A coloring of the plane without monochromatic right triangles

Balázs Bursics

Péter Komjáth*

February 24, 2023

Abstract

We give a full, correct proof of the following result, earlier claimed in [1]. If the Continuum Hypothesis holds then there is a coloring of the plane with countably many colors, with no monocolored right triangle.

One¹ of Paul Erdős's favorite topics consisted the applications of the Axiom of Choice to construct paradoxical sets and colorings of the Euclidean spaces. Among a large number of other questions, he raised the following: is there a coloring of the plane with countably many colors, with no monocolored right angled triangles. In [1] this was shown to be equivalent to the Continuum Hypothesis.

Recently, the senior author observed that the proof of the positive direction in [1] is incomplete. Here we give a full, correct proof.

We notice that later Schmerl in [2] gave another, more general proof, which, however, is less elementary.

Notation. Definitions. We use the notation and terminology of axiomatic set theory. The ordinals are von Neumann ordinals, ω_1 is the least uncountable ordinal.

Theorem. (CH) There is $f : \mathbb{R}^2 \to \omega$ with no monochromatic right angles.

^{*}Partially supported by Hungarian National Research Grant OTKA K 131842

¹2010 Mathematics Subject Classification. Primary 03E50 Secondary 51M04, 05D10. Key words and phrases: Continuum Hypothesis, Ramsey theory of Euclidean spaces

Proof. Using CH, we decompose \mathbb{R}^2 and the set \mathcal{E} of planar lines and circles into the increasing, continuous sequence of sets as $\mathbb{R}^2 = \bigcup \{H_\alpha : \alpha < \omega_1\}$ and $\mathcal{E} = \bigcup \{\mathcal{E}_\alpha : \alpha < \omega_1\}$ such that $H_0 = \mathcal{E}_0 = \emptyset$ and

(1) if $x \neq y \in H_{\alpha}$, then their connecting line and Thales circle are in \mathcal{E}_{α} ,

(2) if $x, y, z \in H_{\alpha}$ are not collinear, then their circuit is in \mathcal{E}_{α} ,

(3) if $e_0 \neq e_1 \in \mathcal{E}_{\alpha}$, then $e_0 \cap e_1 \subseteq H_{\alpha}$,

(4) if $x \in C \in \mathcal{E}_{\alpha}$, C is a circle, then the antipodal point of x in C is in H_{α} , (5) if $L \in \mathcal{E}_{\alpha}$ is a line, $x \in H_{\alpha} \cap L$, then the line L' perpendicular to L with $x \in L'$ also contained in \mathcal{E}_{α} .

This can be done by the usual Skolem-type closing arguments.

We are going to construct the coloring $f : \mathbb{R}^2 \to \omega$ and the function $\varphi : \mathcal{E} \to [\omega]^{\omega}$ by transfinite recursion on $\alpha < \omega_1$ for $H_{\alpha+1} - H_{\alpha}$ and for $\mathcal{E}_{\alpha+1} - \mathcal{E}_{\alpha}$, satisfying the following:

(6) $f|(H_{\alpha+1} - H_{\alpha})$ is injective,

(7) if $x \in H_{\alpha+1} - H_{\alpha}$, $e \in \mathcal{E}_{\alpha}$, $x \in e$, then $f(x) \in \varphi(e)$,

(8) if $C \in \mathcal{E}$ is a circle, $i \in \varphi(C)$, $x, y \in C$, f(x) = f(y) = i, then x, y are not antipodal,

(9) if $C \in \mathcal{E}$ is a circle, $i \notin \varphi(C)$, then $|f^{-1}(i) \cap C| \leq 2$,

(10) if $L \in \mathcal{E}$ is a line, $i \notin \varphi(L)$, then $|f^{-1}(i) \cap L| \leq 1$,

(11) if L, L' are perpendicular lines, $\{x\} = L \cap L'$, then $f(x) \notin \varphi(L) \cap \varphi(L')$.

Claim 1. There is no right triangle monocolored by f.

Proof. Assume that x, y, z form a right triangle with the right angle at y and i = f(x) = f(y) = f(z). Let C be the circle around x, y, z. If $i \notin \varphi(C)$, then we obtain a contradiction with (9). If $i \in \varphi(C)$, then we get a contradiction with (8), as x, z are antipodal.

Claim 2. If $x \in H_{\alpha+1} - H_{\alpha}$, then there is at most one $e \in \mathcal{E}_{\alpha}$ such that $x \in e$.

Proof. By (3).

We add the following condition:

(12) if $x \in H_{\alpha+1} - H_{\alpha}$, L is a line with $x \in L \in \mathcal{E}_{\alpha}$, L' is the line perpendicular to L at x, $\{y\} = L' \cap H_{\alpha}$, then $f(x) \neq f(y)$.

Notice that $L' \in \mathcal{E}_{\alpha+1} - \mathcal{E}_{\alpha}$ by (3) and (5), and $|L' \cap H_{\alpha}| \leq 1$ by (1).

Assume that $f|H_{\alpha}$ and $\varphi|\mathcal{E}_{\alpha}$ are already constructed, we have to define $f|(H_{\alpha+1}-H_{\alpha})$ and $\varphi|(\mathcal{E}_{\alpha+1}-\mathcal{E}_{\alpha})$.

Enumerate $H_{\alpha+1} - H_{\alpha}$ as $\{x_j : j < \omega\}$. By recursion on j define $f(x_j)$ so

that

$$f(x_j) \ge \max\{f(x_0), \dots, f(x_{j-1})\} + 2,$$

 $f(x_j)$ satisfies (7), and is different from the (possible) color disqualified by (12). Clearly (6) is satisfied, and also $\omega - f[H_{\alpha+1} - H_{\alpha}]$ is infinite.

Next we define φ on the circuits in $\mathcal{E}_{\alpha+1} - \mathcal{E}_{\alpha}$. If C is such a circuit, set $A = C \cap H_{\alpha}$. By (2), we have $|A| \leq 2$.

Case 1. $|A| \leq 1$ or f takes distinct values on the two elements of A. In this case, set $\varphi(C) = \omega - f[A]$.

Case 2. |A| = 2 and f assumes the same value on the elements of A. In this case, set $\varphi(C) = \omega$.

Finally, we define φ on the lines in $\mathcal{E}_{\alpha+1} - \mathcal{E}_{\alpha}$. Let $L \in \mathcal{E}_{\alpha+1} - \mathcal{E}_{\alpha}$ be a line. Set $B = L \cap H_{\alpha}$. Notice that by (1), $|B| \leq 1$. If B is nonempty, let y be its unique point.

- **Case 1.** $B = \emptyset$ or $f(y) \notin f[L \cap (H_{\alpha+1} H_{\alpha})]$. Then let $\varphi(L) = \omega - f[L \cap H_{\alpha+1}]$.
- Case 2. $f(y) \in f[L \cap (H_{\alpha+1} H_{\alpha})].$ Then set $\varphi(L) = (\omega - f[L \cap (H_{\alpha+1} - H_{\alpha}]) \cup \{f(y)\}.$

Claim 3. $\varphi(e) \in [\omega]^{\omega} \ (e \in \mathcal{E}_{\alpha+1} - \mathcal{E}_{\alpha}).$

Proof. If $C \in \mathcal{E}_{\alpha+1} - \mathcal{E}_{\alpha}$ is a circuit, then this is obvious in Case 2 and in Case 1 $\varphi(C)$ is ω minus at most 2 elements.

If $L \in \mathcal{E}_{\alpha+1} - \mathcal{E}_{\alpha}$ is a line, the statement follows as $f[H_{\alpha+1} - H_{\alpha}]$ is a coinfinite set.

Claim 4. φ satisfies (8).

Proof. Assume that $C \in \mathcal{E}_{\alpha+1}$ is a circle, $x, y \in C \cap H_{\alpha+1}$ are antipodal and f(x) = f(y) = i.

Case 1. $C \in \mathcal{E}_{\alpha}$.

In this case one of x, y, say x must be in H_{α} by (6). Then, by (4), y is also in H_{α} , and we are finished by induction.

Case 2. $C \in \mathcal{E}_{\alpha+1} - \mathcal{E}_{\alpha}$.

If $x, y \in H_{\alpha+1} - H_{\alpha}$, then $f(x) \neq f(y)$ by (6).

If $x, y \in H_{\alpha}$, then $C \in \mathcal{E}_{\alpha}$ by (1), a contradiction again.

Assume finally, that $x \in H_{\alpha}$, $y \in H_{\alpha+1} - H_{\alpha}$. If, in the definition of $\varphi(C)$, Case 1 applies, then $i \notin \varphi(C)$. We can therefore assume that Case 2 holds, $H_{\alpha} \cap C = \{x, z\}$ and f(y) = f(z) = i. Let L be the connecting line of x and z, L' the connecting line of z and y.

Then $L \in \mathcal{E}_{\alpha}$ by (1) and then $L' \in \mathcal{E}_{\alpha}$ by (5). Further, by (10), $i \in \varphi(L) \cap \varphi(L')$, which, with f(z) = i, contradicts (11).

Claim 5. (9) holds.

Proof. Assume that $C \in \mathcal{E}_{\alpha+1}$ and $i \notin \varphi(C)$. If $C \in \mathcal{E}_{\alpha}$, then $C \cap f^{-1}(i)$ does not contain element from $H_{\alpha+1} - H_{\alpha}$ by (7). If $C \in \mathcal{E}_{\alpha+1} - \mathcal{E}_{\alpha}$ and Case 2 holds in the definition of $\varphi(C)$, then there is nothing to prove. Assume finally, that $C \in \mathcal{E}_{\alpha+1} - \mathcal{E}_{\alpha}$, and Case 1 holds. Then, if $i \notin \varphi(C)$, then $C \cap f^{-1}(i)$ has at most one element in H_{α} , at most one in $H_{\alpha+1} - H_{\alpha}$ by (6), that is at most 2.

Claim 6. (10) holds.

Proof. Assume that $L \in \mathcal{E}_{\alpha+1}$, $i \notin \varphi(L)$. If $L \in \mathcal{E}_{\alpha}$, then $L \cap f^{-1}(i)$ does not increase in $H_{\alpha+1} - H_{\alpha}$. If $L \in \mathcal{E}_{\alpha+1} - \mathcal{E}_{\alpha}$ and $B = L \cap H_{\alpha}$ is empty, then $|L \cap f^{-1}(i)| \leq 1$ by (6). Otherwise, B is a singleton by (1), let y be its unique element. If $f(y) \notin f[L \cap (H_{\alpha+1} - H_{\alpha})]$, then again $|L \cap f^{-1}(i)| \leq 1$, otherwise we are in Case 2 of the definition of $\varphi(L)$ where we specifically added f(y)to $\varphi(C)$.

Claim 7. (11) holds.

Proof. Assume that $L, L' \in \mathcal{E}_{\alpha+1}$ are perpendicular, $L \cap L' = \{x\}, i = f(x) \in \varphi(L) \cap \varphi(L')$.

Case 1. $L, L' \in \mathcal{E}_{\alpha}$.

In this case $x \in H_{\alpha}$ by (3), so the configuration in (11) already appers in $H_{\alpha}, \mathcal{E}_{\alpha}$.

Case 2. $L \in \mathcal{E}_{\alpha}, L' \in \mathcal{E}_{\alpha+1} - \mathcal{E}_{\alpha}.$

As $i \in \varphi(L')$, by the definition of the latter there is $y \in L' \cap H_{\alpha}$, f(y) = i. This is exactly what is ruled out at the coloring of x by (12).

Case 3. $L, L' \in \mathcal{E}_{\alpha+1} - \mathcal{E}_{\alpha}$.

Subcase 3.1. $x \in H_{\alpha}$.

As $i = f(x) \in \varphi(L)$, by the definition of $\varphi(L)$ there is $y \in L \cap (H_{\alpha+1} - H_{\alpha})$ with f(y) = i. Likewise, there is $z \in L' \cap (H_{\alpha+1} - H_{\alpha})$ with f(z) = i. Now y, z are distinct elements of $H_{\alpha+1} - H_{\alpha}$ and f(y) = f(z), contradicting (6).

Subcase 3.2. $x \in H_{\alpha+1} - H_{\alpha}$.

As $i = f(x) \in \varphi(L)$, there is $y \in L \cap H_{\alpha}$, f(y) = i. Similarly, there is $z \in L' \cap H_{\alpha}$, f(z) = i.

Let C be the circuit containing x, y, z.

As L, L' are perpendicular, y and z are antipodal in C. As in C there are 3 points of color $i, i \in \varphi(C)$. But this contradicts to the antipodality of y and z.

The proof of the theorem is concluded.

References

[1] P. Erdős, P. Komjáth: Countable decompositions of \mathbb{R}^2 and \mathbb{R}^3 , *Disc.* Comp. Geometry, 5(1990), 325–331.

[2] James H. Schmerl: Avoidable algebraic subsets of Euclidean space, Trans. Amer. Math. Soc., 352(1999), 2479–2489.

Balázs Bursics Institute of Mathematics Eötvös University Budapest, Pázmány P. s. 1/C 1117, Hungary e-mail: bursicsb@gmail.com

Péter Komjáth Institute of Mathematics Eötvös University Budapest, Pázmány P. s. 1/C 1117, Hungary e-mail: peter.komjath@gmail.com