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A coloring of the plane without

monochromatic right triangles

Balázs Bursics Péter Komjáth∗

February 24, 2023

Abstract

We give a full, correct proof of the following result, earlier claimed
in [1]. If the Continuum Hypothesis holds then there is a coloring
of the plane with countably many colors, with no monocolored right
triangle.

One1 of Paul Erdős’s favorite topics consisted the applications of the Ax-
iom of Choice to construct paradoxical sets and colorings of the Euclidean
spaces. Among a large number of other questions, he raised the following:
is there a coloring of the plane with countably many colors, with no mono-
colored right angled triangles. In [1] this was shown to be equivalent to the
Continuum Hypothesis.

Recently, the senior author observed that the proof of the positive direc-
tion in [1] is incomplete. Here we give a full, correct proof.

We notice that later Schmerl in [2] gave another, more general proof,
which, however, is less elementary.

Notation. Definitions. We use the notation and terminology of axiomatic
set theory. The ordinals are von Neumann ordinals, ω1 is the least uncount-
able ordinal.

Theorem. (CH) There is f : R2 → ω with no monochromatic right angles.
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Proof. Using CH, we decompose R2 and the set E of planar lines and circles
into the increasing, continuous sequence of sets as R

2 =
⋃
{Hα : α < ω1}

and E =
⋃
{Eα : α < ω1} such that H0 = E0 = ∅ and

(1) if x 6= y ∈ Hα, then their connecting line and Thales circle are in Eα,
(2) if x, y, z ∈ Hα are not collinear, then their circuit is in Eα,
(3) if e0 6= e1 ∈ Eα, then e0 ∩ e1 ⊆ Hα,
(4) if x ∈ C ∈ Eα, C is a circle, then the antipodal point of x in C is in Hα,
(5) if L ∈ Eα is a line, x ∈ Hα ∩ L, then the line L′ perpendicular to L with
x ∈ L′ also contained in Eα.

This can be done by the usual Skolem-type closing arguments.
We are going to construct the coloring f : R

2 → ω and the function
ϕ : E → [ω]ω by transfinite recursion on α < ω1 for Hα+1 − Hα and for
Eα+1 − Eα, satisfying the following:
(6) f |(Hα+1 −Hα) is injective,
(7) if x ∈ Hα+1 −Hα, e ∈ Eα, x ∈ e, then f(x) ∈ ϕ(e),
(8) if C ∈ E is a circle, i ∈ ϕ(C), x, y ∈ C, f(x) = f(y) = i, then x, y are
not antipodal,
(9) if C ∈ E is a circle, i /∈ ϕ(C), then |f−1(i) ∩ C| ≤ 2,
(10) if L ∈ E is a line, i /∈ ϕ(L), then |f−1(i) ∩ L| ≤ 1,
(11) if L, L′ are perpendicular lines, {x} = L∩L′, then f(x) /∈ ϕ(L)∩ϕ(L′).

Claim 1. There is no right triangle monocolored by f .

Proof. Assume that x, y, z form a right triangle with the right angle at y and
i = f(x) = f(y) = f(z). Let C be the circle around x, y, z. If i /∈ ϕ(C), then
we obtain a contradiction with (9). If i ∈ ϕ(C), then we get a contradiction
with (8), as x, z are antipodal.

Claim 2. If x ∈ Hα+1 − Hα, then there is at most one e ∈ Eα such that

x ∈ e.

Proof. By (3).

We add the following condition:
(12) if x ∈ Hα+1−Hα, L is a line with x ∈ L ∈ Eα, L

′ is the line perpendicular
to L at x, {y} = L′ ∩Hα, then f(x) 6= f(y).

Notice that L′ ∈ Eα+1 − Eα by (3) and (5), and |L′ ∩Hα| ≤ 1 by (1).
Assume that f |Hα and ϕ|Eα are already constructed, we have to define

f |(Hα+1 −Hα) and ϕ|(Eα+1 − Eα).
Enumerate Hα+1 −Hα as {xj : j < ω}. By recursion on j define f(xj) so

2



that
f(xj) ≥ max{f(x0), . . . , f(xj−1)}+ 2,

f(xj) satisfies (7), and is different from the (possible) color disqualified by
(12). Clearly (6) is satisfied, and also ω − f [Hα+1 −Hα] is infinite.

Next we define ϕ on the circuits in Eα+1 − Eα. If C is such a circuit, set
A = C ∩Hα. By (2), we have |A| ≤ 2.

Case 1. |A| ≤ 1 or f takes distinct values on the two elements of A.
In this case, set ϕ(C) = ω − f [A].

Case 2. |A| = 2 and f assumes the same value on the elements of A.
In this case, set ϕ(C) = ω.

Finally, we define ϕ on the lines in Eα+1 − Eα. Let L ∈ Eα+1 − Eα be a
line. Set B = L ∩Hα. Notice that by (1), |B| ≤ 1. If B is nonempty, let y
be its unique point.

Case 1. B = ∅ or f(y) /∈ f [L ∩ (Hα+1 −Hα)].
Then let ϕ(L) = ω − f [L ∩Hα+1].

Case 2. f(y) ∈ f [L ∩ (Hα+1 −Hα)].
Then set ϕ(L) = (ω − f [L ∩ (Hα+1 −Hα]) ∪ {f(y)}.

Claim 3. ϕ(e) ∈ [ω]ω (e ∈ Eα+1 − Eα).

Proof. If C ∈ Eα+1 − Eα is a circuit, then this is obvious in Case 2 and in
Case 1 ϕ(C) is ω minus at most 2 elements.

If L ∈ Eα+1 − Eα is a line, the statement follows as f [Hα+1 − Hα] is a
coinfinite set.

Claim 4. ϕ satisfies (8).

Proof. Assume that C ∈ Eα+1 is a circle, x, y ∈ C ∩Hα+1 are antipodal and
f(x) = f(y) = i.

Case 1. C ∈ Eα.
In this case one of x, y, say x must be in Hα by (6). Then, by (4), y is

also in Hα, and we are finished by induction.

Case 2. C ∈ Eα+1 − Eα.
If x, y ∈ Hα+1 −Hα, then f(x) 6= f(y) by (6).
If x, y ∈ Hα, then C ∈ Eα by (1), a contradiction again.
Assume finally, that x ∈ Hα, y ∈ Hα+1−Hα. If, in the definition of ϕ(C),

Case 1 applies, then i /∈ ϕ(C). We can therefore assume that Case 2 holds,

3



Hα ∩C = {x, z} and f(y) = f(z) = i. Let L be the connecting line of x and
z, L′ the connecting line of z and y.

x

y

z

C

L

L′

Then L ∈ Eα by (1) and then L′ ∈ Eα by (5). Further, by (10), i ∈
ϕ(L) ∩ ϕ(L′), which, with f(z) = i, contradicts (11).

Claim 5. (9) holds.

Proof. Assume that C ∈ Eα+1 and i /∈ ϕ(C). If C ∈ Eα, then C ∩ f−1(i)
does not contain element from Hα+1−Hα by (7). If C ∈ Eα+1−Eα and Case
2 holds in the definition of ϕ(C), then there is nothing to prove. Assume
finally, that C ∈ Eα+1 − Eα, and Case 1 holds. Then, if i /∈ ϕ(C), then
C ∩ f−1(i) has at most one element in Hα, at most one in Hα+1−Hα by (6),
that is at most 2.

Claim 6. (10) holds.

Proof. Assume that L ∈ Eα+1, i /∈ ϕ(L). If L ∈ Eα, then L ∩ f−1(i) does
not increase in Hα+1 −Hα. If L ∈ Eα+1 −Eα and B = L∩Hα is empty, then
|L∩f−1(i)| ≤ 1 by (6). Otherwise, B is a singleton by (1), let y be its unique
element. If f(y) /∈ f [L∩ (Hα+1−Hα)], then again |L∩f−1(i)| ≤ 1, otherwise
we are in Case 2 of the definition of ϕ(L) where we specifically added f(y)
to ϕ(C).

Claim 7. (11) holds.

Proof. Assume that L, L′ ∈ Eα+1 are perpendicular, L∩L
′ = {x}, i = f(x) ∈

ϕ(L) ∩ ϕ(L′).

Case 1. L, L′ ∈ Eα.
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In this case x ∈ Hα by (3), so the configuration in (11) already appers in
Hα, Eα.

Case 2. L ∈ Eα, L
′ ∈ Eα+1 − Eα.

As i ∈ ϕ(L′), by the definition of the latter there is y ∈ L′∩Hα, f(y) = i.
This is exactly what is ruled out at the coloring of x by (12).

Case 3. L, L′ ∈ Eα+1 − Eα.

Subcase 3.1. x ∈ Hα.
As i = f(x) ∈ ϕ(L), by the definition of ϕ(L) there is y ∈ L∩(Hα+1−Hα)

with f(y) = i. Likewise, there is z ∈ L′ ∩ (Hα+1 −Hα) with f(z) = i. Now
y, z are distinct elements of Hα+1 −Hα and f(y) = f(z), contradicting (6).

Subcase 3.2. x ∈ Hα+1 −Hα.
As i = f(x) ∈ ϕ(L), there is y ∈ L ∩ Hα, f(y) = i. Similarly, there is

z ∈ L′ ∩Hα, f(z) = i.
Let C be the circuit containing x, y, z.

x

y

z

C

L

L′

As L, L′ are perpendicular, y and z are antipodal in C. As in C there
are 3 points of color i, i ∈ ϕ(C). But this contradicts to the antipodality of
y and z.

The proof of the theorem is concluded.
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