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A coloring of the plane without
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Abstract

We give a full, correct proof of the following result, earlier claimed
in [1]. If the Continuum Hypothesis holds then there is a coloring
of the plane with countably many colors, with no monocolored right
triangle.

One! of Paul Erdés’s favorite topics consisted the applications of the Ax-
iom of Choice to construct paradoxical sets and colorings of the Euclidean
spaces. Among a large number of other questions, he raised the following:
is there a coloring of the plane with countably many colors, with no mono-
colored right angled triangles. In [1] this was shown to be equivalent to the
Continuum Hypothesis.

Recently, the senior author observed that the proof of the positive direc-
tion in [1] is incomplete. Here we give a full, correct proof.

We notice that later Schmerl in [2] gave another, more general proof,
which, however, is less elementary.

Notation. Definitions. We use the notation and terminology of axiomatic
set theory. The ordinals are von Neumann ordinals, w; is the least uncount-
able ordinal.

Theorem. (CH) There is f : R? — w with no monochromatic right angles.
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Proof. Using CH, we decompose R? and the set £ of planar lines and circles
into the increasing, continuous sequence of sets as R* = | J{H, : a < w;}
and € = |J{&, : @ < wy} such that Hy = & = 0 and

(1) if z # y € H,, then their connecting line and Thales circle are in &,,

(2) if z,y, z € H, are not collinear, then their circuit is in &,,

(3) if eg # €1 € &,, then eg Ne; C Hy,,

(4)if x € C € &,, C is a circle, then the antipodal point of z in C'is in H,,
(5) if L € &, is a line, x € H, N L, then the line L' perpendicular to L with
x € L' also contained in &,.

This can be done by the usual Skolem-type closing arguments.

We are going to construct the coloring f : R?> — w and the function
¢ : &€ = [w]¥ by transfinite recursion on o < w; for H,y1 — H, and for
Ear1 — &, satisfying the following:

(6) fl(Hoy1 — Hy) is injective,

(7)ifx € Hy1 — Hy, e € &4, x € e, then f(x) € p(e),

(8)if C € £ is acircle, i € (C), x,y € C, f(z) = f(y) =i, then z,y are
not antipodal,

(9) if C € € is a circle, i & o(C), then |f~1(i)NC| < 2,

(10) if L € € is a line, i ¢ (L), then |f~1(i) N L| < 1,

(11) if L, L’ are perpendicular lines, {x} = LN L', then f(x) ¢ p(L)Np(L').

Claim 1. There is no right triangle monocolored by f.

Proof. Assume that z,y, z form a right triangle with the right angle at y and
i = f(z) = f(y) = f(2). Let C be the circle around z,y, z. If i ¢ p(C'), then
we obtain a contradiction with (9). If 1 € ¢(C), then we get a contradiction
with (8), as z, z are antipodal. O

Claim 2. Ifxz € H,,1 — H,, then there is at most one e € &, such that
x € e.

Proof. By (3). O

We add the following condition:
(12)ifz € Hyy1—H,, Lisaline with z € L € &,, L' is the line perpendicular
to L at z, {y} = L' N H,, then f(x) # f(y).

Notice that L' € £,41 — &, by (3) and (5), and |L' N H,| < 1 by (1).

Assume that f|H, and ¢|&, are already constructed, we have to define
fI(Hos1 — Hq) and o[ (Eat1 — &q)-

Enumerate H,4+1 — H, as {z; : j < w}. By recursion on j define f(x;) so



that

.f(xj) > max{f(xo), B f(zj—l)} + 27
f(x;) satisfies (7), and is different from the (possible) color disqualified by
(12). Clearly (6) is satisfied, and also w — f[H,+1 — H,] is infinite.

Next we define ¢ on the circuits in £,,1 — &,. If C is such a circuit, set
A=CnH,. By (2), we have |A| < 2.

Case 1. |A| <1 or f takes distinct values on the two elements of A.
In this case, set p(C) = w — f[A].

Case 2. |A| =2 and f assumes the same value on the elements of A.
In this case, set ¢(C) = w.

Finally, we define ¢ on the lines in £,,1 — &,. Let L € £,,1 — &, be a
line. Set B = L N H,. Notice that by (1), |B| < 1. If B is nonempty, let y
be its unique point.

Case 1. B =0 or f(y) ¢ fIL O (Harr — Ha)l.
Then let (L) =w — f[L N Hyy1].

) f
Case 2. f(y) € fILN (Hut1 — Hy))
Then set (L) = (w — f[L N (Hat1 — Ha]) U{f(y)}-

Claim 3. ¢(e) € [w]¥ (e € Eny1 — Ea)-

Proof. If C € &,,1 — &, is a circuit, then this is obvious in Case 2 and in
Case 1 ¢(C) is w minus at most 2 elements.

If L € &1 — &, is a line, the statement follows as f[H,41 — Hyl is a
coinfinite set. O

Claim 4. ¢ satisfies (8).
Proof. Assume that C' € &, is a circle, x,y € C' N H,,1 are antipodal and
flx) = fy) =i
Case 1. C € &,.

In this case one of x,y, say x must be in H, by (6). Then, by (4), y is
also in H,, and we are finished by induction.

Case 2. C € &,11 — &,

If T,y S Ha—l—l - Haa then f(SL’) # f(y> by (6>

If x,y € H,, then C € &, by (1), a contradiction again.

Assume finally, that = € H,, y € Hy,y1 — H,. If, in the definition of ¢(C'),
Case 1 applies, then ¢ ¢ ¢(C'). We can therefore assume that Case 2 holds,
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H,NC ={z,2} and f(y) = f(z) =i. Let L be the connecting line of = and
z, L' the connecting line of z and y.

Then L € &, by (1) and then L' € &, by (5). Further, by (10), i €
©(L) N (L), which, with f(z) = ¢, contradicts (11). O
Claim 5. (9) holds.

Proof. Assume that C' € £,,1 and i ¢ o(C). If C € &,, then C N f71(7)
does not contain element from H,,1 — H, by (7). If C € £,.1 — &, and Case
2 holds in the definition of ¢(C), then there is nothing to prove. Assume

finally, that C' € £,41 — &,, and Case 1 holds. Then, if i ¢ ¢(C), then

C'N f71(i) has at most one element in H,, at most one in H,,; — H, by (6),
that is at most 2. |

Claim 6. (10) holds.

Proof. Assume that L € E,41, 1 ¢ o(L). If L € &,, then L N f71(i) does
not increase in Hyv1 — H,. W L € €401 — &, and B = LN H, is empty, then
|ILN f~1(:)] <1 by (6). Otherwise, B is a singleton by (1), let y be its unique
element. If f(y) ¢ f[LN(Has1 — Hy)], then again |[LN f~1(i)| < 1, otherwise
we are in Case 2 of the definition of ¢(L) where we specifically added f(y)
to p(C). O

Claim 7. (11) holds.

Proof. Assume that L, L' € £, are perpendicular, LNL' = {z},i = f(z) €
p(L) N ().
Case 1. L, L' € &,.



In this case x € H, by (3), so the configuration in (11) already appers in
H,, &,
Case 2. Le&,, L' €&yi1— &,

As i € p(L’), by the definition of the latter there isy € L'N H,, f(y) = 1.
This is exactly what is ruled out at the coloring of x by (12).

Case 3. L, L' € E,11— &,

Subcase 3.1. x € H,,.

Asi = f(x) € ¢(L), by the definition of (L) thereisy € LN(Hy1—H,)
with f(y) = 4. Likewise, there is z € L' N (Hay1 — H,) with f(2) = i. Now
y, z are distinct elements of H,11 — H, and f(y) = f(z), contradicting (6).
Subcase 3.2. r € H,.1 — H,.

As i = f(z) € (L), there is y € LN H,, f(y) = i. Similarly, there is
z€ I''NH,, f(z)=1i.

Let C' be the circuit containing z,y, z.

As L, L' are perpendicular, y and z are antipodal in C'. As in C' there
are 3 points of color 7, i € p(C'). But this contradicts to the antipodality of

y and z. O
The proof of the theorem is concluded. O
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