 〈v2〉 = kB T/m, we recover the generalized Stokes-Einstein relation D =

kB T
η∞

. In our theory, this follows as a consequence of bounded friction.

IV. A SIMPLE EXAMPLE: BROWNIAN MOTION IN AN INERTIAL FLUID

We consider a Brownian particle in free space subjected to hydrodynamic interactions

including fluid inertia. This example is not only interesting in itself, but is also instructive

to clarify a common source of misunderstanding [12]. From time-dependent Stokes hydro-

dynamics, the Laplace transform of the force F̂f→p(s) exerted by a Newtonian fluid on a

spherical particle of radius Rp (s is the Laplace variable) is given by [22]

F̂f→p(s) = −6πµRp v̂(s)− 6π
√
ρµR2

p

1√
s
(s v̂(s))− 2

3
ρπR3

p (s v̂(s)) . (20)

Transforming this equation back to the time domain and neglecting the fluctuations R(t),

we obtain the evolution equation

m v̇(t) = −η v(t)− β
1√
t
∗ [v̇(t) + v(0)δ(t)] , (21)
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where η = 6πµRp, β = 6
√
πρµR2

p and v(0) = v(t = 0). For the sake of simplicity, we neglect

in this equation the added mass term. While this is of physical relevance in other contexts,

it is not important for our current discussion.

The dissipative and inertial functionals, Ld and Li, are defined as

Ld[v] = −η v (22a)

Li[v̇] = −β 1√
t
∗ [v̇(t) + v(0)δ(t)] . (22b)

For the following discussion it suffices to restrict ourselves to the one-dimensional case.

Let c(t) = 〈v(t)v(0)〉/〈v2〉 so that c(0) = 1 and eq. (21) becomes

m ċ(t) = −η c(t)− β

∫ t

0

1√
t− τ

dc(τ)

dτ
dτ − β√

t
. (23)

Equation (23) coincides with the analogous relation obtained by Widom, eq. (9) in [12],

Observe that LRT does not provide the estimate for 〈v2〉, which should be derived from

kinetic/hydrodynamic arguments.

Introducing a dimensionless time t′ = t/tdiss, rescaled with respect to the dissipation time

tdiss = m/η, eq. (23) becomes

ċ(t′) = −c(t′)− γ

∫ t′

0

1√
t′ − τ

dc(τ)

dτ
dτ − γ√

t′
where γ =

(
9

2 π

ρ

ρp

)1/2

=
tdiss
tinert

(24)

expresses the ratio of the dissipation time tdiss to the characteristic time tinert for the occur-

rence of inertial effects. For ρ = 103ρp (such as for gas bubbles in water), γ = 38, while for

ρp = 5 ·103ρ (heavy solid particles in air), γ = 1.7 ·10−2, so that the physical range of values

of γ is (10−2, 102). Figure 1 shows the behaviour of c(t), obtained by solving eq. (23), in

non-dimensional form for several values of γ.

Apart from the well-known t−3/2 long-term scaling induced by the effect of the Basset

force, and typical for Brownian motion in liquids [42–49], Fig. 1 indicates that the influence

of γ is significant in modulating the short-time behaviour of the velocity autocorrelation

function. This observation will be further addressed in Sec. VI.

V. FLUCTUATION-DISSIPATION THEORY: A CHANGE OF PERSPECTIVE

In the previous sections, we have developed the formalism leading to the formulation of

the hydrodynamic Langevin equations for particle motion in a fluid medium in terms of the

stochastic velocity field vs(t). The formal simplicity of the approach, based on the velocity

11
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FIG. 1. Normalized autocorrelation function c(t′) vs t′ = t/tdiss for a spherical particle in a still

fluid, the dynamics of which is defined by eqs. (21). The arrows indicate increasing values of

the nondimensional parameter γ = 10−1, 1, 10. Line (a) represents the long-term scaling c(t′) ∼

(t′)−3/2.

splitting and on LRT, may suggest that it would represent an alternative “reshuffling” of

known concepts without any major novelty, nor significant physical meaning. Here, we

compare and contrast the proposed approach against the existing FD theory, showing not

only its relevance for cases of physical importance, but also how to modify the perception

of known FD relations.

The FD analysis of Langevin equations has been developed by considering dissipative

memory effects, i.e., with reference to eq. (1). The hydrodynamic approach to Brownian

motion in fluids made clear lately that fluid inertia (deriving from a time-dependent Stoke-

sian analysis of fluid-particle interactions) represents an important correction at short times

to the long-term picture based on instantaneous dissipation [11, 12]. Consider eq. (4) for

a spherical particle of radius Rp in a Newtonian fluid with viscosity µ and density ρ. In

this case, h(t) = ηδ(t), whereas k(t) is given by eq. (5). This problem has been investigated

extensively in experiments, which have shown the importance of the fluid inertia in deter-

mining the short-time dynamics of these Brownian particles [8–10, 30, 31]. The presence of

memory terms, depending on the history of the particle acceleration, makes the traditional

approach based on Kubo FD theory [3] technically impossible, as correctly observed in [5].
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Nevertheless, several authors [51, 52] have analyzed the representation of the thermal force

R(t) in the presence of fluid-inertial effects. Specifically, Bedeau and Mazur [52] derived for

the Fourier transform R̂(ω) of the thermal force the following result:

〈R̂(ω) R̂(ω′) = 2 kB TRe[ζ̂(ω)] δ(ω − ω′) = ζ̂R(ω) δ(ω − ω′) , (25)

where

ζ̂(ω) = 6 π µRp

[
1 + (1− i)Rp(ω ρ/(2µ))

1/2 − (iω ρR2
p/9µ)

]
. (26)

Equations (25),(26) seem to suggest that Kubo fluctuation-dissipation theory can be applied

also in this setting. However, we show below that this is ultimately problematic.

From eqs. (25),(26) it follows that the correlation function 〈R(t)R(0)〉 is the inverse

Fourier transform ζR(t) of ζ̂R(ω) entering eq. (25). ζ̂(ω) can be further simplified by renor-

malizing the term ∝ ω into the added mass. The equation then reduces to

ζ̂(ω) = 6 π µRp

[
1 + (1− i)Rp(ω ρ/(2µ)

1/2
]
. (27)

This relation can be used to derive scaling results for the thermal forces, such as

〈R(t)R(0)〉 ∼ t−3/2 (28)

near t = 0, as discussed in [9], which are consistent with experimental results for the power

spectral density of the thermal noise [8–10]. However, it is important to observe that the

power spectral density of R(t) is a result of the post-processing of the experimental mea-

surements of position and velocity of a Brownian particle. For this post-processing, a hydro-

dynamic model must be assumed. Therefore, 〈R(t)R(0)〉, or its Fourier transform, is not a

directly measurable quantity.

In any case, due to the power-law singularity of eq. (28) near t = 0, we can show that

there is no stochastic process possessing eqs. (25)-(26) as the Fourier transform of its auto-

correlation function (see Appendix B). As such, these equations should be viewed as purely

formal. In addition, we can also show that the fluid-inertial interactions expressed by the

Basset term, leading to eq. (28), renders the representation of the thermal force unphysi-

cal and difficult to handle in practical Langevin simulations (Appendix B). This is not the

case in the presence of only purely dissipative hydrodynamic effects (Appendix A). These

observations altogether supports our view that standard FD theory is only an approximate

description for Brownian dynamics in more general settings.
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The velocity splitting approach in which the characterization of the thermal fluctuations

is described by means of the stochastic velocity field vs(t) does not suffer these limitations.

For any hydrodynamic model considered, its correlation function can be obtained using the

LRT (see Sec. III). The resulting function is well behaved both at t = 0, at which it attains

a constant value, and for t → ∞, where it vanishes in an integrable way (as its integral is

finite and corresponds to the particle diffusivity).

Most importantly, the stochastic velocity field vs(t) has a clear physical meaning, as it

corresponds to the stochastic velocity of the particle in the absence of any external forcing

or perturbations. Consequently, vs(t) is amenable, in principle, to a direct experimental

measurement from the trajectory data of a free Brownian particle (which is not the case

of the thermal force R(t)). However, it should be observed that in real experiments the

use of an external forcing, in the form of a potential, e.g., deriving from the effects of an

optical trap, is always needed in order to localize particle motion in a given region of the

fluid domain, enabling the measurement of its position with optical techniques. In this

case, the correlation functions of vs(t) can be directly obtained experimentally by reducing

progressively the spring constant of the trap (see Sec. VI).

It follows from the above discussion that introducing vs(t) as the descriptor of thermal

fluctuations yields a different approach to FD theory. In classical statistical mechanics FD

relations, expressed by eqs. (2)-(3), are aimed at (i) connecting velocity fluctuations to the

properties of the hydrodynamic response function (eq. (2)); and (ii) characterizing the ther-

mal force R(t) in terms of the hydrodynamic response function (eq. (3)). The action of

hydrodynamic/thermal fluctuations has thus been split into two contributions: dissipation

(i.e., h(t)), and fluctuations (i.e., R(t)), and eq. (3) is representative of the link connect-

ing them. While this approach works extremely well for eq. (1) (see also Appendix A),

problems arise in the presence of fluid inertial contributions (Appendix B). The presence

of hydrodynamic inertia makes this classical dichotomic description blurred, in the mean-

ing that fluid-inertial contributions cannot be ascribed neither to pure dissipation nor to

fluctuations. The present theory based on the stochastic hydrodynamic velocity field for-

malizes this concept, indicating that the separation between fluctuation and dissipation in

the description of thermal motion is, essentially, an epistemic approach grounded on a model

perspective of splitting the various forces acting on the particle. Such a splitting derives

from comprehensible reasons, as it stems from the results on linear hydrodynamics in the
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Stokes or in the time-dependent Stokes regime [22] to which the thermal fluctuations are

added as a further contribution. The theory of Stochastic Hydrodynamics [53] provides a

further interpretation of this result. Nonetheless, this is still a model-based assuption in

which the fluctuational term R(t) is added by physical necessity (as in the original paper

by Langevin [4]). The stochastic velocity approach not only resolves practical problems,

such as those discussed above in connection with the Basset force and further in the next

section, but treats the fluctuations in a unitary perspective, separating the role of thermal

fluctuations from the hydrodynamic effects. As a consequence, given vs(t), no additional

FD relations are needed for describing thermal effects. It puts stochasticity at the center of

the physical focus, and asks for a physical interpretation of it. In the next two sections, a

variety of examples are discussed in which different models for the stochastic fluctuations,

still possessing the same velocity autocorrelation function, provide different, and experimen-

tally measurable, predictions. Therein the formulation of the stochastic velocity approach

is finalized for catalyzing new interest in this direction.

VI. STOCHASTIC REPRESENTATION OF HYDRODYNAMIC/THERMAL VE-

LOCITY FLUCTUATIONS

The velocity splitting approach shifts the stochastic description of particle motion from

the characterization of the fluctuational force R(t) to the representation of the compre-

hensive hydrodynamic/thermal stochastic velocity field vs(t;x). This naturally provides a

different setting for representing the stochastic velocity field in terms of elementary stochas-

tic processes. This aspect is fundamental in order to develop accurate stochastic Lagrangian

descriptions (Langevin equations) for particle motion.

In the early days of Einstein-Langevin investigations of Brownian motion, the description

of thermal fluctuations made use of stochastic processes possessing no memory, i.e., charac-

terized by an impulsive correlation function. The use of Wiener processes w(t), and of their

distributional derivatives ξ(t) = dw(t)/dt (white noise), is the natural and most convenient

choice related to this level of approximation. This led to equations of motion of the form

ẋ(t) = v(t) (29a)

mv̇(t) = −ηv(t) +
√

2kBTη ξ(t) , (29b)
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where 〈ξ(t′)ξ(t)〉 = δ(t− t′). The use of δ-correlated stochastic processes was adequate to

this level of approximation representing the physical phenomenology of Brownian motion

[50], essentially because the hydrodynamic interactions were considered to be instantaneous,

as expressed exclusively by the Stokesian drag. Reinterpreted in the light of the velocity de-

composition developed above, the statistical properties of particle motion defined by eqs. (29)

are equally well predicted by the kinematic model

ẋ(t) = vs(t) , (30)

where vs(t) is any stochastic process possessing zero mean and exponential correlation func-

tion 〈vs(t)vs(0)〉 = 〈v2〉e−ηt/m. We remark that vs(t) represents the equilibrium velocity

fluctuations, hence eq. (30) should not be confused with the classical overdamped approx-

imation, valid in the limit m → 0, as vs(t) in the present case is not δ-correlated. For

instance, one could choose for vs(t) the Poisson-Kac process [23]

vs(t) = b0(−1)χ(t,λ) , (31)

where χ(t, λ) is a Poisson counting process characterized by the transition rate λ > 0. Since
〈
(−1)χ(t,λ)(−1)χ(0,λ)

〉
= e−2λt, the Poisson-Kac process fits the physical requirements, pro-

vided that b20 = 〈v2〉 = kBT/m and λ = η/2m. This approach has been applied successfully

even in the presence of potentials [34]. There is, however, an important caveat. While the

choice eq. (31), applied to the kinematics eq. (30), reproduces correctly all the statistical

properties of particle diffusional dynamics defined by eqs. (29), it fails for describing the

equilibrium velocity probability density function. This is so, because eq. (31) represents a

one-velocity model, characterized by a single velocity value b0, which determines an impulsive

probability density function for the velocity vs, pv(vs) = [δ(vs + b0) + δ(vs − b0)]/2.

But in point of fact, this problem has a simple solution, as in all the cases where an

accurate reproduction of the velocity statistics is required a Generalized Poisson-Kac process

Ξg(t, λ; v), possessing velocity as a continuous transitional variable [26, 29], can be used

instead of the conventional dichotomous Poisson-Kac process (31),

vs(t) = Ξg(t, λ; v) . (32)

The process Ξg(t, λ; v) is continuously parametrized with respect to the velocity v ∈ R,

possesses an exponential statistics of transition times specified by the transition rate λ, and
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is such that the probability density function for v would be any equilibrium function g(v),

for instance, the Maxwellian distribution g(v) = Ae−mv
2
s/2kBT , where A is the normaliza-

tion constant. The statistical characterization of Ξg(t, λ; v) involves the probability density

PΞ(v, t), v ∈ R,

PΞ(v
′, t)dv′ = Prob[ Ξg(t, λ; v) ∈ (v′, v′ + dv′) ] , (33)

that satisfies the balance equation

∂PΞ(v, t)

∂t
= −λPΞ(v, t) + λ g(v)

∫ ∞

−∞

PΞ(v
′, t)dv′ . (34)

Consequently, the statististical properties of the process X(t) (we use the notation X(t) for

the process and x(t) for a realization of it), defined by the kinematic eq. (30), are described

by the probability density p(x, v, t) satisfying the linear Boltzmann equation

∂p(x, v, t)

∂t
= −v∂p(x, v, t)

∂x
− λ p(x, v, t) + λ g(v)

∫ ∞

−∞

p(x, v′, t) . dv′ . (35)

It is important to observe that the simulation of the process Ξg(t, λ; v) is as simple as the

Poisson-Kac process (−1)χ(t,λ) since, at any transition time τ , whose statistics is defined by

the exponential density pτ (τ) = λe−λ τ , a new velocity variable is selected, independently

of the previous one, from the equilibrium distribution g(v). Because of this property, the

correlation function cΞ(t) = 〈Ξg(t, λ; v) Ξg(0, λ; v) 〉 is given by

CΞ(t) = σ2
ve

−λt , σ2
v =

∫ ∞

−∞

v2 g(v) dv (36)

independently of the functional form of the velocity probability density g(v). Figure 2

compares the velocity probability density function and the correlation function obtained

from stochastic simulations of the process Ξg(t, λ; v) for the case where g(v) is the normal

distribution for different values of λ. Simulations involve an ensemble of 108 realizations. The

above example requires a further comment. Generalized Poisson-Kac processes have been

developed in order to generate stochastic dynamics characterized by bounded propagation

velocity [25]. The choice of a Gaussian probability density g(v) for the statistics of Ξg(t, λ; v)

is conceptually in contradiction with this founding principle. The mathematical occurrence

of the Gaussian distribution can be justified by invoking the Central Limit Theorem, and

therefore it represents a long-term asymptotics. As regards particle velocities, the application

of the Central Limit Theorem is physically limited by relativistic constraints, due to the fact

that for large velocities the assumption of independence among the velocity entries fails.
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FIG. 2. Statistical properties of the process Ξg(t, λ; v) with g(v) = e−v
2/2/

√
2π. Panel (a): Equi-

librium probability density function p(v) for Ξg(t, λ; v). Symbols corresponds to the results of

stochastic simulations at different values of λ = 10−1, 1, 1, 10. The solid line represents the normal

probability density g(v). Panel (b): Correlation function cΞ(t) vs. t. Symbols corresponds to the

results of stochastic simulations, lines to the exponential functions cΞ(t) = e−λt, eq. (36) since

σ2
v = 1. Line(a) and (�): λ = 10−1; line (b) and (◦): λ = 1, line (c) and (•): λ = 10.

The Maxwellian distribution thus represents an excellent approximation of the relativistic

Jüttner distribution [54, 55] that, in the low-velocity/low-temperature limit (with respect to

the speed of light in vacuo), is practically indistinguishable from its relativistic counterpart.

It follows from the above reasoning that if we require the process X(t) (i.e. the particle

position) to possess a bounded propagation velocity, the process Ξg(t, λ; v) defining vs(t) via

eq. (32) should be constructed, e.g., by using a truncated Maxwellian distribution, i.e.,

g(v) =




Ae−mv

2/2kBT v ∈ (−vmax, vmax)

0 otherwise
(37)

with vmax ≫
√
kBT/m but still bounded, in order to fulfill the Maxwellian equilibrium

distribution in its physical range of validity, but still satisfying the requirement of bounded

propagation.

The above construction applies a fortiori for particle dynamics accounting for inertial

hydrodynamic effects. Considering the case analyzed in Sec. III, due to the occurrence of

asymptotic power-law tails in the velocity correlation function, the natural candidates for

modeling vs(t) are Lévy Walks [28, 56]. The classical Lévy Walk model is characterized by

a transition rate λ(τ) depending on the transition age τ (the transition age corresponds to
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the time elapsed from the latest transition) in the form of [56]

λ(τ) =
ξ

1 + τ/τ0
(38)

with ξ > 1 and τ0 > 0. The equilibrium correlation function of this process fulfills the

long-term scaling [28]

〈vs(t)vs(0)〉 ∼ t−(ξ−1) . (39)

For the problem considered in Sec. III, the t−3/2-hydrodynamic scaling is matched by taking

ξ = 5/2. The same approach, applied above in the case of Poisson-Kac processes to obtain

a continuous distribution of velocities, can be verbatim enforced in order to define a Lévy

Walk Λg(t, ξ, τ0; v), characterized by the transition rate eq. (38), by a continuous probability

density function g(v) and by the correlation properties pertaining to the corresponding one-

velocity Lévy Walk model.

The above generalizations, either for Poisson-Kac, Generalized Poisson-Kac processes

or Lévy Walks, have been analyzed in a broader stochastic framework in [29], introducing

the class of Extended Poisson-Kac (EPK) processes that subsume the family of stochas-

tic processes possessing Markov and semi-Markov transition mechanisms and arbitrary

parametrization with respect to the transitional variables. It follows from the above analysis

that the velocity splitting approach finds in EPK processes the natural and computationally

simple candidates for expressing vs(t) (or vs(t, x)). This means that vs(t) can be expressed

with arbitrary accuracy by means of a linear combination of independent EPK processes,

vs(t) =

NΛ∑

h=1

ah Λg(t, ξh, τ0,h; v) +

NΞ∑

k=1

bk Ξg(t, λk; v) , (40)

where the number of processes NΛ, NΞ, the process parameters ξh, τ0,h, λk, and the ex-

pansion coefficients ah, and bk should be optimized with respect to the correlation function

〈vs(t)v(0)〉. The details of the expansion eq. (40) , and of parameter optimization, are of

little interest in the present analysis, and they will be developed elsewhere in the light of

specific hydrodynamic applications. But the application of eq. (40) to Brownian motion and

to problems deriving from transport in microfluidic systems opens up interesting and new

research directions as briefly outlined in Sec. C.
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A. Correlations in continuous vs. dichotomous models

In order to highlight the importance of the transition from dichotomous Poisson-Kac

processes to EPK processes possessing a continuous parametrization with respect to velocity

in the characterization of the vs(t), let us consider the case of a particle in a thermostated

fluid environment at constant temperature T , subjected to an external potential U(x). In

the one-dimensional case, the particle dynamics reads

dx = v dt

mdv = −η v dt− ∂xU(x) dt+
√

2kBTη dw(t) . (41)

Introducing t = Tc t
′, x = Lc y, v = Vc u, where Tc, Lc, Vc are the characteristic time,

length and velocity scales, letting U(x) = U0 U(y)|y=x/Lc
, and assuming Tc = m/η = tdiss,

Vc =
√
kBT/m, Lc = VcTc, eqs. (41) take the non-dimensional form

dy = u dt′

du = −u dt′ − α ∂yU(y) dt
′ +

√
2 dw(t′) , (42)

where α = U0/mV
2
c . Consider two cases. The first case is represented by a harmonic

potential U(x) = ksx
2/2, so that U0 = kSL

2
c . In this case, α = U0/mV

2
c = ksL

2
c/mV

2
c =

ksT
2
c /m, i.e.,

α =
ksm

η2
=
tdiss
tk

, (43)

where tk = η/ks is the characteristic time associated with the coupling of the harmonic

potential and frictional dissipation, and ∂yU(y) = y. This case represents the dynamics

of a Brownian particle (neglecting fluid inertial effects) in an optical trap, and physically

reasonable values for α range from 10−2 to 10−1 [30]. Specifically, fluid-inertial effects are

negligible if the fluid is a gas [30]. Figure 3 panel (a) depicts the comparison of the velocity

autocorrelation function obtained from the direct simulation of eq. (41), for α = 0.1, using

N = 106 realizations of the process, with the one from the velocity split representation

dy = (ud + us(t)) dt
′

dud = −ud dt′ − α ∂yU(y) dt
′ , (44)

where the nondimensional stochastic velocity us(t) is represented by a Poisson-Kac di-

chotonous stochastic process. In this case, the dichotomous model correctly reproduces

the behaviour of the velocity autocorrelation function, as predicted by LRT.
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FIG. 3. Velocity autocorrelation function c(t′) vs t′ = t/tdiss associated with the stochastic dynam-

ics eq. (42). Symbols (•) corresponds to the results of the stochastic simulation of eq. (42) Panel

(a) refers to a harmonic potential at α = 0.1. The solid line represents the velocity autocorrelation

function obtained from the velocity split model eq. (44) describing us(t) by means of a dichoto-

mous Poisson-Kac process. Panel (b) refers to the case of a bistable potential described in the

main text. Line (a) represents the velocity autocorrelation function obtained using a continuously

parametrized EPK process Ξ(t′, 1; v) possessing a Maxwellian velocity density function, line (b)

the corresponding result adopting for us(t
′) a dichotomous Poisson-Kac process.

This model provides clear evidence for what was stated in Sec. V, and specifically that the

velocity autocorrelation function 〈vs(t) vs(0)〉 can be measured in physically realizable exper-

iments. Indeed, still keeping the Brownian particle confined in a trap (and therefore under

the influence of a harmonic potential), by decreasing the trap spring constant and measuring

the corresponding particle velocity autocorrelation function 〈v(t) v(0)〉, one obtains direct

and accurate experimental measurements of the free-particle velocity autocorrelation func-

tion, i.e., of 〈vs(t)vs(0)〉 (see Fig. 4). For values of the nondimensional parameter α less or

equal to 10−2, the velocity autocorrelation function of the trapped particle represents a suf-

ficiently accurate representation for that of the free particle, and thus of the autocorrelation

function of us(t). In experiments involving trapped micrometric particles, the values of α are

usually small enough to operate in this limit [30]. Next, consider a nonlinear potential, such

as the bistable potential expressed in nondimensional form by U(y) = y4/4− y2/2. Figure 3

panel (b) depicts the temporal behaviour of the velocity autocorrelation function obtained

from the stochastic simulation of eq. (42) at α = 0.1, and for the velocity split model eq. (44)
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FIG. 4. Velocity autocorrelation function c(t′) vs. t′ = t/tdiss associated with the stochastic dynam-

ics eq. (42) in the presence of a harmonic potential for different values of α, i.e., of the nondimen-

sional spring constant, α = 10−1, 10−2, 10−3. The arrow indicates decreasing values of α. Symbols

(◦) correspond to the free-particle velocity autocorrelation function, c(t′) = e−t
′

.

in the case us(t) is an EPK process continuously parametrized with respect to the velocity

and possessing a Maxwellian distribution (line a) and a dichotomous Poisson-Kac process

(line b). Owing to the nonlinearity of the model, the importance of a continuous distribution

of velocity is evident. While the EPK process Ξ(t, λ; v) accurately reproduces the velocity

autocorrelation function, this is not the case for the dichotomous Poisson-Kac counterpart.

This indicates that when moving towards nonlinear models, in the present case expressed by

a non-quadratic potential, the fine structure of the velocity fluctuation becomes important.

B. On the fine structure of the thermal fluctuations

In Kubo FD theory, and in transport modeling, the velocity autocorrelation function is

the statistical quantity used to characterize thermal fluctuations. This is inherent to trans-

port theory, as the integral over time of the velocity autocorrelation function returns the

diffusion coefficient (Green-Kubo theorem). More generally, the whole architecture of sta-

tistical physics of non-equilibrium phenomena is grounded on the autocorrelation functions

of fluctuating fluxes and forces [57, 58].

The recent advances in the experimental analysis of Brownian motion at short time
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scales have revealed the possibility of characterizing Brownian fluctuations beyond the limit

that “Einstein deemed possible” [50]. The experimental investigation of Brownian motion

can nowadays provide a deeper understanding of the physical meaning of thermal noise,

of the interaction between hydrodynamic and thermodynamic properties, and possibly of

the macroscopic dissipative effects of quantum fluctuations, either at the level of radiative

interactions with molecules and particles (involving photon exchange) or at the field level

involving zero-point fluctuations. In this perspective, the analysis of the fine properties of

the stochastic velocity field vs(t) and of its influence on macroscopic and experimentally

measurable quantities becomes central.

Consider again the case of a Brownian particle in a trap (i.e., where U(x) is a harmonic

potential) described by means of eq. (42). Experimentally, eq. (42) corresponds to par-

ticle motion in a gaseous environment at thermal equilibrium for which the fluid-inertial

interactions are negligible. Consider the other second-order correlation functions, namely

Cyy(t
′) = 〈y(t′) y(0)〉, Cyu(t′) = 〈y(t′) u(0)〉, and Cuy(t′) = 〈u(t′) y(0)〉. Due to the linearity

of the dynamics, any stochastic representation of us(t
′), entering eq. (44) and possessing

the correct exponential decay of the velocity autocorrelation function, would provide the

same temporal behavior for all the second-order correlation functions. This phenomenon is

depicted in Fig. 5, where the correlation function obtained from the solutions of eq. (42) are

compared with the corresponding ones obtained from eq. (44) adopting for us(t
′) an EPK

model possessing a Maxwellian probability density function as described and used in the pre-

vious paragraph. An analogous result could be obtained adopting for us(t
′) a dichotomous

one-velocity Poisson-Kac model.

Recent experimental studies suggest that velocity fluctuations of Brownian particles both

in gases and liquids could be characterized by a much more regular (smooth) behavior than

that predicted by the classical Einsteinian theory eq. (42), based on Wiener processes as

a model of thermal fluctuations [10, 50]. The experimental assessment of the regularity of

thermal fluctuations represents an important issue in statistical physics, as it would suggest

the necessity of considering more regular stochastic processes for the modeling of particle

transport. Beside a regularity analysis of Brownian trajectories, clear experimental evidence

of these properties may come from the estimate of higher-order correlation functions. Fig-

ure 6 depicts the comparison of the third and fourth-order velocity autocorrelation functions

Cu2u(t
′) = 〈u2(t′) u(0)〉, Cu3u(t′) = 〈u3(t′) u(0)〉, obtained from the classical Wiener-based

23



 2

 4

 6

 8

 10

 0  2  4  6  8  10

C
y
y
(t

’)

t’=t/tdiss

-1

-0.5

 0

 0.5

 1

 0  2  4  6  8  10

a

b

C
u

y
(t

’)
 ,
 C

y
u
(t

’)

t’=t/tdiss(a) (b)

FIG. 5. Second-order correlation functions associated with the stochastic dynamics eq. (42) in

the presence of a harmonic potential with α = 0.1. Solid lines represent the correlation functions

obtained from the velocity split model eq. (44), using for us(t
′) a continuously parametrized EPK

process Ξ(t′, 1; v) possessing a Maxwellian velocity probability density function. Panel (a): Cyy(t
′)

vs. t′. Panel (b): Cuy(t
′) (line a) and Cyu(t

′) (line b) vs. t′. Dots correspond to correlation functions

obtained from solving eq. (42).

model eq. (42), and from eq. (44) in the presence of a piecewise smooth description of the

stochastic velocity field us(t
′) via the EPK model described in the previous section, possess-

ing a Maxwellian velocity distribution function. While Cu2u(t
′) = 0 in both cases, a slight

difference between the two descriptions of the thermal fluctuations is observed in the fourth-

order autocorrelation function Cu3u(t
′), although this difference is too small to be an object

of experimental scrutiny. Conversely, a significant, and experimentally verifiable discrepancy

between the Wiener description and and a smoother regular descriptions of thermal velocity

fluctuations characterizes higher-order (fourth-order) mixed correlation functions, such as

Cy2v2(t
′) = 〈y2(t′) u2(0)〉 or Cv2y2(t′) = 〈u2(t′) y2(0)〉, depicted in Fig. 7.

We may therefore conclude from these qualitative observations that the experimental

analysis of higher-order correlation functions of position and velocity variables may provide

a way, not only for obtaining a finer statistical characterization of the stochastic velocity

field vs(t), but also for verifying quantitatively, via stable and accurate experimental mea-

surements, the validity of the Einsteinian paradigm for thermal fluctuations based on almost

everywhere singular stochastic processes (Wiener process), and to assess experimentally the

regularity of thermal fluctuations. This would close the circle on the properties of Brownian
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FIG. 6. Higher-order velocity autocorrelation functions associated with the stochastic dynamics

eq. (42) in the presence of a harmonic potential with parameter α = 0.1. Line (a) and line (b) refer

to Cu2u(t
′) and Cu3u(t

′), respectively, obtained from the solutions of eq. (42). Symbols (◦) and

line (c) refer to Cu2u(t
′) and Cu3u(t

′), respectively, obtained from the solutions of eq. (44) using

for us(t
′) a continuously parametrized EPK process Ξ(t′, 1; v) possessing a Maxwellian velocity

probability density function.

motion that at times of Einstein would be unthinkable to assess experimentally [50].

VII. CONCLUDING REMARKS

The classical FD formalism involves a decomposition of hydrodynamic/thermal effects

into a dissipative contribution and a purely stochastic fluctuational term, including even-

tually fluid-inertial back action. The separation of fluid inertial effects (the Basset force)

from the thermal contribution R(t) is essentially a technical simplification not related to the

physics of the problem, which conversely indicates a highly correlated motion of the particle

and of its nearby fluid elements [14]. An alternative to this approach is to consider all these

hydrodynamic/thermal effects as a single fluctuating field possessing prescribed statistical

and correlation properties. This is the key idea of the velocity splitting approach that we

developed here, which provides a comprehensive description of these interactions in terms

of the stochastic process vs(t), or the stochastic field vs(t;x). The correlation properties

of vs(t,x) can be derived from linear response theory even in those cases - as for particle
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FIG. 7. Higher-order mixed correlation functions for a particle in a harmonic potential. Panel (a)

depicts Cy2u2(t
′) vs. t′, panel (b) Cu2y2(t

′) vs. t′. Lines (a) refer to the solutions of eq. (42), lines

(b) to the solutions of eq. (44) using for us(t
′) a continuously parametrized EPK process Ξ(t′, 1; v)

possessing a Maxwellian velocity probability density function.

transport in confined systems - where both dissipative and inertial effects depend on the

particle position, by considering the conditional correlation functions c(k)(t |x).
Within this framework, the stochatic force R(t) is no longer necessary, as it is encom-

passed, together with all the (dissipative/inertial) hydrodynamic thermal interations, in the

stochastic velocity field vs(t;x). This field is a directly measurable quantity in short-time

Brownian motion experiments, which is not the case for the thermal force R(t) in hydrody-

namic problems involving not only friction but also fluid inertial effects. In the latter case

we have shown that, apart from formal results, it is difficult to obtain a computationally

operative definition of R(t) in terms of elementary stochastic processes to be used in the

numerical simulation of the corresponding Langevin equations.

For modeling vs(t;x), the class of EPK processes emerges as a natural choice, due to their

simplicity in the implementation and due to the typical exponential/power-law behaviour of

their correlation functions. The decomposition of a generic stochastic velocity field vs(t;x)

into a family of EPK process is an interesting computational problem that will be addressed

in forthcoming works.

Pursuing this alternative approach, and comparing it with the results derived from clas-

sical Wiener-based Langevin equations, in several examples we have shown that

• the sole velocity autocorrelation function is not sufficient to describe correctly Brown-
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ian motion and micrometric particle dynamics in the presence of nonlinear potentials,

which points at a more detailed characterization (both theoretically and experimen-

tally) of thermal fluctuations;

• higher-order correlation functions, or correlation functionals, can be used as probes

for determining the fine structure of the stochastic fluctuations.

In this manuscript, we have mainly considered the description of vs(t) in the free space,

where no external deterministic accelerations a(x) or position-dependent hydrodynamic ef-

fects are present. Whenever present, these determine the explicit dependence of the linear

functionals Ld and Li on x. The presence of external position-dependent fields generating

a(x) does not present any conceptual issue, because the statistical structure of the hydro-

dynamic/thermal stochastic velocity vs(t) is independent of a(x) (see Subsec. VIA). In the

case of position-dependent hydrodynamic interactions, which occurs for particles in confined

geometries, such as in microchannels of transversal length scale comparable to the particle

diameter, the statistical properties of the stochastic velocity field vs(t;x) can be derived, for

fixed x, from the conditional normalized correlation functions c(k)(t |x) satisfying eqs. (16)

(see Sec. III). In this setting, it is no longer possible to derive a priori the velocity correla-

tion function, or the statistical characterisation of the spatial particle distribution, even in

the long-term limit (if an asymptotic equilibrium distribution emerges in the system). At

present, these can be obtained solely from the direct numerical simulations of the equations.

The theoretical prediction of these properties represents a major technical issue, whose solu-

tion would necessarily rely on the extension of LR theory to the nonlinear case. The outline

of a specific setup to be studied is further described in Appendix C.

The experimental characterization of the fine structure of the stochastic velocity fields

vs(t;x) defines another important topic for future investigations that can be addressed

by measuring higher-order correlation functions. This analysis could potentially be used

to check for the reliability of the singular Wiener-based approach to characterize thermal

fluctuations at short time scales, which is in contrast to a more smooth and piecewise regular

description of equilibrium fluctuations that seems to emerge from experiments [50].

We conclude by observing that while the classical decomposition of hydrodynamic/thermal

interactions into dissipative, inertial, and fluctuational forces follows naturally from a reduc-

tionistic Newtonian approach of accounting for all the “distinct” forces acting on a material
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body, our formulation of the statistical physical properties of a particle in a thermalized

fluid, based on the stochastic velocity field vs(t;x), shifts the focus of the description on the

kinematic equation for the particle motion driven by the “almost deterministic” velocities

vd(t), and by the stochastic velocities vs(t;x). This alternative decomposition bears some

analogies with the Aristotelian description of motion, where vd(t) expresses the “violent

motion” and vs(t;x) the “natural motion” in thermal systems at equilibrium [64].

Appendix A: Modal decomposition of the thermal force - The case of purely dissi-

pative hydrodynamics

Consider the dissipative Langevin equation (1). In this case, the Kubo FD theory predicts

for the correlation function of the stochastic forcing

〈R(t)R(0)〉 = mkB Th(t) , t ≥ 0 , (A1)

where we have assumed 〈ξ(t) ξ(0)〉 = δ(t) for the distributional derivative ξ = dw(t)/dt of a

Wiener process. The friction kernel h(t) satisfies the property

h(t) ≥ 0 , t ≥ 0 . (A2)

Let us assume that it admit a modal representation of the form

h(t) =
1

m

∞∑

i=1

ai e
−λi t , (A3)

where ai, λi > 0,
∑∞

i=1 ai <∞. The stochastic forcing R(t) can be expressed in the following

form,

R(t) =

∞∑

i=1

√
kB T bi ψλi(t) , (A4)

where ψλi(t), i = 1, . . . , n are stochastic processes, independent of each other and possessing

exponential correlation functions

〈ψλi(t)ψλj (t′)〉 = δi,j e
−λi |t−t′| , (A5)

where the positive constants bi > 0 need to be determined. The correlation function of R(t)

is given by

〈R(t)R(0)〉 = kB T
∞∑

i=1

√
bi

∞∑

j=1

√
bj 〈ψλi(t)ψλj (0)〉 = kB T

∞∑

i=1

bi e
−λi t , (A6)
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and from eqs. (A1), (A3) it follows that the expansion coefficients bi are simply given by

bi = ai , i = 1, . . . . (A7)

The processes ψλi(t) characterized by the property eq. (A5) can be defined in many ways.

For instance, they can be chosen in the form of filtered Wiener processes,

dψλi(t) = −λi ψλi(t) dt+
√

2λi dwi(t) , (A8)

where dwi(t) are the increments of independent one-dimensional Wiener processes so that

〈dwi(t) dwj(t)〉 = δi,j dt. Or they can be represented in terms of Poisson-Kac processes,

ψλi(t) = (−1)χi(t,λi/2) , (A9)

where χi(t, λi/2) are independent Poisson processes characterized by the transition rate λi/2,
〈
(−1)χi(t,λi/2) (−1)χj(t,λj/2)

〉
= δi,j . Or one may use independent EPK processes, possessing

exponential correlation functions and arbitrary velocity probability density functions with

zero mean and unit variance.

The same approach can be extended to a continuous representation. In that case h(t)

can be represented in the form

h(t) =
1

m

∫ ∞

0

a(λ) e−λ t dt (A10)

with α(λ) ≥ 0. Here the thermal force can be expressed as

R(t) =
√
kB T

∫ ∞

0

√
a(λ)ψλ(t) dλ , (A11)

where

〈ψλ(t)ψµ(t′)〉 = δ(λ− µ) e−λ |t−t
′| . (A12)

It follows from this analysis that the thermal forces admit simple and compact representa-

tions in the presence of purely dissipative hydrodynamic contributions, and that there are

in principle infinitely many elementary systems of stochastic processes ψλ(t) that can be

used to represent R(t) in a way consistent with the FD theorem.
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Appendix B: Representation of thermal forces in the presence of fluid inertia

In this Appendix the application of the classical FD theorem in the presence of fluid

inertia is discussed. In this case, for large ω (see Sec. V),

Re[ζ(ω)] ∼ ω1/2 , (B1)

which implies that 〈R(t)R(0)〉 ∼ t−3/2 at short timescales. Therefore, without loss of

generality let us assume that

〈R(t)R(0)〉 = C

t3/2
, (B2)

where C is a constant, for fixed T , the actual value of which is inessential in the present

analysis. Also, in this case R(t) admits a modal representation in the form of eq. (A11), say

R(t) =
∫∞

0

√
b(λ)ψλ(t) dλ, where b(λ) is the solution of the functional equation

∫ ∞

0

b(λ) e−λ t dλ =
C

t3/2
(B3)

indicating that b(λ) is the inverse Laplace transform of the correlation function 〈R(t)R(0)〉
in which time t plays the role of the Laplace variable. Using known results of the theory of

Laplace transforms, eq. (B3) admits the solution

b(λ) =
2C√
π

√
λ . (B4)

Consider 〈R2(t)〉. From the above relations, it follows that

〈R2(t)〉 = 4C2

π

∫ ∞

0

λ1/4 dλ

∫ ∞

0

µ1/4 〈ψλ(t)ψµ(t)〉 dµ =
4C2

π

∫ ∞

0

λ1/2 dλ = ∞ . (B5)

Therefore, the second-order moment of the thermal force is unbounded, which is indeed a

highly singular and unpleasent property. One could argue that this is also the case for the

distributional derivative ξ(t) = dw(t)/dt of a Wiener process, modelling the thermal forces

in the presence of a purely instantaneous Stokesian friction. In the latter case, however, the

infinitesimal increments

dF (t) = R(t) dt (B6)

over time dt possess bounded second-order moments 〈dF 2(t)〉 ∼ dt, proportional to dt. It is

therefore interesting to evaluate this quantity, in the case of the process defined by eq. (B4).

Introduce the new process qλ(t), defined by the relation

dqλ(t) = ψλ(t) dt ⇒ qλ(t) =

∫ t

0

ψλ(τ) dτ (B7)
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where, conventionally, qλ(0) = 0. Thus

dF (t) =

∫ ∞

0

√
b(λ) dqλ(t) dλ =

∫ ∞

0

√
b(λ)

∫ t+dt

t

ψλ(τ) dτ . (B8)

Therefore 〈dF 2(t)〉 can be evaluated to

〈dF 2(t)〉 =
∫ ∞

0

√
b(λ) dλ

∫ ∞

0

√
b(µ) dµ

∫ t+dt

t

dτ

∫ t+dt

t

〈ψλ(τ)ψµ(θ) dθ

=

∫ ∞

0

b(λ) dλ

∫ t+dt

t

dτ

∫ t+dt

t

e−λ|τ−θ| dθ = 2

∫ ∞

0

b(λ) dλ

∫ t+dt

t

dτ

∫ τ

t

e−λ(τ−θ)dθ

= 2

∫ ∞

0

b(λ)

λ
dλ

[∫ t+dt

t

dτ − eλ t
∫ t+dt

t

e−λ τ dτ

]

= 2

∫ ∞

0

b(λ)

λ
dλ dt+ 2

∫ ∞

0

b(λ)

λ2
(
e−λ dt − 1

)
dλ = 2

∫ ∞

0

b(λ)dλ dt2 . (B9)

Consequently, due to the singular behavior of b(λ) at infinity, see eq. (B4), 〈dF 2(t)〉 =

∞ for any dt. This essentially implies that either R(t) or dF (t) admit a purely formal

modal representation in terms of elementary stochastic processes which, hovewer, does not

correspond to any physically realizable stochastic evolution.

Appendix C: Application to microfluidics and transport in confined geometries

In this paper we have mainly considered the description of vs(t) in the free space in the

absence either of external deterministic accelerations a(x) or of position-dependent hydro-

dynamic effects, determining the explicit dependence of the linear functionals Ld and Li on

x. The presence of external position-dependent fields generating a(x) does not present any

further problem, as the statistical structure of the hydrodynamic/thermal stochastic veloc-

ity vs(t) is independent of a(x). This case has been briefly addressed in Subsec. VIA, in

order to highlight the importance of a continuous velocity distribution for vs(t). In the case

of position-dependent hydrodynamic interactions, which occurs for particles in microchan-

nels of transversal lengthscale comparable to the particle diameter, the statistical properties

of the stochastic velocity field vs(t;x) can be derived, for fixed x, from the conditional

normalized correlation functions c(k)(t |x) defined in Sec. III and satisfying eqs. (16).

What makes these problems peculiar with respect to the free space case is that it is no

longer possible, due to the generic nonlinear dependence of a(x), Ld and Li on x, to derive

a priori the velocity correlation function, nor the statistical characterization of the spatial
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particle distribution, even in the long-term limit (if an asymptotic equilibrium distribution

emerges in the system). This is the case whenever hydrodynamic effects (convective fluxes)

cope with potential contributions (conservative forces) so that the resulting acceleration field

a(x) possesses a full Helmholtz decomposition,

a(x) = ∇φa(x) +∇×Ka(x) , (C1)

where the scalar, φa(x), and vector, Ka(x), potential are both different from zero. In

these cases, the understanding of the emergent statistical properties relies on the direct

simulation of particle dynamics. In the velocity split approach, this implies the simulation

of the stochastic differential equations

ẋ(t) = vd(t) + vs(t,x(t))

v̇d(t) = Ld[vd(t);x(t)] + Li[v̇d(t);x(t)] + a(x(t)) , (C2)

where the choice of the simplest and most efficient representation of the stochastic field

vs(t,x), e.g., via a decomposition of it into elementary EPK processes, see eq. (40), becomes

essential. Due to hydrodynamic confinement, the parameters ah, bk, ξh, τ0,h and λk entering

eq. (40) do depend on the position x. Substituting the expansion eq. (40) into eq. (C2) leads

to stochastic differential equations that are formally similar to nonlinear Langevin equations

[59]. With respect to the Wiener-Langevin counterparts, they do not suffer all the troubles

of the Wiener singularity (lack of bounded variation) in the definition of the stochastic inte-

grals, forcing the choice of a stochastic calculus (Ito, Stratonovich, Hänggi-Klimontovich) by

causing the so-called Ito-Stratonovich dilemma [60]. Nevertheless, their emergent properties

could be far from trivial and could lead to interesting new phenomena. To clarify this issue,

consider the simplest but physically meaningful example of a micrometric particle moving

in a still liquid at constant temperature T close to an infinite wall, subjected to gravity and

to a repulsive double layer Debye potential from the wall, comprehensively described by the

potential φ(x). This problem has been analyzed experimentally in [61, 62]. Indicate with

x the distance of the particle from the wall so that φ = φ(x) and, according to eqs. (7),

(8a),(40),

ẋ = vd +

NΛ∑

h=1

ah(x) Λg(t, ξh(x), τ0,h(x); v) +

NΞ∑

k=1

bk(x) Ξg(t, λk(x); v)

v̇d = Ld[vd; x] + Li[v̇d; x]−
1

m
∂xφx(x) . (C3)
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Equation (C3) represents the prototype of a stochastic problem, i.e., the formulation of a

detailed hydrodynamic description of fluid/particle interactions, here by using the velocity

splitting approach. In the overdamped case, it is known that the equilibrium probability

distribution p∗(x) is the classical Boltzmannian density, p∗(x) = Ae−φ(x)/kBT . But is this still

true if the fluid inertial contributions expressed by the Basset long-range force are accounted

for? Albeit it is likely to be the case, a conclusive answer to this problem has not yet been

given. A violation of the Boltzmannian behaviour controlled by the potential φ(x), i.e.,

a stationary density p∗(x) = Ae−ψ(x)/kBT with ψ(x) 6= φ(x), would imply the emergence

of fluctuational forces defined by the potential ψ(x) − φ(x) deriving from confinement and

hydrodynamic effects, conceptually analogous to the Casimir forces between metallic plates

[63]. This, and even more interesting problems (arising from coupling effects whenever

the tensorial structure of the hydrodynamic resistance and inertial term is accounted for

[32, 33]) are posed by microfluidic applications to fundamental statistical physics, once the

hydrodynamic/thermal fluctuations are included in detail. The use of the velocity splitting

approach, leading to stochastic models of the form of eq. (C2), represents a feasible way to

analyze them, at least via direct stochastic simulations.
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