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We have developed a theory of parametric photon generation in the waveguides coupled to ar-
rays of quantum emitters with temporally modulated resonance frequencies. Such generation can
be interpreted as a dynamical Casimir effect. We demonstrate numerically and analytically how
the emission directionality and photon-photon correlations can be controlled by the phases of the
modulation. The emission spectrum is shown to be strongly dependent on the anharmonicity of the
emitter potential. Single- and double-excited state resonances have been identified in the emission
spectrum.

I. INTRODUCTION

Waveguide quantum electrodynamics, describing pho-
ton interaction with arrays of emitters coupled to the
waveguide, is now rapidly developing [1–3]. This plat-
form allows controllable generation of quantum light [4],
and control over lifetimes [5] and entanglement [6, 7]
of coupled atom-photon excitations. Even more possi-
bilities are opened in the structures with the parame-
ters dynamically modulated in time [8]. This enables
Floquet engineering and realization of synthetic dimen-
sions [9, 10] as well as control of quantum photon-photon
correlations [11, 12]. Such time modulation has been re-
cently demonstrated, for example, for the superconduct-
ing transmon emitter platform [13].

One more fundamental physical effect, that becomes
possible in the dynamically modulated structures, is the
parametric generation of photon pairs. Such generation
can be also interpreted as a dynamical Casimir effect.
This effect has been first proposed for the cavity with a
moving wall [14]. To the best of our knowledge, it has
been never directly observed in this setup so far, because
of the extremely low photon generation rate at realistic
parameters, see the review [15]. However, there also
exist generalized dynamical Casimir effects, where other
electromagnetic properties of the medium are changing
instead of physical movement of the mirror in space. For
example, parametric photon generation due to electron-
hole plasma generated and moving in a semiconductor
under the laser pulse excitation has been theoretically
considered in Ref. [16]. A seminal observation of an ana-
logue of the dynamical Casimir effect in a superconduct-
ing circuit was made in Ref. [17]. The effective length
of the transmission line has been modulated by changing
the inductance of a superconducting quantum interfer-
ence device. A detailed theoretical analysis of such sys-
tems has been performed in Refs. [18, 19]. Two-photon
entanglement in this setup has been experimentally stud-
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ied in Ref. [20]. However, the consideration has been lim-
ited to the case when the modulated elements were not
resonant for the generated photons. Dynamical Casimir
effect in the arrays of resonant modulated emitters is not
yet explored. The resonant structures could potentially
allow one to selectively enhance the photon generation
and control the correlations between them. Recently,
a theory of dynamical Casimir effect in the general dy-
namically modulated photonic structures has been put
forward in Ref. [21]. However, considered setup did not
include two-photon interactions, essential for the emitter
platform.

Here, we consider a parametric photon generation by
an array of emitters with strongly dynamically modu-
lated resonant frequencies, coupled to the waveguide. In
such a system there exist resonances for generated pho-
tons and photon pairs near the single- and double-excited
levels of the emitters. Our goal is to explore the role of
the various collective emitter resonances for the intensity,
directionality and the quantum correlations between the
emitted photons.

The rest of the paper is organized as follows. Our the-
oretical model and calculation approach, based on the

FIG. 1. Scheme of the structure under consideration. The
array of emitters with modulated in time resonant frequencies
is coupled to a waveguide.
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master equation, are presented in Sec. II. We discuss the
numerical and analytical results for a single emitter in
Sec. III. The arrays with N > 1 emitters are consid-
ered in Sec. IV and the main results are summarized in
Sec. V. Appendix B presents an equivalent alternative
Green-function-based diagrammatic approach to calcu-
late the photon emission intensity and the photon-photon
correlation functions. Analytic results obtained by this
approach for a particular case ofN = 2 emitters are given
in Appendix C.

II. MODEL

The structure under consideration is schematically il-
lustrated in Fig. 1. It consists of N periodically spaced
emitters in the one-dimensional waveguide. The resonant
frequencies of the emitters are modulated in time with
the modulation frequency Ω. The Hermitian part of the

system Hamiltonian can be written as H = H0+
∑N

j Vj ,

where (ℏ = 1)

H0 =

N∑
j=1

(
ω0a

†
jaj +

U

2
a†ja

†
jajaj

)
+

N∑
j,k=1

Re(Djk)a
†
jak

(1)
is the unperturbed Hamiltonian and aj are the bosonic
annihilation operators for the emitter excitations, located
at the point xj = d(j − 1). The first term of Eq. (1) de-
scribes the structure of the emitter energy levels which
is shown in the red frame in Fig. 1 (first three levels) for
t = 0. The energy of the first excited level is ω0 while
the second excited level has energy 2ω0+U assuming the
anharmonicity U ≪ ω0. The radiative coupling and col-
lective decay of the emitters are described by the photon
Green function

Djk = −iγ1De
iω0|xj−xk|/c , (2)

where γ1D is the radiative decay rate of a single emit-
ter. The coupling is long-ranged since it is mediated by
photons, propagating into the waveguide [1]. The pertur-
bation responsible for modulating the frequency of each
emitter reads

Vj = gj(a
†
j + aj)

2 cos(Ωt+ φj) . (3)

Here, gj and φj are the amplitude and the phase of the
modulation, respectively. The time evolution of the sys-
tem is described by the master equation [1, 11]

ρ̇ = −i[H, ρ] +

N∑
j,k=1

γjk(2ajρa
†
k − a†jakρ− ρa†jak) , (4)

where γjk = − Im(Djk) + δjkγ and γ is the nonradia-
tive decay rate. Such system, with the anharmonicity
term and the parametric driving, can be experimentally

realized in the microwave spectral range by supercon-
ducting quantum LC circuits, where the Josephson junc-
tions are used as nonlinear inductance [22]. Such sys-
tems are now widely used as superconducting qubits, see
the review [23] and their parameters satisfy the regime
ω0 ≫ U ≫ γ1D ≫ γ considered here. For example,
the parameters of Ref. [5] correspond to ω0 ≈ 7 GHz,
U ∼ 0.2 GHz, γ1D ≈ 0.03 GHz, γ ∼ 10−3GHz.

III. SINGLE EMITTER

We start by considering a single emitter coupled to a
waveguide. We are interested in the weak driving regime
when g ≪ γ1D. In this case, to find the observable quan-
tities, it is sufficient to restrict the consideration to a
three-level emitter. The method of finding the station-
ary density matrix (solution of Eq. (4) for γ1Dt ≫ 1)
is described in Appendix A. The total photon emission
rate reads 2γ1DI1, i.e., is determined by the number or
emitter excitations

I1 = Tr(ρ0a
†a) (5)

=
4g2(Ω2 + (U + 2ω0)

2 + 4γ2Σ)

[4γ2Σ + (Ω− U − 2ω0)2][4γ2Σ + (Ω + U + 2ω0)2]
,

and their radiative decay rate. Here, ρ0 is time-averaged
density matrix of the emitter and γΣ = γ1D + γ (see Ap-
pendix A1). The highest intensity is achieved when the
modulation frequency is in resonance with the transition
between the ground level and the second excited level of
the emitter, Ω = 2ω0 + U .
Another important characteristic is the spectrum of

the photon emission. It can be found using the quan-
tum regression theorem as described in Appendix A 2.

FIG. 2. (a) Emission spectrum S of one emitter as a function
of the modulation frequency Ω and the emission frequency
ω. Spectrum is calculated using the density matrix method
described in Appendix A2. The calculation parameters are
ω0/γ1D = 200, g/γ1D = 0.1, U/γ1D = 10, γ = 0. The black
line on the panel (b) shows the emission spectrum obtained
as the cross section of the density plot (a) for Ω = 2ω0 + U
and the red dashed line shows the spectrum for the same
parameters obtained using the diagrammatic approach.
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FIG. 3. The photon emission intensity to the left I− = ⟨p†−p−⟩
for two emitters as a function of a distance between the emit-
ters d and the modulation frequency Ω. Calculations have
been performed in the case of symmetric modulation (φ = 0)
for (a) U/γ1D = 1, (b) U/γ1D = 4, (c) U/γ1D = 10 and (d) an-
tisymmetric modulation (φ = π) for U/γ1D = 10. Other cal-
culation parameters are ω0/γ1D = 200, g/γ1D = 0.1, γ/γ1D =
0.1. Gray lines represent the double-excited eigenstates. Red
dotted lines show the intensity minima.

The result of the calculation according to Eq. (A15) is
shown in Fig. 2 As mentioned above, the maximum in-
tegral intensity is reached at the modulation frequency
Ω = 2ω0 + U . The emission spectrum consists of two
peaks, one at the frequency ω0, which corresponds to the
transition between the ground and first excited levels of
the emitter, and the other peak at the frequency Ω−ω0.
This reflects the fact that the photons are born and emit-
ted in pairs with the average energies ω0 and Ω−ω0, i.e.
with the total energy Ω. The spectrum for the resonant
modulation frequency obtained with the density method
is shown by the black line in panel (b). The diagram-
matic approach (Appendix B) yields the spectrum

S(ω) =
2g2γ1D

[(Ω− 2ω0 − U)2 + 4γ21D]
(6)

×
[
(Ω− 2ω0)

2 + 4γ21D
]

[(ω − ω0)2 + γ21D] [(ω − Ω+ ω0)2 + γ21D]
,

which is shown by the red dashed line and as we can see
it perfectly agrees with the black line.
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FIG. 4. The photon emission intensity to the left I− for a
pair of emitters as a function of the distance d and the mod-
ulation phase φ for the modulation frequency Ω = 2ω0 + U
and different U indicated in the figure. Calculation has been
performed for g/γ1D = 0.1, ω0/γ1D = 200 and γ/γ1D = 0.05.

IV. EMITTER ARRAYS

We now proceed to the discussion of the paramatric
generation from emitter arrays.

A. N = 2 emitters

We start with the case of just a pair of emitters. We
assume that the coupling constants are equal, g1 = g2 =
g, and that the phases are φ1 = 0, φ2 = φ. Unlike the
case of a single emitter, this system can emit directionally
because of the interference between photons from the first
and the second emitter.
The photons travelling in the left (right) direction are

coupled to the combination of the emitters lowering op-
erators p∓ = a1+a2e

±iqd, where qd ≡ ω0d/c is the phase
gained by the photon as it travels between the two emit-
ters. The photon emission intensity to the left is deter-

mined by I− = Tr(ρ0p
†
−p−) [1] and can be obtained by

using the stationary density matrix (Appendix A).
Figure 3 presents the calculation of I− for the three

values of the parameter U/γ1D. Panels (a), (b) and (c)
correspond to the case of symmetric modulation, when
both emitters are excited in phase (φ = 0). In this case,
we can see that the sharp intensity minima appear in
the vicinity of red dotted lines which correspond to dark
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FIG. 5. The second order correlation function for a pair
of emitters in the case of (a) symmetric (φ = 0) and (b)
antisymmetric (φ = π) modulation. Calculation has been
performed for the following set of parameters: U/γ1D = 10,
ω0/γ1D = 200, g/γ1D = 0.1, γ/γ1D = 0.1.

single-excited states. The highest intensity is achieved
when the modulation frequency is close to the real parts
of the energies of the certain double-excited eigenstates
(gray lines). The latter are found by diagonalizing the
non-Hermitian two-photon HamiltonianH⊗1+1⊗H+U ,
where H and U are defined in Appendix B. For in-phase
modulation the intensity is enhanced near symmetric
states in terms of emitter permutation, whose energies
are

ε1,2 = 2ω0 − 2iγ1D +
U

2
± 1

2

√
U2 − 16γ21De

2iqd (7)

If U/γ1D < 4 [panel (a)], the energies of the three
eigenstates are close and intersect when ω0d/c is var-
ied. As U/γ1D is increased, at a certain threshold [panel
(b), U/γ1D = 4] the symmetric states are rearranged
into two isolated bands, and that get separated by the
gap of U for large U/γ1D [panel (c)]. The upper state

≈ (a†1a
†
1+a

†
2a

†
2)|0⟩ has the energy Re ε1 ≈ 2ω0+U which

is almost independent of the distance d, but the lower
band (with the energy Re ε2 ≈ 2ω0) is mainly formed by
the states that comprise pair of excitations in different

emitters, a†1a
†
2|0⟩. Such states cannot be excited by the

perturbation operator Eq. (3), that includes the products

of operators two a†j with the same j only. Therefore, the
emission intensity near the lower band is quenched, see
also Appendix C for the complete analytical expression.
The case of out of phase modulation (φ = π) is shown in
the panel (d). Here, we see no minima at the frequency
of dark single-excited states and the overall dependence
on distance d is rather weak, because the energy of anti-

symmetric state (a†1a
†
1−a

†
2a

†
2)|0⟩ does not depend on the

distance and is equal to 2ω0+U . The maximum intensity
is observed near this frequency.

The dependence of the emission on the modulation
phase is shown in more detail in Fig. 4, which presents
the calculation of I− for the modulation frequency Ω =
2ω0 + U that corresponds to the resonance for a single

emitter. In the case of U/γ1D = 1 [panel (a)] the maxi-
mum is observed at ω0d/c ≈ π which corresponds to the
resonance with a double-excited eigenstate, cf. Fig. 3(a).
As the ratio U/γ1D increases, the structure of I− be-
comes more smooth along the d axis, due to the decreas-
ing dependence of the eigenstates on the distance d. In
contrast, the dependence of I− on φ becomes more pro-
nounced, see Fig. 3(b)-(d). Note that the photon emis-
sion intensity to the right I+ can be obtained by flipping
the sign of φ. The obtained maps, especially Fig. 3(b),
are highly asymmetric with respect to this operation,
which indicates the high directivity of the emission. In
the case U/γ1D ≫ 1, which is shown in panel (d), the
answer can be obtained analytically. At Ω = 2ω0+U , we
can neglect the state when different emitters are excited
simultaneously. Then, we find

I− = I1

[
2 +

sinφ sin(2ω0d/c)

3− cos(2ω0d/c)

]
(8)

in the absence of the nonradiative decay rate γ = 0,
see also Appendix C. The second term in the right-hand
side of Eq. (8) describes the interference between the
photon pairs generated by the two emitters. Impor-
tantly, the interference term is odd in φ, thus its con-
tribution is opposite for I− and I+ which results in a
directional emission. The maximal degree of directiv-
ity (I− − I+)/(I− + I+) =

√
2/8 ≈ 0.18 is achieved for

φ = π/2 and ω0d/c = arctan(2
√
2)/2 ≈ π/5. The in-

tensity reduction in the corners of the panels in Fig. 4 is
out of the scope of Eq. (8) and explained by the finite
nonradiative decay that was taken into account in the
calculation.
We also present in Fig. 5 the (unnormalized) photon-

photon correlation function G
(2)
−− = ⟨p†−p

†
−p−p−⟩ for

symmetric [panel (a)] and antisymmetric [panel (b)] mod-
ulation of the emitters. The calculation demonstrates
that the largest values of G

(2)
−− are achieved at the two-

photon resonance Ω = 2ω0 + U . In order to explain
the calculated dependence of the correlation function on
the distance between the emitters d we have obtained
an analytical expression similar to Eq. (8) and valid for
U/γ1D ≫ 1 ,

G
(2)
−− = I1 [1 + cos(2ω0d/c− φ)] , (9)

see also Appendix C. The simple form of Eq. (9) describes
the interference of the two independent coherent sources
separated by distance d and emitting with the phase dif-
ference φ. The fact that the two-photon emission and
detection is considered is accounted by the factor of 2 in
the phase 2ω0d/c that the photon pair gains when trav-
elling the distance d. If the emitters are modulated in
phase (φ = 0), the maxima of Eq. (9) are realized for
the periods when ω0d/c = 0, π, 2π etc. The out-of-phase
modulation, when φ = π corresponds to the maxima at
ω0d/c = π/2, 3π/2 . . .. This agrees with the numerical
calculations in Fig. 5. For symmetric modulation there
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FIG. 6. (a) The second order correlation function for an ar-
ray of four emitters in the case of frequency modulation of the
first emitter only. Panel (b) displays the area highlighted with
a green square on the panel (a). Red dotted curves present
the real parts of the energies of double-excited states. Calcu-
lation has been performed for the following set of parameters:
ω0/γ1D = 200, U/γ1D = 10, g/γ1D = 0.1, γ/γ1D = 0.

exists also an additional minimum in Fig. 5(a), corre-
sponding to a strong antibunching. According to our an-
alytical expression Eq. (C2), this minimum corresponds
to the frequency Ω = 2ω0−2γ1D tan qd. The correspond-
ing expression is shown by a red dotted line in Fig. 5(a)
and well describes numerical results.

B. N = 4 emitters

We have also calculated the two-photon correlation
function for a larger array with N = 4 emitters. This
is the minimum emitter number required to have double-
excited subradiant states [5, 24, 25]. Such states have
long radiative lifetime because of the destructive inter-
ference in the spontaneous photon emission processes.
They exist for ω0d/c ≪ 1 (or |ω0d/c − π| ≪ 1), and
their lifetime is enhanced by the factors on the order of
1/(ω0d/c)

2 (1/|ω0d/c − π|2). Hence, we can expect ap-

pearance of additional sharp spectral features in G
(2)
−− for

N = 4 due to the double-excited subradiant states. The
corresponding color plots of calculated G

(2)
−− are shown

in Fig. 6. Correlation function G
(2)
−− has maxima around

Ω = 2ω0+U , similarly to the case of N = 2 emitters. As
expected, there also appear minima at Ω ≈ 2ω0 when the
distance between the emitters is either small or close to
cπ/ω0. The map of G

(2)
−− in the region of small ω0d/c is

shown in pannel (b) in detail. One can see that on top of
the smooth minimum two sharp maxima appear [see two
lower dotted lines in Fig. 6(b)]. Their position matches
the energies of the two subradiant states 2ω0−2γ1Dω0d/c
and 2ω0 − (14/3)γ1Dω0d/c [24].

V. SUMMARY

To summarize, we have developed a general theory of
parametric photon generation from arrays of emitter cou-
pled to the waveguide, that are modulated in time. Using
the two independent approaches, the master equation for
the density matrix and the diagrammatic Green-function
technique, we have studied the dependence of the photon
emission spectrum and photon-photon correlation func-
tions on the anharmonicity of the emitter potential U ,
the distance between the neighboring emitters and the
relative modulation phase φ.

The calculated emission spectrum is very sensitive to
the emitter anharmonicity parameter. The anharmonic-
ity controls the relative weight of the spectral features
around the single- and double-excited emitter resonances.
The latter become more prominent with the increase
of the anharmonicity. When the number of emitters is
N = 4 or larger, additional sharp spectral features, corre-
sponding to the double-excited subradiant states, appear
in the spectrum. We have also shown that the inter-
ference between photons emitted from different emitters
can be controlled by relative phases of their frequency
modulation. Our calculation demonstrates how this can
be used to obtain directional photon pair emission, sim-
ilarly as it happens for non-parametric quantum photon
sources [13, 26, 27].

We hope that our results will be useful for engineering
the parametric quantum emission from the waveguide-
coupled emitter arrays. A potentially interesting future
research direction could be the system, where the spa-
tial position of the light emitters, rather than their res-
onance frequency, oscillates in time. This would mean
generalization of our concept of optomechanical Kerker
effect [28], that is motion-induced direcitonal emission,
to the quantum optics regime.
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Appendix A: Master equation approach

In order to find a stationary solution for the density
matrix, we represent ρ as a vector ρ according to the
rule ρn(i−1)+j = ρij for n × n matrix ρ. Then Eq. (4)
can be written as

ρ̇ = Lρ+
1

2

(
VeiΩt − V∗e−iΩt

)
ρ , (A1)
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where the operators L and V read

L = −i(H0 ⊗ 1− 1⊗H0) (A2)

+

N∑
j,k=1

γjk(2aj ⊗ ak − a†jak ⊗ 1− 1⊗ a†kaj) ,

V = −i

N∑
j=1

gje
iφj

(
(a†j + aj)

2 ⊗ 1− 1⊗ (a†j + aj)
2
)
,

and the symbol ⊗ denotes the Kronecker product. We
solve Eq. (A1) for γ1Dt ≫ 1, assuming that at t = 0 the
modulation is turned on. Representing the density ma-
trix in the form of a Fourier series ρ(t) =

∑
n e

−inΩtρn,
leaving only the harmonics with n = −1, 0, 1 and sub-
stituting it into Eq. (A1) we obtain the harmonics with
n = ±1 and a system of equations for the zero harmonic
of the density matrix

ρ−1 = −1

2
(L − iΩ)−1Vρ(0) , (A3)

ρ1 =
1

2
(L+ iΩ)−1V∗ρ(0) , (A4)

Lρ0 = −1

4

(
V (L+ iΩ)

−1 V∗ + V∗ (L − iΩ)
−1 V

)
ρ(0) .

(A5)

Here, a vector ρ(0) =
(
1 0 . . . 0

)
corresponds to the

initial vacuum state.

1. Emission of a single emitter

In weak modulation regime g ≪ γ1D, we can restrict
the consideration to only the first three levels of the emit-
ter and take the annihilation operator in the form

a =

0 1 0

0 0
√
2

0 0 0

 . (A6)

We get linear in g harmonic with n = −1 from Eq. (A3)
with non-zero elements

(ρ−1)13 =
g√

2 [(Ω− 2ω0 − U)− 2iγΣ]
, (A7)

(ρ−1)31 = − g√
2 [(Ω + 2ω0 + U)− 2iγΣ]

,

and from Eq. (A4) we get ρ1 = ρ†−1. The solution of
Eq. (A5) yields non-zero elements of the quadratic in g
zero harmonic

(ρ0)13 = − g2√
2(Ω2 + (2γΣ − i(U + 2ω0))2)

, (A8)

(ρ0)22 = 2g2

× (4γ2Σ +Ω2 + (U + 2ω0))

[4γ2Σ + (Ω− 2ω0 − U)2] [4γ2Σ + (Ω + 2ω0 + U)2]
,

(ρ0)31 = (ρ0)
∗
13 , (ρ0)33 =

1

2
(ρ0)22 .

The stationary density matrix enables us to calculate the
emission intensity. Note that the harmonics with n = ±1
do not contribute to the intensity

I1 = ⟨a†a⟩ = ⟨Tr(ρ(t)a†a)⟩t (A9)

=Tr(ρ0a
†a) = (ρ0)22 + 2(ρ0)33 .

This yields Eq. (5) in the main text.

2. Emission spectrum of a single emitter

We define emission spectrum as

S(ω) = 2
Ω

2π
Re

∫ 2π/Ω

0

dt′
∫ ∞

0

dτ e−iωτ ⟨a†(t′ + τ)a(t′)⟩ .

(A10)
The integration over t′ is performed over the period 2π/Ω
since the perturbation is periodic. According to the
quantum regression theorem [29]

S(ω) = 2
Ω

2π
Re

∫ 2π/Ω

0

dt′
∫ ∞

0

dτ e−iωτ Tr(a†ρa(t′ + τ)) ,

(A11)
where ρa(t) satisfies Eq. (A1) with the initial condition
ρa(t = t′) = aρ(t′) which can be represented in the inte-
gral form as

ρa(t′ + τ) = eLτρa(t′) (A12)

+

∫ τ

0

dτ ′eL(τ−τ ′)F(t′ + τ ′)ρa(t′ + τ ′) ,

where the perturbation F(t) = 1
2

(
VeiΩt − V∗e−iΩt

)
and

initial ρa(t′) = aρ0 + aρ−1e
iΩt′ + aρ1e

−iΩt′ . Then up to
the second order in g, it reads

ρa(t′ + τ) = eLτρa(t′) (A13)

+

∫ τ

0

dτ ′eL(τ−τ ′)F(t′ + τ ′)eLτ ′
(
ρa
−1e

iΩt′ + ρa
1e

−iΩt′
)
.

Performing averaging over t′ and considering that V∗ =
−V for a single emitter we get

⟨ρa(t′ + τ)⟩t′ = eLτρa
0 (A14)

+
1

2

∫ τ

0

dτ ′eL(τ−τ ′)VeLτ ′
(
ρa
−1e

−iΩτ ′
+ ρa

1e
iΩτ ′

)
.

This enable us to get the emission spectrum

S(ω) = 2Re

∫ ∞

0

dτ e−iωτ Tr(a†⟨ρa(t′ + τ)⟩t′) . (A15)

The result of the calculation according to Eq. (A15) is
shown in Fig. 2.
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Appendix B: Diagrammatic approach

In case of weak modulation, only the states with small
number of excitations are populated. They can be de-
scribed in the framework of perturbative diagrammatic
approach. The consideration generalizes the results of
Refs. [24, 30, 31] and also Ref. [32] for the structures,
modulated in time. Somewhat similar consideration for
time-modulated structures is also available in Ref. [11],
but that work does not consider parametric photon gen-
eration.

The diagram representing the (not normalized) wave-
function of the generated photon pair is shown in
Fig. 7(a). The dashed line represents the modulation
that creates a pair of emitter excitations (solid lines).
Then, the excitations propagate in the structure, which
is described by the Green functions (solid lines). The ex-
citations can either get converted to the photons directly
(first diagram) or interact and get converted to photons
after that (second diagram). For the case when both
photons are emitted in the left direction this yields

ψ−−(ω1, ω2) =γ1D
∑
ij

s+i (ω1)s
+
i (ω2)[1 + (MΣ)ij ]gj

× 2πδ(ω1 + ω2 − Ω) . (B1)

Here, the Green function of single excitation reads

G(ω) = (ω −H)−1, Hij = ω0δij +Dij , (B2)

the outer lines of the diagrams correspond to

s+i (ω) =
∑
j

Gij(ω)e
iqzj =

eiqz1

iγ1D

(
ω0 −H

ω −H

)
1i

, (B3)

and the propagation of a pair of excitations is described
by

Σij(Ω) = i

∫
Gij(ω)Gij(Ω− ω)

dω

2π
. (B4)

The dressed interaction vertex M can be determined
from the Dyson-like equation shown diagrammatically in
Fig. 7(b), which yields

M(Ω) = [U−1 − Σ(Ω)]−1 . (B5)

Substituting this into Eq. (B1) we finally obtain

ψ−−(ω1, ω2) =
γ1D
U

∑
ij

s+i (ω1)s
+
i (ω2)Mijgj

× 2πδ(ω1 + ω2 − Ω) . (B6)

The integration in Eq. (B4) can be performed explic-
itly, which yields a compact expression for theM matrix:

Mij(Ω) =

[
Ω−H ⊗ 1− 1⊗H

Ω−H ⊗ 1− 1⊗H − U
U
]
ii,jj

(B7)

where (A ⊗ B)ij,kl ≡ AikBjl,
A
B ≡ AB−1 and we intro-

duced the diagonal N2 ×N2 matrix Uij,kl = δijδklδikU .

FIG. 7. (a) Diagrams representing the amplitude of two-
photon generation by modulated emitters. Dashed line rep-
resents the modulation, solid lines are the Green functions of
emitter excitations, wavy lines are the outgoing photons. (b)
The diagrammatic equation for the dressed vertex (solid cir-
cle) that describes the interaction of two emitter excitations.
Open circle represents the bare vertex corresponding to the
interaction amplitude U .

1. Correlation function

The second-order correlation function of the emitted
photon pair is calculated as

G
(2)
−−(τ) =

1

γ21D

∣∣∣∣∫ ψ−−(ω1, ω2)e
−iω1t−iω2(t+τ) dω1dω2

(2π)2

∣∣∣∣2 .
(B8)

At zero delay we use the representation Eq. (B7) to ob-
tain

G
(2)
−−(0) =

1

γ41D

∣∣∣∣∣∑
i

[
(ω0 −H)⊗ (ω0 −H)

Ω−H ⊗ 1− 1⊗H − U

]
11,ii

gi

∣∣∣∣∣
2

(B9)

In the limit U ≫ γ1D and for |Ω− 2ω0 −U | ≲ γ1D, we
keep in the denominator of Eq. (B9) only the diagonal
terms and find

G
(2)
−−(0) =

∣∣∣∣∑
i

gi e
2iqzi

∣∣∣∣2
(Ω− 2ω0 − U)2 + 4γ21D

, (B10)

where we used (ω0 −H)1i = iγ1De
iq(zi−z1).

For |Ω− 2ω0| ∼ γ1D, the result is

G
(2)
−−(0) =

1

U2

∣∣∣∣∣∣
∑
ij

Σ+
i (Ω)[Σ

−1(Ω)]ijgj

∣∣∣∣∣∣
2

, (B11)

where

Σij(Ω) =

[
1

Ω−H ⊗ 1− 1⊗H

]
ii,jj

, (B12)

Σ+
i (Ω) =

1

γ21D

[
(ω0 −H)⊗ (ω0 −H)

Ω−H ⊗ 1− 1⊗H

]
11,ii

. (B13)
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2. Emission intensity

We define the intensity of emission to the left as

I− =

∫ [
|ψ−−(ω1, ω2)|2 + |ψ−+(ω1, ω2)|2

] dω1dω2

γ1DT (2π)2
,

(B14)

where T is the normalization time and ψ−+ is the wave
function of a pair of photons emitted in the opposite di-
rections. The latter is obtained from Eq. (B1) by replac-
ing the factor s+j (ω2) with s

−
j (ω2) =

∑
iGij(ω)e

−iqzi .

Using the representation Eq. (B7), we get∫
|ψ−−(ω1, ω2)|2 dω1dω2

T (2π)2 =
1

iγ21D

∑
ij

gig
∗
j

[ (ω0 −H1)(ω0 −H2)(ω0 −H∗
3 )(ω0 −H∗

4 )

(Ω−H1 −H∗
4 )

(B15)

×
(
Ω−H∗

3 −H∗
4

H1 −H∗
3

− Ω−H1 −H2

H∗
4 −H2

)
× 1

(Ω−H1 −H2 − U12)(Ω−H∗
3 −H∗

4 − U34)

]
1111,iijj

and the corresponding integral of |ψ−+|2 is obtained in
the same way by taking the element [. . .]1N1N,iijj . Here
H1 = H ⊗ 1⊗ 1⊗ 1, H2 = 1⊗H ⊗ 1⊗ 1 etc.
In the limit U ≫ γ1D and for |Ω− 2ω0−U | ≲ γ1D, the

result can be simplified:∫
|ψ−−(ω1, ω2)|2 dω1dω2

T (2π)2 =
2i

γ21D[(Ω− 2ω0 − U)2 + 4γ21D]

×
∑
ij

gig
∗
j (ω0 −H)1i(ω0 −H∗)1jQ11,ij , (B16)∫

|ψ−+(ω1, ω2)|2 dω1dω2

T (2π)2 =
i

γ21D[(Ω− 2ω0 − U)2 + 4γ21D]

×
∑
ij

gig
∗
j

{
(ω0 −H)1i(ω0 −H∗)1jQNN,ij (B17)

+(ω0 −H)Ni(ω0 −H∗)NjQ11,ij

}
,

where

Q =
(ω0 −H)⊗ (ω0 −H∗)

(ω0 −H)⊗ 1− 1⊗ (ω0 −H∗)
. (B18)

3. Optical theorem

We assume that the modulation of the emitters is per-
formed by an external signal. The back-action of the
emitter system on that signal can be accounted by in-
troducing the scattering parameter s. Up to the second
order in g, it reads

s = 1− i
∑
ij

g∗i Σ̃ijgj , (B19)

Σ̃ij =

[
1

Ω−H ⊗ 1− 1⊗H − U

]
ii,jj

. (B20)

In the absence of non-radiative losses, the optical theo-
rem imposes 2|s|2 + I+ + I− = 2. Therefore, we get

I+ + I− (B21)

= − 4

γ1D
Im

∑
ij

g∗i gj

[
1

Ω−H ⊗ 1− 1⊗H − U

]
ii,jj

.

In the limit U ≫ γ1D , |Ω− 2ω0 −U | ≲ γ1D, the result is
trivial

I+ + I− =
8

(Ω− 2ω0 − U)2 + 4γ21D

∑
i

|gi|2 . (B22)

4. Emission spectrum of a single emitter

The emission spectrum can be calculated as

S(ω) =

∫
|ψ−−|2 + |ψ−+|2

2πTγ1D
dω′ . (B23)

In the case of a single emitter the wave function ψ−− =
ψ−+ and it can be found from Eq. (B6)

ψ−−(ω, ω
′) =

gγ1D (Ω− 2ω0 + 2iγ1D)

(Ω− 2ω0 − U + 2iγ1D)
(B24)

× 2πδ(Ω− ω − ω′)

(ω − ω0 + iγ1D) (ω′ − ω0 + iγ1D)
.

The integration in Eq. (B23) yields Eq. (6) in the main
text.

Appendix C: Two emitters

Here we apply the results of Appendix B for the sys-
tem of two emitters. The general explicit expressions are
quite bulky so consider two special cases.

1. U ≫ γ1D and |Ω− 2ω0 − U | ≲ γ1D

In that limit, we get

G
(2)
−−(0) =

∣∣g1 + g2e
2iqd

∣∣2
(Ω− 2ω0 − U)2 + 4γ21D

(C1)

and

I− =
1

(Ω− 2ω0 − U)2 + 4γ21D

× (7− 3 cos 2qd)|g1|2 + (5− cos 2qd)|g2|2 + 2 sin 2qd Im g1g
∗
2

3− cos 2qd
.

This yields Eqs. (8) and (9) in the main text.
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2. Symmetric modulation, g1 = g2 = g

In that case, the two-photon emission is

G
(2)
−−(0) = 4|g|2 (C2)

×
∣∣∣∣ (Ω− 2ω0) cos qd+ 2γ1D sin qd

(Ω− 2ω0 + 2iγ1D)(Ω− 2ω0 − U + 2iγ1D) + 4γ21De
2iqd

∣∣∣∣2 .

Note that G
(2)
−−(0) vanishes at Ω = 2ω0 − 2γ1D tan qd.

The single-photon emission intensity is found easily
from the optical theorem

I+ = I− = 8|g|2 (C3)

× (Ω− 2ω0 + γ1D sin 2qd)2 + 2γ21D(3− cos 2qd) sin2 qd

|(Ω− 2ω0 + 2iγ1D)(Ω− 2ω0 − U + 2iγ1D) + 4γ21De
2iqd|2

.

We note that I± has a minimum at Ω ≈ 2ω0−γ1D sin 2qd.
In particular, for qd = 0, we have I±(Ω = 2ω0) = 0.
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