A coloring of the plane without monochromatic right triangles

Balázs Bursics Péter Komjáth*

February 24, 2023

Abstract

We give a full, correct proof of the following result, earlier claimed in [1]. If the Continuum Hypothesis holds then there is a coloring of the plane with countably many colors, with no monocolored right triangle.

One ${ }^{1}$ of Paul Erdős's favorite topics consisted the applications of the Axiom of Choice to construct paradoxical sets and colorings of the Euclidean spaces. Among a large number of other questions, he raised the following: is there a coloring of the plane with countably many colors, with no monocolored right angled triangles. In [1] this was shown to be equivalent to the Continuum Hypothesis.

Recently, the senior author observed that the proof of the positive direction in [1] is incomplete. Here we give a full, correct proof.

We notice that later Schmerl in [2] gave another, more general proof, which, however, is less elementary.

Notation. Definitions. We use the notation and terminology of axiomatic set theory. The ordinals are von Neumann ordinals, ω_{1} is the least uncountable ordinal.

Theorem. (CH) There is $f: \mathbb{R}^{2} \rightarrow \omega$ with no monochromatic right angles.

[^0]Proof. Using CH, we decompose \mathbb{R}^{2} and the set \mathcal{E} of planar lines and circles into the increasing, continuous sequence of sets as $\mathbb{R}^{2}=\bigcup\left\{H_{\alpha}: \alpha<\omega_{1}\right\}$ and $\mathcal{E}=\bigcup\left\{\mathcal{E}_{\alpha}: \alpha<\omega_{1}\right\}$ such that $H_{0}=\mathcal{E}_{0}=\emptyset$ and
(1) if $x \neq y \in H_{\alpha}$, then their connecting line and Thales circle are in \mathcal{E}_{α},
(2) if $x, y, z \in H_{\alpha}$ are not collinear, then their circuit is in \mathcal{E}_{α},
(3) if $e_{0} \neq e_{1} \in \mathcal{E}_{\alpha}$, then $e_{0} \cap e_{1} \subseteq H_{\alpha}$,
(4) if $x \in C \in \mathcal{E}_{\alpha}, C$ is a circle, then the antipodal point of x in C is in H_{α},
(5) if $L \in \mathcal{E}_{\alpha}$ is a line, $x \in H_{\alpha} \cap L$, then the line L^{\prime} perpendicular to L with $x \in L^{\prime}$ also contained in \mathcal{E}_{α}.

This can be done by the usual Skolem-type closing arguments.
We are going to construct the coloring $f: \mathbb{R}^{2} \rightarrow \omega$ and the function $\varphi: \mathcal{E} \rightarrow[\omega]^{\omega}$ by transfinite recursion on $\alpha<\omega_{1}$ for $H_{\alpha+1}-H_{\alpha}$ and for $\mathcal{E}_{\alpha+1}-\mathcal{E}_{\alpha}$, satisfying the following:
(6) $f \mid\left(H_{\alpha+1}-H_{\alpha}\right)$ is injective,
(7) if $x \in H_{\alpha+1}-H_{\alpha}, e \in \mathcal{E}_{\alpha}, x \in e$, then $f(x) \in \varphi(e)$,
(8) if $C \in \mathcal{E}$ is a circle, $i \in \varphi(C), x, y \in C, f(x)=f(y)=i$, then x, y are not antipodal,
(9) if $C \in \mathcal{E}$ is a circle, $i \notin \varphi(C)$, then $\left|f^{-1}(i) \cap C\right| \leq 2$,
(10) if $L \in \mathcal{E}$ is a line, $i \notin \varphi(L)$, then $\left|f^{-1}(i) \cap L\right| \leq 1$,
(11) if L, L^{\prime} are perpendicular lines, $\{x\}=L \cap L^{\prime}$, then $f(x) \notin \varphi(L) \cap \varphi\left(L^{\prime}\right)$.

Claim 1. There is no right triangle monocolored by f.
Proof. Assume that x, y, z form a right triangle with the right angle at y and $i=f(x)=f(y)=f(z)$. Let C be the circle around x, y, z. If $i \notin \varphi(C)$, then we obtain a contradiction with (9). If $i \in \varphi(C)$, then we get a contradiction with (8), as x, z are antipodal.
Claim 2. If $x \in H_{\alpha+1}-H_{\alpha}$, then there is at most one $e \in \mathcal{E}_{\alpha}$ such that $x \in e$.

Proof. By (3).
We add the following condition:
(12) if $x \in H_{\alpha+1}-H_{\alpha}, L$ is a line with $x \in L \in \mathcal{E}_{\alpha}, L^{\prime}$ is the line perpendicular to L at $x,\{y\}=L^{\prime} \cap H_{\alpha}$, then $f(x) \neq f(y)$.

Notice that $L^{\prime} \in \mathcal{E}_{\alpha+1}-\mathcal{E}_{\alpha}$ by (3) and (5), and $\left|L^{\prime} \cap H_{\alpha}\right| \leq 1$ by (1).
Assume that $f \mid H_{\alpha}$ and $\varphi \mid \mathcal{E}_{\alpha}$ are already constructed, we have to define $f \mid\left(H_{\alpha+1}-H_{\alpha}\right)$ and $\varphi \mid\left(\mathcal{E}_{\alpha+1}-\mathcal{E}_{\alpha}\right)$.

Enumerate $H_{\alpha+1}-H_{\alpha}$ as $\left\{x_{j}: j<\omega\right\}$. By recursion on j define $f\left(x_{j}\right)$ so
that

$$
f\left(x_{j}\right) \geq \max \left\{f\left(x_{0}\right), \ldots, f\left(x_{j-1}\right)\right\}+2
$$

$f\left(x_{j}\right)$ satisfies (7), and is different from the (possible) color disqualified by (12). Clearly (6) is satisfied, and also $\omega-f\left[H_{\alpha+1}-H_{\alpha}\right]$ is infinite.

Next we define φ on the circuits in $\mathcal{E}_{\alpha+1}-\mathcal{E}_{\alpha}$. If C is such a circuit, set $A=C \cap H_{\alpha}$. By (2), we have $|A| \leq 2$.

Case 1. $|A| \leq 1$ or f takes distinct values on the two elements of A.
In this case, set $\varphi(C)=\omega-f[A]$.
Case 2. $|A|=2$ and f assumes the same value on the elements of A.
In this case, set $\varphi(C)=\omega$.
Finally, we define φ on the lines in $\mathcal{E}_{\alpha+1}-\mathcal{E}_{\alpha}$. Let $L \in \mathcal{E}_{\alpha+1}-\mathcal{E}_{\alpha}$ be a line. Set $B=L \cap H_{\alpha}$. Notice that by (1), $|B| \leq 1$. If B is nonempty, let y be its unique point.

Case 1. $B=\emptyset$ or $f(y) \notin f\left[L \cap\left(H_{\alpha+1}-H_{\alpha}\right)\right]$.
Then let $\varphi(L)=\omega-f\left[L \cap H_{\alpha+1}\right]$.
Case 2. $f(y) \in f\left[L \cap\left(H_{\alpha+1}-H_{\alpha}\right)\right]$.
Then set $\varphi(L)=\left(\omega-f\left[L \cap\left(H_{\alpha+1}-H_{\alpha}\right]\right) \cup\{f(y)\}\right.$.
Claim 3. $\varphi(e) \in[\omega]^{\omega}\left(e \in \mathcal{E}_{\alpha+1}-\mathcal{E}_{\alpha}\right)$.
Proof. If $C \in \mathcal{E}_{\alpha+1}-\mathcal{E}_{\alpha}$ is a circuit, then this is obvious in Case 2 and in Case $1 \varphi(C)$ is ω minus at most 2 elements.

If $L \in \mathcal{E}_{\alpha+1}-\mathcal{E}_{\alpha}$ is a line, the statement follows as $f\left[H_{\alpha+1}-H_{\alpha}\right]$ is a coinfinite set.

Claim 4. φ satisfies (8).
Proof. Assume that $C \in \mathcal{E}_{\alpha+1}$ is a circle, $x, y \in C \cap H_{\alpha+1}$ are antipodal and $f(x)=f(y)=i$.

Case 1. $C \in \mathcal{E}_{\alpha}$.
In this case one of x, y, say x must be in H_{α} by (6). Then, by (4), y is also in H_{α}, and we are finished by induction.
Case 2. $C \in \mathcal{E}_{\alpha+1}-\mathcal{E}_{\alpha}$.
If $x, y \in H_{\alpha+1}-H_{\alpha}$, then $f(x) \neq f(y)$ by (6).
If $x, y \in H_{\alpha}$, then $C \in \mathcal{E}_{\alpha}$ by (1), a contradiction again.
Assume finally, that $x \in H_{\alpha}, y \in H_{\alpha+1}-H_{\alpha}$. If, in the definition of $\varphi(C)$, Case 1 applies, then $i \notin \varphi(C)$. We can therefore assume that Case 2 holds,
$H_{\alpha} \cap C=\{x, z\}$ and $f(y)=f(z)=i$. Let L be the connecting line of x and z, L^{\prime} the connecting line of z and y.

Then $L \in \mathcal{E}_{\alpha}$ by (1) and then $L^{\prime} \in \mathcal{E}_{\alpha}$ by (5). Further, by (10), $i \in$ $\varphi(L) \cap \varphi\left(L^{\prime}\right)$, which, with $f(z)=i$, contradicts (11).
Claim 5. (9) holds.
Proof. Assume that $C \in \mathcal{E}_{\alpha+1}$ and $i \notin \varphi(C)$. If $C \in \mathcal{E}_{\alpha}$, then $C \cap f^{-1}(i)$ does not contain element from $H_{\alpha+1}-H_{\alpha}$ by (7). If $C \in \mathcal{E}_{\alpha+1}-\mathcal{E}_{\alpha}$ and Case 2 holds in the definition of $\varphi(C)$, then there is nothing to prove. Assume finally, that $C \in \mathcal{E}_{\alpha+1}-\mathcal{E}_{\alpha}$, and Case 1 holds. Then, if $i \notin \varphi(C)$, then $C \cap f^{-1}(i)$ has at most one element in H_{α}, at most one in $H_{\alpha+1}-H_{\alpha}$ by (6), that is at most 2.
Claim 6. (10) holds.
Proof. Assume that $L \in \mathcal{E}_{\alpha+1}, i \notin \varphi(L)$. If $L \in \mathcal{E}_{\alpha}$, then $L \cap f^{-1}(i)$ does not increase in $H_{\alpha+1}-H_{\alpha}$. If $L \in \mathcal{E}_{\alpha+1}-\mathcal{E}_{\alpha}$ and $B=L \cap H_{\alpha}$ is empty, then $\left|L \cap f^{-1}(i)\right| \leq 1$ by (6). Otherwise, B is a singleton by (1), let y be its unique element. If $f(y) \notin f\left[L \cap\left(H_{\alpha+1}-H_{\alpha}\right)\right]$, then again $\left|L \cap f^{-1}(i)\right| \leq 1$, otherwise we are in Case 2 of the definition of $\varphi(L)$ where we specifically added $f(y)$ to $\varphi(C)$.
Claim 7. (11) holds.
Proof. Assume that $L, L^{\prime} \in \mathcal{E}_{\alpha+1}$ are perpendicular, $L \cap L^{\prime}=\{x\}, i=f(x) \in$ $\varphi(L) \cap \varphi\left(L^{\prime}\right)$.

Case 1. $L, L^{\prime} \in \mathcal{E}_{\alpha}$.

In this case $x \in H_{\alpha}$ by (3), so the configuration in (11) already appers in $H_{\alpha}, \mathcal{E}_{\alpha}$.
Case 2. $L \in \mathcal{E}_{\alpha}, L^{\prime} \in \mathcal{E}_{\alpha+1}-\mathcal{E}_{\alpha}$.
As $i \in \varphi\left(L^{\prime}\right)$, by the definition of the latter there is $y \in L^{\prime} \cap H_{\alpha}, f(y)=i$. This is exactly what is ruled out at the coloring of x by (12).
Case 3. $L, L^{\prime} \in \mathcal{E}_{\alpha+1}-\mathcal{E}_{\alpha}$.
Subcase 3.1. $x \in H_{\alpha}$.
As $i=f(x) \in \varphi(L)$, by the definition of $\varphi(L)$ there is $y \in L \cap\left(H_{\alpha+1}-H_{\alpha}\right)$ with $f(y)=i$. Likewise, there is $z \in L^{\prime} \cap\left(H_{\alpha+1}-H_{\alpha}\right)$ with $f(z)=i$. Now y, z are distinct elements of $H_{\alpha+1}-H_{\alpha}$ and $f(y)=f(z)$, contradicting (6).
Subcase 3.2. $x \in H_{\alpha+1}-H_{\alpha}$.
As $i=f(x) \in \varphi(L)$, there is $y \in L \cap H_{\alpha}, f(y)=i$. Similarly, there is $z \in L^{\prime} \cap H_{\alpha}, f(z)=i$.

Let C be the circuit containing x, y, z.

As L, L^{\prime} are perpendicular, y and z are antipodal in C. As in C there are 3 points of color $i, i \in \varphi(C)$. But this contradicts to the antipodality of y and z.

The proof of the theorem is concluded.

References

[1] P. Erdős, P. Komjáth: Countable decompositions of \mathbb{R}^{2} and \mathbb{R}^{3}, Disc. Comp. Geometry, 5(1990), 325-331.
[2] James H. Schmerl: Avoidable algebraic subsets of Euclidean space, Trans. Amer. Math. Soc., 352(1999), 2479-2489.

Balázs Bursics
Institute of Mathematics
Eötvös University
Budapest, Pázmány P. s. 1/C
1117, Hungary
e-mail: bursicsb@gmail.com
Péter Komjáth
Institute of Mathematics
Eötvös University
Budapest, Pázmány P. s. 1/C
1117, Hungary
e-mail: peter.komjath@gmail.com

[^0]: *Partially supported by Hungarian National Research Grant OTKA K 131842
 ${ }^{1} 2010$ Mathematics Subject Classification. Primary 03E50 Secondary 51M04, 05D10. Key words and phrases: Continuum Hypothesis, Ramsey theory of Euclidean spaces

