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The evolution of a complex multi-state system is often interpreted as a continuous-time Markovian
process. To model the relaxation dynamics of such systems, we introduce an ensemble of random
sparse matrices which can be used as generators of Markovian evolution. The sparsity is controlled
by a parameter ϕ, which is the number of non-zero elements per row and column in the generator
matrix. Thus, a member of the ensemble is characterized by the Laplacian of a directed regular
graph with D vertices (number of system states) and 2ϕD edges with randomly distributed weights.
We study the effects of sparsity on the spectrum of the generator. Sparsity is shown to close the
large spectral gap that is characteristic of non-sparse random generators. We show that the first
moment of the eigenvalue distribution scales as ∼ ϕ, while its variance is ∼ √ϕ. By using extreme
value theory, we demonstrate how the shape of the spectral edges is determined by the tails of the
corresponding weight distributions, and clarify the behavior of the spectral gap as a function of
D. Finally, we analyze complex spacing ratio statistics of ultra-sparse generators, ϕ = const, and
find that starting already at ϕ > 2, spectra of the generators exhibit universal properties typical of
Ginibre’s Orthogonal Ensemble.

I. INTRODUCTION

Continuous-time Markov chains (CTMCs) [1] provide
a popular framework to model dynamics of multi-state
systems in diverse fields ranging from physics, chemistry,
and biology [2–4] to economics [5, 6] and game theory
[7, 8]. CTMCs are used to model chemical reactions
[9–15], gene regulation processes [16–20], quantum dy-
namics (approximated by rate equations) [21–25], evolu-
tionary game dynamics [8, 26, 27], and many other pro-
cesses. CTMCs are also the key element of such cele-
brated models of statistical physics as contact processes
[28–30], zero-range processes [31, 32] and exclusion pro-
cesses like ASEP [2, 31, 33–39]. In some fields, CTMCs
are known under the names ‘classical Markovian master
equations’ or ‘rate equations’.

A continuous-time Markovian evolution in finite dis-
crete space consisting of D states can be specified with
a transition rate matrix K [1], which is a generator of
Markovian evolution. (It is called ‘Kolmogorov operator’
in Ref. [40]). The equation governing the evolution of a
probability vector P (t), defined on the state space,

d

dt
P (t) = KP (t), (1)

has the formal solution, P (t) = exp(tK)P0, where P0 =
P (0) is the initial probability vector. The evolution of
P (t) is thus fully determined by the generator K, espe-
cially by its spectral properties. The fact that the opera-
torMt = exp(tK) should map a non-negative vector onto
another non-negative vector while preserving `1-norm,
means that K satisfies a set of constraints and these con-
straints have an effect on its spectral properties [1].

In order to model the evolution of a complex system
with CTMCs, we would have to first design a specific Kol-
mogorov operator. Taking into account the large variety

of existing models, it would be beneficial to figure out
universal properties of K-generators, i.e., properties that
are typical rather than specific to a particular model. The
first step in this direction is to define random ensembles
of generators. A similar situation arises in the case of uni-
tary time-continuous evolution, where the corresponding
generators (quantum Hamiltonians) were explored and
classified by using the powerful toolbox of random ma-
trix theory (RMT) [41–45]. Implementation of this idea
resulted in the creation of Quantum Chaos theory [46–48]
which made - and is still making – a strong impact on
many-body quantum physics, both theoretical [49] and
experimental (see, e.g., Ref. [50]).

Recently, RMT-based approaches were developed to
analyze spectral properties of random generators of open
quantum (Lindblad operators) [51–54] and classical (Kol-
mogorov operators) [40, 55, 56] Markovian evolution.
The considered generators, both quantum and classical,
were on purpose constructed in a completely random way
- up to the constraints that make them legitimate gener-
ators. In the case of Kolmogorov operators, this means
that they are represented by dense matrices [40, 55]. It
was shown that the spectral density of such operators
represents a free sum of a uniform disc and a Gaus-
sian distribution which results in a distinctive spindle-
like shape [40], as shown in Figure 2 (a). This density is
universal, in the sense that the particular way the opera-
tors are sampled does not affect the shape of the spindle
(but may affect its position on the real axis and its overall
scaling) [40].

In contrast to the random Kolmogorov operators, for
most applications and known models, the corresponding
K-generators are represented by sparse matrices. This
is a consequence of locality and other topological con-
straints imposed on the allowed transitions in the state
spaces of the models. For many-component or many-
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particle systems, elements of the generator matrix typ-
ically represent changing multiple (or all) components
of the system simultaneously, e.g., for an exclusion pro-
cess, a generic matrix element could represent correlated
hopping of many particles. Since such processes are usu-
ally absent in physically (biologically, economically,...)-
motivated models, most elements of the corresponding
K-matrices are zeros.

Sparsity affects the spectra, {λi}, i = 1, 2, ..., D, of the
corresponding generators. Most noticeably, the spectral
gap, i.e., the distance between λ1 = 0 and the eigenvalue
closest to it, γ∗ = min{|Reλi|}, does not grow with the
increase of number of states D. This is in sharp contrast
to the case of dense random generators [51, 53, 54] . In
Figure 1 we contrast the case of dense random stochastic
matrices (a) with various model systems described by
sparse Markov generators (b-f).

The large gap of dense random generators implies that
even the slowest decaying mode of a generic initial prob-
ability vector converges rapidly to the equilibrium state,
the relaxation time (inverse of the spectral gap) decreas-
ing inversely in the state space size D. In contrast, phys-
ical generators of CTMCs in general have spectral gaps
and relaxation times functionally depending on D very
differently than (anti-)linearly; see, e.g. [57–60] for the
example of the exclusion process. This difference of be-
havior suggests that it is more suitable to model physical
CTMC generators by sparse rather than dense random
matrices.

Our motivation is to refine the RMT approach to ran-
dom Kolmogorov operators by including sparsity which
is characteristic to physically relevant K-generators. We
specify an ensemble of random matrices of fixed spar-
sity ϕ as an ensemble of negative combinatorial Lapla-
cians of random regular directed graphs. The sparsity is
controlled by the vertex degree ϕ which is equal to the
number of non-zero elements per row and column of the
generator matrix. In graph terms, this means that each
vertex has exactly ϕ incoming and ϕ outgoing edges. The
non-zero elements (edge weights) are taken to be random,
positive, independent, and identically distributed (iid).

A similar setup was studied in Ref. [56], where an
ensemble of oriented Erdős-Rényi graphs [62], param-
eterized with edge probability distribution p(D), was
used. The vertex distribution in this case is binomial-
distributed [62], and not constant as in our case. How-
ever, one might expect similar behavior in the D → ∞
limit with the correspondence p(D) = ϕ/D. The authors
of Ref. [56] considered the regime Dp(D) � (logD)6,
which they found to have the same universal properties as
in the non-sparse case. In this work, we consider sparsity
beyond this limit, including specifically ϕ ∼ D0 (vertex
degree not growing with D) and ϕ ∼ logD.

In this paper, we investigate the dependence of spec-
tral properties of the sparse Kolmogorov operators on
sparsity parameter ϕ, number of states (dimension of the
state space) D, and on the edge weight distribution, i.e.,
on the distribution of the nonzero elements of matrix

K. Explicit results are mostly derived for χ2
2 and uni-

form weight distributions; however, these results can be
adapted to other weight distributions.

We consider both the bulk of the spectral distribution
and its edges.

As for the bulk, we focus on its position µ (the mean
of the corresponding eigenvalue distribution) and its vari-
ances along the real and imaginary axes (standard devia-
tions of the distribution of the real and imaginary eigen-
value parts, respectively). The first variance estimates
the spread of the relaxation rates, while the second one
gives the timescales of the oscillations during the relax-
ation.

As for the edges, we address the spectral gap and the
extent of the spectrum along the real axis (the real part
of the eigenvalue with largest absolute real part). These
determine respectively the slowest and fastest time scales
of relaxation to the steady state. The spectral gap is of
physical interest for multi-state Markov processes, see,
e.g., [57–60, 63–67] for the ASEP and [68, 69] for the
contact process. The horizontal extent, in addition to
its interpretation as the fastest timescale for CTMCs, is
also relevant in the graph theory interpretation, e.g., to
quantify the computational complexity of the commu-
nity detection problem [70, 71] and the max-cut [72, 73]
problems.

We demonstrate that the position and variance of the
spectral bulk of sparse Kolmogorov operators scale as
∼ ϕ and ∼ √ϕ, respectively. These characteristics do
not depend on D but on the first and second moments of
the weight distribution. The dependence of the spectral
edges on the weight distribution is less straightforward
and highly non-universal. In particular, we show that,
in the regime of high sparsity, ϕ � D, the spectral gap
(horizontal extent) depends only on the left (right) tail
of the weight distribution. We evaluate the dependence
of the spectral gap on ϕ and D for weight distributions
with exponential and power-law tails.

We consider the cases of χ2
2 and uniform weight distri-

butions in detail. For these distributions, we find that the
spectral gap and the horizontal extent of the spectrum
can be approximated by the largest and smallest diago-
nal entry of the generator matrix, respectively. Using the
conjecture that this correspondence holds in general, we
use extreme value theory (EVT) [74, 75] to analytically
derive dependencies of the spectral edges on ϕ and D.
In particular, we infer that the distributions of spectral
edges only depend on the tails of the weight distributions.

Finally, we analyze correlations of the eigenvalues of
sparse Kolmogorov operators. We show that, for ϕ ≥ 2,
the complex spacing ratio distributions [61] of the spec-
tral bulks follow the distribution typical to Ginibre’s Or-
thogonal Ensemble.

The paper is organized as follows. In Section II we
introduce an ensemble of sparse random Kolmogorov op-
erators. We analyze the bulk of the spectral distributions
of the ensembles in Section III. In Sections IV and V we
address the spectral gap and the horizontal extent of the
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FIG. 1. Spectra of generators of Markovian evolution, Eq. (1). (a) Dense (non-sparse) random generator with χ2
2 edge weight

distribution, (b) totally asymmetric simple exclusion process (TASEP) on a ring with staggered hopping probabilities [61], (c)
asymmetric simple exclusion process ASEP on a chain with open boundary conditions and next nearest neighbor terms, (d)
a process of particle hopping on an open boundary grid with random hopping probabilities, (e) a contact process on a chain
[28], (f) a gene transcription model from Ref. [20]. In each plot the real and imaginary axes have the same scale. The models
are described in Appendix A.

spectrum, respectively. A discussion on correlations be-
tween eigenvalues in terms of the complex spacing ratio
follows in Section VI. We conclude with a summary of our
results in Section VII. Appendices contain information
on the models whose spectra are presented in Figure 1,
details of the sampling of sparse random Kolmogorov op-
erators, and the details of analytical derivations.

II. RANDOM SPARSE KOLMOGOROV
OPERATORS

In this section, we first recall some basic properties of
Kolmogorov operators and review the case of full ran-
dom K-matrices. We then define an ensemble of random
sparse operators. In what follows, matrices will be re-
ferred to by calligraphic letters (e.g., K) while their el-
ements will be denoted by non-calligraphic letters (e.g.,
Kij).

A. Basic information

In order to be qualified as a Kolmogorov operator,
a matrix K has to fulfill two conditions, (i) all its off-
diagonal elements have to be real and non-negative,
Kij ≥ 0, i 6= j, and (ii) the sum over every column
should be zero. The latter is fulfilled by setting all the
diagonal elements as

Kii = −
∑
j 6=i

Kji. (2)

The first condition guarantees the preservation of the
non-negativity of a vector during the evolution induced
by Eq. (1), while the second one guarantees the preser-
vation of the `1-norm of the vector.

The spectrum of K is in general complex. Since K
maps real vectors onto real vectors, the spectrum is in-
variant under complex conjugation, so all complex eigen-
values come in conjugated pairs. The spectrum contains
at least one eigenvalue λ1 = 0 with right eigenvector cor-
responding to the steady state. By virtue of the Perron-
Frobenius theorem [76–78], the components of the steady
state vector can be chosen to be non-negative, which
makes it, after normalization, a probability vector. Any
Kolmogorov operator can be represented in terms of a
real non-negative matrix, M, Mij ≥ 0,

K =M−J , (3)

where elements of the diagonal matrix J are Jjj =∑
iMij .
We now briefly review the case of dense (non-sparse)

random Kolmogorov operators [40, 55, 56]. Elements
Mij > 0 are i.i.d. sampled from a distribution with den-
sity p(x) and first two moments µ0 =

∫
xp(x)dx and

σ2
0 =

∫
(x − µ0)2p(x)dx. The particular choice of distri-

bution does not play an essential role (provided that it is
not very pathological). For example, we could sample a
matrix Z from Ginibre’s Unitary Ensemble (GinUE) and
then square its elements, Mij = |Zij |2 [40]). The matrix
M is then full in the sense that, with probability 1, all
its elements are different from zero.

The elements of the matrix M are i.i.d., thus, in the
asymptotic limit, its spectral density is a uniform disk
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of radius
√
Dσ0, with the center at 0. In the dense

limit, the elements of J are sums of D independent ran-
dom variables, so its elements can be approximated with
Gaussian-distributed random variables with mean Dµ0

and variance Dσ2
0 .

Following the RMT approach [40], the Kolmogorov op-
erator in Eq. (2) can be modelled as

KRM = −µ0D · 1l + σ0
√
D(G − D), (4)

where G is a member of Ginibre’s Orthogonal Ensemble
(GinOE) and D is a diagonal matrix. Elements of G and
D are sampled from the normal distribution of zero mean
and unit variance. Here σ0

√
D · G models M while J is

approximated as µ0D · 1l + σ0
√
D · D.

The spectral density of the non-trivial part, K′ =
G+D, is a free convolution of a disk and a Gaussian distri-
bution along the real axis, which results in a spindle-like
shape. Figure 2 (a) presents both the spectrum of a sin-
gle random dense Kolmogorov operator and histogram
obtained with 100 samples.

Alternatively, we can state that the spectral density of
the rescaled generator

K′ =
1

σ
√
D

(K + µ0D · 1l) (5)

is expected, in the asymptotic limit, to be the D-
independent spindle (”an additive Gaussian deformation
of the circular law”, according to Ref. [56]).

The spectrum of the random non-sparse generator has
a large gap which scales as D, as seen in Figures 1 and
2. We will see that this feature is strongly affected when
we introduce sparsity.

B. Ensemble of sparse random Kolmogorov
operators as a set of oriented graphs

The operator K described in the introduction can be
considered as the negative Laplacian of a random di-
rected graph with positive, iid edge weights, without self-
loops, and with fixed vertex degree equal to ϕ.

For example, the graph corresponding to the K gener-
ator of a process of a particle hopping on a d-dimensional
hypercubic lattice with periodic boundary conditions and
random hopping rates is a particular (to the nearest-
neighbor connections) realization of the ensemble with
ϕ = 2d. Figure 1 (d) shows an example spectrum for
d = 2.

The regularity of the graphs ensures that, with prob-
ability 1 − O(D−ϕ−1), they are strongly connected as
long as ϕ ≥ 2 [79]. Strong connectivity is a good fea-
ture because it means that the matrix K is not of block-
diagonal structure and the state space is not partitioned
into disconnected subsets. As there is only one strongly
connected component, there is only one absorbing com-
ponent. This implies that the multiplicity of the zero
eigenvalue is one and the steady state is unique. Finally,

every state in the state space is reachable from every
other state. The steady state, therefore, has all states
populated.

Some physical models motivating this study presented
in Figure 1 are - except for the contact process - all
strongly connected. The contact process is only effec-
tively strongly connected. It has two strongly connected
components, where one is a single vertex and the other
includes the remaining D− 1 vertices. The giant compo-
nent is the only absorbing component and consequently,
the steady state is unique.

We will focus on sparse generators with ϕ ≥ 2 and will
discuss ϕ = 1 in Section VI.

The physical models presented in Figure 1 motivate us
to focus on two types of dependencies of ϕ on the matrix
size D, namely ϕ = const and ϕ ∼ logD. For generators
of single particle hopping models - an example is shown
in Figure 1 (d) - the average number of non-zero elements
per column and row is constant and independent of D. It
increases logarithmically with D in many-body hopping
models such as the ASEP or the contact process, Figure 1
(b), (c), and (e). There is no simple dependence of ϕ on
D in the gene transcription model, Figure 1 (f), as the
matrix size D is controlled by multiple parameters, see
Appendix A.

What can we say about spectral densities of the ultra-
sparse K-generators, with ϕ = const? A ’naive’ adjust-
ment of the RMT approach, which consists in describ-
ing the elements of a sparse matrix M with probability
density function p̃(x) = (1− ϕ

D )δ(x) + ϕ
Dp(x), re-scaling

the mean and variance accordingly, and then using the
RMT model, Eq. (4), would not work here for two rea-
sons. First, the spectral densities of such sparse matrices
cannot be approximated with members of ’dense’ RMT
ensembles. Second, the Central Limit Theorem no longer
applies and the entries of matrix J cannot be approxi-
mated with normal random variables (the entries become
distribution-specific).

III. POSITION AND WIDTH OF THE BULK OF
THE SPECTRUM

In this section, we analyze the dependence of the posi-
tion and horizontal width of the bulk of the spectrum on
the sparsity parameter ϕ and the matrix dimension D.
We first provide (Subsections III A and III B) expressions
and bounds for the position and the width, characterized
respectively by the mean µ(λ) of all eigenvalues and the
standard deviation σ(Reλ) of the real parts of the eigen-
values. These results are expressed in terms of the mean
and standard deviation of the weight distribution (distri-
bution of non-zero elements of the Kolmogorov operator
K), denoted by µ0 and σ0 respectively.

Since the most prominent effect of sparsity is to reduce
the parametrically large gap seen in the full random case,
it is instructive to analyze the ratio α = |µ(λ)|/σ(Reλ).
This quantity provides insight into the distance of the
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FIG. 2. Spectral densities of random Kolmogorov operators with χ2
2 weight distribution. The matrix size is D ≈ 8000 and the

densities are estimated with 100 samples. White areas contain no eigenvalues. (a) Dense matrix without the zero eigenvalue,

(b) sparse matrix with ϕ =
√
D non-zero elements per row and column, (c) ϕ = logD and (d) ϕ = 3. The insets show spectra

of single realizations. In each plot, the real and imaginary axes have the same scale. The red dots mark the location of µ(λ),
given by Eq. (6), and the intervals shown in black are [µ(λ)− σ(λ), µ(λ) + σ(λ)], where σ(λ) is given by Eq. (8).

bulk of the spectrum from the origin, relative to the size
of the bulk. Subsection III C is devoted to an analysis of
the ratio α.

Numerical results presented in this section are obtained
by sampling edge weights from the χ2

2 and the standard
uniform distribution.

The spectrum of dense generators (ϕ = D−1) consists
of two distinct parts - an eigenvalue λ1 = 0 and the
rest of the eigenvalues forming the spectral bulk away
from the imaginary axis, as shown in Figure 1 (a) and
Figure 2 (a). In contrast, the bulk of the spectrum is
much closer to the imaginary axis for ϕ� D, as seen in
Figure 2 for (b) ϕ =

√
D, (c) for ϕ = logD and (d) for

ϕ = 3. For ϕ =
√
D, the bulk of the spectrum is visibly

separated from the zero, as in the dense case. In fact, the
spectral boundary is given by the same spindle (properly
rescaled). Whether the spectral distribution is separated
from zero for ϕ = logD and φ = 3 is difficult to say with
certainty from the available numerical data (D ≈ 8000).

A. Position

The position of the spectral bulk of K can be identified
with the mean µ(λ) of eigenvalues λi,

µ(λ) =

〈
1

D

D∑
i=1

λi

〉
, (6)

where the average 〈. . . 〉 is taken over the ensemble of
random Kolmogorov operators described in Section II.
Because the eigenvalues are either real or come in com-
plex conjugate pairs, the mean of the spectral bulk is
real, µ(λ) = µ(Reλ).

A simple calculation, presented in Appendix C, shows
that µ(λ) can be expressed as

µ(λ) =

〈
1

D
tr(K)

〉
= −ϕµ0, (7)

The averaging 〈. . . 〉 over the matrix ensemble in Eq. (6)
and Eq. (7) is, in principle, not needed since typicality

is expected, i.e., for large enough D, a single sample will
display all the spectral features of the ensemble. This
is because the quantity 1

D tr(K) is concentrated around

its average
〈

1
D tr(K)

〉
for increasing D, as shown in Ap-

pendix C.

For the four different dependencies of ϕ on D shown in
Figure 2, Eq. (7) implies the following: For ϕ = const, the
mean is independent of the matrix size D. For ϕ = logD
(ϕ =

√
D) the mean decreases logarithmically with D (as

∼
√
D) and for ϕ = D the mean decreases linearly with

D as is expected for the dense generators [55].

In Figure 2, the location µ(λ) of generator matrices K
is indicated with a red dot in each panel. The real part
of the dot resides in the bulk of the spectrum for every
dependence of ϕ on D shown in Figure 2.

B. Horizontal width

In Section III A we investigated where the bulk of the
spectrum is located in the complex plane. We now an-
alyze the width of the distribution. We are especially
interested in the horizontal width.

We characterize the width of the bulk spectrum, both
in the real and imaginary directions, Reλ and Imλ, using
the estimated variances

σ2(Reλ) =

〈
1

D

D∑
i=1

Reλi −
1

D

D∑
j=1

λj

2〉
(8)

σ2(Imλ) =

〈
1

D

D∑
i=1

(Imλi)
2

〉
, (9)

where we used the fact that
∑D
j=1 λj is real.

Because the eigenvalues appear in complex conjugate
pairs, σ2(Reλ) and σ2(Imλ) are related to the estimated
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complex pseudo-variance via

σ2(λ) =

〈
1

D

D∑
i=1

λi − 1

D

D∑
j=1

λj

2〉
= σ2(Reλ)− σ2(Imλ). (10)

The estimated pseudo variance lower bounds the es-
timated variance of the real parts of the eigenvalues,
σ2(λ) ≤ σ2(Reλ).

The complex pseudo variance can be analytically cal-
culated for the ensemble of random generator matrices
as

σ2(λ) =

〈
1

D
tr(K2)

〉
−
〈

1

D2
tr(K)2

〉
= ϕ

(
σ2
0 +

ϕ

D
µ2
0 −

1

D
σ2
0

)
. (11)

Details of the calculation are provided in Appendix C.
The bound of the estimated real variance by the pseudo
variance together with Eq. (11) leads to the asymptotic
lower bound of σ(Reλ) in terms of the sparsity parameter
ϕ. As 1 ≤ ϕ ≤ D, the estimated horizontal width of the
bulk spectrum cannot grow asymptotically slower than√
ϕ,

σ(Reλ) &
√
ϕ. (12)

Numerically, we find that the bound in Eq. (12) is asymp-
totically sharp for ϕ� D, as shown in Figure 3 through
the ratio α of mean µ(Reλ) and width σ(Reλ). The
collapse of the data points in Figure 3 (c) implies that
σ(Reλ) ∼ √ϕ.

C. Ratio of mean and horizontal width

In this section, we combine the information of the loca-
tion of the spectrum given by Eq. (6) and the horizontal
width of the bulk given by Eq. (8) into the ratio

α =
|µ(Reλ)|
σ(Reλ)

. (13)

This quantifies how close the bulk spectrum is, relative
to its size, to the stationary value λ1 = 0. i.e., to the
imaginary axis. For α = O(1) the estimated width of the
bulk is of the same order as the estimated mean, thus the
spectrum is located close to 0. For α� 1 the estimated
mean is much bigger than the horizontal width of the
bulk and the bulk of the spectrum is far away from 0.

The analytical result for the estimated mean of the
spectrum, Eq. (7), together with the asymptotic bound
on the standard deviation of the real parts of the spec-
trum, Eq. (11), imply the following asymptotic bound on
α

α .
√
ϕ. (14)

FIG. 3. Ratio α of mean µ(Reλ) and horizontal width
σ(Reλ) of the bulk of the spectrum of sparse random Kol-
mogorov operators with (a) χ2

2 and (b) standard uniform
weight distributions. (c) α as a function of

√
ϕ. The bottom

markers correspond to χ2
2 and the top to uniform distribu-

tion. Dependencies of ϕ on D are ϕ ≡ constant, ϕ = logD,
ϕ = 2 logD, and ϕ = D1/3. The black solid lines correspond
to α = c1 +c2

√
ϕ (c1,2 given in the main text) and the dashed

lines denote α = µ0/σ0
√
ϕ.

Numerically, we observe that the bound in Eq. (14) is
asymptotically tight for ϕ� D, i.e.

α ≈ c1 + c2
√
ϕ, (15)

for constants c1 and c2. Since µ(λ) scales linearly with
ϕ, this behavior is consistent with σ(Reλ) ∼ √ϕ, stated
previously. The constants are found to be c1 ≈ 0.15
(≈ 0.1) and c2 ≈ 0.84 (≈ 1.3) for the χ2

2 (uniform) dis-
tribution.

Numerical results for α are summarized in Figure 3.
For each combination of ϕ and D, α is averaged over n
samples of random generators such that nD = 50′000.
The weight distribution is the χ2

2 distribution in (a) and
in the lower part of (c), and is the uniform distribution
in [0, 1] in (b) and in the upper part of Figure 3 (c). We
have found that these results are qualitatively the same
for exponentially distributed edge weights.

In Figure 3 (a,b) we show the value of α as a function of
D and ϕ. On the x-axis D varies in steps of 103 between
103 and 104. We observe that α increases with ϕ and is
independent of D, as predicted by Eq. (15). In Figure 3
(c) we show α as a function of ϕ for different dependencies
of ϕ on D. In all the cases, values of α collapse onto the
black solid line given by Eq. (15).
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For ϕ ∼ D, the ratio α scales as ∼
√
D, thus recovering

the parametrically large gap in the non-sparse case. For
constant ϕ, the location of the bulk relative to its size
is constant and independent of D, i.e, if measured rela-
tive to the size of the bulk, the bulk does not move away
from the imaginary axis with increasing D. We have
thus quantified how sparsity cures one of the less phys-
ical aspects of the non-sparse random model of Markov
generators.

IV. SPECTRAL GAP

In this and the following section, we will consider the
spectral edges, namely, the locations of the eigenvalues
nearest and farthest from the imaginary axis. In this
section we will investigate the spectral gap γ∗ of K,

γ∗ = min{|Reλi| : Reλi < 0}. (16)

The spectral gap γ∗ is asymptotically, approximately
bounded by the right extent of the bulk |µ(λ)| − σ(λ),
which depends on ϕ as ∼ ϕ − √ϕ ∼ ϕ. So for constant
ϕ, the spectral gap is bounded from above, while for ϕ
increasing with D the spectral gap can increase with D.

Here the edge weights are distributed according to the
χ2
2 and the standard uniform distributions. We first

demonstrate that, for ϕ = const, the average spectral
gap 〈γ∗〉 decreases as D−1/ϕ, while 〈γ∗〉 is constant if
ϕ increases logarithmically with D. We then show that
the spectral gap is well approximated by the smallest (in
magnitude) diagonal term of J (K) and use the theory of
extreme values to underpin the numerical observations.
The results are then generalized to weight distributions
with power-law left tails in that for constant ϕ the av-
erage spectral gap decreases as a power-law in D and
the crossover from decreasing to increasing 〈γ∗〉 happens
when ϕ ∼ logD.

A. Numerical results

In Figure 4 we show the average spectral gap 〈γ∗〉 for
edge weights distributed as χ2

2 (a-c) and according to the
standard uniform distribution (d-f). For every combina-
tion of ϕ and D, the average of the spectral gap is esti-
mated with 100 samples. In Figure 4 (a) and (d) we show
〈γ∗〉 as a function of D for different dependencies of ϕ on
D. The average spectral gaps for constant ϕ = 3, 5, 8, 13
(presented with colored circles) clearly follow a power-law
scaling with D.

In Figure 4 (b) and (e) we show the average spectral
gap 〈γ∗〉 as a function of ϕ and D. The black dashed
lines are contour lines of constant 〈γ∗〉. They are near
straight lines, showing that for a logarithmic increase of
ϕ in D the spectral gap is constant.

We show the average spectral gap 〈γ∗〉 as a function of
D for ϕ = 4

5 logD+ 8 in Figure 4 (a) and ϕ = 7
10 logD+

8 in (d) as black diamonds. These dependencies of ϕ
on D agree well with the top dashed contour lines in
(b) and (e), respectively. The average spectral gap of ϕ
depending logarithmically on D is constant in Figure 4
(a) and (d).

B. Gap ≈ minimum of J

Let us assume for a moment that the generator matrix
K is hermitian with eigenvalues λD ≤ · · · ≤ λ2 < λ1 = 0.
Then 1 = (1, . . . , 1)t is the eigenvector with eigenvalue 0
and all other eigenvectors are orthogonal to it. By the
Courant-Fischer theorem [80]

γ∗ = −λ2 = min
|v|=1,v⊥1

vt(−K)v, (17)

where the minimum runs over all vectors v ∈ RD, which
have Euclidean norm |v| = 1 and are perpendicular to 1.
Choosing 1 ≤ l ≤ D arbitrary and v as (see Appendix D
for more details)

vi =


√

1− 1
D i = l

− 1√
D(D−1)

i 6= l,
(18)

a simple calculation shows that (at least for ϕ� D)

γ∗ ≤ min
1≤l≤D

Jll +O(D−1). (19)

Similarly, by using the Courant-Fisher theorem, for the
eigenvalue with largest magnitude λD we find

− λD = max
|v|=1

vt(−K)v, (20)

and with v as the l-th vector of the standard basis of RD

− λD ≥ max
1≤l≤D

Jll. (21)

Under some mild conditions on random weights Kij , a
result from Ref. [71] shows that the inequality Eq. (21)
becomes an equality in the large D limit with probabil-
ity approaching 1. Motivated by this observation and
the bound from Eq. (19), we expect a similar asymptotic
tightness for Eq. (19). However, it is an open question
whether the result from Ref. [71] applies to the bound of
the spectral gap, Eq. (19). Further, the proof presented
in Ref. [71] makes use of the Central Limit Theorem for
the diagonal elements Jll of J , and so the corresponding
result does not apply to the case of constant or logarith-
mically increasing (with D) sparsity parameter ϕ.

Nevertheless, the above arguments allow us to conjec-
ture that in the limit of large D and ϕ� D the following

γ∗ ≈ min
1≤l≤D

Jll, (22)

holds for general, non-hermitian random generator matri-
ces K, with iid and non-exotic weight distributions. We
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FIG. 4. The average spectral gap 〈γ∗〉 with χ2
2 (top) and standard uniform (bottom) weight distributions. Solid lines in the

log-log plots are analytical predictions from Eq. (25) in (a) and Eq. (28) in (d). Black dashed lines in the heatmaps denote
contours of constant gap. White circles in the heatmap in (e) are given by Eq. (30).

FIG. 5. The average relative error between the spectral gap
and the minimal value of J in the top row (a) and (b) and
between the horizontal extent and the maximum of J in the
bottom row (c) and (d). The weight distribution is χ2

2 on
the left and the standard uniform distribution on the right.
Averages are over 100 samples. See Eq. (23) and Eq. (38) for
the definition of the relative errors δγ∗ and δγ̃, respectively.

support our conjecture with numerical data presented in
Figures 5 (a) and (b). We quantify the approximation in
Eq. (22) by the relative error between the spectral gap

γ∗ and the minimum min1≤l≤D Jll of the diagonal of J ,

δγ∗ =
|γ∗ −min1≤l≤D Jll|

γ∗
. (23)

Figure 5 shows 〈δγ∗〉 as a function of ϕ and D for the
χ2
2 distribution and the standard uniform distribution.

The average relative error is at least two orders of mag-
nitude smaller than the average spectral gap shown in
Figure 4 (b) and (e). For increasing D, the approxima-
tion in Eq. (22) improves. Thus, the approximation in
Eq. (22), works well in the case ϕ� D.

C. Extreme value theory

The distribution of the right-hand side of Eq. (22) can
be tackled with the theory of extreme values. As all non-
zero entries ofM (edge weights) are identically and inde-
pendently distributed random variables, so are the diag-
onal entries of J . Let the cumulative distribution func-
tion (cdf) of the diagonal entries Jll of J be denoted by
F and its probability density function by f(x) = d

dxF (x).

If the edge weights are distributed according to a χ2 dis-
tribution (or any gamma distribution) the cdf F of Jll
is a gamma distribution function. If the edge weights
are uniformly distributed, F is an Irwin-Hall distribution
function, see Table I. The expected value of min1≤l≤D Jll
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off-diag. K = Mij χ2
k uniform

diag. K = Jll gamma
(
kϕ
2
, 2
)

Irwin-Hall

C 2ϕ

ϕ!
* 1

ϕ!

β k
2
ϕ* ϕ

TABLE I. The distributions of the off-diagonal elements Mij

of K (edge weights) and the corresponding distributions of the
diagonal elements Jll of K and the corresponding constants
C and β for the convergence of Jll to the Weibull distribu-
tion Ψβ in Eq. (27). (*) constants obtained by a power-law
approximation of the left tail of the gamma distribution.

is given in terms of F (and f) by〈
min

1≤l≤D
Jll

〉
= D

∫
dxxf(x)(1− F (x))D−1. (24)

Eq. (22) and Eq. (24) imply that

〈γ∗〉 ≈ D
∫
dxxf(x)(1− F (x))D−1. (25)

We demonstrate the validity of Eq. (25) with Figure 4
(a), where the solid lines, given by Eq. (25), perfectly
match numerically sampled average spectral gap 〈γ∗〉. In
the next section, we will use the theory of extreme values
to handle the integral in Eq. (25).

1. Power-law tail distributions

Let us consider first the case ϕ = const and increas-
ing D. By the Fisher-Tippet-Gnedenko (or ’extreme
value’) theorem [75], min1≤l≤D Jll converges in law, un-
der some mild assumptions on the distribution of Jll
and properly renormalization, to the Weibull distribu-
tion. The Weibull cumulative distribution function is
given by Ψβ(x) = e−x

β

, where β > 0 and the support is
on the positive real line.

For distributions of Jll with power-law left tail, the
renormalization of min1≤l≤D Jll for convergence to the
Weibull distribution is well known, see e.g. Theorem
3.3.2, page 137 in Ref. [75]. We use a version modified
to our case. Let a positive random variable X have cdf
F with β-power left tail, i.e.

F (x) = Cxβ for 0 ≤ x ≤ C1/β , (26)

where C > 0 is a constant. Further, let mD =
min1≤l≤DXl, where the Xl are iid copies of X. Then

(DC)1/βmD → Ψβ in law. (27)

The Irwin-Hall distribution has a left power-law tail given
by F (x) = xϕ

ϕ! for 0 ≤ x ≤ 1. The constants for the Irwin-

Hall distribution are listed in table I.
We assume that the convergence in Eq. (27) is not only

in distribution but that the renormalized moments of mD

converge as well. If the convergence of the moments is
sufficiently fast, then Eq. (27) together with Eq. (22)
imply

〈γ∗〉 ≈ 〈mD〉 ≈ Γ

(
1 +

1

ϕ

)
(ϕ!)1/ϕD−1/ϕ (28)

when the weight distribution (distribution of non-zero
off-diagonal elements of K) is such that the diagonal of
J has a power-law left tail and the coefficients C and β
are given by C = 1/ϕ! and β = ϕ.

Finally, we consider the case that the weight distribu-
tion is uniform. We observe that the approximation in
Eq. (28) works very well in this case. The solid lines in
Figure 4 (d) are given by the right-hand side of Eq. (28)
and they match the numerically calculated average spec-
tral gap.

Eq. (28) implies that, for constant ϕ = const and in-
creasing D, the average spectral gap decreases as

〈γ∗〉 ∼ D−1/ϕ. (29)

In Figure 4 (f) we show that the numerically retrieved
power-law exponents of the average spectral gap, Figure 4
(d), match the scaling in Eq. (29).

We find that the large deviation result is not only valid
for constant ϕ and increasing D but also for ϕ increasing
logarithmically with D; see Figure 4 (d). This allows us
to estimate the crossover from decreasing to increasing
spectral gap. Let c denote a constant and let 〈γ∗〉 = c.
Then by Eq. (28)

D ≈

Γ
(

1 + 1
ϕ

)
c

ϕ ϕ!. (30)

In Figure 4 (e) the contour lines of constant average spec-
tral gap c perfectly line up with the functional depen-
dence of D on ϕ through Eq. (30) shown as white dots.

To find ϕ as a function of D such that the average
spectral gap is constant, we assume that ϕ is reasonably

large and approximate Γ
(

1 + 1
ϕ

)
≈ 1 and by Stirling’s

formula (ϕ!)1/ϕ ≈ ϕ
e . Denoting y = log ϕ

ce and rearrang-
ing Eq. (30) gives us

logD

ce
≈ yey, (31)

which can be inverted by the Lambert W function. Re-
substituting ϕ = ceey we arrive at

ϕ ≈ ce · eW( logD
ce ), (32)

which for logD ≥ ce2 behaves as [81]

ϕ ≈ logD

(log logD − log c− 1)
1−η(D)

, (33)

where η(D) → 0 slowly, as η(D) ∼ (log logD)−1. So in
the limit 1 � ϕ � D the crossover from decreasing to
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increasing spectral gap happens at ϕ ∼ logD with correc-
tions of the order log logD. This confirms our numerical
observations that the average spectral gap 〈γ∗〉 appears
to be constant for ϕ ∼ logD in the range of matrix sizes
D we considered.

2. Approximate power-law distributions

If the weight distribution is a χ2 or exponential dis-
tribution, the diagonal elements of J are distributed ac-
cording to Gamma distribution, see table I. The left tail
of the Gamma distribution only follows approximately
a power-law. Approximating the left tail by a Taylor
expansion, we obtain constants C and β presented in Ta-
ble I. Especially, for the χ2

2 distribution, we presented
so far in the main text the power-law approximation of
the gamma distribution and the large deviation result in
the previous subsection suggest that the average spectral
gap 〈γ∗〉 decreases for constant ϕ and increasing D as a
power in D with exponent given −1/ϕ, see Eq. (29).

In Figure 4 (c) we present the numerically calculated
exponents of the power-law decrease of 〈γ∗〉, for χ2

2 weight
distribution, with D and compare it to the prediction
−1/ϕ. We find excellent agreement for small ϕ ≤ 5. For
larger ϕ the deviation between the numerical exponent
and −1/ϕ is visible but the agreement is still good.

A quantitative comparison between the numerically
calculated spectral gap 〈γ∗〉 and the EVT prediction by
a power-law approximation of the left tail of the gamma
distribution resulted in poor agreement. As the expected
minimum value of the diagonal of K perfectly agrees with
〈γ∗〉, we attribute the disagreement to the power-law
approximation of the left tail and slow convergence of
Eq. (27) for diagonal elements of J distributed accord-
ing to the gamma distribution.

D. Summary

We presented numerical and analytical arguments
that, for the weight distributions considered, the average
spectral gap decreases as a power-law for constant ϕ and
increasing D with exponent given (approximately) by
−1/ϕ. The crossover between decreasing and increasing
spectral gap happens at ϕ ∼ logD, with log logD correc-
tions, for uniform weight distribution. For χ2

2 distributed
edge weights the crossover was observed at ϕ ∼ logD. If
ϕ increases with D faster than logD then the average
spectral gap increases.

The presented results generalize. Let us assume that
the spectral gap is well approximated by the smallest
(in magnitude) diagonal of J , at least in the regime of
large D and ϕ � D. Then, after appropriate renormal-
ization, the distribution of the spectral gap is given by
the limiting extreme value distribution of the diagonal
elements of J . Thus the classification of functional de-
pendencies of the spectral gap on ϕ and D with respect to

FIG. 6. Average horizontal extent 〈γ̃〉 with χ2
2 (left) and

standard uniform (right) weight distributions. ϕ is constant
(top) and ϕ ∼ logD (bottom). Solid lines are given by
Eq. (39) (left) and Eq. (44) (right).

weight distributions reduces to the classification of lim-
iting extreme value distributions and renormalizations.
Extensive research has been conducted on the latter and
the renormalizations of a lot of common distributions are
well known [74, 75]. Thus the presented approach allows
the calculation of the distribution of the spectral gap for
broad classes of weight distributions.

V. HORIZONTAL EXTENT (LARGEST
ABSOLUTE REAL PART)

In this section we investigate the horizontal extent γ̃
of the spectrum given by the eigenvalue with largest ab-
solute real part

γ̃ = max
1≤i≤D

|Reλi|. (34)

We focus on the averaged horizontal extent 〈γ̃〉. We show
that for ϕ ∼ logD the average horizontal extent increases
logarithmically with D for χ2

2 or uniformly distributed
edge weights. For constant ϕ and increasing D the de-
pendence of 〈γ̃〉 is qualitatively very different for the two
distributions. For the χ2

2 distribution 〈γ̃〉 increases log-
arithmically, while for the uniform distribution, the av-
erage horizontal extent converges to ϕ as a power-law in
D. Ultimately, this is because the support of the uni-
form distribution is bounded, while the right tail of the
χ2
2 distribution extends to infinity.



11

The structure of this section follows closely the one
from Section IV. We first present numerical results
demonstrating the above statements. We then argue that
the horizontal extent is given by the largest, in magni-
tude, diagonal element of K and invoke again EVT to
analytically underpin the functional dependencies of 〈γ̃〉
on ϕ and D.

A. Numerical results

In Figure 6 we show the average horizontal extent as
a function of D for constant ϕ and ϕ ∼ logD for edge
weights distributed according to a χ2

2 (a,c) and the stan-
dard uniform distribution (b,d). In (a) the dependence of
〈γ̃〉 onD for constant ϕ shows a clear logarithmic increase
with D for χ2

2 distributed edge weights. In contrast, for
the uniform distribution, the average horizontal extent
increases with ϕ as a power-law, see (b). The power-law
behavior sets in for small ϕ only for larger D. For ϕ = 4
and ϕ = 5 deviations from the straight lines in Figure 6
(b) are visible for D < 105 and D < 104, respectively.
The average horizontal extent for constant ϕ = 2 and
ϕ = 3 is not shown. We found that it does not converge
to ϕ in the range of matrix sizes D we investigated.

For ϕ ∼ logD the dependence of 〈γ̃〉 on D is loga-
rithmic for both the χ2

2 and the uniform distribution, as
shown in Figure 6 (c) and (d).

In the remainder of this section, we will present an-
alytic arguments similar to Section IV. We will explain
the difference of the dependence of 〈γ̃〉 on D for constant
ϕ between χ2

2 and uniform-like distributions. We show
that 〈γ̃〉 ∼ logD for both distributions and ϕ ∼ logD.

B. Extent ≈ maximum of J

By the Perron-Frobenius theorem the spectrum of K
is confined to the ball centered around miniKii < 0 with
radius r = |miniKii|. Thus 2 max1≤l≤D Jll ≥ |Reλ| for
all eigenvalues λ, so

γ̃ ≤ 2 max
1≤l≤D

Jll. (35)

For symmetric generator matrices K we showed in Sec-
tion IV B that

max
1≤l≤D

Jll ≤ γ̃ (36)

and stated a result from [71] that for symmetric random
generator matrices under mild conditions on the weights
Kij , max1≤l≤D Jll concentrates around the largest eigen-
value in magnitude, γ̃. This together with the upper
bound by the Perron-Frobenius theorem Eq. (35) leads
to our conjecture that the concentration of max1≤l≤D Jll
around γ̃ in the symmetric case extends to the non-
hermitian case as well

γ̃ ≈ max
1≤l≤D

Jll. (37)

A concentration result similar to the one in [71] for non-
hermitian random generator matrices M has to the best
of our knowledge not appeared in the literature.

To quantify the deviation in Eq. (37) we introduce the
relative error of γ̃ and max1≤l≤D Jll

δγ̃ =
|γ̃ −max1≤l≤D Jll|

γ̃
. (38)

In Figure 5 (c) and (d) we show the average relative error
〈δγ̃〉 as a function of D and ϕ. If the edge weights are
χ2
2 distributed then for 2 ≤ ϕ ≤ 20 and 103 ≤ D ≤ 105

the average relative error is smaller than ≈ 10−3 and
decreases with increasing D. Thus Eq. (37) is a good
approximation for large D and ϕ � D and the error
appears negligible in the limit of large D. For uniformly
distributed edge weights the average relative error 〈δγ̃〉
is smaller than 10−1 for 2 ≤ ϕ ≤ 20 and 103 ≤ D ≤ 105

and for ϕ ≥ 4 decreases with D. For 2 ≤ ϕ ≤ 3, the error
does not seem to decrease for increasing D. We conclude
that Eq. (37) is an excellent approximation for large D
and 4 ≤ ϕ� D.

C. Extreme value theory

Recall that the diagonal elements of J are iid random
variables. Similar to the minimum extreme value statis-
tics, the expected value of max1≤l≤D Jll is〈

max
1≤l≤D

Jll

〉
= D

∫
dxxf(x)F (x)D−1, (39)

where we denoted the cdf of the diagonal elements Jll of
J by F and the pdf by f = d

dxF . A numerical calcu-

lation of the integral in Eq. (39) for χ2
2 distributed edge

weights is shown in Figure 6 (a) and (c) and compared to
the average horizontal extent 〈γ̃〉. The quantities agree
excellently.

The remainder of this section is devoted to employing
the Fisher-Tippet Gnedenko or extreme value theorem to
max1≤l≤D Jll and thus analytically calculate the integral
in Eq. (39).

1. Gamma distribution

Recall that if the edge weights are distributed accord-
ing to a χ2 distribution then the diagonal elements of
J are gamma distributed. The maximum of D gamma
distributed iid random variables Xl converges in law to
a standard Gumbel distribution Gum [71],

c

[
max

1≤l≤D
Xl − d(D)

]
→ Gum in law, (40)

with parameters c and d(D) given in table II for the
gamma and χ2 distributions. The cdf of the Gumbel

distribution is x→ e−e
−x

with mean γ, where γ denotes
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gamma(k, θ)

c 1
θ

d(D) θ(logD + (k − 1) log logD − log Γ(k))

χ2
n gamma(k = n

2
ϕ, θ = 2)

TABLE II. (top) The normalizing parameters c and d(D) for
max1≤l≤D Jll to converge to the Gumbel distribution, where
Jll is gamma distributed with shape and rate parameter k and
θ, respectively, see Eq. (40). (bottom) The relation between
the χ2 and the gamma distribution.

the Euler-Mascheroni constant, not to be confused with
the horizontal extent γ̃. The assumption that the first
moment converges and the convergence is fast enough
together with Eq. (37) yields

〈γ̃〉 ≈
〈

max
1≤l≤D

Jll

〉
≈ γ

c
+ d(D). (41)

For constant ϕ and increasing D the dominant contri-
bution of d(D) is 2 logD for the χ2 distribution. Thus
the increase is expected to be logarithmic. This is quali-
tatively consistent with numerical calculations of the av-
erage horizontal extent of random generator matrices K
with χ2

2 distributed edge weights and constant ϕ shown
in Figure 6 (a). There γ̃ increases logarithmically with
D. Quantitatively, the deviation between the average
horizontal extent and the right-hand side of Eq. (41) is
not small. The deviation decreases for increasing D (not
shown). We attribute the slow convergence to a sub-
optimal choice of parameters c and d(D), as the right-
hand side of Eq. (39) agrees perfectly with the numeri-
cally calculated 〈γ̃〉.

Let us assume that Eq. (41) is valid for ϕ increasing
logarithmically. Note that for the χ2 distribution, the
rate parameter of the corresponding gamma distribution
is linear in ϕ. Thus for large enough ϕ by Stirling’s for-
mula, the dominant term in Eq. (41) is logarithmic in D.
Hence the average horizontal extent 〈γ̃〉 should increase
logarithmically for ϕ ∼ logD. This is again qualitatively
confirmed by numerical results shown in Figure 6 (c),
where 〈γ̃〉 as a function of D for ϕ ∼ logD increases
logarithmically with D.

2. Power-law tail distributions with bounded support

If the distribution of the diagonal of J has bounded
support and the right tail decreases as a power-law, then
we can reuse the extreme value result from Section IV C.
For a random variable X with right support endpoint x0
and cdf F with power-law right tail, i.e.

F (x) = C(x0 − x)β for x0 − C1/β ≤ x ≤ x0, (42)

then mD = max1≤i≤DXl, where Xl are iid copies of
X, converges, properly renormalized, in law to a Weibull

distribution

(DC)1/β(x0 −mD)→ Ψβ in law. (43)

Again, assuming that the first moment converges as
well and the convergence is fast enough we get for edge
weights distributed according to the standard uniform
distribution,

〈γ̃〉 ≈ 〈 max
1≤l≤D

Jll〉 ≈ ϕ− Γ

(
1 +

1

ϕ

)
(ϕ!)1/ϕD−1/ϕ. (44)

We find excellent numerical agreement of the right-hand
side of Eq. (44) with the average horizontal extent 〈γ̃〉
for ϕ ≥ 4. In Figure 6 (b) we show 〈γ̃〉 as a function of
D for fixed ϕ. The solid lines denote the right-hand side
of Eq. (44). They agree perfectly for large enough D and
ϕ ≥ 4. For 4 ≤ ϕ / 6 and small D the agreement is
still reasonable but deviations are clearly visible. Thus
for fixed ϕ ≥ 4 and increasing D, 〈γ̃〉 converges to ϕ as
a power in D with exponent −1/ϕ,

ϕ− 〈γ̃〉 ∼ D−1/ϕ. (45)

Numerically we find that Eq. (44) is valid for ϕ in-
creasing with D logarithmically, see Figure 6 (d). There
we show the average horizontal extent as a function of
D for ϕ = logD. It increases logarithmically with D.
The logarithmic increase can be justified analytically by
extending Eq. (44) beyond constant ϕ. In the limit of
large enough ϕ we approximate Γ(1 + 1/ϕ) ≈ 1 and by
Stirling’s formula (ϕ!)1/ϕ ≈ ϕ/e and get

〈γ̃〉 ≈ ϕ(1−D−1/ϕ) ∼ ϕ. (46)

Thus in the limit of large ϕ the average horizontal extent
increases as ∼ ϕ ∼ logD.

D. Summary

We showed numerically and analytically that the hor-
izontal extent increases logarithmically for χ2

2 and uni-
formly distributed edge weights if ϕ ∼ logD. For con-
stant ϕ ≥ 4 and uniformly distributed edge weights the
horizontal extent increases to ϕ as ∼ ϕ − D−1/ϕ, while
〈γ̃〉 increases logarithmically for constant ϕ and χ2

2 dis-
tributed edge weights.

The difference of the dependence of the average hori-
zontal extent on ϕ between the χ2

2 and uniform distribu-
tion goes back to the difference of the right tails. When
edge weights are uniformly distributed the diagonal has
bounded support and a power-law right tail, while it has
unbounded support and an exponentially decaying right
tail for χ2

2 distributed edge weights.
Similar to the spectral gap the limiting distribution

of the horizontal extent is given by the limiting extreme
value distribution of the diagonal elements of K, under
the assumption that the largest (in magnitude) diagonal
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FIG. 7. Density of complex spacing ratios for (a) real Gini-
bre ensemble and (b)-(d) sparse Kolmogorov operators with
ϕ = 1, 2, 3. The number of states D = 104 and densities are
obtained from 102 samples. Edge weights are distributed ac-
cording to the χ2

2 distribution. The color range is from 0 to
0.8 in (a), (c), and (d) and from 0 to 260 in (b).

of K is approximating γ̃ well enough. Thus the classi-
fication of the horizontal extent with respect to weight
distributions reduces to the classifications of convergence
in extreme value theory.

VI. COMPLEX SPACING RATIOS

So far we considered the marginal distribution of eigen-
values of sparse random generator matrices. But corre-
lations between the eigenvalues are also of interest. Cor-
relations between eigenvalues of real spectra are often
quantified with the distribution of consecutive level spac-
ings or their ratios. The latter avoids the need to unfold
the corresponding spectrum [82, 83] and has been gener-
alized to complex eigenvalues in the recent work [61]. The
complex spacing ratio (CSR) of eigenvalue λ of matrix K
is defined as

z =
λNN − λ
λNNN − λ

, (47)

where λNN and λNNN denote the closest, by the Eu-
clidean distance, and second closest eigenvalue (of K) to
λ, respectively. By definition, the density of CSRs is
supported on the unit disk on the complex plane.

If eigenvalues λ are uncorrelated, the CSR density is
uniform. Eigenvalues of generic random matrix ensem-
bles are typically correlated and feature mutual repul-
sion. This leads to vanishing CSR density at z = 0 and
z = 1. According to [84], complex level spacings cat-
egorize random matrix ensembles in three universality

classes. Generic random matrices fall into one of these
classes according to their symmetries. The random gen-
erators considered in this paper have real entries so they
obey the same symmetry as real Ginibre matrices (Gi-
nOE).

In Figure 7 we show the CSR densities of (a) GinOE
members with Gaussian entries (b-d) and sparse ran-
dom generators with χ2

2 distributed edge weights and
ϕ = 1, 2, 3. The densities are estimated from 100 samples
for D = 104. We also checked that the obtained densities
are independent of the weight distribution. As suggested
in Ref. [61], we avoid eigenvalues close to the real line (by
excluding all eigenvalues from the strip Imλ < 10−14)
when sampling CSR densities.

The CSR density of GinOE matrices shown on Figure 7
(a) exhibit typical depletion at z = 0 and z = 1. In
Ref. [40], it was shown that the CSR density obtained
for dense random Kolmogorov operators agrees well with
the distribution shown in Figure 7 (a). The CSR density
of sparse generators with sparsity ϕ ≥ 2 (c,d) agrees
remarkably well with the GinOE case.

The CSR density for ϕ = 1 is anomalous, see Figure 7
(b). It has an extremely high density around z = −1
while being nearly flat on the rest of the unit disk. In
this ultimate case, the operator can be presented as

K = V · (P − 1l), (48)

where V is a diagonal matrix (with elements distributed
according to, e.g., χ2

2) and P is a circulant permutation
matrix corresponding to a cyclic unit shift. The spectrum
of P−1l lies on a circle of unit radius centered at λ = −1
and constitutes a set of equidistant roots of unity. This
spectrum is slightly deformed and split into several loops
by multiplication of P−1l with V. Away from λ = −1, V
dominates which results in the appearance of a real ’tail’;
see Fig. 8.

In graph theory terms, such a sparse random graph
fragments into a set of disjoint elementary cycle graphs.
The independence of the spectra of these cycles leads to
the flatness of the density away from z = −1, while the
elementary cycle structure of the connected components
is responsible for the CSR peak at z = −1.

To quantify the distance between CSR densities, we
use the average length 〈r〉 and the average cosine of
the angle −〈cos θ〉 of spacing ratios, where 〈. . . 〉 again
denotes the average over the random matrix ensem-
ble [61]. We numerically estimate 〈r〉GinOE ≈ 0.7379
and −〈cos θ〉GinOE ≈ 0.2347 for 100 104 × 104-matrices.
These agree well with 〈r〉 and −〈cos θ〉 for ϕ = 2 and
ϕ = 3, as shown in Table III. We found similar results
for ϕ > 3 (not shown). In contrast, the corresponding
quantities for ϕ = 1 deviate substantially from 〈r〉GinOE

and −〈cos θ〉GinOE, as also shown in Table III. We con-
clude that, for ϕ ≥ 2, correlations between eigenvalues
of sparse random Kolmogorov operators agree with cor-
relations of eigenvalues of GinOE matrices.
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GinOE ϕ = 1 ϕ = 2 ϕ = 3

−〈cos θ〉 0.7379 0.7871 0.7359 0.7372

〈r〉 0.2347 0.3516 0.2225 0.2284

TABLE III. Mean and angle of spacing ratio distributions ob-
tained with 102 samples of random 104×104 matrices rounded
to the 4th digit. The matrix ensembles correspond to the ones
shown in Figure 7.

VII. DISCUSSION

A. Summary of results

Motivated by the incapability of dense random Kol-
mogorov operators to capture spectral features of model
Markov processes, we introduced and analyzed an ensem-
ble of sparse random Kolmogorov operators. We showed
that, if the number of non-zero elements per column (and
row) ϕ increases with the matrix size D, the bulk of the
spectrum is shifted away from the stationary eigenvalue
0 in the limit of large matrix size D. This is independent
of the weight distribution, i.e. of the distribution of the
nonzero matrix elements.

In contrast, the spectral edges depend on the tails of
the weight distribution. The tails of the weight distri-
bution determine, together with ϕ, the tails of diag-
onal elements of generator matrices. We numerically
showed that the spectral edges are well approximated
by the extremes of the diagonal elements. From ex-
treme value theory it follows that for diagonal distribu-
tions with power-law left tails (this includes among others
edge weights being uniform, exponential, χ2, gamma or
beta distributed), the average spectral gap decreases as
a power-law in D for fixed ϕ, is constant for ϕ ∼ logD
and increases, whenever ϕ increases with D substantially
faster than logD.

FIG. 8. Spectrum of a random Kolmogorov operator with
ϕ = 1 and χ2

2 weight distribution. The matrix size is D = 103.
Inset: same data plotted with both axes having the same
scale.

A similar approach was used to calculate the horizon-
tal extent, given by the eigenvalue with the smallest real
part. We linked the horizontal extent to the largest diag-
onal element (in magnitude) of the generator matrix and
used extreme value theory to calculate the latter.

Finally, we showed that complex spacing ratio distribu-
tions of generator matrices with ϕ ≥ 2 follow the distri-
bution typical of Ginibre’s Orthogonal Ensemble, while
there is a strong anomaly for ϕ = 1.

B. Open questions

(1) We have introduced sparsity to model K-generators
of physical Markov processes, and have used the sparsity
to tune spectral features of the generators. There are
other ways of providing random matrices with a structure
that models physical constraints (e.g., locality). E.g., one
could consider banded matrices [85–94] or matrices with
decaying off-diagonal terms [93, 95, 96] or temperature
based models [97]. These are alternate routes to tuning
spectral features. To the best of our knowledge, gener-
ators of CTMCs with such structures have not yet been
considered.

(2) The application of extreme value theory to find the
limiting distribution of the spectral edges relied on the
observation that the spectral edges are well approximated
by the minimum and the maximum of the diagonal of the
generator matrix. By the Courant-Fisher theorem, the
extremes of the diagonal are upper and lower bounds, re-
spectively, for symmetric generators. In this case, a con-
centration of the largest eigenvalue in magnitude around
the maximum of the diagonal was shown in [71]. An an-
alytical treatment of general non-symmetric generators
and the spectral gap is to the best of our knowledge not
known. We hope that our results motivate a rigorous in-
vestigation of the connection between the spectral edges
and the diagonal of the generator matrix.

(3) Generators of CTMCs have real entries and thus
their eigenvalues are real or come in complex conjugate
pairs. In the investigation of correlations between eigen-
values, we left out real eigenvalues. The appearance of
a large number of real eigenvalues in the spectrum of
non-Hermitian matrices is a phenomenon of wide inter-
est [55, 98–107]. For real Ginibre matrices, the average
number of real eigenvalues is ∼ D−1/2 [99–101] while for
dense generators of CTMCs, it is substantially larger [55].
We observed that the fraction of real eigenvalues is larger
for small ϕ and smaller for larger ϕ (not presented). Un-
derstanding of the functional dependence of the number
of real eigenvalues for sparse CTMC generators is an in-
teresting problem.

(4) We focused on the location and extent of the bulk
spectrum as well as the spectral edges. One could in-
quire about the evolution of other features of the spec-
tral distribution as a function of sparsity, e.g., about
the envelope of the spectral distribution. In [40] the
spectral density of dense random CTMCs was described
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by the convolution of two asymptotically free matrices,
leading to the prominent spindle shape. Free probabil-
ity arguments break down for sparse random CTMCs.
Analytical tools which have been employed to calcu-
late the spectral density of sparse, random matrices in-
clude replica tricks [108–112], single defect and effec-
tive medium approximations [113–115], supersymmetry-
based techniques [116, 117] and the cavity approach
[112, 118–120]. Spectral properties of symmetric, sparse,
random CTMCs have been investigated with the cavity
method [121–123] and with supersymmetric approaches
[117]. Investigations of the spectral density of non-
symmetric sparse, random Kolmogorov operators with
the above methods might be an interesting objective.

(5) We have considered sparse generators of CTMCs
based on strongly connected, sparse random graphs. It is
an open question whether our results can be generalized
to other sparse graph ensembles. One potential avenue
to explore are directed Erdös-Renyi (dER) graphs.

In dER graphs, the probability of an edge connecting
any two vertices is 0 < p ≤ 1. For a dER graph to be
strongly connected with a high probability, the value of
p must exceed ∼ logD/D [124, 125]. As a result, the av-
erage degree of the vertices must increase logarithmically
with D to ensure strong connectivity. Consequently, the
range of constant average vertex degree and increasing
vertex number D is excluded.

Nonetheless, modifying the dER graph by enforcing a
minimum (in- and out-) degree ≥ 2 guarantees strong
connectivity with high probability [79]. Exploring the
spectral properties of CTMC generators based on dER
graphs may represent a promising next step towards gen-
eralizing our results.

(6) Finally, there is an interesting question: What
could ’sparsity’ mean in the quantum limit? Namely,
what is ’sparsity’ for Lindblad operators?

Here we start from the genetic link which allows to ob-
tain a generator of a classical (quantum) Markovian evo-
lution as a properly normalized non-probability (trace)
preserving stochastic map (channel). Eq. (3), whereM is
a no-probability-preserving map and J takes care of nor-
malization, illustrates this link in the case of Kolmogorov
operators. It seems to be intuitive that sparsity ϕ of
a stochastic matrix can be associated with rank r of a
quantum channel [126].

Thus, in the ultimate limit ϕ = r = 1, quantum ver-
sions of stochastic maps – that are permutations now –
are rank-one channels – that are unitaries. It is tempting
to extend this analogy beyond the limit ϕ = r = 1 and
state that mixed-unitary channels (convex combinations
of unitaries) are quantum versions of bistochastic matri-
ces (that are, according to Birkhoff, convex combinations
of permutations [127]).

However, there is also notion of double stochastic (or
”unital”) channels [126]. The two classes, mixed unitaries
and bistochastic channels, are not identical: there are
double stochastic channels that are outside of the convex
hull of unitaries [128]. What class to associate with clas-

sical bistochastic maps is then ’a matter of taste’ [129].
To resolve the dichotomy, one could rely on the concept of
super-decoherence [40] and state that all channels which
have classical bistochastic matrices as their fully deco-
hered versions, are quantum analogues of the matrices.
In this case the broader class of double stochastic chan-
nels is chosen [129].

The superdecoherence-based reasoning can also be ap-
plied to generators. In this case the unitary (Hamilto-
nian) part of a Lindblad operator does not play any role
since it vanishes in the limit of complete decoherence [40]
and the quantum ’sparsity’ is defined by the rank of the
dissipative part (the minimal number of jump operators).

Interestingly, Lindblad operators of ultra-low rank r =
1 were considered in Refs. [52] and [130]. Features similar
to ones we detected for ultra-sparse Kolmogorov opera-
tors were reported (e.g., the spectral gap is defined by a
real-valued outlier with position independent of D).
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Appendix A: Models in Figure 1

In the following, we denote spin creation and annihi-
lation operators as σ+ and σ−, respectively. We split
the generator matrix K into an off-diagonal matrix M
and a diagonal matrix J such that K =M−J and the
diagonal entries of J are the sums of the columns ofM.

In Figure 1 (b) we show the TASEP on a ring with
L = 12 sites and staggered hopping amplitudes. The M
matrix is given by [61]

M =
1

2
σ+
1 +

1

2
σ−1 +

L∑
j=1

pjσ
−
j σ

+
j+1, (A1)

where pj = 1 if j is even and pj = 0.2 if j is odd.
In Figure 1 (c) we show the ASEP on a chain of length

L = 12 with open boundary conditions and next nearest
neighbor hopping. The M matrix is given by

M = σ+
1 + σ−L +

L∑
j=1

σ−j σ
+
j+1 +

L/2∑
j=1

σ−2jσ
+
2j+2. (A2)

In Figure 1 (d) we show the spectrum of a single par-
ticle hopping on a 65 × 65 grid with periodic boundary
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conditions and random hopping amplitudes. TheM ma-
trix is given by

M =
∑

〈(i,j),(i′,j′)〉

p(i,j)→(i′,j′)σ
−
i,jσ

+
i′,j′ (A3)

where 〈. . . 〉 denotes summation over nearest neighbors
and p(i,j)→(i′,j′) are randomly uniformly chosen between
0 and 1 under the constraint that p(i,j)→(i′,j′) = 1 −
p(i′,j′)→(i,j). This diffusion model can of course be ex-
tended to many particles, but we choose to show the
single-particle sector here.

In Figure 1 (e) we show the spectrum of a contact pro-
cess [28] on a chain with L = 12 sites and open boundary
conditions. The master equation is generated by −H,
where H is given by

H =

L∑
i=1

Mi +

L−1∑
i=1

[niQi+1 +Qini+1] , (A4)

and

M =

(
0 −1

0 1

)
, n =

(
0 0

0 1

)
, Q =

(
1 0

−1 0

)
. (A5)

Finally, in Figure 1 (f) we show the spectrum of the
generator matrix K of a gene transcription model taken
from [20]. The following master equations model the ac-
cumulation and release of mechanical strain of DNA dur-
ing transcription. The parameters chosen for the spectral
data in Figure 1 (f) are the mRNA transcription rate
r = 2 and decay rate λ = 0.05, the maximum number
of transcripts until no further strain can be put on the
DNA mc = 10, the relaxation rate of the DNA string
g = 0.05 and a maximum number of transcription events
mmax = 400 to make the generator matrix M finite. By
m we denote the number of current transcripts and by α
the number of transcripts made since the last relaxation
event. Then for 0 ≤ m ≤ mmax and 1 ≤ α ≤ mc − 1 the
master equation reads

d

dt
Pα = −(r + g + λm)Pα(m, t) + λ(m+ 1)Pα(m+ 1, t)

+ rPα−1(m− 1, t) (A6)

while for α = 0 we have

d

dt
P0 = −(r + g + λm)P0(m, t) + λ(m+ 1)P0(m+ 1, t)

+ g

mc∑
α=0

Pα(m, t) (A7)

and for α = mc

d

dt
Pmc = −(g + λm)Pmc(m, t) + λ(m+ 1)Pmc(m+ 1, t)

+ rPmc−1(m− 1, t). (A8)

Appendix B: Sampling of sparse random generators

In order to obtain a sparse random generator matrix,
our approach involves first sampling a random directed
graph with D vertices and both in- and out-vertex de-
grees of ϕ. Subsequently, the non-zero elements of the
corresponding adjacency matrix are sampled from a com-
mon positive distribution. This procedure results in the
off-diagonal matrix M. The random Markov generator
matrix is then constructed as K = M− J , where J is
a diagonal matrix with diagonal elements equal to the
sums of the columns of M.

The random directed graph is generated by iteratively
connecting each vertex to ϕ other vertices, while rejecting
edges if the corresponding vertex already has ϕ incoming
edges. For the final vertices, it may not be feasible to con-
nect to other vertices without violating the constraint of
ϕ incoming edges for each vertex. In such cases, the en-
tire process is restarted. To mitigate the risk of restarting
the procedure, we reduce the probability of connecting to
a vertex that already has a high degree. Following this
approach, we find that we rarely need to restart the algo-
rithm for the matrix sizes and vertex degrees ϕ examined
in this study.

To compute the eigenvalues of the Markov matrices,
we utilize an exact diagonalization method, while the
Arnoldi method is employed to calculate the spectral gap.
We deem an eigenvalue to have converged once the norm
of the residuals of the Schur vectors is less than 10−12.

Appendix C: Analytical results for the bulk
spectrum

In this section, we will derive the analytical results of
the estimated mean µ(λ) in Eq. (7) and the estimated
pseudo-variance in Eq. (11) in the main text and show
that 1

D

∑
j=1 λj concentrates around its average 〈. . . 〉.

Denote by ι the function ι : {1, . . . , ϕ}× {1, . . . , D} →
{1, . . . , D}2 with ι(l, j) = (i, j) where i is the lth non-zero
index in column j inM. Note that ι(l, j) = (i, j) implies
i 6= j and l → ι(l, j) is injective for fixed j. Further, let
in this appendix the location of the bulk be denoted as

µ(λ) =
1

D

D∑
j=1

λj =
1

D
tr(K).

and the pseudo-variance as

σ2(λ) =
1

D

D∑
j=1

λ2j −

 1

D

D∑
j=1

λj

2

=
tr(K2)

D
− tr(K)2

D2
. (C1)

Here we explicitly do not include the averaging over the
matrix ensemble 〈. . . 〉 in contrast to the main text.
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1. Location

The average value with respect to 〈. . . 〉 of the location
µ(λ) can then be computed as

〈µ(λ)〉 =

〈
1

D
tr(K)

〉
=

1

D

D∑
j=1

〈Kjj〉

=
1

D

D∑
j=1

ϕ∑
l=1

〈
Kι(l,j)

〉
= −ϕµ0,

where we used that
〈
Kι(l,j)

〉
= −µ0. This is Eq. (7) in

the main text. Similar,〈
tr(K)2

〉
=

D∑
j1,j2=1

ϕ∑
l1,l2=1

〈
Kι(l1,j1)Kι(l2,j2)

〉

=

D∑
j=1

 ϕ∑
l=1

〈
K2
ι(l,j)

〉
+
∑
l1 6=l2

〈
Kι(l1,j)Kι(l2,j)

〉
+
∑
j1 6=j2

ϕ∑
l1,l2=1

〈
Kι(l1,j1)Kι(l2,j2)

〉
.

Although the off-diagonal elements of K are weakly
dependent because of the constraint that the num-
ber of non-zero elements per row and column has to
equal ϕ, the non-zero elements Kι(l,j) are indepen-

dent. Hence,
〈
Kι(l1,j)Kι(l2,j)

〉
=
〈
Kι(l1,j)

〉 〈
Kι(l2,j)

〉
and〈

Kι(l1,j1)

〉 〈
Kι(l2,j2)

〉
, so〈

tr(K)2
〉

= Dϕ(σ2
0 + µ2

0) +Dϕ(ϕ− 1)µ2
0 +D(D − 1)ϕ2µ2

0

= Dϕσ2
0 + (Dϕµ0)2,

where we used that the second moment
〈
K2
ι(l,j)

〉
equals

σ2
0 + µ2

0. This implies that〈
µ(λ)2

〉
− 〈µ〉2 =

〈
tr(K)2

D2

〉
−
〈

tr(K)

D

〉2

=
ϕσ2

0

D
.

The right-hand side vanishes for increasing D and ϕ
growing slower with D than linear. Relatively to 〈µ(λ)〉
the typical deviation of µ(λ) from its average value al-
ways vanishes for either increasing D or ϕ, as√

〈µ(λ)2〉 − 〈µ〉2
| 〈µ(λ)〉 |

=
σ0
µ0

(ϕD)
−1/2

.

2. Complex pseudo-variance

The first term in the averaged pseudo-variance given
by Eq. (C1) can be calculated as

〈
tr(K2)

〉
=

D∑
i,j=1

〈KijKji〉

=

D∑
i=1

〈K2
ii〉+

∑
i6=j

〈KijKji〉. (C2)

We proceed with
∑D
i=1〈K2

ii〉 in Eq. (C2) and get

D∑
i=1

〈
K2
ii

〉
=

D∑
i=1

〈−∑
j 6=i

Kji

2〉

=

D∑
i=1

∑
j,l 6=i

〈KjiKli〉

=

D∑
i=1

∑
j 6=i

〈K2
ji〉+

D∑
i=1

∑
j,l 6=i;j 6=l

〈Kji〉〈Kli〉 .

(C3)

The former sum in Eq. (C3) is given by

D∑
i=1

∑
j 6=i

〈K2
ji〉 =

D∑
i=1

ϕ∑
l=1

〈K2
ι(l,i)〉 = Dϕ(σ2

0 + µ2
0), (C4)

where again we used that 〈K2
ι(l,i)〉 = σ2

0 + µ2
0, while the

latter sum in Eq. (C3) is

D∑
i=1

∑
j,l 6=i;j 6=l

〈Kji〉〈Kli〉

=

D∑
i=1

ϕ∑
k=1

ϕ∑
n=1;ι(n,i)6=ι(k,i)

〈Kι(k,i)〉〈Kι(n,i)〉

= Dϕ(ϕ− 1)µ2
0. (C5)

Combining Eq. (C4) and Eq. (C5) we get

D∑
i=1

〈
K2
ii

〉
= Dϕ(σ2

0 + µ2
0) +Dϕ(ϕ− 1)µ2

0

= Dϕσ2
0 +Dϕ2µ2

0.

Now, we are left with calculating
∑
i 6=j〈KijKji〉, the sec-

ond term in Eq. (C2),

∑
i 6=j

〈KijKji〉 =

D∑
i=1

ϕ∑
l=1

〈
K
ι(l,i)

Mι(l,i)

〉
,

where the ι denotes swapping the first and second com-
ponent. Note that K

ι(l,i)
is not necessarily a non-zero en-

try of K, hence K
ι(l,i)

and Kι(l,i) depend weakly on each

other. In the large D limit we can assume that the depen-
dence is sufficiently weak and we treat K

ι(l,i)
and Kι(l,i)

as independent, thus
〈
K
ι(l,i)

Kι(l,i)

〉
= µ0

〈
K
ι(l,i)

〉
. By

the assumed independence the mean of every entry in the

ith row, except the diagonal, is
〈
K
ι(l,i)

〉
= ϕ

Dµ0. Hence,

∑
i 6=j

〈KijKji〉 =

D∑
i=1

1

D
ϕ2µ2

0 = ϕ2µ2
0.
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Collecting the above results we arrive at

〈
tr(K2)

〉
= Dϕσ2

0 +Dϕ2µ2
0 + ϕ2µ2

0

= Dϕσ2
0 + (D + 1)ϕ2µ.0

The second term of the averaged pseudo-variance in
Eq. (C1) has been calculated in the previous subsection,

〈
tr(K)2

〉
= Dϕσ2

0 + (Dϕµ0)2

Finally, we can evaluate

〈
σ2(λ)

〉
=

〈
tr(K2)

D

〉
−
〈

tr(K)2

D2

〉
= ϕσ2

0 + ϕ2µ2
0 +

1

D
ϕ2µ2

0 −
1

D
ϕσ2

0 − ϕ2µ2
0

= ϕ

(
σ2
0 +

ϕ

D
µ2
0 −

1

D
σ2
0

)
,

which is Eq. (11) in the main text.

Appendix D: Bound of spectral gap for symmetric M

In this section, we give the proof of Eq. (19). Let K =
M− J be a symmetric generator matrix. By Eq. (17)
we have to show that vtKv ≤ min1≤l≤D Jll + O

(
D−1

)
for the vector v given

vi =


√

1− 1
D i = l

− 1√
D(D−1)

i 6= l,

where 1 ≤ l ≤ D is arbitrary. It is easy to see that |v| = 1
and v ⊥ v1. So we proceed with

γ∗ ≤ vt(J −M)v =

D∑
i,j=1

vivj(J −M)ij

=

D∑
i=1

v2jJjj −
D∑

i,j=1

vivjMij

=

D∑
i,j=1

v2jMij −
D∑

i,j=1

vivjMij

=

D∑
i,j=1

vjMij(vj − vi). (D1)

Note that any summand in Eq. (D1) where either i =
j = l or i 6= l and j 6= l is zero. Inserting the definition
of v we get

γ∗ ≤
∑
i 6=l

vlMil(vl − vi) +
∑
j 6=l

vjMlj(vj − vl)

=
∑
i 6=l

√
1− 1

D
Mil

(√
1− 1

D
+

1√
D(D − 1)

)

−
∑
j 6=l

1√
D(D − 1)

Mlj

(
− 1√

D(D − 1)
−
√

1− 1

D

)

=

(√
1− 1

D
+

1√
D(D − 1)

)

×
∑
i 6=l

[√
1− 1

D
Mil +

1√
D(D − 1)

Mli

]
. (D2)

After collecting all the prefactors in Eq. (D2) the spectral
gap is upper-bounded by

γ∗ ≤
∑
i6=l

[
Mil +

1

D − 1
Mli

]
= Jll +

1

D − 1
J̃ll,

where we denote J̃ll =
∑
i6=lMil. As the number of non-

zero elements ofM in every row and column is the same,
the distribution of Jll and J̃ll coincide. In the limit of
large D, Jll and J̃ll are independent. Thus we can ap-
proximate γ∗ ≤ Jll + O

(
D−1

)
at least for ϕ � D. As

the index l was chosen arbitrarily we get

γ∗ ≤ min
1≤l≤D

Jll +O
(
D−1

)
,

which is Eq. (19) in the main text.
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Markov generators on sparse random graphs, Commu-
nications on Pure and Applied Mathematics 67, 621
(2014).

[57] L.-H. Gwa and H. Spohn, Bethe solution for the
dynamical-scaling exponent of the noisy Burgers equa-
tion, Physical Review A 46, 844 (1992).

[58] D. Kim, Bethe ansatz solution for crossover scaling func-
tions of the asymmetric XXZ chain and the Kardar-
Parisi-Zhang-type growth model, Physical Review E 52,
3512 (1995).

[59] O. Golinelli and K. Mallick, Bethe ansatz calculation of
the spectral gap of the asymmetric exclusion process,
Journal of Physics A: Mathematical and General 37,
3321 (2004).

[60] O. Golinelli and K. Mallick, Spectral gap of the totally
asymmetric exclusion process at arbitrary filling, Jour-
nal of Physics A: Mathematical and General 38, 1419
(2005).
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