
Simultaneous upper and lower bounds of American option

prices with hedging via neural networks

Ivan Guo∗1,2, Nicolas Langrené†3, and Jiahao Wu1

1School of Mathematical Sciences, Monash University, Melbourne, Australia
2Centre for Quantitative Finance and Investment Strategies, Monash University, Australia

3Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data

Science, BNU-HKBU United International College, Zhuhai, China

April 19, 2024

Abstract

In this paper, we introduce two novel methods to solve the American-style option

pricing problem and its dual form at the same time using neural networks. Without

applying nested Monte Carlo, the first method uses a series of neural networks to si-

multaneously compute both the lower and upper bounds of the option price, and the

second one accomplishes the same goal with one global network. The avoidance of ex-

tra simulations and the use of neural networks significantly reduce the computational

complexity and allow us to price Bermudan options with frequent exercise opportuni-

ties in high dimensions, as illustrated by the provided numerical experiments. As a

by-product, these methods also derive a hedging strategy for the option, which can also

be used as a control variate for variance reduction.

1 Introduction

Pricing American options is a type of optimal control/stopping problem for which numer-

ical methods have been extensively explored due to the lack of analytical solutions. However,

classical methods based on partial differential equations and binomial trees become expen-

sive computationally when there are multiple factors impacting the value of the option, a

∗Ivan Guo’s work was partially supported by the Australian Research Council (Grant DP220103106) and

CSIRO Data61 Risklab.
†Nicolas Langrené’s work was supported in part by the Guangdong Provincial Key Laboratory of Inter-

disciplinary Research and Application for Data Science, BNU-HKBU United International College, project

code 2022B1212010006, and in part by the UIC Start-up Research Fund UICR0700041-22.

1

ar
X

iv
:2

30
2.

12
43

9v
2 

 [
q-

fi
n.

C
P]

  1
8 

A
pr

 2
02

4



limitation known as the curse of dimensionality. To circumvent this difficulty, simulation-

based methods have been extensively explored [47, 4, 13, 39, 48, 10, 12, 3, 36, 11, 40]. By

directly solving the pricing problem, these methods typically generate a candidate optimal

stopping strategy and a lower bound on the price, which is more in the interest of the buy-

ing party. On the other hand, option sellers would be more interested in an upper bound.

Haugh and Kogan [30] and Rogers [45] independently explored the duality of the pricing

problem, based on which a variety of methods have been proposed [2, 34, 9, 44, 46] to derive

an upper bound on the option price by solving its dual problem.

Among simulation-based methods, the Least Squares Monte Carlo (LSMC) method

[39, 48] has gained much popularity. In search of the optimal stopping strategy, the dy-

namic programming principle is used, with continuation values approximated by a set of

basis functions via linear regression. However, as the dimension of the problem increases,

the number of basis functions significantly increases and the method can become numeri-

cally unstable. Various studies, including Kohler et al. [35], Lapeyre and Lelong [37] and

Herrera et al. [31], have proposed to replace the linear regression in the LSMC method by

neural networks (NNs). Additionally, Goudenège et al. [27] and Goudenège et al. [28] have

employed Gaussian process regression to estimate the continuation value. Reppen et al. [43]

applied NNs to parameterise the stopping boundary. Moreover, Bayer et al. [5] have devised

a forward and a backward algorithm to approximate the stopping strategy by randomising

them with independent noises, while Gonon [26] has utilised neural networks to directly

approximate the value function and showed that the method is free of the curse of dimen-

sionality. Other works [29, 42, 16, 24, 41, 23] have explored the application of deep learning

in option pricing by addressing the corresponding partial differential equations (PDEs) or

backward stochastic differential equations (BSDEs).

Besides option pricing, hedging strategies are crucial in risk management. Most ex-

isting methods for generating hedging strategies either involve taking the first derivative

of approximated option values [3, 11, 33, 41] or approximating the function representing

the difference between option values at different times once the option has been priced

[7, 6]. However, the efficiency of these strategies relies on the accurate differentiation of

the estimated continuation value function. Since functions with similar values can have

very different derivatives, even satisfying approximations of the value process can lead to

ineffective hedging strategies.

The primary contribution of our work lies in incorporating the dual formulation of

the option price into the modified LSMC method to design algorithms that concurrently

produce both lower and upper bounds of the option price. Moreover, our method facilitates

the derivation of hedging strategies as an immediate by-product, computed directly from

the dual martingale used in the upper bound estimate instead of the differentiation. Unlike

2



traditional methods, our approach offers hedging strategies at all times before maturity, not

just at exercise times, and can serve as a control variate to reduce variance, thereby yielding

a more accurate lower bound. Becker et al. [7, 8] proposed a method to price Bermudan

options in high-dimensions. However, in their method, they first find a stopping strategy

to approximate a lower bound, based on which they then derive an upper bound using

nested Monte Carlo. Similarly, the hedging strategy is also based on the stopping strategy

with another independent simulation. Their other work [7] has a similar structure but

approximate the stopping strategy instead. In the case of pricing Bermudan options with

frequent exercise opportunities, which approximates an American option, the computational

cost can be very high as the cost of nested simulation increases quadratically with the

number of stopping opportunities. Similar methods designed by Lokeshwar et al. [38],

Belomestny et al. [9] do not require nested simulations, but the derivation of a biased upper

estimate is separate from the determination of the stopping strategy. The work by Huré

et al. [32] on reflected BSDEs resolution shares some resemblance, but it only generates a

point estimate, and the details in the dynamic programming are different.

In addition, we present the use of one global network instead of a series of networks

in the derivation by treating time as an additional state variable. Global networks have

been introduced to solve semi-linear PDEs [15] and other control problems [25, 22]. In such

stopping problems, the target values are known when the training starts as they are outputs

of the problem, rather than inputs. However, the training targets are unavailable at the

outset of the problem. We propose to alternate the update of stopping strategies and the

network training till it produces satisfactory results.

This paper is structured in the following order. Section 2 lays out the theoretical ground-

work for combining the LSMC algorithm with the dual formulation. In Section 3, we

introduce the numerical methods devised and then present various variants in Section 4.

Section 5 is dedicated to demonstrating numerical results in both low- and high-dimensional

settings, and then we conclude in Section 6.

2 The Problem Formulation

Consider an American option with maturity T > 0. Let (Ω,F ,F = (Ft)t∈[0,T ],Q) be a

filtered probability space, where F is the augmented filtration of a d-dimensional Brownian

motion (Wt)t∈[0,T ], and Q is the equivalent martingale measure.

Define βt = ert as the value of the risk-free account at t ∈ [0, T ], where the constant r

is the risk-free interest rate. The price of the option is based on d risky assets whose value

process (St)t∈[0,T ] is Markovian and is the solution to the SDE

dSt = rStdt+ σ(t, St)dWt,

3



where σ : [0, T ]×Rd → Rd×d is assumed to satisfy sufficient regularity conditions to ensure

the well-posedness of the equation.

2.1 The lower bound of the option price

Let (Zt)t∈[0,T ] denote the F-adapted continuous discounted payoff process of the option

satisfying E[supt∈[0,T ] Zt] < ∞. Let τ : Ω → [0, T ] be a stopping time, and T be the set of

all stopping times with respect to the filtration F. Then, the value of the American option

at time t discounted back to time 0 is

Vt = ess sup
τ∈T ,τ⩾t

E
[
Zτ

∣∣∣Ft

]
,

and in particular the value at time zero is

V0 = ess sup
τ∈T

E[Zτ ] .

For any specific stopping strategy τ ′ ∈ T , we have V ′
0 = E[Zτ ′ ] ⩽ ess sup

τ∈T
E[Zτ ] = V0.

Hence the estimate of an American option price given by one strategy is a lower bound of

the real value.

2.2 The upper bound of the option price

Denote by MUI the set of all uniformly integrable martingales with initial state set to

zero. Since the discounted option value process (Vt)t∈[0,T ] is a supermartingale of class D,

it has a unique Doob-Meyer decomposition:

Vt = V0 +M∗
t −A∗

t , (1)

where M∗ ∈ MUI , and A∗ is a predictable non-decreasing process with A∗
0 = 0.

The American option pricing problem has a dual form:

V0 = inf
M∈MUI

E

[
sup

t∈[0,T ]
Zt −Mt

]
, (2)

and the infimum is attained at M = M∗. We refer to Rogers [45], Haugh and Kogan [30]

for proofs of this duality.

Denote M ⊂ MUI as the set of martingales that are both uniformly integrable and

square integrable. We restrict our search for M∗ within the set M. This does not pose

a problem in our numerical experiments as the optimal martingales corresponding to the

options we price satisfy this condition. Since M∗ ∈ M and is adapted to the Brownian

4



filtration F, the Brownian martingale representation theorem states that there exists a

predictable process H with values in R such that E
[∫ T

0 H2
s ds

]
< ∞, and

M∗
t = M∗

0 +

∫ t

0
Hs dWs. (3)

This allows us to estimate the optimal martingale M∗ by approximating the process H

numerically, and then generate an upper bound of the option price.

2.3 The hedging strategy

Consider a measurable adapted process (Jt)t∈[0,T ] with values in Rd+1, where J i is the

number of units of the i-th asset held in a portfolio consisting of d risky assets and one

risk-free asset. The value of the portfolio at time t is

Ut = J0
t βt +

d∑
i=1

J i
tS

i
t .

The process satisfies the condition
∫ T
0 |Ju|2 du =

∑d
i=1

∫ T
0 |J i

u|2 du < ∞ a.s, and it is a

self-financing hedging strategy if

Ut

βt
= U0 +

∫ t

0
Juβ

−1
u σ(u, Su) dWu. (4)

Combining the Doob-Meyer decomposition (1) and the Brownian martingale represen-

tation (3), we obtain

Vt = V0 +

∫ t

0
Hu dWu −A∗

t . (5)

For the portfolio to super-replicate the option, we need Ut
βt

⩾ Zt for all t ∈ [0, T ]. It is

well-known that the cheapest such portfolio satisfies U0 = V0 and Ut
βt

⩾ Vt ⩾ Zt for all

t ∈ [0, T ]. Comparing equations (4) and (5), we see that this can be achieved by setting

Jt =
βtHt

σ(t, St)
.

Hence, the hedging strategy J can be computed directly from the process H. The process

A∗ can be interpreted as the losses incurred every time the optimal exercise opportunity is

missed.

3 Valuing an American option numerically

From now on, we only approximate American options by Bermudan options whose

exercise times are restricted to the discrete set ti = t0 + i · ∆t, for i ∈ {1, ..., n}, where

5



∆t = T
n . Note that since the pricing progress proceeds backward in time, in this paper, at

ti, the previous step refers to ti+1 and the next step refers to ti−1.

We design two algorithms based on the combination of resolutions of both the primal

and the dual problem. One uses a series of neural networks, and the other one uses only one

global network. To avoid any confusion, we refer to the algorithm with multiple networks

as Method I, and the global one as Method II.

3.1 Method I: Multiple Neural Networks

3.1.1 The regression rule

By taking the expectation of the discounted option value conditioned on Fti and applying

the Doob-Meyer decomposition, we have

Vti+1 = E
[
Vti+1

∣∣∣Fti

]
+

∫ ti+1

ti

Hu dWu. (6)

In this equation, the conditional expectation is the continuation value, and the integral is

the martingale increment from ti to ti+1. Since the stock price process is Markovian, both

the conditional expectation and the process (Hti)i∈{0,1,...,n} can be estimated as functions

of the state variables Sti [18, 17].

Let Φi(Sti) : Rd → R and Ψi(Sti) : Rd → Rd be approximations of the continuation

function and the process Hti at ti, respectively. We refer to Ψ(Sti) as the martingale

increment function. Due to the independence among stocks, the martingale increment can

be approximated by
∑d

j=1 β
-1
ti Ψ

i(Sti)
j∆W j

ti
, where ∆W j

ti
= W j

ti+1
−W j

ti
. For simplicity, we

leave out the superscript that indicates dimension and the symbol for summation in the

rest of this section.

Based on (6), we perform regression at each time through:

min
Φ,Ψ

βtiVti+1 − Φi(Sti)−
d∑

j=1

Ψi(Sti)
j∆W j

ti

2

.

In this method, one neural network is used to regress the continuation value and the

martingale increment on the current stock prices at time ti ∈ {t0, t1, t2, ..., tn−1}. In this

work, we use fully-connected feedforward neural networks to perform these regressions. Let

NNΘ denote fully connected feedforward artificial neural networks, with Θ describing the

structure of a network. Θ = (L, [n1, . . . , nL]) represents a network with L layers, and each

layer l has nl neurons. In particular, n1 and nL are the number of input features and the

number of outputs, respectively. Each network takes the form:

σnL−1 ◦AL−1 ◦ · · · ◦ σ1 ◦A1,

6



where Al signifies an affine transformation from layer l to layer l + 1:

Al(x) = wT
l x+ bl,

for x ∈ Rnl , wl ∈ Rnl×nl+1 , bl ∈ Rl+1, and σl is the activation function applied to Al.

3.1.2 The stopping strategy

Let τi : Ω → {ti+1, . . . , tn = T} be a stopping time, and Ti be the set of all stopping

times that takes values greater than ti.

The optimal stopping strategy is to exercise the option once the immediate payoff is

higher than the continuation value. Let f(St) : Rd → R be the payoff of the option at

t ∈ [0, T ]. The stopping time can be represented as:

τi = min{tj ∈ {ti+1..., tn−1} : f(Stj ) ⩾ Φj(Stj )} ∧ tn.

3.1.3 The update rule

Consider two random processes (Yti)
n
i=1 and (Xti)

n
i=1, defined as the following:

• At tn = T , the option holder has to either exercise the option if it is in the money or

let it expire if it is out of the money. Let

Ytn = Xtn = f(Stn).

• At each t ∈ {t0, t1, . . . , tn−1}, the option holder either exercises the option immediately

if the payoff value is higher than the continuation value, or hold it till the next exercise

point if it is lower. Let

Yti =

f(Sti) , if f(Sti) ⩾ Φi(Sti)

β−1
∆tYti+1 −Ψi(Sti) ·∆Wti , if f(Sti) < Φi(Sti).

Xti =

f(Sti) if f(Sti) ⩾ β−1
∆tXti+1 −Ψi(Sti) ·∆Wti

β−1
∆tXti+1 −Ψi(Sti) ·∆Wti , if f(Sti) < β−1

∆tXti+1 −Ψi(Sti) ·∆Wti

. (7)

In the update of Yti , neglecting the subtraction term, it simply applies the stopping

strategy. By averaging Yt0 over all paths, we get a lower bound of the option price. The

discounted payoff at the optimal stopping time is used as the regression target, which can

significantly reduce the bias but introduce a higher variance. To cancel this negative effect,

we subtract the martingale increment Ψi(Sti) ·∆Wti adjusted with the time value. If the

approximation of Hti is perfect, the variance can be cancelled out completely. A proof is

given in Appendix A to show that this term reduces the variance of the estimate.

7



In the update of Xti , the subtraction of the martingale increment serves a different

purpose. Note that (7) can be written as a recursive equation:

Xti = max{f(Sti), β
−1
∆tXti+1−Ψi(Sti) ·∆Wti},

we can have the following:

Xt0 = max{f(St0), β
−1
∆t max{f(St1), . . . β

−1
∆t max{f(Stn -1), (8)

β−1
∆t f(Stn)−Ψn -1(Stn -1)·∆Wtn -1}−· · ·−Ψ1(St1)·∆Wt1}−Ψ0(St0)·∆Wt0}.

From the duality (2) we have:

Vt0 ⩽max{Zt0 , . . . , Ztn−1−
n−2∑
i=0

∆Mti , Ztn−
n−1∑
i=0

∆Mti}

=max{Zt0 , . . . ,max{Ztn−1 , Ztn−∆Mtn−1}−
n−2∑
i=0

∆Mti}

=max{Zt0 ,max{Zt1 , . . . ,max{Ztn−2 ,max{Ztn−1 ,

Ztn−∆Mtn−1} −∆Mtn−2} . . .−∆Mt1}−∆Mt0}. (9)

Recall that ∆Mti ≈ β -1
ti Ψ

i(Sti)∆Wti and Zti = β−1
ti

f(Sti), then from (8) and (9) we can see

that E[Xt0 ] is an upper bound of the price.

The processes Xti and Yti can also be interpreted in the following way. The variable Yti
is a proxy of the buyer’s price, as the two cases correspond to the stopping decision based

on comparing the exercise payoff and the continuation value. The variable Xti is a proxy

of the seller’s price, as the two cases correspond to whether the seller needs to update their

hedging targets based on the comparison of the exercise payoff and the hedging price.

Note that in all numerical experiments shown in this paper, t0 is not considered an

exercise date, coinciding with the fact that one does not exercise the option at the initial

time. This choice is reflected in the algorithm 1 by directly letting Yt0 = β−1
∆tYt1 −Ψ0(St0) ·

∆Wt0 without checking the comparison condition. However, the regression is still performed

to obtain the martingale increment function and martingale increment from ∆Mt0 .

3.1.4 The whole process

We outline the entire pricing process using Method I in the algorithm below. Through-

out the training process, all trained models are saved for future use. Subsequently, an

independent out-of-sample simulation is conducted to derive estimates. This second sim-

ulation can be executed in two ways: following the training algorithm by determining the

values backward, or starting from the initial time and making decisions forward.

8



Algorithm 1: American Option Pricing with Multiple Neural Networks

Result: Functions Φi, Ψi for i ∈ {0, 1, ..., n− 1}
Simulate N stock paths

Initialise Ytn = Xtn = max(f(Stn), 0)

for i=n-1:1 do

Regress β−1
∆tYti+1 on Sti : min

Φi,Ψi
(β−1

∆tYti+1 − Φi(Sti)−Ψi(Sti)∆Wti)
2

Yti = β−1
∆tYti+1 −Ψi(Sti)∆Wti

Xti = β−1
∆tXti+1 −Ψi(Sti)∆Wti

if f(Sti) > Φi(Sti) then

Yti = f(Sti)

end

if f(Sti) > Xti then

Xti = f(Sti)

end

end

Regress β−1
∆tYt1 on St0 : min(β−1

∆tYt1 − Φ0(St0)−Ψ0(St0)∆Wt0)
2

Yt0 = β−1
∆tYt1 −Ψ0(St0)∆Wt0

Xt0 = (β−1
∆tXt1 −Ψ0(St0)∆Wt0)1f(St0 )⩽Xt0

+ f(St0)1f(St0 )>Xt0

3.1.5 Discussion on the convergence

Since its introduction, numerous studies have been conducted to analyse the convergence

analysis of the LSMC method. In their original work, Longstaff and Schwartz [39] showed

the convergence in cases with only two early exercise opportunities. Subsequently, Clément

et al. [19] established a more general almost sure convergence by modifying the method to

regress all paths instead of solely in-the-money ones. Egloff [20] showed both the convergence

and error estimates by using Vapnik-Chervonenkis classes with the assumption of convexity,

allowing for relaxation of linearity assumption in approximation spaces. Eventually, Zanger

[49] derived a general convergence result, providing new overall error estimates for the

algorithm without assuming linearity or convexity of approximation spaces, and without

requiring an independent data set. This result validated the application of neural networks

in the method and the avoidance of an independent data set in regression. Regarding the

upper bound, Huré et al. [32] established the convergence of the method for deriving upper

bounds in the context of solving reflected BSDEs.

The convergence of our method, which incorporates duality into the primal problem,

follows from the literature mentioned above.

Remark 3.1. El Karoui et al. [21] showed that pricing American options is related to

9



reflected BSDEs, the solution of which is an Ft-measurable triple (Vt, Ht,Kt) for t ∈ [0, T ]

with values in (R,Rn,R+), and satisfies:
Vt = ZT +

∫ T
t b(s, Vs, Hs) ds+KT −Kt −

∫ T
t Hs dWs,

Vt ⩾ Zt, 0 ⩽ t ⩽ T,

K0 = 0, and
∫ T
0 (Vt − Zt) dKt = 0.

.

Our work can be easily extended to solve this type of BSDE. The processes V and H here have

the same meaning as we have defined before, and our work generates numerical solutions for

them. The process K can be seen as the non-decreasing process A and calculated by a second

simulation where we accumulate the gap between the value process and the payoff process.

Note we have b(·, ·, ·) = 0 in our case. However, if we have a model where b(·, ·, ·) ̸= 0, we

can still approximate it by adding one more term to our regression.

3.2 Method II: One Global Neural Network

After pricing a vanilla American put option under the Black-Scholes model that has 50

exercise points using Method I, we plot Φi(S̄ti) and Ψi(S̄ti), for i ∈ {0, 1, ..., 49}, in Figure 1,

to visualise the approximated functions, where S̄ti is the standardised stock price. We can

see that continuation functions and the martingale increment functions at different times ti

have similar shapes, and they evolve continuously in time.

Figure 1: Estimates of continuation functions, martingale increment functions and hedging ratio

of a 1D American put option with 50 exercise dates (same parameters as the one in Section 5).

Each line represents a function at a step. Left : the continuation function; Middle: the martingale

increment function; Right : the hedging ratio. The colorbar represents the step: 0 is the initial time

and 50 is the maturity.

Remark 3.2. Under the Black-Scholes model, the first derivative of a continuous function

is expected to align with the hedging ratio, thereby establishing a link to the martingale in-

crement function. While we might expect the martingale increment functions to present a

10



flat trajectory near the value of −1 along the left axis, the middle plot in Figure 1 displays a

deviation from this pattern. This discrepancy arises because the plot illustrates the approxi-

mated martingale increment function of the standardised stock price, rather than the direct

hedging ratio with respect to the stock price itself. Additionally, we have not imposed any

constraints restriction on the shape of the function during training. The further the data

points deviate from the centre, the less data is available, leading to increased extrapolation

at the plot’s extremities. Nonetheless, through adjustment with the diffusion term, we can

represent the hedging ratio for the standardised stock price, as shown on the right plot.

3.2.1 The whole process

Based on the similarity in the shape of functions and their continuous progression in

time, we propose a second method where we only use one network for all regressions by

including the time/step as an input variable.

We apply the same stopping strategy, and the regression and the updates of process

X and Y at each time remain the same. However, this novel approach poses additional

challenges as it requires target values at all times when we start training the model. In

method I, the update of Yti before the regression provides a relatively accurate target

values for the training of the corresponding network, but this is not available in method II.

To overcome this challenge, we propose a novel approach where we achieve the goal by

alternating the model training and stopping strategy updates.

Initially, we set the maturity as the stopping time, so target values at ti ∈ {t0, . . . , tn−1}
are β−1

(n−i)∆tf(tn). We train the model using these target values for a given number of

epochs and then use the trained model to determine a new series of Yti using the update

rule stated before. Once all target values are updated, we do the training again. We

repeat this training-updating process till some predefined criterion is met. We choose small

numbers as the number of epochs among updates, especially for the earlier training, since

the stopping strategies we applied are unlikely to be optimal at the start.

Denote ΦII(ti, Sti) : R+ × Rd −→ R and ΨII(ti, Sti) : R+ × Rd −→ Rd as the approxi-

mations of the continuation functions and the martingale increment functions. Method II

is summarised in Algorithm 2.

11



Algorithm 2: American Option Pricing with One Global Network

Result: Functions ΦII, ΨII

Simulate N stock price paths

Initial: Yti+1 = β−1
(n−i+1)∆tf(Stn), for i ∈ {0, ..., n− 1}

while stopping criterion is not met do

for i = 1 : epoch do

Regress β−1
∆tYti+1 on (ti, Sti ,∆Wti) for i ∈ {0, ..., n− 1}:

min
ΦII,ΨII

(
β−1
∆tYti+1 − ΦII(ti, Sti)−ΨII(ti, Sti)∆Wti

)2
end

Ytn = Xtn = f(Stn)

for i = n− 1 : 1 do

Yti = β−1
∆tYti+1 −Ψ(ti, Sti)∆Wti

if f(Sti) > ΦII(ti, Sti) then

Yti = f(Sti)

end

Xti = β−1
∆tXti+1 −ΨII(ti, Sti)∆Wti

if f(Sti) > Xti then
Xti = f(Sti)

end

end

Yt0 = β−1
∆tYt1 −ΨII(t0, St0)∆Wt0

Xt0 = (β−1
∆tXt1 −ΨII(t0, St0)∆Wt0)1f(St0 )⩽Xt0

+ f(St0)1f(St0 )>Xt0

end

3.2.2 Discussion on the convergence

While single global networks have been used to address a wide range of optimal stop-

ping problems, the convergence analysis for backward methods remains lacking. Tsitsiklis

and Van Roy [48], Herrera et al. [31] have proposed similar approaches to price American

options with some insights into the convergence properties. A key distinction between our

method to theirs is that they use estimated continuation value rather than the exact op-

timal payoff to make stopping decisions, and they start with a completely random initial

strategy. They showed that the method converges eventually, but there are no results on

the rate of convergence and the error bounds.

The rationale behind our proposed method is that when the initial strategy is to wait

until maturity, we have relatively accurate target values for decisions made closer to the

maturity date. In particular, the target values for determining the second-to-last exer-

cise decisions would be exact. The use of the exact optimal payoff avoids the reliance on

12



estimated continuation values for making stopping decisions. As training progresses, the

stopping decisions at later times will improve first, which in turn, improves the accuracy

of target values for earlier stopping decisions. This iterative refinement ensures that, over

time, the target values for all times converge to their true values, enhancing the overall

decision-making process.

4 Algorithm variants

There are two sources of errors in our methods. Firstly, there is the time discretisation

error induced by approximating the continuous martingale using the Euler scheme. This

error scales proportionally with the step size square root
√
∆t, potentially resulting in

suboptimal upper bounds in cases where the option offers infrequent exercise opportunities.

The other source is regression, which can be mitigated by using a larger data set, utilizing

more suitable network architectures, and prolonging the training duration. However, these

approaches come at the expense of increased computational costs and memory requirements.

To enhance the performance of our algorithms, we introduce five different variants aimed

at generating more accurate results, reducing computational cost and addressing memory

exhaustion issues. In this section, we present numerical results to evaluate the effectiveness

of each variant in pricing 1D put options, 5D max-call options, or both. These options share

parameters with those presented in Section 5. The objective of this section is to assess the

impact of different variants on our methods through comparisons with the original version.

Variation 1: add a second term for martingale increment approximation

The approximation
∑d

j=1Ψ
i(Sti)

j∆W j
ti

deteriorates with the step size increasing. To

improve the accuracy of the martingale increment estimates, we propose to add one more

term in the regression. The choice of the term depends on the model, provided it satisfies

the martingale property of having a zero mean increment. We choose (∆Wti)
2 −∆t in our

work, which can be connected to the Milstein scheme. This variant requires more outputs

from the network and results in a change of the loss function:

min
Φ,Ψ1,Ψ2

β−1
∆t

Yti+1 − Φ(Sti)−
d∑

j=1

Ψi
1(Sti)

j∆W j
ti
−

d∑
j=1

Ψi
2(Sti)

j((∆W j
ti
)2 −∆t)

2

.

The updates of X and Y need to be changed accordingly as the martingale increment

becomes the sum of two terms. This variation can be applied to both methods.

The changes in results introduced by this variation applied to method I are shown in

Table 1. We can see that with similar training times in each case, this variant significantly

13



reduces the gap between the lower and the upper bound, mainly caused by better approxi-

mations of the upper bound. The lower bound also improves due to a more effective variance

reduction. Additionally, this improvement is more pronounced when the pricing problem is

more complicated.

LB UB Diff

Time Mean S.D. Mean S.D Mean S.D

1D
1 Term 34 4.4748 0.0007 4.5559 0.0022 0.0811 0.0024

2 Terms 34 4.4765 0.0002 4.4936 0.0017 0.0171 0.0018

5D
1 Term 56 26.1372 0.0090 28.2132 0.0169 2.0761 0.0177

2 Terms 52 26.1464 0.0039 26.8974 0.0074 0.7510 0.0081

Table 1: Option Pricing with/without a second martingale increment term applied in method I.

The first column indicates the option type, and the second column shows whether a second term is

added in the martingale increment approximation. The networks in the 1D case have three hidden

layers of 30 neurons, and the one in the 5D case has two layers of 64 neurons.

Variation 2: add sub-steps

Refining the martingale approximation can also be achieved by reducing the step size.

In the context of Bermudan option pricing, this can be achieved by adding substeps be-

tween two exercise times, where we do not make stopping decisions but only accumulate

martingale increments. This variant is particularly important in pricing options with less

frequent exercise opportunities. The 5D max-call option we have been pricing has only 9

exercise opportunities over 3 years. As demonstrated in Figure 2, adding substeps markedly

enhances the accuracy of the upper bound estimation when pricing this option. The initial

introduction of substeps brings about a notably sharper improvement in the bounds, which

tends to taper off as more substeps are added. However, it is important to note that the

computational time increases with the addition of substeps, as also depicted in Figure 2,

but the speed of increasing is slower than linear.

Figure 2 also indicates that Method II produces better results with slower training, but

this observation can vary with the adjustments of training parameters. Further comparisons

between these two methods will be detailed throughout this paper, forming a conclusion at

the end.

Variation 3: use separate networks for the two functions

In our approaches, we initially utilized a singular network to estimate both the contin-

uation value function and the martingale increment function. However, given the potential

14



0 5 10 15 20 25 30
26

26.5

27

Number of Substeps

E
st
im

a
te

Price Bounds

LB-Method I
UB-Method I
LB-Method II
UB-Method II

0 5 10 15 20 25 30
0

1,000

2,000

3,000

Number of Substeps

E
st
im

a
te

Running Time

Method I
Method II

Figure 2: Price bounds (Left) and corresponding running times (Right) of a 5D max-call Bermudan

option with different numbers of substeps using both method I and II.

complexity difference between these functions, especially when the model gets more compli-

cated and the dimension gets higher, we propose to use separate networks to approximate

them, where one is dedicated to generating the continuation value and the other for cal-

culating the martingale increment functions. To evaluate the efficacy of this variant, we

applied it to Method I across three different scenarios: a 1D put, a 5D max-call with no

substep, and a 5D max-call with 31 substeps. For each scenario, we ensured that the net-

works had a comparable number of parameters. We can see from Table 2 that variant 3

can produce more accurate results with less training time in all three cases, and this effect

is more notable in more complex problems (5D max-call option with 32 substeps). When

implementing this variant with Method II, we observed a similar pattern, reinforcing the

benefits of employing separate networks for approximating distinct functions.

Variation 4: train on data from parts of the exercise times

In Method II, the standard practice involves training the model across all simulated

paths at every timestep. Anticipating that data shares similarities across different times,

we suggest an alternative strategy that focuses on training with data from selectively chosen

timesteps. This approach hinges on the premise that not every timestep contributes uniquely

to model accuracy, allowing for strategic data reduction. Two methodologies are proposed

for selecting which timesteps to include in the training process: a random selection or

a systematic, evenly-spaced grid approach. For example in a scenario with 50 exercise

opportunities and the aim is to train the model using data from only half of the exercise

times, we could either randomly choose 25 timesteps from the set {0, 1, 2, ..., 49} or use data

15



LB UB Diff

Separate Time Mean S.D. Mean S.D Mean S.D

1D
False 33 4.4766 0.0001 4.4929 0.0014 0.0162 0.0014

True 29 4.4757 0.0005 4.4899 0.0009 0.0141 0.0009

5D0S
False 65 26.1318 0.0054 26.9200 0.0070 0.7883 0.0105

True 64 26.1138 0.0066 26.8869 0.0055 0.7731 0.0073

5D31S
False 1179 26.1528 0.0012 26.2887 0.0110 0.1359 0.0113

True 994 26.1527 0.0011 26.2263 0.0028 0.0736 0.0026

Table 2: Options pricing with/without using separate networks in Method I. In the first column,

1D, 5D0S, and 5D31S represent the option priced: the 1D American put, the 5D max-call Bermudan

with no substep and the 5D max-call Bermudan with 31 substeps. The second column indicates

whether separate networks are used.

from every other timestep, i.e. t = t1, t3, ..., t49.

In Figure 3, we illustrate the impact of this timestep selection strategy on training

duration and the accuracy of the results when pricing a 1D American put. This modification

clearly reduces the computational cost but also compromises the accuracy of the results.

While this trade-off is anticipated, our goal is to strike a balance between computational

efficiency and result accuracy.

0 10 20 30 40 50
200

400

600

700

Number of steps used

T
ra
in
in
g
T
im

e
(S
ec
s)

Grid
Random

0 10 20 30 40 50
1.3

1.8

2.3

·10−2

Number of steps used

B
o
u
n
d
s
D
iff
er
en

ce

Grid
Random

Figure 3: The changes in the estimated bounds and the training time with different numbers of

timesteps used in training. The option priced is the 1D American put option.

16



Variation 5: generate fresh data while training

In general, larger training sets often yield more accurate and robust results, albeit at the

expense of increased computational demands. However, due to the nature of the problem, we

have to simulate the whole path before the training. The memory requirement can become

extremely high, particularly in high-dimensional problems. To address this challenge, Chan

et al. [14], Aı̈d et al. [1] recommended storing the random seed used during simulation. This

enables us to only preserve data points at one step in a path and discard the remainder.

Once the network is trained, the state values for subsequent networks are reconstructed using

the saved seed and the current states. However, this introduces more calculation during

training and can only be applied to Method I. To overcome these limitations, we introduce

an alternative solution designed to circumvent the memory constraints in scenarios where

Method II is employed, where data from all times are needed when training starts.

In the original Method II, all N paths are generated at the start. Among updates, the

data set is split into the training and the validation set randomly and the training set is

then grouped into batches of size Nbatch. The network is then trained for a given number of

epochs by looping over all training batches in each epoch. The validation set is then used

to check the stopping criteria after each update. With this variant, we only generate the

validation set before the start of the training, serving the same purpose as in the original

version. Among updates, we generate Nbatch paths, and train the network using this batch

for a given number of epochs, and then discard them. We repeat this generating-training-

discarding process multiple times before the stopping criteria are evaluated. By utilizing

smaller batch sizes and continually generating additional paths as needed, we can effectively

train on a larger number of paths without encountering memory exhaustion issues.

Figure 4 shows the difference between the lower and the upper bound of the option

price throughout the training process for both the 1D put option (upper two plots) and

the 5D max-call option (bottom two plots). The left two plots show these differences when

employing various numbers of batches among updates. Initially, a higher number of batches

leads to more favourable results. The difference diminishes when we train the model for

a longer time. However, there is no definite conclusion on the optimal number of batches.

The right two plots illuminate the difference using Method I, Method II, and Method II

with variation 5 and 25 batches among updates. In all three cases, the second martingale

term and separate networks are applied. All three schemes produce satisfactory results in

pricing the 1D put option, but the base of Method II performs worse when pricing the 5D

max-call option. We can see that Method I is more stable and converges faster among all

three schemes, variant 5 exhibits superior performance to the base version.

17



Discussion

We summarise the contributions of each variation to our methods in Table 3 based

on numerous experiments that were conducted apart from the ones demonstrated in this

section. The conclusion is generic. The second column indicates to which method one

variation can be applied. There are three aspects one variation can affect: the accuracy

of estimates, the training time and the computational memory required. We use ✓ and

✗ to indicate an improvement and a deterioration respectively. If a variation does not

significantly impact one of these aspects, the corresponding cell remains blank.

From Table 3, we can see that variant 1 and variant 3 can improve the accuracy without

prolonging the training time. Variant 2 improves the accuracy at the expense of the com-

putational speed, while the opposite is true for variant 4. Variation 5 is the only one that

helps us overcome the memory exhaustion problem, and compared to the base of Method II,

it also produces narrower bounds differences with shorter running time. All variations that

can be applied to one method can be used at the same time to combine their effects.

In addition to these five variants, we also tested a warm-start approach applied to

Method I, where previously trained network is used as the initial network at the next step.

Since it is a standard method in the field, its impact is detailed in Appendix B.

Variations Method Accuracy Time Memory

V1: Add a second martingale term I, II ✓

V2: Add sub-steps I, II ✓ ✗

V3: Use two separate networks I, II ✓

V4: Train on partial data II ✗ ✓

V5: Train on fresh data II ✓ ✓ ✓

Table 3: Algorithm Variants and their impacts on three different aspects. ✓ and ✗ represent an

improvement and deterioration, respectively.

5 Numerical Results

This section presents the numerical results obtained through both methods we proposed,

incorporating variations 1 and 3 in Method I, and variations 1, 3, and 5 in Method II, The

warm-start training has also been applied to Method I. In addition, substeps are used across

all cases except the 1D put option. Our experimental setup includes the use of the ADAM

optimizer, and mean squared error for the loss function. Softplus is chosen as the activation

function due to its smoothness property. We standardise all input variables, except for the

time variable in Method II. To mitigate overfitting, cross-validation is rigorously applied

18



throughout the training phase. The out-of-sample test set has 106 paths across all scenarios.

Networks with different structures were used in different cases, as detailed in each subsection.

The selection of a specific network is based on extensive experimentation. We choose the

ones that require the least hyperparameter tuning. Computations were executed on an

NVIDIA P100 GPU under the system Intel Xeon-E5-2680-v4. The program is written in

Python 3.8.5 using PyTorch 1.8.

Subsequent subsections demonstrate statistics of the pricing results for each option

priced by repeating the process 10 times, including means and standard deviations of the

lower bound, the upper bound and their difference. The total running time (in seconds) for

each repetition is also recorded.

Additionally, we plot histograms to depict both the total hedging errors ε1 and the worst

hedging errors ε2 using an independent dataset containing 104 paths. These metrics are

computed as follows. Let τ i be the stopping time for path i. The error for that path at τ i

is defined as

εi1 = V0 +
τ i−∆t∑
t=t0

β−1
t H(Si

t)∆W i
t − β−1

τ i
Zi
τ i ,

and the worst error is defined as

εi2 = V0 + min
ti∈{t1,...,tn}

ti−∆t∑
t=t0

β−1
t H(Si

t)∆W i
t − β−1

ti
Zi
ti

 .

5.1 Options under Black–Scholes Models

Consider American options with d underlying assets, whose prices follow the dynamics

dSi
t = (r − δi)Si

t dt+ σiSi
t dW

i
t ,

for i ∈ {1, 2, . . . , d}, where the risk-free interest rate r ∈ R, the dividend rate δi ∈ R and

the volatility σi ∈ R+. Each Brownian Motion is independent of the others.

5.1.1 1D American Put Option

We first test our method on a 1D vanilla American put option with the following pa-

rameters:

T = 1,K = 40, n = 50, S0 = 36, r = 0.06, δ = 0, σ = 0.2

where T is the maturity, K is the strike price, and n is the number of exercise opportunities.

We use the same notation for all cases in this section. The payoff function at t is

f(St,K) = (K − St)
+.

19



We use 105 paths to train the model.

The benchmark computed by the finite difference method is 4.478. The results generated

by our schemes are shown in Table 4. In method I, at each time the training ceases once the

loss of the validation set stagnates for 20 epochs. In method II, the training stops when the

validation set loss stagnates for more than 5 updates, and we train 20 batches for 20 epochs

among updates. Method I uses two networks with the structures ([1, 20, 20, 1],[1, 20, 20,

2]) at each time, while Method II employs a total of two networks with structures ([2, 20,

20, 20, 1], [2, 20, 20, 20, 2]). The total numbers of parameters trained are 49150 and 1863

for Methods I and II, respectively. From the table, we can see that both methods generate

tight bounds. Though Method I exhibits shorter training times, it involves significantly

more free variables in the training process. Figure 5 shows the hedging errors, from which

we can see that hedging errors are tightly centred and have a bell shape.

LB UB Diff

Time Mean S.D. Mean S.D Mean S.D

I 70 4.4770 0.0003 4.4899 0.0006 0.0129 0.0008

II 93 4.4749 0.0008 4.4880 0.0008 0.0131 0.0014

Table 4: 1D American put option pricing using both schemes. Benchmark estimate: 4.478. The

first column indicates the method used. Method I uses two networks of the structure ([1, 20, 20,

1],[1, 20, 20, 2]) at each time, while Method II uses in total two networks of the structure ([2, 20,

20, 20, 1], [2, 20, 20, 20, 2]).

5.1.2 High Dimensional Bermudan max-call option

Consider an option with d underlying assets. We assume there is no correlation between

Brownian Motions W i and W j , i, j ∈ {1, 2, ..., d}, on which each stock price is based. The

model has the following parameters:

T = 3,K = 100, n = 9, r = 0.05, δi = 0.1, σ = 0.2.

The payoff of this option is (
max

i∈{1,2,...,d}
Si
t −K

)+

.

Given the sizable step interval of ∆t = 1
3 , we engage variation 2, employing 32 substeps

in our experiments. In Table 6, we present the pricing results of max-call with three

different initial stock prices in both 5D and 10D settings. The benchmark given is extracted

from Becker et al. [8], including the approximated bounds where the left (right) value is

the lower (upper) bound (the number on the top), alongside the aggregate computation

time (the summation at the bottom). The numbers in the summation are calculation

20



time in seconds for lower bounds, upper bounds and hedging strategies, respectively. The

benchmark duration for hedging reflects the time to formulate a complete hedging strategy

from 0 to T with 96 substeps, chosen due to the resemblance of its hedging error plots to

ours, as illustrated in Figure 6.

In Method I, training concludes when the validation set’s loss ceases to decrease after 5

epochs. In method II, the training stops when the validation set loss stagnates for more than

5 updates, and we train 20 batches for 20 epochs among updates. Method I consistently

employs 106 training paths, while Method II’s path count varies due to the nature of the

scheme, as detailed in Table 5.

d S0 = 90 S0 = 100 S0 = 110

5 1.189× 107 1.083× 107 1.239× 107

10 7.98× 106 1.056× 107 9.4× 106

Table 5: The number of training paths used in pricing the Bermudan max-call option using

method II. The first column shows the number of underlying assets.

Table 6 presents the empirical results from both methods, aligning closely with the

benchmarks yet achieving quicker total computation times. Notably, our lower bounds

invariably remain beneath our upper bounds, while there is a contradicting case in their

results. We can also see that our methods become more competitive in the 10D case, and

this is particularly true for Method II which can generate tighter bounds with less running

time. This advantage is expected to become increasingly significant in more complicated

cases, given its lower requirement for computing resources. Figure 5 depicts the hedging

errors, which are tightly centred and display a bell shape.

5.2 American Put Option under Heston Model

Finally, we test our methods under the Heston model, where the volatility itself is also

stochastic: {
dSt = rSt dt+

√
VtSt dWS ,

dVt = λ(σ2 − Vt) dt+ ξ
√
Vt dWV .

The option we price is the same as the one in Lapeyre and Lelong [37], characterized by

the parameters:

T = 1,K = 100, n = 10, S0 = 100, V0 = 0.01, r = 0.1, σ = 0.1, λ = 2, ξ = 0.2, ρ = −0.3,

where ρ is the correlation between Brownian Motions WS and WV .

Since there are two Brownian motions involved in this scenario and we apply variation 1

for enhanced precision, we have

ΨS
1 (Sti)∆WS

ti +ΨV
1 (Sti)∆W V

ti +ΨS
2 (Sti)∆((WS

ti )
2 −∆t) + ΨV

2 (Sti)∆((W V
ti )

2 −∆t)

21



LB UB Diff

d S0 Time Mean S.D. Mean S.D Mean S.D Benchmark

5

90
I 1002 16.6377 0.0009 16.6862 0.0023 0.0484 0.0026 (16.644, 16.648)

II 1127 16.6314 0.0030 16.6856 0.0025 0.0542 0.0040 132+8+1546

100
I 1022 26.1523 0.0012 26.2195 0.0021 0.0672 0.0029 (26.156, 26.152)

II 1034 26.1411 0.0050 26.2259 0.0029 0.0848 0.0067 134+8+1668

110
I 1177 36.7551 0.0252 36.8724 0.0068 0.1173 0.0311 (36.780, 36.796)

II 1038 36.7767 0.0013 36.8646 0.0024 0.0879 0.0024 133+8+1673

10

90
I 989 26.2613 0.0057 26.4823 0.0177 0.2210 0.0226 (26.277, 26.283)

II 788 26.2446 0.0200 26.3822 0.0162 0.1376 0.0353 136+8+1792

100
I 1035 38.3503 0.0067 38.5974 0.0286 0.2471 0.0345 (38.355, 38.378)

II 1045 38.3159 0.0235 38.4894 0.0144 0.1735 0.0375 136+7+1803

110
I 1023 50.8961 0.0047 51.1810 0.0184 0.2849 0.0228 (50.869, 50.932)

II 928 50.8764 0.0151 51.0601 0.0083 0.1837 0.0197 135+8+1777

Table 6: Bermudan max-call option pricing using both methods. The first and the second columns

show the number of underlying assets and the initial stock price, respectively. The third column

indicates the method used. Benchmarks in the last column are extracted from [8]. The top value is

the estimated price bounds, the three values shown below are the times for deriving a lower bound,

an upper bound and a hedging strategy. Method I uses two networks with structure ([d, 50, 25,

1],[d, 50, 50, 2*d]) at each time, while Method II uses in total two networks with structure ([d+1,

50, 50, 50, 1], [d+1, 50, 50, 50, 2*d])

as our martingale increment. Similar to the max-call option in section 5.1.2, the step size

∆t = 0.1 is big, so we use substeps for the implementation.

Figure 7 shows the change in the estimates with an increasing number of substeps using

both methods. We can see that both lower and upper bounds decrease. This is not only

because the martingale approximation improves with decreasing step size, but also because

the Heston model simulation becomes more accurate. As the number of steps increases,

the estimated bounds decrease, whereas the computational time rises. Given the insights

from Figure 7, we choose to add 9 substeps since further improvement becomes trivial while

significantly increasing computational expenses.

Table 7 shows the results from both methods with 9 substeps using different numbers

of training paths. The estimated bounds we generated are tight, and the computation time

can be very small with the adjustment of the training path. These results exhibit slight

deviations from the benchmark, potentially attributable to model simulation variations, as

indicated by the diminishing estimates with increased substeps.

22



LB UB Diff

Path Time Mean S.D. Mean S.D Mean S.D

I
1× 105 36 1.6416 0.0001 1.6659 0.0033 0.0244 0.0033

1× 106 294 1.6419 0.0001 1.6514 0.0005 0.0094 0.0005

II
9.45× 105 28 1.6364 0.0030 1.6979 0.0271 0.0615 0.0291

1.72× 107 348 1.6406 0.0007 1.6521 0.0007 0.0115 0.0008

Table 7: 1D American put option under Heston model with 9 substeps added. The benchmark from

[37] is 1.7± 0.0016. The second column indicates the number of training paths employed. Method I

uses two networks with structure ([2, 50, 50, 1],[2, 50, 50, 4]) at each time, while Method II uses in

total two networks with structure ([3, 50, 50, 50, 1], [3, 50, 50, 50, 4])

6 Conclusion

In this paper, we introduce two innovative approaches aimed at simultaneously address-

ing the American option pricing problem and its dual form, providing both lower and upper

bounds on the option price using deep learning using neural networks. Both methods are

based on the least squares Monte Carlo method with the incorporation of duality. The first

method employs a series of networks to approximate the continuation values and martingale

increments at each exercise time. The second method applies one global network by adding

time as a state variable to perform the regression and alternates the network training and

the update of the stopping strategy till a stopping criterion is met. We propose several

variants to enhance the methods from different perspectives. One notable advantage of

our methods is that nested simulations are avoided, significantly reducing the computation

complexity when pricing American/Bermudan options that have frequent exercise opportu-

nities. Moreover, the methods naturally yield hedging strategies, serving as effective control

variates for variance reduction.

Although the numerical results predominantly rely on the geometric Brownian Motion,

it is important to emphasize that the applicability of our methods extends beyond this

model. Our methods can take any model that can be simulated and satisfy conditions of the

martingale representation theorem such that martingale increments can be approximated.

The demonstrated effectiveness in pricing options within the Heston model underscores

the versatility of our approaches. This property of our methods provides a ground for

exploration, encouraging their application to problems in more complicated models.

From the results shown, we can see that both methods yield tight bounds for the approx-

imated option price in both low and high-dimensional cases. Though the training process

can be time-intensive for high-dimensional problems, the resulting models can be directly

used to derive a hedging strategy without additional effort. In both methods, the inclusion

23



of a second martingale increment term and the introduction of substeps for options with

less frequent exercise points play important roles in improving the accuracy. In conclusion,

Method I demonstrates greater stability and yields narrower bounds differences. However,

its performance diminishes as the complexity of the problem increases and the required

number of training paths grows too large. On the other hand, Method II with the applica-

tion of variation 5, effectively overcomes these challenges. This is evidenced by its successful

pricing of the 10D max-call option. Further exploration of this variant could be conducted

to fully assess its capabilities and potential enhancements.

Code availability

Our code is openly available at:

https://github.com/JiahaoWu27/American-Option-Pricing.git

References

[1] R. Aı̈d, L. Campi, N. Langrené, and H. Pham. A probabilistic numerical method for

optimal multiple switching problems in high dimension. SIAM Journal on Financial

Mathematics, 5(1):191–231, 2014.

[2] L. Andersen and M. Broadie. Primal-dual simulation algorithm for pricing multidi-

mensional American options. Management Science, 50(9):1222–1234, 2004.

[3] V. Bally, G. Pagès, and J. Printems. A quantization tree method for pricing and

hedging multidimensional American options. Mathematical Finance: An International

Journal of Mathematics, Statistics and Financial Economics, 15(1):119–168, 2005.

[4] J. Barraquand and D. Martineau. Numerical valuation of high dimensional multivariate

American securities. Journal of Financial and Quantitative Analysis, 30(3):383–405,

1995.

[5] C. Bayer, D. Belomestny, P. Hager, P. Pigato, and J. Schoenmakers. Randomized op-

timal stopping algorithms and their convergence analysis. SIAM Journal on Financial

Mathematics, 12(3):1201–1225, 2021.

[6] C. Beck, M. Hutzenthaler, A. Jentzen, and B. Kuckuck. An overview on deep learning-

based approximation methods for partial differential equations. Discrete and Contin-

uous Dynamical Systems - Series B, 2022.

[7] S. Becker, P. Cheridito, and A. Jentzen. Deep optimal stopping. Journal of Machine

Learning Research, 20(74):1–25, 2019.

24

https://github.com/JiahaoWu27/American-Option-Pricing.git


[8] S. Becker, P. Cheridito, and A. Jentzen. Pricing and hedging American-style options

with deep learning. Journal of Risk and Financial Management, 13(7):158, 2020.

[9] D. Belomestny, C. Bender, and J. Schoenmakers. True upper bounds for Bermudan

products via non-nested Monte Carlo. Mathematical Finance: An International Jour-

nal of Mathematics, Statistics and Financial Economics, 19(1):53–71, 2009.

[10] B. Bouchard and N. Touzi. Discrete-time approximation and Monte-Carlo simulation of

backward stochastic differential equations. Stochastic Processes and their applications,

111(2):175–206, 2004.

[11] B. Bouchard and X. Warin. Monte-Carlo valuation of American options: facts and

new algorithms to improve existing methods. In Numerical methods in finance, pages

215–255. Springer, 2012.

[12] M. Broadie, P. Glasserman, et al. A stochastic mesh method for pricing high-

dimensional American options. Journal of Computational Finance, 7:35–72, 2004.

[13] J. F. Carriere. Valuation of the early-exercise price for options using simulations and

nonparametric regression. Insurance: Mathematics and Economics, 19(1):19–30, 1996.

[14] R. H. Chan, C.-Y. Wong, and K.-M. Yeung. Pricing multi-asset American-style options

by memory reduction Monte Carlo methods. Applied Mathematics and Computation,

179(2):535–544, 2006.

[15] Q. Chan-Wai-Nam, J. Mikael, and X. Warin. Machine learning for semi linear PDEs.

Journal of scientific computing, 79(3):1667–1712, 2019.

[16] Y. Chen and J. W. Wan. Deep neural network framework based on backward stochastic

differential equations for pricing and hedging American options in high dimensions.

Quantitative Finance, 21(1):45–67, 2021.

[17] R. Chitashvili and M. Mania. On functions transforming a Wiener process into a

semimartingale. Probability Theory and Related Fields, 109(1):57–76, 1997.

[18] E. Çinlar, J. Jacod, P. Protter, and M. J. Sharpe. Semimartingales and Markov pro-

cesses. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 54(2):161–

219, 1980.

[19] E. Clément, D. Lamberton, and P. Protter. An analysis of a least squares regression

method for American option pricing. Finance and Stochastics, 6(4):449–471, 2002.

[20] D. Egloff. Monte Carlo algorithms for optimal stopping and statistical learning. Ann.

Appl. Probab, 15(2):1396–1432, 2005.

25



[21] N. El Karoui, E. Pardoux, and M. Quenez. American options. Numerical methods in

finance, 13:215, 1997.

[22] S. Fécamp, J. Mikael, and X. Warin. Risk management with machine-learning-based

algorithms. arXiv preprint arXiv:1902.05287, 2019.

[23] C. Gao, S. Gao, R. Hu, and Z. Zhu. Convergence of the backward deep BSDE method

with applications to optimal stopping problems. SIAM Journal on Financial Mathe-

matics, 14(4):1290–1303, 2023.

[24] M. Germain, H. Pham, and X. Warin. Neural networks-based algorithms for stochastic

control and PDEs in finance. In Machine Learning and Data Sciences for Financial

Markets: a Guide To Contemporary Practices, pages 426–452. Cambridge University

Press, 2023.

[25] E. Gobet and R. Munos. Sensitivity analysis using Itô–Malliavin calculus and mar-

tingales, and application to stochastic optimal control. SIAM Journal on control and

optimization, 43(5):1676–1713, 2005.

[26] L. Gonon. Deep neural network expressivity for optimal stopping problems. arXiv

preprint arXiv:2210.10443, 2022.

[27] L. Goudenège, A. Molent, and A. Zanette. Variance reduction applied to machine

learning for pricing Bermudan/American options in high dimension. arXiv preprint

arXiv:1903.11275, 2019.

[28] L. Goudenège, A. Molent, and A. Zanette. Machine learning for pricing American

options in high-dimensional Markovian and non-Markovian models. Quantitative Fi-

nance, 20(4):573–591, 2020.

[29] J. Han, A. Jentzen, and W. E. Solving high-dimensional partial differential equations

using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–

8510, 2018.

[30] M. B. Haugh and L. Kogan. Pricing American options: a duality approach. Operations

Research, 52(2):258–270, 2004.

[31] C. Herrera, F. Krach, P. Ruyssen, and J. Teichmann. Optimal stopping via randomized

neural networks. Frontiers of Mathematical Finance, 3(1):31–77, 2024.

[32] C. Huré, H. Pham, A. Bachouch, and N. Langrené. Deep neural networks algorithms

for stochastic control problems on finite horizon: convergence analysis. SIAM Journal

on Numerical Analysis, 59(1):525–557, 2021.

26



[33] S. Jain and C. W. Oosterlee. The stochastic grid bundling method: efficient pricing

of Bermudan options and their Greeks. Applied Mathematics and Computation, 269:

412–431, 2015.

[34] F. Jamshidian. Numeraire-invariant option pricing and American, Bermudan, trigger

stream rollover. In 4th Winter School on Financial Mathematics, 2004.

[35] M. Kohler, A. Krzyżak, and N. Todorovic. Pricing of high-dimensional American

options by neural networks. Mathematical Finance, 20(3):383–410, 2010.

[36] A. Kolodko and J. Schoenmakers. Iterative construction of the optimal Bermudan

stopping time. Finance and Stochastics, 10(1):27–49, 2006.

[37] B. Lapeyre and J. Lelong. Neural network regression for Bermudan option pricing.

Monte Carlo Methods and Applications, 27(3):227–247, 2021.

[38] V. Lokeshwar, V. Bharadwaj, and S. Jain. Explainable neural network for pricing and

universal static hedging of contingent claims. Applied Mathematics and Computation,

417:126775, 2022.

[39] F. A. Longstaff and E. S. Schwartz. Valuing American options by simulation: a simple

least-squares approach. Review of Financial Studies, 14(1):113–147, 2001.

[40] M. Ludkovski. Kriging metamodels and experimental design for Bermudan option

pricing. Journal of Computational Finance, 22(1):37–77, 2018.

[41] A. S. Na and J. W. Wan. Efficient pricing and hedging of high-dimensional American

options using deep recurrent networks. Quantitative Finance, 23(4):631–651, 2023.

[42] M. Raissi. Forward–backward stochastic neural networks: deep learning of high-

dimensional partial differential equations. In Peter Carr Gedenkschrift: Research Ad-

vances in Mathematical Finance, pages 637–655. World Scientific, 2024.

[43] A. M. Reppen, H. M. Soner, and V. Tissot-Daguette. Neural optimal stopping bound-

ary. arXiv preprint arXiv:2205.04595, 2022.

[44] L. Rogers. Dual valuation and hedging of Bermudan options. SIAM Journal on Fi-

nancial Mathematics, 1(1):604–608, 2010.

[45] L. C. Rogers. Monte Carlo valuation of American options. Mathematical Finance, 12

(3):271–286, 2002.

[46] J. Schoenmakers, J. Zhang, and J. Huang. Optimal dual martingales, their analysis,

and application to new algorithms for Bermudan products. SIAM Journal on Financial

Mathematics, 4(1):86–116, 2013.

27



[47] J. Tilley. Valuing American options in a path simulation model. Transactions of the

Society of Actuaries, 45:499–519, 1993.

[48] J. N. Tsitsiklis and B. Van Roy. Regression methods for pricing complex American-style

options. IEEE Transactions on Neural Networks, 12(4):694–703, 2001.

[49] D. Z. Zanger. Convergence of a least-squares Monte Carlo algorithm for American

option pricing with dependent sample data. Mathematical Finance, 28(1):447–479,

2018.

A Variance Reduction

We have mentioned the process H can be approximated by a function of the stock price

due to the Markovian property of the stock processes. From now on, let Ht = H(St).

Proposition A.1. Given the option has not been exercised at t ∈ [0, T ). Let τ∗ ∈ Tt be the

optimal stopping time. The martingale increment
∫ τ∗

t H(Su) dWu can be used as control

variate to reduce variance.

Proof. Since Vτ∗ is FT measurable, we can apply martingale representation:

Vτ∗ = E[Vτ∗ ] +

∫ τ∗

0
H(Su) dWu +

∫ T

τ∗
H(Su) dWu (10)

By taking expectations on both sides of (10) conditioned on Fτ∗ , we can get

E
[
Vτ∗

∣∣∣Fτ∗

]
= E[Vτ∗ ] +

∫ τ∗

0
H(Su) dWu + E

[∫ T

τ∗
H(Su) dWu|Fτ∗

]
Note that

∫ T
τ∗ H(Su) dWu = 0. This can be interpreted through the theory of hedging. We

have Ht = 0 for t ∈ (τ∗, T ] because we stop hedging once the option is exercised. Hence,

Vτ∗ = E[Vτ∗ ] +

∫ t

0
H(Su) dWu +

∫ τ∗

t
H(Su) dWu. (11)

We then take expectations on both sides of (11) conditioned on Ft:

E[Vτ∗ |Ft] = E[E[Vτ∗ ] |Ft] + E
[∫ t

0
H(Su) dWu|Ft

]
+ E

[∫ τ∗

t
H(Su) dWu|Ft

]

= E[Vτ∗ ] +

∫ t

0
H(Su) dWu

= Vτ∗ −
∫ τ∗

t
H(Su) dWu. (12)

28



We can have

E

[
E[Vτ∗ |Ft] ·

∫ τ∗

t
H(Su) dWu

∣∣∣∣∣Ft

]
= E[Vτ∗ |Ft]E

[∫ τ∗

t
H(Su) dWu

∣∣∣∣∣Ft

]
= 0,

and

E[E[Vτ∗ |Ft]]E

[∫ τ∗

t
H(Su) dWu

]
= 0,

implying E[Vτ∗ |Ft] and
∫ τ∗

t H(Su) dWu are uncorrelated given Ft, so

Var (Vτ∗) = Var (E[Vτ∗ |Ft]) + Var

(∫ τ∗

t
H(Su) dWu

)
. (13)

Combine (12) and (13), we have

Var

(
Vτ∗ −

∫ τ∗

t

H(Su) dWu

)
= Var (Vτ∗)−Var

(∫ τ∗

t

H(Su) dWu

)
⩽ Var (Vτ∗) . (14)

Hence, by subtracting the term
∫ τ∗

t H(Su) dWu from Vτ∗ , the variance is reduced.

Therefore, adding the control variate
∫ τi
ti

HsdWs in the derivation of Yti reduces the

variance.

Note that we also show that
∫ T
τi
HsdWs = 0. This is in line with the hedging theory as

we stop hedging once the stopping time is reached (the option is exercised).

B Warm-start training with the network trained one step

before

In the original version of method I, no technique for parameter initialisation is em-

ployed, resulting in the random initialisation of weights and biases at the onset of the

training. While this randomness typically does not pose a problem in practice, there is a

possibility for training stagnation from the start due to subpar parameter choices, and it

can lead to time-consuming processes. To enhance efficiency, we adopt a strategy where the

parameters of a previously trained network serve as the initial values for the model under

the current training. The rationale behind this technique is the observed similarities in the

shapes of both continuation functions and martingale increment functions at different times,

suggesting that parameters across different networks should exhibit similarities. Table 8 and

Figure 8 illustrate the impact of random and non-random initialisation on results.

The table highlights that with this variant more accurate results are achievable in one-

third of the time required for the base scheme. The enhancement in accuracy can be

29



attributed to a better initial guess, facilitating more effective training in the right direc-

tion. The figure affirms the effectiveness of this modification. At the step before maturity,

both versions commence with random initialisation, resulting in similar numbers of epochs.

However, this number significantly decreases for all other steps. In most steps, less than

half the number of epochs is needed. This effect is particularly pronounced at the initial

time where the same S0 is used for all paths. Although ∆Wt0 values differ, the training

becomes highly versatile. In the present example, the number of epochs is 10 times greater

without the variant. This ratio can vary due to the randomness, with observed instances

ranging from a worst-case scenario of 80 times more to a best-case scenario of 3 times more

in experiments.

Lower Bound Upper Bound Difference

Time(sec) Mean S.D. Mean S.D Mean S.D

Random start 360 4.4738 0.0007 4.4889 0.0005 0.0151 0.0010

Warm start 135 4.4769 0.0002 4.4877 0.0004 0.0108 0.0005

Table 8: Pricing 1D vanilla American put option (with the same parameters as the one in Section

4.1.1). The first row displays results where weights are randomly initialised at each time. The second

row shows the estimate when warm-start is applied.

30



0 100 200 300 400 500
0

0.5

1

Time(secs)

B
o
u
n
d
s
D
iff
er
en

ce
s

1 batch
5 batches
10 batches
25 batches
50 batches

0 100 200 300 400 500
0

0.5

1

Time(secs)

B
o
u
n
d
s
D
iff
er
en

ce
s

Method II
Method II-V6
Method I

0 200 400 600 800 1,000
0

1

2

3

4

Time(secs)

B
o
u
n
d
s
D
iff
er
en

ce
s

1 batch
5 batches
10 batches
25 batches
50 batches

0 200 400 600 800 1,000
0

2.5

5

Time(secs)

B
o
u
n
d
s
D
iff
er
en

ce
s

Method II
Method II-V6
Method I

Figure 4: Left: Changes in results from different numbers of batches used among updates of the

stopping strategy when we generate fresh data for training. Right: Changes of the results using

different methods: blue line: original method II; red line: method II with variation 5 and 25 batches

were used among updates; brown line: method I with variation 1. The top and bottom two plots

correspond to the 1D put option and the 5D max-call option, respectively.

31



Figure 5: Hedging errors for the 1D American put option along 10,000 paths by directly using the

model we trained via the base method II with variation 3

32



Figure 6: Hedging errors of 5D Bermudan max-call option generated by method II with variation

5 and 32 sub-steps

0 5 10 15 20 25
1.6

1.65

1.7

1.75

Number of Substeps

E
st
im

a
te

Price Bounds

LB-Method I
UB-Method I
LB-Method II
UB-Method II

0 3 9 27
0

100

300

900

Number of Substeps

E
st
im

a
te

Running Time

Method I
Method II

Figure 7: Price bounds (Left) and corresponding running times (Right) of the Heston put option

with different numbers of substeps using both method I and II (variant 5).

33



0 5 10 15 20 25 30 35 40 45 50

20
50

250

Step

N
u
m
b
er

of
E
p
o
ch
s

Original
variant 1

Figure 8: The number of epochs needed till the training stagnates at different steps with/without

variant 1 when pricing a 1D vanilla American put option

34


	1 Introduction
	2 The Problem Formulation
	2.1 The lower bound of the option price
	2.2 The upper bound of the option price
	2.3 The hedging strategy

	3 Valuing an American option numerically
	3.1 Method I: Multiple Neural Networks
	3.1.1 The regression rule
	3.1.2 The stopping strategy
	3.1.3 The update rule
	3.1.4 The whole process
	3.1.5 Discussion on the convergence

	3.2 Method II: One Global Neural Network
	3.2.1 The whole process
	3.2.2 Discussion on the convergence


	4 Algorithm variants
	5 Numerical Results
	5.1 Options under Black–Scholes Models
	5.1.1 1D American Put Option
	5.1.2 High Dimensional Bermudan max-call option

	5.2 American Put Option under Heston Model

	6 Conclusion
	A Variance Reduction
	B Warm-start training with the network trained one step before

