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Vizing’s conjecture holds ∗
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Abstract

In 1964 Vizing proved that starting from any k-edge-coloring of a graph G one can
reach, using only Kempe swaps, a (∆ + 1)-edge-coloring of G where∆ is the maximum
degree of G. One year later he conjectured that one can also reach a ∆-edge-coloring
of G if there exists one. Bonamy et. al proved that the conjecture is true for the case of
triangle-free graphs. In this paper we prove the conjecture for all graphs.

1 Introduction

In 1964 Vizing proved that the chromatic index of a graphG (i.e.theminimumnumber of colors
needed to properly colors the edges ofG), denoted by χ′(G), is at most∆(G)+1 colors, where
∆(G) is the maximum degree of G.

Theorem 1. Any simple graph G satisfy χ′(G) 6 ∆(G) + 1.

The proof heavily relies on the use of Kempe changes. Kempe changes were introduced
by Kempe in his unsuccessful attempt to prove the 4-color theorem, but it turns out that this
concept became one of themost fruitful tool in graph coloring. Throughout this paper, we only
consider proper edge-colorings, and so we will only write colorings to denote proper edge-
colorings. Given a graph G and a coloring β, a Kempe chains C is a maximal bichromatic
component (Kempe chains were invented in the context of vertex-coloring, but the principle
remains the same for edge-coloring). Applying a Kempe swap (or Kempe change) onC consists
in switching the two colors in this component. SinceC is maximal, the coloring obtained after
the swap is guaranteed to be a proper coloring, and ifC is not the unique maximal bichromatic
component containing these two colors, the coloring obtained after the swap is a coloring
different from β, as the partition of the edges is different.

The Kempe swaps induce an equivalence relation on the set of colorings of a graphG; two
colorings β and β ′ are equivalent if one can find a sequence of Kempe swaps to transform β

into β ′. In 1964, Vizing actually proved a stronger statement, he proved that any k-coloring of
a graph G (with k > ∆(G)) is equivalent to a (∆(G) + 1)-coloring of G.

Theorem 2. Let G be a graph and β a k-coloring of G (with k > ∆(G)). Then there exists a

(∆(G) + 1)-coloring β ′ equivalent to β.

∗The author is supported by National Science Center of Poland grant 2019/34/E/ST6/00443.
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Note that some graphs only need ∆ colors to be properly colored. One year later, Vizing
proved that this result is generalizable to multigraphs, and ask the following question:

Question 3. For any (multi)graph G and for any k-coloring β of G, is there always an optimal
coloring equivalent to β ?

Note that both in Theorem 1 and in Question 3 we do not have the choice in the target
coloring. If we can choose a specific target optimal coloring, then the question can be refor-
mulated as a reconfiguration question.

Question 4. For any (multi)graph G and for any k-coloring β, is any optimal coloring always
equivalent to β ?

If true, Question 4 would imply the following conjecture, as it suffices to take the optimal
target coloring as an intermediate between the two non-optimal colorings.

Conjecture 5. Any two non-optimal colorings are equivalent.

Mohar proved the weaker case where we have one additional color [Moh06].

Theorem 6 ([Moh06]). All (χ′(G) + 2)-colorings are equivalent.

When considering the stronger case, McDonald & al. proved that the conjecture is true for
graphs with maximum degree 3 [MMS12], Asratian and Casselgren proved that it is true for
graphs with maximum degree 4 [AC16], and Bonamy & al. proved that the conjecture is true
for triangle-free graphs. In this paper, we prove that the conjecture is true for all graphs.

Theorem 7. Let G be a graph, all its (χ′(G) + 1)-edge colorings are Kempe-equivalent.

Theorem 7 is a direct consequence of the following Lemma which is the main result of this
paper.

Lemma 8. LetG be a graph, any (χ′(G) + 1)-coloring ofG is equivalent to any χ′(G)-coloring
of G.

2 General setting of the proof

The proof inherits the technical setup of [BDK+21], in this section, we introduce this setting,
and give the general outline of the proof of the main result.

2.1 Reduction to χ′(G)-regular graphs

The general setting of the proof follows that of [BDK+21] which itself follows that of [MMS12]
and of [AC16]. We first show that we can reduce the problem to the class of regular graphs.
Indeed, given a graph G and a coloring β, we can build a graph G′ s.t. :

• G′ is χ′(G)-regular,

• the coloring β can be completed into a coloring β ′ of G′, and

• if a coloring γ′ is equivalent to β ′ inG′, then the restriction of γ′ toG is equivalent to β.

To buildG′ we step-by-step build a sequenceG1, · · · , Gt = G′ where at each step, δ(Gi+1) =
δ(Gi) + 1 (where δ(Gi) is the minimum degree of Gi). For any Gi, the graph Gi+1 is build as
follows:
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• take two copies of Gi, and

• add a matching between a vertex and its copy if this vertex has minimum degree in Gi.

It is clear that G′ is χ′(G)-regular, and to extend a coloring of Gi to a coloring of Gi+1,
it suffices to copy the coloring for each copy of Gi, and since the edges of the matching con-
nect two vertices of minimum degree, there will always be an available colors for those edges.
Moreover, a Kempe swap in Gi has a natural generalization in Gi+1: if a swap in Gi corre-
sponds to more than one swap in Gi+1, it suffices to apply the swap on all the corresponding
components in Gi+1. From now on, we will only consider χ′-regular graphs.

Note that colorings in regular graphs are easier to handle as the two following properties
are verified:

• for any (∆(G))-coloring of a χ′(G)-regular graphG, every vertex v is incident to exactly
one edge of each color, and each color class is a perfect matching, and

• for any (∆(G) + 1)-coloring α of a χ′(G)-regular graph G, every vertex v is incident
to all but one color, we call this color the missing color at v, and denote it bymα(v) (we
often drop the α when the coloring is clear from the context).

From now on, in the rest of the paper, we only consider χ′-regular graphs.

2.2 The good the bad and the ugly

The general approach to Theorem 7 is an induction on the chromatic index. Given a graphG,
a∆(G)-coloring α and a (∆(G)+1)-coloring β, our goal is to find a sequence of Kempe swaps
to transform β into α. To do so, we consider a color class in α, say the edges colored 1. These
edges induce a perfect matchingM in G, thus, if we can find a coloring β ′ equivalent to β s.t.
for any edge e, β ′(e) = 1 ⇔ α(e) = 1, then we can proceed by induction on G′ = G \ M ,
noting that χ′(G′) = χ′(G)− 1, and that the restrictions of α and β ′ to G′ only use∆(G)− 1,
and∆(G) colors respectively.

So, given a (∆(G)+ 1)-coloring β of G, we can partition the edges ofG into three sets, an
edge e is called:

• good, if e ∈ M and β(e) = 1,

• bad, if e ∈ M and β(e) 6= 1,and

• ugly, if e 6∈ M and β(e) = 1.

A vertex missing the color 1 is called a free vertex. Toward contradiction, we assume that β is
not equivalent to α, and we consider a (∆(G)+1)-coloring β ′ equivalent to β whichminimizes
the number of ugly edges among the colorings equivalent to β that minimize the number of
bad edges, we callminimal such a coloring. Thus, if we can find a coloring β ′′ equivalent to β ′

where the number of bad is strictly lower than in β ′, or with the same number of bad edges,
and strictly fewer ugly edges, we get a contradiction.

2.3 Fan-like tools

In his proof of 64, Vizing introduce a technical tool to apply Kempe swaps on an edge-coloring
in very controlled way: Vizing’s fans. To define them, we first need to define an auxiliary
digraph. Given a graph G, a (∆(G) + 1)-coloring β of G and a vertex v, the directed graph
Dv is defined as follows:
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• the vertex set of Dv is the set of edges incident with v, and

• we put an arc between two vertices vv1 and vv2 of Dv , if the edge vv2 is colored with
the missing color at v1.

The fan around v starting at the edge e, denoted by Xv(e), is the maximal sequence of
vertices of Dv reachable from the edge e. It is sometime more convenient to speak about the
color of the starting edge of a fan, if c is a color, Xv(c) denotes the fan around v starting at
the edge colored c incident with v. Note that since the graph G is χ′(G)-regular, each vertex
misses exactly one color, and thus, in the digraph Dv , each vertex has outdegree at most 1.
Hence a fan X is well-defined and we only have three possibilities for the fan X :

• X is a path,

• X is a cycle, or

• X is a comet (i.e. a path with an additional arc between the sink and an internal vertex
of the path) .

IfX = (vv1, · · · , vvk) is a fan, v is called the central vertex of the fan, and vv1 and vvk are
respectively called the first and the last edge of the fan (similarly, v1 and vk are the first and
last vertex of X respectively).

Given a (∆(G) + 1)-coloring β of G, and fan X = (vv1, · · · , vvk) which is a cycle around
a vertex v, where each vertex vi misses the color i (and so each edge vvi is colored (i− 1)), we
can define the coloring β ′ = X−1(β) as follows:

• for any edge vvi not in X , β ′(vvi) = β(vvi), and

• for any edge vvi in X , β ′(vvi) = i andm(vi) = i− 1

The coloring X−1(β) is called the invert of X , and we say that X is invertible if X and
X−1(β) are equivalent. In this paper, we prove that in any coloring, any cycle is invertible.

Lemma 9. In any (χ′(G) + 1)-coloring of a χ′(G)-regular graph G, any cycle is invertible.

We prove Lemma 9 in Section 2.4, and prove here Theorem 7. The proof of Theorem 7 is
derived from the proof of Theorem 1.6 in [BDK+21]. We first need the following results from
[BDK+21] and [AC16] which we restate here (in a slightly different way).

Observation 10 ([BDK+21]). In a minimal coloring, every bad edge is adjacent to an ugly edge.

Lemma 11 ([BDK+21]). In a minimal coloring, any ugly edge uv is such that the fans Xv(uv)
and Xu(uv) are cycles.

Lemma 12 ([AC16]). In a minimal coloring both ends of an ugly edge are adjacent to a free

vertex.

We first show that in a minimal coloring, there always exists a bad edge adjacent to an
ugly edge and incident with a free vertex.

Lemma 13. In a minimal coloring, there exists a bad edge adjacent to an ugly edge and incident

with a free vertex.
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Proof. Let β be a minimal coloring, if there is no bad edge in β, then all the edges of M are
colored 1 in β as desired. So there exists a bad edge e in β, and by Observation 10, e is adjacent
to an ugly edge e′. By Lemma 12, there exists a free vertex u adjacent to an end of e′. As u
is a free vertex, u is incident with a bad edge, we denote by v the neighbor of u such that the
edge uv is bad. If v is a free vertex, then we swap the single edge uv to obtain a coloring with
fewer bad edges, so v is not free, and thus uv is adjacent to an ugly edge; this concludes the
proof.

We are now ready to prove Theorem 7, but we first need some terminology and notations.
Given a coloring α, for any pair of colors a,b, we denote by K(a, b) the graph induced in G

by the edges colored a and b. The Kempe chain involving these two colors and containing the
element x ∈ V (G) ∪ E(G) is denoted by Kα

x (a, b) (we often drop the α when the coloring is
clear form the context). It is important to note that if a, b, c and d are 4 different colors, then
swapping a component of K(a, b) before or after swapping a component of K(c, d) does not
change the coloring obtained after the two swaps.

Note also that in an edge-coloring, any Kempe chainK(a, b) is a connected bipartite sub-
graph of maximum degree 2, hence it is either a path, or an even cycle. To distinguish the
notions of fans that can be paths or cycles, when a Kempe component C of K(a, b) is a path
(respectively an even cycle) we say that C si a (a, b)-bichromatic path (respectively a (a, b)-
bichromatic cycle). If u is a vertex missing the color a, then Ku(a, b) is a (a, b)-bichroamtic
path whose ends are u and another vertex missing either a or b.

Proof of Theorem 7. Let β be a minimal coloring. By Lemma 13, there exists a bad edge uv

such that u is free and v is incident with an ugly edge vw. By Lemma 11, the fans Xv(vw)
andXw(vw) are both cycles. The vertex v does not belong toXv(vw), otherwise, by Lemma 9
we invert Xv(vw) and obtain a coloring with strictly fewer bad edges. Hence, the vertex w is
missing a color c′ different from c = β(uv) (otherwise, Xv(vw) is a cycle of size 2 containing
u). We now consider the component C = Kw(c, c

′), note that since w is missing the color c′,
this component is a (c, c′)-bichromatic path. If the component C does not contain the vertex
v, then we swap it to obtain a coloring where w is missing the color of the edge uv and we are
done. Thus, C contains v and we have to distinguish whether v is between u and w in C or u
is between w and v.

Case 13.1 (u is between w and v in C).
In this case, by Lemma 9 we can invert Xv(vw) to obtain a coloring where the component
Kw(c, c

′) is now a (c, c′)-bichromatic cycle that we swap. In the coloring obtained after the
swap,Xv(uv) is a cycle, and so by Lemma 9 we can invert it to obtain a coloring with strictly
fewer bad edges; a contradiction.

Case 13.2 (v is between w and u in C).
In this case, we consider the cycle Xw(vw). If it does not contain the vertex u, we invert it by
Lemma 9 and obtain a coloring where u and v are free, so it suffices to swap the edge uv to
obtain a coloring with strictly fewer bad edges. Hence the vertex u belongs to Xw(vw). After
inverting this cycle, we obtain a minimal coloring where uv is still bad, v is free, and uw is
ugly (the edge vw is not ugly anymore in this coloring). By Lemma 11, the fan Xu(uw) is a
cycle. The situation is now similar to the previous case: we invert the cycleXu(uw) to obtain
a coloring where the component Kw(c, c

′) is a (c, c′)-bichromatic cycle. After swapping this
cycle we obtain a minimal coloring where Xu(uv) is a cycle. After inverting this cycle, we
obtain a coloring with one fewer bad edge; a contradiction.
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2.4 General outline and notations

The proof is an induction on the size of the cycles. Towards contradiction, assume that there
exist non-invertible cycles. Aminimum cycle V is a non-invertible cycle of minimum size (i.e.
in any coloring, any smaller cycle is invertible).

A cycle of size 2 is clearly invertible as it only consists of a single Kempe chain composed
of exactly two edges: to invert the cycle, it suffices to apply a Kempe swap on this component;
so the size of a minimum cycle is at least 3.

We now need some more notations. For any fan V = (vv1, · · · , vvk), V (V) denotes the set
of vertices {v1, · · · vk}, and E(V) denotes the set of edges {vv1, · · · vvk}. We denote by β(V)
the set of colors involved in V (i.e. β(V) = β(E(V))∪m(V (V))∪m(v)); if V involves the color
c,M(X, c) denotes the vertex of V (V)missing the color c. There is a natural order induced by a
fan on its vertices (respectively on its edges), and if i < j we say that the vertex vi (respectively
the edge vvi) is before the vertex vj (respectively the edge vvj). For two vertices vi and vj of
V we define the subfan V[v1,vj ] as the subsequence (vvi, vvi+1, · · · vvj). We often write V>vi ,
V>vi , V6vi and V<vi to respectively denote the subfans (vi, · · · vk), (vi+1, · · · vk),(v1, · · · , vi),
and (v1, · · · vi−1).

If the fan V is a cycle in a coloring β means applying a sequence of Kempe swaps to obtain
the coloring X−1(β). If V is a fan which is a path, inverting V means applying a sequence
of single-edge Kempe swaps on the edges of V such that the ends of the first edge of V are
missing the same color β(vv1). Note that we often only partially invert paths, i.e. we apply
a sequence of single-edge Kempe swaps on the edges of the paths until we reach a coloring
with a specific missing color at the central vertex.

A cycleV = (vv1, · · · , vvk) is called saturated if for any i, vi ∈ Kv(m(v), m(vi)). Lemma2.3
of [BDK+21], which we restate here, guarantees that if a cycle is not invertible, then it is sat-
urated.

Lemma 14 ([BDK+21]). Let V be a cycle, if V is not saturated, then V is invertible.

This directly implies the same result for any minimum cycle.

Lemma 15. Any minimum cycle is saturated.

Let X ⊆ E(G) ∪ V (G), β a coloring and β ′ a coloring obtained from β by swapping a
component C . The component is calledX-stable if :

• for any v ∈ X ,mβ(v) = mβ′

(v), and

• for any e ∈ X , β(e) = β ′(e).

In this case, the coloring β ′ is called X-identical to β.
If S = (C1, · · · , Ck) is a sequence of swaps to transform a coloring β into a coloring β ′

where each Cj is a Kempe component. The sequence S−1 is defined a the sequence of swaps
(Ck, · · · , C1). Such a sequence is called X-stable is each Cj is X-stable.

Observation 16. LetX ⊆ V (G)∪E(G), and S a sequence of swaps that isX-stable. Then the

sequence S−1 is also X-stable.

If a sequence S is X-stable, then the coloring obtained after apply S to β is called X-
equivalent to β. Note that the notion of X-equivalence is stronger than the notion of X-
identity. Since two colorings β and β ′ may beX-identical but notX-equivalent if there exists
a coloring β ′′ in the sequence between β and β ′ that is notX-identical to β. We first have the
following obsevration that we will often use in this paper.
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Observation 17. Let X be a subfan in a coloring β0, v be a vertex which is not in V (X ), and
S = (C1, · · · , Ck) be a sequence of trivial swaps of edges incident with v, (β1, · · · , βk) be the
colorings obtained after each swap of S. If for any i ∈ {0, · · · , k}, mβi(v) 6∈ β0(X ), then the

sequence S is (X )-stable.

Proof. Otherwise, assume that S is not X -stable. Since the vertex v is not in V (X ), then no
edge of X has been changed during the sequence of swap. Thus the missing color of a vertex
of X has been changed during the sequence of swaps, we denote by x the first such vertex.
Let si be the swap that change the color of the edge vx, it means that in the coloring βi−1 the
vertices v and x are missing the same color, somβi−1 ∈ β0(X ); a contradiction.

The following observation gives a relation between X-equivalence and (G\)-identity be-
tween colorings.

Observation 18. Let β be a coloring,X ⊆ V (G)∪E(G), β1 a coloringX-equivalent to β, and

β2 a coloring (G \ X)-identical to β1. Then, there exists a coloring β3 equivalent to β2 that is

X-identical to β2 and (G \X)-identical to β.

Proof. Let S be the sequence of swaps that transforms β into β1. Since β1 is X-equivalent
to β, the sequence S is X-stable and thus E(S) ∩ E(X) = V (S) ∩ V (X) = ∅. Since β2 is
(G \X)-identical to β1, it is S-identical to β1. So applying S−1 to β2 is well-defined and gives
a coloring β3 S-identical to β. We first prove that β3 is (G\X)-identical to β. The coloring β1

is (G\S)-identical to the coloring β by definition of S, and the coloring β2 is (G\X)-identical
to β1, so the coloring β2 is (G\(X∪S))-identical to β. Again by definition of S−1 the coloring
β3 is (G \ S)-identical to β2, so it is (G \ (S ∪X))-identical to β. Since the coloring β3 is also
S-identical to β, in total, it is (G \X)-identical to β.

We now prove that β3 is X-identical to β2. Since E(S) ∩ E(X) = V (S) ∩ V (X) = ∅, we
have that E(X) ⊆ E(G) \ E(S) and V (X) ⊆ V (G) \ V (S). Moreover, the coloring β3 is
(G\S)-identical to β2 by definition of S, so the coloring β3 isX-identical to β2 as desired.

If X is a fan, when two colorings are (V (X ) ∪ E(X ))-identical (respectively (V (X ) ∪
E(X ))-equivalent), we simply write that the two colorings are X -identical (respectively X -
equivalent). Similarly, if two colorings are ((V (G)∪E(G))\X)-identical (respectively ((V (G)∪
E(G))\X)-equivalent), we simply write that the two colorings are (G\X)-identical (respec-
tively (G \X)-equivalent).

Remark that if V is a cycle in a coloring β, then the coloring V−1(β) is (G \ V)-identical
to β. So from the previous observation we have the following corollary.

Corollary 19. Let V be a cycle in a coloring β. If there exists a coloring β ′ V-equivalent to β
where V is invertible, then V is invertible in β.

Proof. Let β ′′ = V−1(β ′). The coloring β ′ is V-equivalent to β and β ′′ is (G\V)-identical to β ′.
So by Observation 18 there exists a coloring β3 that is V-identical to β ′′ and (G \ V)-identical
to β. So the coloring β3 is (G \ V)-identical to V−1(β).

Moreover, the coloring β ′′ is V-identical to V−1(β), so the coloring β3 is also V-identical
to V−1(β). Therefore we have β3 = V−1(β) as desired.

From the previous corollary, we have the following observation.

Observation 20. Let V be a minimum cycle in coloring β, and β ′ a coloring V-equivalent to
β. Then in the coloring β ′, the sequence V is also a minimuù cycle such that for any e ∈ E(V),
β(e) = β ′(e), and for any v ∈ V (V), mβ(v) = mβ′

(v).
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We often simply say that the cycle V is the same minimum cycle in the coloring β ′.
A cycle V = (vv1, · · · , vvk) is called tight if for every i vi ∈ Kvi−1

(m(vi), m(vi−1)). A
simple observation is that any minimum cycle V is tight.

Observation 21. Let V = (vv1, · · · , vvk) be a minimum cycle in a coloring β. Then the cycle

V is tight.

Proof. Assume thatV is not tight, so there exists i such that vi 6∈ Kvi−1
(m(vi), mvi−1). Without

loss of generality, we assume that i = 2 and that each vj is missing the color j. Note that this
means that β(vv2) = 1, β(vv3) = 2 and β(vv1) = k.

We swap the component C1,2 = Kv1(1, 2) to obtain a coloring β ′ that is (V \ {v1})-
equivalent to the coloring β. Thus each vj is missing the color j except v1 which is now
missing the color 2. So now the fan V ′ = Xv(k) is equal to (vv1, vv3, · · · , vvk), and thus is a
cycle strictly smaller than V . Since V is minimum, this cycle is invertible, and we denote by
β ′′ the coloring obtained after its inversion.

The coloring β ′′ is (G \ V ′)-identical to the coloring β ′, so in particular it is C1,2-identical
to the coloring β ′. Moreover, the coloring β ′′ is (V \ {vv1, vv2, v2})-identical to the coloring
V−1(β), and we have β ′′(vv1) = 2, β ′′(vv2) = 1, andmβ′′

(v2) = 2.
So now in this coloring the componentKv1(1, 2) is exactly C1,2∪{vv1, vv2}, and we swap

back this component to obtain a coloring β ′′′. The coloring β ′′′ is now C1,2-identical to β, and
thus it is (G \ V)-identical to β. Moreover, it is (V \ {vv1, vv2, v2})-identical to β ′′, so it is
(V \ {vv1, vv2, v2})-identical to V−1(β). Finally, we have β ′′′(vv1) = 1 = mβ(v1), β ′′′(vv2) =
2 = mβ(v2), andmβ′′′

(v2) = 1 = β(vv2), so the coloring β ′′′ is V-identical to V−1(β). Since it
is also (G \ V)-identical to β, we have β ′′′ = V−1(β) as desired.

The proof of Lemma 9, is a consequence of the two following Lemmas.

Lemma 22. Let V be a minimum cycle. For any color c different from m(v), the fan Xv(c) is a
cycle.

Lemma 23. Let X and Y be two cycles around a vertex v. For any pair of vertices (z, z′) in
(V ∪ X ∪ Y)2, the fan Z = Xz(cz′) is a cycle containing z

′.

We prove Lemma 22 in section 2.5, and Lemma 23 in section 5, and prove here Lemma 9.

Proof of Lemma 9. To prove the Lemma, we prove that the graph G only consists of an even
clique where each vertex misses a different color. This is a contradiction since in any (∆(G)+
1)-coloring of an even clique, for any color c, the number of vertices missing the color c is
always even. By Lemma 22, all the fans around v are cycles, so each neighbor of v misses a
different color. Moreover, by Lemma 23, there is an edge between each pair of neighbors of v,
so G = N [v] = K∆(G)+1. By construction, G is ∆(G)-colorable, so G is an even clique and
each vertex misses a different color, this concludes the proof.

2.5 Only cycles around v: a proof of lemma 22

In this section, we prove Lemma 22. If X and X ′ are two fans, then X and X ′ are called
entangled if for any c ∈ β(X ) ∩ β(X ′), M(X, c) = M(X ′, c). To prove Lemma 22 we need
the two following lemmas.

Lemma 24. Let V be a minimum cycle in a coloring β and let u and u′ be two vertices of V . Then
fan U = Xu(m(u′)) = (uu1, · · · , uul) is a cycle entangled with V .
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Lemma 25. Let V be a minimum cycle in a coloring β, u and u′ be two vertices of V , and
U = Xu(m(u′)) = (uu1, · · · , uul). Then for any j 6 l, the fan Xv(β(uuj)) is a cycle.

Note that by Lemma 24, we can directly conclude that N [v] is a clique. Moreover, we
directly have the following corollary.

Corollary 26. Let V = (vv1, · · · , vvk) be a minimum cycle in a coloring β. Then for any j 6 k,

the fan Xu(m(v)) is a cycle entangled with V .

Proof. Let j 6 k and U = Xvj (m(vj−1)) = Xvj (β(vvj)). Then the first edge of U is vvj , and
since v is missing the color m(v), the second edge of U is coloredm(v). By Lemma 24, U is a
cycle entanlged with V , so since Xu(m(v)) = U , the fan Xu(m(v)) is a cycle entangled with
V as desired.

We prove Lemma 24 in Section 3, Lemma 25 in Section 4, and prove here Lemma 22.

Proof of Lemma 22. Assume that there exists a fan W = (vw1, · · · , vwt)
around v which does not induce a cycle, we first prove thatW is not a path.

Claim 27. The fan W cannot induce a path.

Proof. Without loss of generality, we assume that the vertex v is missing the color 1. Assume
that W induces a path, so m(v) = m(wt) = 1. Let v′ ∈ V , by Corollary 26, we have that
U = Xv′(1) is a cycle containing v in β. If we apply a single-edge Kempe swap on vwt, then
we obtain a coloring where m(wt) = m(v) = β(vwt); we denote by β ′ this coloring, and
without loss of generality, we assume that β(vwt) = 2. Again, by Corolloary 26, we also have
that U ′ = Xv′(2) is a cycle containing v in the coloring β ′, so U ∩ U ′ 6= ∅, let v′w′′ be the first
edge they have in common, and let w = M(U , β(v′w′′)) and w′ = M(U ′, β(v′w′′)). We now
have to distinguish whether v ∈ {w,w′} or not.

Case 27.1 (v 6∈ {w,w′}).
In this case,mβ(w) = mβ′(w) = mβ(w

′) = mβ′(w′); we denote by c this color. By Lemma 25,
Xv(c) is a cycle containing w in β, and Xv(c) is a cycle containing w′ in β ′, so w = w′; a
contradiction.

Case 27.2 (v ∈ {w,w′}).
The case v = w and v = w′ being symmetrical, we can assume that v = w. In this case, in
the coloring β ′, w′ is missing the color cv , but by Lemma 25 Xv(1) is a cycle containing w

or V is invertible, however, in the coloring β ′, Xv(1) induces a path which is a single edge; a
contradiction.

Thus the fan W is not a path. Now assume that W is a comet, then there exists w and w′

inW which are missing the same color c. At least one of them is not inKv(1, c), the two cases
being symmetrical, we can assume without loss of generality that w is not in Kv(1, c). So if
we swap the component Kw(1, c), we obtain a coloring where the fan Xv(β(vw1)) is a path;
a contradiction, soW is a cycle.
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3 Fans around V : a proof of Lemma 24

In this section, we prove Lemma 24 which will be often used in the proof of Lemma 25.

Proof. We first prove that the fan U cannot induce a path.

Claim 28. The fan U cannot induce a path.

Proof. Otherwise, assume that the fan U is a path, without loss of generality, we can assume
that U is of minimal length (if U is not minimal, since it is a path, it contains a strictly smaller
path). Thus U contains only one edge colored with a color in β(V) \ {cv}: its first edge. We
now need to distinguish whether j′ = j − 1 or not (i.e. whether u = vj and u′ = vj′ are
consecutive or not in V).

Case 28.1 (j′ = j − 1).
In this case, U = Xu(uv), and the edge colored cv incident with u is just after uv in U . As
U is a path, we can invert it until we reach a coloring where m(u) = m(v) = cv . Since U
is minimal, no edge incident with a vertex of V different from u has been recolored during
the inversion. In the coloring obtained after the inversion, the fan (vvj+1, · · · , vvj = vu) is
a path that we can invert until we reach a coloring where m(v) = m(vj+1) = j, we denote
by β ′ this coloring. Since V was tight in the coloring β, in the coloring β ′ we have C =
Kβ′

vj−1
(j, j − 1) = Kβ

vj−1
(j, j − 1) ∪ {vvj−1} \ {vvj+1, vvj = vu}, so we swap this component

to obtain a coloring where m(v) = m(u) = j − 1, then we swap the edge uv and obtain a
coloring where (uul−1, · · · , uu0) is a path that we invert. In the coloring obtained after the
inversion, we have that the component Kvj−1

(j, j − 1) is exactly C ∪ {vvj}, if we swap this
component back we obtain exactly V−1(β).

Case 28.2 (j′ 6= j − 1).
In this case, since U is a path, we can invert it until we reach a coloring β ′ where m(u) =
cu′ = j′. Note that, similarly to the previous case, this inversion has not changed the colors
of the edges incident with the vertices of V , except those incident with u. We now consider
the componentKv(j

′, cv) (which can have changed during the inversion of U as we swapped
an edge colored j′), and we need to distinguish whether or not the vertices u′ and u belong to
this component; clearly these vertices does not both belong to this component.

Subcase 28.2.1 (u′ 6∈ Kv(j
′, cu)).

In this case, we swap the component C = Ku′(j′, cv) to obtain a coloring where
(vvj+1, · · · , vvj′) is a path that we invert until we reach a coloring where
m(v) = m(vj+1) = cu, we denote by β ′ this coloring. As V was tight in β, we have that
Cj = Kβ′

vj−1
(j, j − 1) = Kβ

vj−1
(j, j − 1) \ {vvj+1, vvj = vu}, so we swap this component to

obtain a coloring where (vvj′+1, · · · , vvj−1) is a path that we invert until we reach a coloring
where m(v) = m(vj′+1) = j′. In the coloring obtained after the inversion, the component
Ku′(j′, cv) is exactly C ∪ {vu′}, thus we swap it back. Note that as |{cu′, cv, j, j − 1}| = 4,
we can swap back C before Cj . In the coloring obtained after swapping back the component,
we have that the fan (uul−1, · · · , uu0) is a path that we invert. In the coloring obtained after
the inversion, the componentKvj−1

(j, j − 1) is exactly C ∪ {vvj−1, vvj = vu}, thus we swap
back this component and obtain exactly V−1(β).

So u′ belongs to the componentKv(j
′, cu).

Subcase 28.2.2 (u 6∈ Kv(cu′, cu)).
In this case, we swap the component C = Ku(j

′, cv), note that, from the previous case, nei-
ther v nor u′ belong to this component. In the coloring obtained after the swap, the fan
(vvj+1, · · · , vvj) is a path that we invert until we reach a coloring where m(v) = m(vj+1) =
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cu; we denote by β ′ this coloring. As V was tight in β, we have that Cj = Kβ′

vj−1
(j, j − 1) =

Kβ
vj−1

(j, j−1)∪{vvj−1}\{vvj+1, vvj = vu}, so we swap this component to obtain a coloring
wherem(v) = m(u) = j−1, then we swap the edge uv to obtain a coloring whereKu(cu′ , cv)
is exactlyC . Hence we swap back this component, and in the coloring obtained after the swap,
the fan (uul−1, · · · , uu0) is a path that we invert until we reach a coloring wherem(u) = j. In
this coloring, the componentKvj−1

(j, j − 1) is exactly Cj ∪ {vvj−1, vvj = vu}, thus we swap
back this component to obtain exactly V−1(β).

Before proving that the fan U is not a comet, we prove that U and V are entangled.

Claim 29. The fans U and V are entangled.

Proof. Assume that U and V are not entangled, then there exist w = vs ∈ V and w′ = us′ ∈ U
distinct from w with m(w) = m(w′) = c. If m(w) = m(v) = cv , then, since V is saturated,
w ∈ Kv(cv, c), so we swap Kw′(cv, c) to obtain a coloring where V is still a cycle of the same
size, but where Xu(cu′) is a path, by the previous claim, this is a contradiction.

Som(w) 6= m(v), and therefore, we successively swap the componentsKw′(t, t+ 1) with
t ∈ (s, · · · , j). Note that this sequence of swaps has not changed the colors of the edges
incident with a vertex of V ; it can though have changed the colors of the edges of U . However,
it is guaranteed that in the coloring obtained after the swaps, there exists a color c′ ∈ β(V)
such that Xu(c

′) is a path, which is a contradiction by the previous claim.

We now prove that U is not a comet.

Claim 30. The fan U is not a comet.

Proof. Assume that U is a comet, then there exist w and w′ in U with m(w) = m(w′) = c

and where w′ is after w in the sequence. By the previous claim, as U and V are entangled,
we have that c 6∈ β(V). We now consider the component Cv = Kv(c, cv). If w′ is not in Cv ,
then we swap Cw′ = Kw′(c, cv) to obtain a coloring where w′ belongs to the fanXu(cu′) with
m(w′) = m(v); this contradicts the fact that Xu(cu′) and V are entangled. Note that if u is in
C ′, andm(v) ∈ β(U), after swapping C ′ the sequenceXu(cu′) now starts at the edge colored
c in β, but this does not change the reasoning. So the vertex w′ belongs to C , and thus the
vertex w does not belong to Cv, so we can swap Cw = Kw(c, cv) to obtain a coloring where
the sequence Xu(m(u′)) contains w which is missing the color m(v), a contradiction. Note
that if u ∈ Cw, then after swapping Cw, we obtain a coloring where w′ comes before w in the
fanXu(m(u′)). Similarly to the previous case, this does not change the reasoning.

From the previous claims, the fan U is a cycle entangled with V as desired.

4 Cycles around v starting with u: a proof of

Lemma 25

In this section we prove Lemma 25. To prove the lemma we actually prove a stronger state-
ment, bu we need first some definitions.

Definition 31. Let i > 0, we define the propertyPweak(i) as the following: For anyminimum cy-

cle V in a coloring β, for any pair of vertices u and u′ of V , let U = Xu(m(u′)) = (uu1, · · · , uul).
If β(uul−i) 6= m(v), then Xv(β(uul−i) is not a path.
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Definition 32. Let i > 0, we define the property P (i) as follows:
For any minimum cycle V in a coloring β, for any pair of vertices u and u′ of V , let U =

Xu(m(u′)) = (uu1, · · · , uul). If β(uul−i) 6= m(v), then the fan Xv(β(uul−i) is a saturated

cycle containing ul−i−1,

Lemma 25 is a direct consequence of the following lemma.

Lemma 33. The property P (i) is true for all i.

The proof of the lemma is an induction on i. However, before starting to prove the lemma,
we need to introduce the notion of (V, u)-independent fan for a vertex u of a cycle V .

4.1 (V , u)-independent fans

Let V be a minimum cycle in a coloring β, and u a vertex of V . A (V, u)-independent subfan
X is a subfan around v such that β(V) ∩ β(X ) = {β(u)}. We naturally define a (V, u)-
independent path (respectively a (V, u)-independent cycle) as a (V, u)-independent subfan
that is also a path (respectively a cycle). If v is a vertex not in X missing a color c, we say that
X avoids v if the last vertex of X is also missing the color c.

We first prove the following.

Lemma 34. Let V be a minimum cycle in a coloring β, u a vertex of V , Y = (uy1, · · · , uyr) a
(V, u)-independent subfan avoiding v and x the extremity of Kys(m(u), m(v)) which is not yr.

Then the fan Xv(β(uy1)) is a path containing x which is missing the colorm(v).

We decompose the proof into five separate lemmas.

Proof of Lemma 34. Without loss of generality, we assume that the vertices v and u are re-
spectively missing the colors 1 and 2, and that β(uy1) = 4. Since the fan V is a minimum
cycle in the coloring β, it is saturated by Lemma 15, so u ∈ Kv(1, 2) and thus yr 6∈ Kv(1, 2).
We now swap the component C1,2 = Kyr(1, 2) to obtain a coloring V-equivalent to β, where
Y is now a (V, u)-independent path. By Lemma 39, the fan Xv(4) is a comet containing the
other extremity of Kyr(1, 2) which is x. In this coloring, the vertex x is missing the color 2,
therefore in the coloring β, the fan Xv(4) is a path containing x which is missing the color 1
as desired.

Lemma 35. Let X = (vv1, · · · , vvk) be a path of length at least 3 in a coloring β, u = vi for

some i ∈ [3, k], u′′ = vi−1, u
′ = v1, and C a (β(vu), m(u))-bichromatic path between u′′ and u′

that does not contain v. Then β is equivalent to a coloring β ′ such that:

• β ′ is (G \ (C ∪ X ))-identical to β,

• β ′ is (X>u)-identical to β,

• for any edge j ∈ [2, i− 1],mβ′

(vj) = β(vvj),

• mβ′

(u′) = β(vu),

• for any edge j ∈ [1, i− 2], β ′(vvj) = mβ(vj),

• β ′(vu′′) = β(vu′),

• for any edge e ∈ C :
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– if β(e) = β(vu), then β ′(e) = mβ(u), and

– if β(e) = mβ(u), then β ′(e) = β(vu).

Proof. Without loss of generality, we assume that the vertices v is missing the color 1, that the
edge vu′ is colored 2, and that the edge vu is colored 3. Note that this means thatm(u′′) = 3.
In the coloring β, the fan X is a path, so we invert this path, and denote by β2 the coloring
obtained after the inversion. The coloring β2 is (G\X )-identical to the coloring β so C is still
a (2, 3)-bichromatic path between u′ and u′′ that does not contain v. Moreover, for any edge
j ∈ [1, i], β2(vvj) = mβ(vj) andmβ2(vj) = β(vvj). So the coloring β2 is (X[v2,vi−2]∪{u

′′, vu′})-
identical to β ′. The vertex u′ is now missing the color 2, and the edge vu′′ is now colored 3.
Moreover, the vertex v is now missing the color 2, so Kv(2, 3) = C ∪ {vu′′}. We now swap
this component and denote by β3 the coloring obtained after the swap.

The coloring β3 is (G\ (C∪X ))-identical to the coloring β, so it is (G\ (C∪X ))-identical
to β ′. Moreover, for any edge e ∈ C :

• if β(e) = 2, then β3(e) = 3, and

• if β(e) = 3, then β3(e) = 2.

So the coloring β3 is also C-identical to β ′; thus it is (G \ X )-identical to β ′.
The coloring β3 is (X[v2,vi−2] ∪ {u′′, vu′})-identical to β2, so it is (X[v2,vi−2] ∪ {u′′, vu′})-

identical to β ′. In the coloring β3, the edge vu′′ is now colored 2, and the vertex u′ is now
missing the color 3. So the coloring β3 is also ({vu′′, u′})-identical to β ′, and thus it is X<u-
identical to β ′. In total, the coloring β3 is (G \ X>u)-identical to the coloring β ′.

Finally, the coloring β3 is X>u-identical to the coloring β2 and the verices v and u are both
missing the color 3. So in the coloring β3 the fan Xv(1) is now a path. We invert this path
and denote by β4 the coloring obtained after the inversion. The coloring β4 is X>u-identical
to the coloring β, so it is X>u-identical to the coloring β ′. Moreover, the coloring β4 is also
(G \ X>u)-identical to the coloring β3, so it is (G \ X>u)-identical to the coloring β ′. In total
the coloring β4 is identical to the coloring β ′ as desired.

Lemma 36. Let V = (vv1, · · · , vvk) a cycle of length at least 3 in a coloring β, u = vi, u
′ = vi+1

and u′′ = vi−1 three consecutive vertices of V , Y = (uy1, · · · , uyl) a (V, u)-independent path,
βY = Y−1(β), C a (β(vu), m(u′))-bichromatic path in the coloring βY between u′′ and u′ that

does not contain v noru,X = E(C)∪E(V)∪(V (V)∪{v}\{u}), and β ′
Y a coloringX-equivalent

to βY . If there exists a coloring β
′ equivalent to β ′

Y such that:

• β ′ is (G \X)-identical to β ′
Y ,

• β ′ is (V \ {u′, vu′′, u, vu})-identical to V−1(β),

• β ′(vu′′) = β ′
Y(vu

′),

• β ′(vu) = mβ′
Y (u′′), and

• mβ′

(u′) = β ′
Y(vu),

• for any edge e ∈ C :

– if β ′
Y(e) = β(vu), then β ′(e) = m(u′), and

– if β ′
Y(e) = m(u′), then β ′(e) = β(vu).
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Then the cycle V is invertible.

Proof. Let γ = V−1(β). Without loss of generality, we assume that the vertex v and u are
respectively missing the colors 1 and 2 in the coloring β, and that β(vu) = 3. This means that
β ′(vu′′) = β ′

Y(vu
′) = β(vu′) = mβ(u) = 2 and mβ′

(u′) = β ′
Y(vu) = β(vu) = mβ(u′′) = 3.

By definition the coloring βY is (G\(Y∪{u}))-identical to β. Since Y is a (V, u)-independent
path, we haveE(Y)∩E(V) = ∅, and V (Y)∩V (V) = ∅. So, in particular βY(vu) = β(vu) = 3.
The coloring β ′ is ({vu})-identical to β ′

Y , so β ′(vu) = 3.
Since the coloring β ′ is (G \ X)-identical to β ′

Y and β ′
Y is X-equivalent to βY , by Ob-

servation 18, there exists a coloring β ′′ which is X-identical to β ′ and (G \ X)-identical to
βY .

The coloring β ′′ is (G \X)-identical to βY , so it is (G \ (X ∪Y ∪{u}))-identical to β. This
means that β ′′ is (G \ (V ∪ Y ∪ C))-identical to β, and thus it is (G \ (V ∪ Y ∪ C))-identical
to γ. Moreover, β ′′ isX-identical to β ′, and β ′ is (V \ ({u′, vu′′, u, vu})-identical to γ, so β ′′ is
(V\({u′, vu′′, u, vu})-identical to γ. In total, the coloring β ′′ is (G\(C∪Y∪{u′, vu′′, u, vu}))-
identical to γ.

In the coloring βY , the fan Xu(2) is now a path, and we have E(Xu(2)) = E(Y) and
V (Xu(2)) = V (Y). So in any coloring (Y ∪ {u})-identical to βY , the fanXu(2) is a path. The
β ′′ is (G \ X)-identical to βY , E(X) ∩ E(Y) = ∅ and V (X) ∩ (V (Y) ∪ {u}) = ∅, so β ′′ is
(Y ∪ {u})-identical to βY , and thus Xβ′′

u (2) is a path that we invert. Let β3 be the coloring
obtained after the inversion.

By definition of Y , the coloring β3 is (Y ∪ {u})-identical to the coloring β. So it is Y-
identical to the coloring γ, and u is now missing the color 2. The coloring β3 is also (G \
(Y ∪ {u}))-identical to β ′′, so it is (G \ (C ∪ {u′, vu′′, u, vu}))-identical to γ, and we have
β3(vu

′′) = β ′′(vu′′) = 2, β3(vu) = β ′′(vu) = 3 and mβ3(u′) = mβ′′

(u′) = 3. Note that the
coloring β3 is also C-identical to the coloring β ′′.

The pathC is a (2, 3)-bichromatic path between u′′ and u′ and does not contain v nor u, so,
in the coloring β3, we haveKu′(2, 3) = C ∪{vu′′, vu}. We now swap this component and de-
note by βf the coloring obtained after the swap. The coloring βf is (G\(C∪{u′, vu′′, u, vu}))-
identical to the coloring β3, so it is (G \ (C ∪{u′, vu′′, u, vu}))-identical to γ. Moreover, since
β3 is C-identical to β ′′, for any edge e ∈ C :

• if β ′′(e) = β3(e) = 2, then βf (e) = 3, and

• if β ′′(e) = β3(e) = 3, then βf (e) = 2.

So the coloring βf isC-identical to the coloring βY , and thus it isC-identical to the coloring
γ. Finally, we have:

• mβf (u) = 3 = β(vu) = mγ(u),

• βf (vu) = 2 = mβ(u) = γ(vu),

• mβf (u′) = 2 = β(vu′) = mγ(u′), and

• βf (vu
′′) = 3 = mβ(u′′) = γ(vu′′).

Finally we have that βf is (C ∪ {u′, vu′′, u, vu})-identical to γ, so it is identical to γ, and
V is invertible as desired.
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Lemma 37. Let V = (vv1, · · · , vvi) a minimum cycle in a coloring β, u = vi, u
′ = v1 and

u′′ = vi−1 three consecutive vertices of V , and Y = (uy1, · · · , uyl) a (V, u)-independent path,
C = Ku′′(m(u), m(u′′)) \ {vu, vu′}, andX = C ∪E(V)∪ (V (V)∪{v} \ {u}). In any coloring
β ′
Y that is X-equivalent to the coloring βY = Y−1(β), the fan Xv(m

β(u)) is not a path.

Proof. Without loss of generality, we assume that the vertices v and u are respectively missing
the colors 1 and 2, and that β(vu) = 3. This means that β(vu′) = mβ(vu) = 2, mβ(u′′) =

β(vu) = 3, andmβY (u) = 4. Assume that X = X
β′
Y

v (2) is a path. The vertex v is still missing
the color 1 in the coloring βY and thus it is still missing 1 in β ′

Y . The coloring βY is (V \ {u})-
identical to the coloring β and so is the coloring β ′

Y . So {u
′, u′′} ⊆ V (X ) and β ′

Y(vu) = β(vu),
so u ∈ V (X ), and thus the size of X is at least 3. Note that this means that V (V) = V (X6u).

The cycle V is a minimum cycle in β, so by Observation 21, it is tight, and in particular,
u ∈ Ku′′(2, 3). So the C is a (2, 3)-bichromatic path between u′′ and u′ that does not contain u

nor v. Since Y is a (V, u)-independent path, the coloring βY is C-identical to β. The coloring
β ′
Y is C-equivalent to βY so C is still the same bichromatic path in the coloring β ′

Y .
Since X is a path of path of length at least 3, by Lemma 35 there exists a coloring β ′ such

that:

• β ′ is (G \ (C ∪ X ))-identical to β ′
Y ,

• β ′ is (X>u)-identical to β ′
Y ,

• for any edge j ∈ [2, i− 1], mβ′

(vj) = β ′
Y(vvj),

• mβ′

(u′) = β ′
Y(vu) = 3,

• for any edge j ∈ [1, i− 2], β ′(vvj) = mβ′
Y (vvj),

• β ′(vu′′) = β ′
Y(vu

′) = 2,

• for any edge e ∈ C :

– if β(e) = β ′
Y(vu) = 3, then β ′(e) = mβ′

Y (u) = 2, and

– if β(e) = mβ′
Y (u) = 2, then β ′(e) = β ′

Y(vu) = 3.

The coloring β ′ is (G\(C∪X ))-identical to β ′
Y , and isX>u-identical to β ′

Y . So the coloring
β ′ is (G \X)-identical to β ′

Y .
Let γ = V−1(β). For any j ∈ [2, i − 2], we have β ′(vvj) = mβ′

Y (vj) = mβ(vj) = γ(vvj),
andmβ′

(vj) = β ′
Y(vvj) = β(vvj) = mγ(vj), so the coloring β ′ is (V\{u′, vu′, u′′, vu′′, u, vu})-

identical to γ. Moreover, β ′(vu) = mβY (u′) = mβ(u′) = γ(vu′) and mβ′

(u′′) = βY(vu
′′) =

β(vu′′) = mγ(u′′). So in total the coloring β ′ is (V \ {u′, vu′′, u, vu})-identical to the coloring
γ.

The coloring β ′ is X>u-identical to β ′
Y , so in particular, β ′(vu) = β ′

Y(vu) = mβ′
Y (u′′). We

also have that β ′(vu′′) = 2 = β ′
Y(vu

′), andmβ′

(u′) = 3 = β ′
Y(vu).

Finally, for any edge e in C :

• if βY(e) = β(e) = 2, then β ′(e) = 3, and

• if βY(e) = β(e) = 3, then β ′(e) = 2.

So by Lemma 36, the cycle V is invertible; a contradiction.
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Lemma 38. Let V = (vv1, · · · , vvk) be a minimum cycle in a coloring β, u = vj , u
′ = vj+1, and

u′′ = vj−1 three consecutive vertices of V and Y a (V, u)-independent path. Then in the coloring

βY = Y−1(β), the fan X = Xv(m
β(u)) = (vx1, · · · , vxs) is a cycle.

Proof. By Lemma 37, the fanX is not a path. To show that it is a cycle, we prove thatX is not a
comet. Otherwise, assume thatX is a comet, then there exists i < s such thatm(xi) = m(xs).
Without loss of generality, we assume that mβ(v) = 1, mβ(u) = β(vu′) = 2, β(vu) =
mβ(u′′) = 3 andmβY (xi) = mβY (xs) = 4. We now have to distinguish the cases.

Case 38.1 (4 6∈ β(V)).
In the coloring β, the fan V is a minimum cycle, so by Observation 21, it is tight and in par-
ticular, u ∈ Ku′′(2, 3). Let C = Ku′′(2, 3) \ {vu′, vu}. The path C is a (2, 3)-bichromatic path
between u′′ and u′ which does not contain v nor u. Since Y is a (V, u)-independent path, the
coloring βY is C-identical to β, and thus C is still a (2, 3)-bichromatic path between u′′ and u′

which does not contain u nor v. LetX = C ∪ E(V) ∪ (V (V) ∪ {v} \ {u}). We now consider
the components of K(1, 4) in the coloring βY . The vertices xi and xs are not both part of
Kv(1, 4). Note that we may have xi = u. If xi does not belong to Kv(1, 4), then we swap the
component C1,4 = Kxi

(1, 4) to obtain a coloring β ′ X-equivalent to βY where the fan Xv(2)
is now a path. By Lemma 37; this is a contradiction.

So xi ∈ Kv(1, 4), and thus xs 6∈ Kv(1, 4). Similarly to the previous case, we now swap
the componentKxs

(1, 4) and obtain a coloringX-equivalent to βY whereXv(2) is a path. By
Lemma 37 this is again a contradiction.

Case 38.2 (4 ∈ β(V)).
In this case, we have that xi ∈ V (V). Since Y is a (V, u)-independent path, it does not contain
any vertex missing the color 4 so β is {xs}-identical to βY , and this vertex is still missing
the color 4 in the coloring β. Since V is a minimum cycle in the coloring β, by Lemma 15
it is saturated, so xi ∈ Kv(1, 4), and thus xs 6∈ Kv(1, 4). We now swap the component
C1,4 = Kxs

(1, 4), and denote by β ′ the coloring obtained after the swap. The fan Y was a
(V, u)-independent path in the coloring β, so the coloring β ′ is Y-equivalent to β, and Y is
still a (V, u)-independent path in this coloring. We now invert Y and obtain a coloring β ′

Y

which is (XβY
v (2) \ {xs})-equivalent to the coloring βY . So now, in the coloring β ′

Y , the fan
Xv(2) is a path, by Lemma 37 this is a contradiction.

Lemma 39. Let V = (vv1, · · · , vvk) a minimum cycle in a coloring β, u = vj and u
′ = vj+1 two

consecutive vertices of V , Y = (uy1, · · · , uyr) a (V, u)-independent path, and x the extremity

ofKyr(m(u), m(v)) which is not yr. Then the fan Xv(β(uy1)) is a comet containing x which is

missing the colorm(u).

Proof. We assume that Y is of minimum size such that X = Xv(β(uy1)) is not a comet con-
taining x missing the color m(u). Without loss of generality, we assume that m(v) = 1,
m(u) = β(vu′) = 2, β(uv) = mβ(u′′) = 3, and β(uy1) = 4.

If |Y| = 1, then Y consists of a single edge. We swap this edge, and denote by β ′ the
coloring obtained after the swap. In the coloring β ′, by Lemma 38, the fanXv(2) is a cycle. In
this coloring, the vertex u is missing the color 4, so 4 ∈ β ′(Xv(2)). Let X ′ = (vx1, · · · , vxs)
be the maximal subfan ofXv(2) starting with an edge colored 4, and not containing any edge
of V . Note thatE(X ′) = E(X ) and V (X ′) = V (X ). Note also that we havemβ′

(xs) = 2. The
subfanX ′ does not contain any edge of V , thus is does not contain the vertex u, and so it does
not contain any vertex missing the color 4. So the coloring β is X -equivalent to the coloring
β ′, and thus in the coloring β, the fan Xv(4) = (vx1, · · · , vxs, vu

′, · · · , vu) is a comet where
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xs and u are both missing the color 2. In the coloring β, the cycle V is a minimum cycle, so it is
saturated by Lemma 15, and thus u ∈ Kv(1, 2) and xs 6∈ Kv(1, 2). If xs is not inKyr(1, 2), then
we swap C1,2 = Kxs

(1, 2), to obtain a coloring β ′′ which is ((X ∪ V ∪ Y) \ {xs})-equivalent
to β. We now invert the path Y , and obtain a coloring where Xv(2) is a path, by Lemma 38
this is a contradiction.

So |Y| > 1. The size of Y is minimum, so for any subpath Xu(β(uyj)) of Y with j > 1,
the fan Xv(β(uyj)) is a comet containing x. So the fan Xv(4) does not contain any vertex
missing a color in β(Y), otherwise it would be a comet containing x. Hence the coloring
βY = Y−1(β) is X -equivalent to β. In the coloring βY , the fanXv(2) is a cycle by Lemma 38.
Moreover, it contains the fan X since u is missing the color 4 in the coloring βY . Therefore,
in the coloring β, the fan X = (vx1, · · · , vxs, vu

′, · · · , vu) is a comet containing V where
xs and u are both missing the color 2. Similarly to the previous case, since V is a minimum,
it is saturated by Lemma 15, so u ∈ Kv(1, 2), and thus xs 6∈ Kv(1, 2). If xs 6∈ Kv(1, 2),
then we swap C1,2 = Kxs

(1, 2), and obtain a coloring where Xv(4) is a path. This coloring
is Y-equivalent to β, and thus if we invert Y we obtain a coloring where Xv(2) is a path, a
contradiction by Lemma 38.

In the following section we prove the property P (0).

4.2 Proof of P (0)

In this section we prove the following lemma.

Lemma 40. The property P (0) is true.

To prove that P (0) is true, we need the following lemma.

Lemma 41. Let V = (vv1, · · · , vvk) be a minimum cycle in a coloring β, u = vj and u′ = vj′

two vertices of V . If uu′ ∈ E(G)∩, and β(uu′) 6= m(v), then the fan X = Xv(β(uu
′)) is a

saturated cycle.

The following lemma is the first step of the proof of Lemma 41.

Lemma 42. Let V = (vv1, · · · , vvk) be a minimum cycle in a coloring β, u = vj and u′ = vj′

two vertices of V . If uu′ ∈ E(G) and β(uu′) 6= m(v), then the fan X = Xv(β(uu
′)) is not a

path.

Proof. Otherwise, assume that X is a path. Without loss of generality, we assume that the
vertices v, u and u′ are respectively missing the colors 1, 2 and 3. Since β(uu′) 6∈ {1, 2, 3}, we
also assume that β(uu′) = 4. Finally, we assume that X is of length one, indeed if the length
of X is more than one, we invert it until we reach a coloring β ′ V-equivalent to β where it has
length one without changing the color of uu′.

We denote by x the only vertex of X , and by β2 the coloring obtained after swapping
the edge vx. The coloring β2 is V-equivalent to β ′, so V is the same minimum cycle in the
coloring β2 by Observation 20. By Lemma 24, the fans U = Xβ′

u (3) = (uu1, · · · , uul) and
U ′ = X

β2

u′ (3) are both cycles and uu′ is the last edge of both of these cycles; we denote by w

the vertex missing 4 in U . Note that since β(uu′) = 4, the vertex w is the vertex ul−1, and
U = (uu1, · · · , uw, uu

′). We first remark that 4 6∈ β(V), otherwise the fan E(X ) = E(V),
and the fan X is a cycle and thus is not a path, as desired.

We first prove some basic properties on the fan U .
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Proposition 43. The fan U contains an edge colored 1, and there is no edge colored with a color

in β(V) between the edge colored 1 and the edge colored 4 in U .

Proof. We first prove that there is an edge colored 1 in the fan U . Assume that U does not
contain any edge colored 1 in the coloring β ′. Since the fan U is a cycle, it means that it
does not contains any vertex missing the color 1, and in particular it does not contain v. So
the coloring β2 is also U-equivalent to the coloring β ′. Therefore, U = U ′ and U ′ contains the
vertexw that is still missing the color 4. The fan U ′ is thus not entangled with V , by Lemma 24
we have a contradiction.

So the fan U contains an edge colored 1. Since by Lemma 24, the fan U is a cycle entangled
with V , it contains the vertex v which is missing the color 1, and thus it contains the edge uv,
and also the edge vvj−1 (recall that vvj−1 is the edge just before vu = vvj in the sequence V).
Note that the vertex u′ and vj−1 may be the same vertex.

We now prove that, in the sequence U , there is no edge colored with a color in β(V)
between the edge colored 1 and the edge colored 4. Assume on the contrary that there exists
such an edge uut colored with a color c ∈ β(V). Similarly to the previous proof, this means
that in the coloring β2, the fanXu(c) is the sequence (uut, uut+1, · · · , uw, uu

′) with m(w) =
m(v) = 4. So this fan is not entangled with V and by Lemma 24 we again get a contradiction.

Let y1 be the neighbor of u connected to u by the edge colored 1, and y2 the vertex just after
y1 in the sequence U . Note that since β ′(uu′) 6= 1, the vertex y1 is different from the vertex u′

but may be equal to the vertex w. In this case, the vertices y2 and u′ are the same vertex.

Proposition 44. The edge uy1 belongs to the componentKv(1, β(vu
′)).

Proof. Assume that uy1 does not belong toKv(1, β(vu
′)). If the edge vu′ is just after the edge

vu in the fan V (i.e. if j′ = j+1), then it means that β(vu′) = 3, and since β(uy1) = 1, we have
that the vertex u does not belong to the componentKv(1, 3). So the fan V is not saturated, by
Lemma 15 we have a contradiction. So the edge vu′ is not the edge just after the edge vu in
the fan V , and without loss of generality, we assume that β(vu′) = 5.

Let C1,5 = Ky1(1, 5), we first prove that the vertex x belongs to this component. Since
the vertex y1 is not in Kv(1, 5), we have that Kv(1, 5) 6= C1,5. The fan V is a minimum cycle,
it is saturated by Lemma 15, so after swapping C1,5, we obtain a coloring β ′′ V-equivalent to
β ′. By Observation 20 the cycle V is the same minimum cycle in this coloring. In the coloring
β ′′ the edge uuy1 is now colored 5, and the fan Xu(5) still contains the vertex w missing the
color 4. Moreover, the vertex x is still missing the color 1, so we swap the edge vu to obtain
a coloring V-equivalent to β ′′ where Xu(5) contains the vertex w which is missing the color
m(v) = 4. So Xu(5) is not entangled with V , and by Lemma 24 we have a contradiction.

Therefore, the vertex x belongs to the component C1,5. We first swap the component C1,5

and obtain a coloring β ′′ V-equivalent to β ′. In the coloring β ′′, the fan Xu(5) now contains
the vertex w that is still missing 4. So the vertex Xv(5) contains the vertex u′ and we have
Xv(5) = Xv(3).

Since the cycle V is minimum, by Observation 21, it is tight. In the coloring β ′′, the
vertex x is now missing the color 5, we now apply a sequence a of Kempe swaps of the
form Kx(m(vt−1), m(vt)) for t ∈ (j′ − 1, j′ − 2, · · · , j + 1) to obtain a coloring β3 where
m(x) = m(vj−1) = 2. Note that each of these swaps is V-stable since after each swap the fan
V is a minimum cycle and thus is tight. Moreover, since no edge of U between uy2 and uu′ is
colored with a color in β ′(V), the coloring β3 is U[y2,w]-equivalent to β ′′.
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Hence we haveXu(β3(uy1))6w = (uy1, uy2, · · · , uw). The edge uy1 may have been recol-
ored during the sequence of swaps, but in the coloring β3, uy1 is guaranteed to be colored with
a color in β3(V). In the coloring β3, the vertices x and u are missing the same color 2 and the
vertex v is still missing the color 1. the cycle V is minimum, so it is saturated by Lemma 15,
and therefore x 6∈ Kv(1, 2).

We swap the component C1,2 = Kx(1, 2) to obtain a coloring where v and x are missing
the same color 1 and where the edge vx is colored 4. We now swap the edge vx, and denote by
β4 the coloring obtained after theses swaps. The coloring β4 is V-equivalent to β3, and is also
Xu(β4(uy1))[y2,w]-equivalent to the coloring β3. The vertices v and w are missing the same
color 4, so Xu(β4(uy1)) and V are not entangled in this coloring, and thus by Lemma 24 we
have a contradiction.

Proposition 45. In the coloring β2, the vertex x belongs toKx(2, 4).

Proof. Otherwise, assume that it is not the case. In the coloring β2, the fan V is a minimum
cycle, so it is saturated by Lemma 15. Therefore the vertex u belongs to Kv(2, 4) and the
vertex w does not belong to this component. By Proposition 43 Xu(1) contains the vertex w.
We swap the component C2,4 = Kw(2, 4), and obtain a coloring β ′′ V-equivalent to β ′. By
Observation 20, the cycle V is still the same minimum cycle in the coloring β ′′, and now the
vertex w is missing the color 2. The coloring β ′′ is also Xu(1)<w-equivalent to the coloring
β ′, so where Xu(1) still contains the vertex w. The vertex x is still missing the color 4, so we
swap the edge vu to obtain a coloring β3 whereXu(1) contains the vertex w missing the color
2, and thus Xu(1) is a path. By Lemma 24 we have a contradiction.

We are now ready to prove the lemma. We need to distinguish whether or not j = j′ + 1.

Case 45.1 (j = j′ + 1).
In this case, we have β ′(vu) = mβ′

(u′) = 3. In the coloring β ′, the fan V is saturated, so u′ ∈
Kv(1, 3) and thus uy1 ∈ Ku′(1, 3). LetC1,3 = Ku′(1, 3)\{uy1, vu},C1,3 is a (1, 3)-bichromatic
path between u′ and y1. In the coloring β2, we consider the component C2,4 = Kw(2, 4); this
component contains the vertex x by Proposition 45. After swapping C2,4 we obtain a coloring
β3 V-equivalent to V where the fan Xu(1) is a path. By Observation 20 the fan V is still the
same minimum cycle in the coloring β3. Moreover, the coloring β3 is C1,3-equivalent to the
coloring β2, and thus C1,3-equivalent to the coloring β ′, so C1,3 is still a (1, 3)-bichromatic
path between u′ and y1.

By Proposition 43 there is no edge in E(Xu(1)) colored with a color in β4(V), so we invert
Xu(1) to obtain a coloring β5 that is (C1,3∪ (V \{u}))-equivalent to β4. In the coloring β4, the
vertex y1 is missing the color 1, soKu′(1, 3) = C1,3, and we swap this component; we denote
by β5 the coloring obtained after the swap.

In the coloring β5, the vertices u and u′ a both missing the color 1, so we swap the edge
uu′ to obtain a coloring where u and u′ are missing the color 4. In the coloring β5, the fan
Xv(2) is now a path that we invert to obtain a coloring β6. In the coloring β6, the edge uw
is colored 2, and the vertex u is now missing the color 4, so Ku(2, 4) = C2,4 ∪ {uw}, and we
swap back this component, we denote by β7 the coloring obtained after this swap. Note that
since |{1, 2, 3, 4}| = 4, we can swap back C2,4 before C1,3.

In the coloring β7, the vertices u and v are both missing the color 2, and the edge vu is
colored 3, so we swap the edge vu to obtain a coloring where u and v are both missing the
color 4. In the coloring obtained after the swap, the vertices u and y1 are both missing the
color 3, so the fanXu(4) is now a path that we invert. We denote by β8 the coloring obtained
after the swap.
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In the coloring β8, the edge uu′ is colored 1, and the edge uy1 is colored 3, so Ku(1, 3) =
C1,3∪{uu

′, uy1} and this component is a (1, 3)-bichromatic cycle that we swap. In the coloring
obtained after the swap, the component Kv(3, 4) = {uu′, u′}, and it suffices to swap this
component to obtain exactly V−1(β ′). Since V is a minimum cycle, this is a contradiction.

So j 6= j + 1, and since the role of u and u′ is symmetric, we also have that j′ 6= j + 1.
Therefore, inn the cycle V , there exists a vertex vj+1 and vj−1 such that |{u, u′, vj−1, vj′−1}| =
4. Without loss of generality, we assume that β ′(vu′) = mβ′

(vj′−1) = 5, and that β ′(vu) =
mβ′

(vj−1) = 6.

Case 45.2 (j 6= j′ + 1).
For this case, we need to distinguish the cases based on the shape of
C1,5 = Kuy1(1, 5). Since V is saturated in the coloring β ′, by Proposition 44, C1,5 also con-
tains v and vj′−1, and therefore this component is a (1, 5)-path in this coloring. Moreover,
the fan V is tight by Observation 21, so Kvj−1

(2, 6) contains vvj+1, and vu. Let C2,6 =
Kvj−1

(2, 6) \ {vu, vvj+1}. The path C2,6 is a (2, 6)-bichromatic path between vj+1 and vj−1.
There are two cases, in the coloring β ′, either C1,5 is such that u is between vj′−1 and y1,

or y1 is between vj′−1 and u. We start both cases by swapping C2,4 = Kw(2, 4) in the coloring
β2, by Proposition 45 the vertex w belongs to this component, and after the swap we have
m(w) = m(x) = m(u) = 2. By Proposition 43 Xu(1) is a path that we invert to obtain a
coloring β3 ({uu

′} ∪ (V \ {u}))-equivalent to β2.
In the coloring β3, depending on the shape of C1,5, either u is in C = Kvj′−1

(1, 5), or y1
belongs to this component. We now have to distinguish the cases. Both cases are pretty similar,
their proofs rely on the same principle: apply Kempe swaps to reach a coloring where the edges
of E(V) ∪ {vw′} induce two fans that are cycles smaller than V (and that are invertible since
V is minimum).

Subcase 45.2.1 (u belongs to C).
In this case, C = Kvj′−1

(1, 5) is a (1, 5)-bichromatic path between vj′−1 and u and there is a
(1, 5)-bichromatic path C ′ between y1 and u′.

From the coloring β3, we swap the component C to obtain a coloring β4 where the fan
Xv(5) = (vu′, vvj′+1, · · · , vvj−1, vu) is a cycle strictly smaller that V , so since V is minimum,
this cycle is invertible. Moreover, the fan Xv(1) = (vx, vvj+1, · · · , vvj′−1) is also a cycle
strictly smaller than V , and so it is also invertible.

After inverting these two cycles, we obtain a coloring where the componentKvj′−1
(1, 5) =

C ∪ {vvj′−1, vu} is (1, 5)-bichromatic cycle that we swap back; we denote by β5 the coloring
obtained after the swap. Now the componentKy1(1, 5) is exactly C ′ and we swap it to obtain
a coloring β6.

In the coloring β6, the fan Xv(3) = (vu′, vu, vvj−1 · · · , vvj′+1) is now a cycle strictly
smaller than V , so we invert it. In the coloring obtained after this inversion, the (2, 6)-
bichromatic path C2,6 is still a path between vj+1 and vj−1, but now vj−1 is missing the color
6, and vj+1 is missing the color 2. SoKvj+1

(2, 6) = C2,6, and we swap this component. Let β7

be the coloring obtained after the swap.
In the coloring β7, the fan Xv(1) = (vu′, vvj′+1, · · · , vvj−1, vx) is now a cycle strictly

smaller than V and we invert it. In the coloring obtained after the inversion,Ky1(1, 5) is now
exactly C ′, and we swap back this component adn denote by β8 the coloring obtained after
the swap.

In the coloring β8, the vertices y1 and u are bothmissing the color 1, so the fanXu(2) is now
a path that we invert to obtain a coloring where u andw aremissing the color 2. In the coloring
obtained after the inversion, the componentKvj+1

(2, 6) is exactly C2,6 ∪ {vvj−1, vu} and we
swap back this component. In the coloring obtained after the swap, the componentKw(2, 4)
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is exactly C2,4, and thus after swapping back this component, we obtain exactly V−1(β ′); a
contradiction.

Subcase 45.2.2 (y1 belongs to C).
In this case, C = Kvj′−1

(1, 5) is a (1, 5)-bichromatic path between vj′−1 and y1 and there is a
(1, 5)-bichromatic pathC ′ between u and u′. From the coloring β3, we swap the componentC
to obtain a coloring where Xv(2) = (vvj+1, · · · , vvj′−1, vx) is a cycle strictly smaller than V ,
so it is invertible. After inverting it, we obtain a coloring where the componentKvj−1

(2, 6) is
exactly C2,6. We swap this component and denote by β4 the coloring obtained after the swap.

In the coloring β4, the fan Xv(1) = (vvj′−1, · · · , vvj+1, vu) is now a cycle stricly smaller
than V , so it is invertible. After inverting it, the component Ku′(1, 5) is now exactly C ′ ∪
{vu′, vu} and so it is a (1, 5)-bichromatic cycle containing vu and vu′. After swapping this
component, we obtain a coloring where the fan Xv(1) = (vu′, vvj′+1, · · · , vvj−1, vx) is now
a cycle strictly smaller than V , and we invert it. We denote by β5 the coloring obtained after
the inversion.

In the coloring β5, the component Kvj′−1
(1, 5) is exactly C , and we swap back this com-

ponent. After the swap we obtain a coloring where the fanXv(5) = (vu, vvj+1, · · · , vvj′−1) is
now a cycle strictly smaller than V , and so we invert it and denote by β6 the coloring obtained
after the swap.

In the coloring β6, the component Ku′(1, 5) is now exactly C ′ and we swap back this
component. After the swap we obatin a coloring where u and y1 are both missing the color
1, so the fan Xu(2) is now a path that we invert. We denote by β7 the coloring obtained after
the swap.

In the coloring β7 the componentKvj−1
(2, 6) is exactly C2,6 ∪ {vvj−1, vu} and we swap it

back. After the swap of this component, we obtain a coloring where Kw(2, 4) is exactly C2,4.
After swapping back this component, we obtain exactly V−1(β ′). This is a contradiction.

From the previous lemma we derive the following corollary.

Corollary 46. Let V = (vv1, · · · , vvk) be a minimum cycle in a coloring β, u = vj and u
′ = vj′

two vertices of V . If uu′ ∈ E(G) and β(uu′) = m(v), then no fan around v is a path.

Proof. Assume that there exists a fan X around v which is a path. It suffices to swap the last
edge vx ofX to obtain a coloring β2 (V∪{uu

′})-equivalent to β such thatXv(β2(uu
′)) = {vx}

is now a path (of length one). By Observation 20, the fan V is a minimum cycle in the coloring
β2, so by Lemma 42, we get a contradiction.

We are now ready to prove Lemma 41

Proof of Lemma 41. Let V = (vv1, · · · , vvk) be a minimum cycle in a coloring β, u = vj and
u′ = vj′ two vertices of V . Without loss of generality, we assume that the vertices v, u and u′

are respectively missing the colors 1, 2 and 3. By Lemma 24, the fan U = Xu(m(u′)) is a cycle
entangled with V , so the edge uu′ is in E(G). Assume the β(uu′) 6= 1.

We first prove that Xv(β(uu
′)) is a saturated cycle. If β(uu′) ∈ β(V), then Xv(β(uu

′))
is exactly the fan V . Since V is minimum, by Lemma 15, it is saturated, so Xv(β(uu

′)) is a
saturated cycle as desired.

Hence assume that β(uu′) 6∈ β(V), and without loss of generality, say β(uu′) = 4. By
Lemma 42, then fanXv(4) is not a path.

We now prove thatXv(4) is not a comet. Suppose thatXv(4) = (vw1, · · · , vwt) is a comet.
So there exists i < t with m(wi) = m(wt), we denote by c this color. If c ∈ β(V), the cycle
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V is a subfan of the fan Xv(4), and thus wt = M(V, c) ∈ V (V) and wi 6∈ V (V). Since V is
minimum, it is saturated by Lemma 15, so wt ∈ Kv(1, c), and thus wi 6∈ Kv(1, c). We now
swap the component Kwi

(1, c) and obtain a coloring β2 (V ∪ {uu′})-equivalent to β, so the
cycle V is also a minimum cycle in the coloring β2 by Observation 20. In the coloring β2, the
fanXv(β2(uu

′)) = Xv(4) is a now path, by Lemma 42 this is a contradiction.
So c 6∈ β(V). The vertices wi and wt are not both part of Kv(1, c). If wi is not in Kv(1, c),

we swap Kwi
(1, c) and obtain a coloring β2, (V ∪ {uu′})-equivalent to β. So the coloring β2,

by Observation 20, the fan V is a minimum cycle. But the fan Xv(4) = Xv(β2(uu
′)) is now a

path, a contradiction by Lemma 42.
So the vertex wi belongs to the component Kv(1, c) and thus wt does not belong to this

component. We now swapKwt
(1, c) and obtain a coloring β2 which is (V ∪{uu′})-equivalent

to β. So by Observation 20, the fan V is still the same minimum cycle in β2, but the fan
Xv(4) = Xv(β2(uu

′)) is now a path, again a contradiction by Lemma 42.
Therefore the fanXv(4) is a cycle. We now prove that is it saturated. Note that sinceXv(4)

is a cycle, β(Xv(4)) ∩ β(V) = {1}. Assume that Xv(4) = (vw1, · · · , vwt) is not saturated, so
there exists i such that wi 6∈ Kv(1, m(wi)). We now have to distinguish whether wi = wt or
not.

Case 46.1 (wi 6= wt).
This case is similar to the case whereXv(4) is a comet. In this case, the vertex wi is missing a
color which is not in {1, 2, 3, 4}, and we can assumewithout loss of generality thatm(wi) = 5.
Since wi does not belong to Kv(1, 5), we swap the component Kwi

(1, 5) to obtain a coloring
β2 (V ∪ {uu′})-equivalent to β. In the coloring β2, by Observation 20, the fan V is the same
minimum cycle, but the fanXv(4) = (w1, · · · , wi) is now a path, a contradiction by Lemma 42.

Case 46.2 (wi = wt).
In this case, wt does not belong toKv(1, 4). We first swap the component C1,4 = Kwt

(1, 4). If
uu′ 6∈ C1,4, then we obtain a coloring β2 (V ∪ {uu′}) equivalent to β. So by Observation 20,
the fan V is a minimum cycle in the coloring β2, but now the fan Xv(4) = Xv(β2(uu

′)) =
(vw1, · · · , vwt) is now a path; a contradiction by Lemma 42.

So the edge uu′ is in C1,4. After swapping C1,4, we obtain a coloring β2 (V)-equivalent to
β, so V is still a minimum cycle. But now β2(uu

′) = 1, andXv(4) is a path, so by Corollary 46,
we have a contradiction.

HenceXv(4) is a saturated cycle as desired.

The proof of P (0) is a direct consequence of the two previous lemmas.

Proof of Lemma 40. Let V be a minimum cycle around a vertex v in a coloring β, u and u′

two vertices of V , U = Xu(m(u′)) = (uu1, · · · , uul), assume that β(uu′) 6= m(v) and let
W = Xv(β(uul)) = (vw1, · · · , vws). Without loss of generality, we assume that the vertices
v, u and u′ are respectively missing the colors 1, 2, and 3, and that the edge uu′ is colored 4.

We first prove that W is a saturated cycle containing ul−1. By Lemma 41, the fan W is a
saturated cycle, and thus ws is missing the color 4. We now prove that the fanW contains the
vertex ul−1.

If 4 ∈ β(V), then W = V , and since U is entanlged with V by Lemma 24, we have that
ul−1 = ws ∈ V = W . So the color 4 is not in β(V).

Assume that the fan W does not contain ul−1, so in particular, ul−1 6= ws. The cycle W is
saturated, so ws ∈ Kv(1, 4), and thus ul−1 6∈ Kv(1, 4). By Lemma 49

• u ∈ Kul−1
(1, 4),
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• there exists j 6 l − 1 such that β(uuj) = 1, and

• the subfan (uuj+1, · · · , uul−1) is a (V, u)-independent subfan.

We now consider the coloring β ′ obtained from β after swapping the component C1,4 =
Kul−1

(1, 4). LetX = (uuj+1, · · · , uul−1). The coloring β ′ is (V∪W∪(X \{ul−1}))-equivalent
to β, so V is a minimum by Observation 20, andW = Xv(4) is still a cycle. The vertex v is still
missing the color 1, but now the vertex ul−1 is missing the color 1, the edge uuj is colored 4,
and the edge uul is colored 1. So now Xu(4) = X ′ = (uuj, · · · , uui) is a (V, u)-independent
subfan avoiding the vertex v. By Lemma 34 the fanXv(4) is a path; a contradiction.

We now prove some properties of the fans around a vertex of a minimum cycle.

4.3 Fans around the vertices of a minimum cycle

We first prove that some fans around a vertex of a minimum cycle are not paths.

Proposition 47. Let V = (v1, · · · , vk) be a minimum cycle in a coloring β, u = vj and u
′ = vj′

two vertices of V , and U = Xu(m(u′)) = (uu1, · · · , uul), and w = us a vertex of U . Then for

any color c ∈ β(V), the fan W = Xw(c) = (ww1, · · · , wwt) is not a path.

Proof. Otherwise assume that the fan W is a path. The vertex w is not a vertex of V (V),
otherwise since W is a path, by Lemma 24 we have a contradiction. So the vertex w is not in
V (V).

We invert it until we reach a coloring β2 where mβ2(w) ∈ β(V ∪ U<s), we denote by
c′ this new missing color. Since c ∈ β(W), the color c′ is well defined. The coloring β2 is
(V ∪U<s)-equivalent to β. Thus by Observation 20, the sequence V is still a minimum cycle in
the coloring β2. Let U ′ = Xu(m

β2(u′)) = (uu′
1, · · · , uu

′
l′). Since β2 is (U<s)-equivalent to β,

we have thatU<s = U ′
<s, so the edge uw is also inE(U ′), it is exactly the edge uu′

s. If c
′ ∈ β(V),

then U ′ is not entangled with V in the coloring β2, a contradiction by Lemma 24. If c′ ∈ βU<s,
then U ′ is now a comet in the coloring β2, again, by Lemma 24 we have a contradiction.

Lemma 48. Let i > 0, V be a minimum cycle in a coloring β, u and u′ two vertices of V ,
U = Xu(m(u′)) = (uu1, · · · , uul), and c ∈ β(V) ∪ β(U<ui

). If ui 6∈ V (V) ∪ {v}. Then the fan

X = Xui
(c) = (uix1, · · · , uixs) is not a path.

Proof. Assume ui 6∈ V (V) and that X is a path. Without loss of generality, we assume that
there is no edge in X[x2,xs] colored with a color in β(V) ∪ β(U<ui

), otherwise, it suffices to
consider the subfan of X starting with this edge, this fan is also a path. We now invert X and
obtain a coloring β ′ where m(ui) = c. The coloring β ′ is (V ∪ U<ui

)-equivalent to β. So by
Observation 20, the fan V is a minimum cycle in the coloring β ′. If c ∈ β(V), now the fan
Xu(m(u′)) contains the vertex ui which is missing the color c ∈ β(V), so Xu(m(u′)) is not
entangled with V . If m(ui) ∈ β(U<ui

, let u′′ = M(U<ui
, c). Then Xu(m(u′)) is now a comet

since it contains the vertices ui and u′′ both missing the color c. In both cases, by Lemma 24
we have a contradiction.

We now prove a sufficient condition for a fan around a vertex of a minimum to contain an
edge colored with the color missing at the central vertex of the minimum cycle.

Lemma 49. Let V be a minimum cycle in a coloring β, u and u′ two vertices of V , U =
Xu(m(u′)) = (uu1, · · · , uul) and i 6 l. If β(uui) 6= m(v),m(ui) 6∈ β(V) andui 6∈ Kv(m(v), m(ui)),
then:
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• u ∈ Kui
(m(v), m(ui)),

• there exists j < i such that β(uuj) = m(v), and

• the subfan (uuj+1, · · · , uui) is a (V, u)-independent subfan.

Proof. Let V , u, u′ and U be as in the lemma. Without loss of generality, we assume that
the vertices v, u, and u′ are respectively missing the colors 1, 2 and 3. Assume that ui 6∈
Kv(1, m(ui)). Since the cycle V is minimum, by Lemma 15 it is saturated, so for any u′′ ∈
V (V), u′′ ∈ Kv(m(v), m(u′′)), thus ui 6∈ V (V), so without loss of generality, we may assume
thatui is missing the color 4. We first consider the componentC1,4 = Kui

(1, 4). In the coloring
β, by Lemma 24, U is a cycle entangled with V , so it does not contain any other vertex missing
4. Since v 6∈ C1,4, then V (C1,4) ∩ V (U) = {ui}. After swapping C1,4, we obtain a coloring β ′

(V (U) \ {ui})-identical to β where ui is now missing the color 1. Note that the coloring β ′ is
also V-equivalent to β, and thus V is still a minimum cycle in β ′. Moreover the vertex v is still
missing the color 1 in β ′.

We first prove that the vertex u belongs to C1,4 and that there is an edge colored 1 in
{uu1, · · · , uui−1}. If u 6∈ C1,4, or if there is no edge colored 1 in {uu1, · · · , uui−1}, then the
coloring β ′ is also (E(U[uu1,uui]))-identical to β, and soXu(3) now contains the vertex ui which
is missing the color 1, soXu(3) is not a cycle entangled with V . Since the cycle V is minimum,
we have a contradiction by Lemma 24. So u ∈ C1,4 and there is an edge uuj with j < i colored
1.

We now prove that (uuj+1, · · · , uui) is a (V, u)-idenpendent subfan. Note that we have
have j + 1 = i (i.e. the subfan is of length 1). Since β ′ is (V (U) \ {ui})-identical to β, the
sequence (uuj+1, · · · , uui) is a subfan. Assume that there exists s ∈ {j + 1, · · · , i} such that
β(uus) ∈ β(V). Then, in the coloring β ′, Xu(β(uus)) contains the vertex ui that is missing
the color 1, thus it is not a cycle entangled with V , by Lemma 24, this is a contradiction.

Lemma 50. Let V be a minimum cycle in a coloring β, u and u′ two vertices of V , U =
Xu(m(u′)) = (uu1, · · · , uul) and i 6 l such that m(ui) 6∈ β(V). Let β ′ be a coloring ob-

tained from β by swapping a (m(v), c)-component C that does not contain v for some color

c 6∈ (β(U<ui
) ∪ {m(v)}). If there exists a coloring β ′′ such that:

• β ′′ is (V ∪ U<ui
)-equivalent to β ′, and

• mβ′′

(ui) ∈ β ′′(V) ∪ β ′′(U<ui
).

Then

• u ∈ C ,

• there exists j < i such that β(uuj) = m(v), and

• the subfan (uuj+1, · · · , uui) is a (V, u)-independent subfan in β.

Proof. Let V , U , u, u′, β ′, and c be as in the lemma. Without loss of generality, we assume
that the vertices v, u, and u′ are respectively missing the colors 1, 2 and 3. Assume that there
exists such a coloring β ′′. Note that since m(ui) 6∈ β(V), the vertex ui is not in V . The cycle
V is a minimum cycle in β, so it is saturated by Lemma 15. Therefore, if c ∈ β(V), then
M(V, c) ∈ Kv(1, c), and thus M(V, c) 6∈ C . So β ′ is V (V)-equivalent to β. Moreover, v 6∈ C

so β ′ is also (E(V) ∪ {v})-equivalent to β. Therefore, the coloring β ′ is (V ∪ {v})-equivalent
to β.
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We first prove that the vertex u belongs to C and that there exists an edge colored 1 in
U<ui

. Assume that u does not belong to C , or that there is no edge colored 1 in U<ui
in β. We

show that β ′′ is (V ∪ U<ui
)-equivalent to β. To prove it, it suffices to prove that β ′ is U<ui

-
equivalent to β. The swap between β and β ′ only changes the colors of edges colored 1 or c.
Since {1, c} ∩ β(U<ui

) = ∅ this means that the coloring β ′ is U<ui
-equivalent to β. Since β ′ is

also (V ∪{v})-equivalent to β , in total it is (V ∪U<ui
)-equivalent to β. Note that the missing

color of v may be different in β ′ and β ′′. Since β ′′ is (V ∪ U<ui
)-equivalent to β ′, the coloring

β ′′ is (V ∪ U<ui
)-equivalent to β. Note that the missing color of v may be different in β ′ and

β ′′. Hence, in the coloring β ′′, by Observation 20, the cycle V is a minimum cycle and we have
that Xu(m(u′)) now contains the vertex ui which is missing a color in (β ′′(V) ∪ β ′′(U<ui

)).
Let c′ be this color. Since the cycle V is minimum in β ′′, by Lemma 24, Xu(m(u′)) is a cycle
entangled with V . If c′ ∈ β ′′(V), thenXu(m(u′)) is not entangled with V , and if c′ ∈ β ′′(U<ui

)
thenXu(m(u′)) is a comet. In both cases, we have a contradiction. So u ∈ C , and there exists
j < i such that β(uuj) = 1.

We now prove that the subfan X = (uuj+1, · · · , uui) is a (V, u)-independent subfan in β.
Note that we have have j+1 = i (i.e. the subfan is of length 1). IfX is not a (V, u)-independent
subfan, then there exists s ∈ {j + 1, · · · , i} such that c′ ∈ β(uus) ∈ β(V). Recall that the
coloring β ′ is (V ∪ {v})-equivalent to β, and thus that β ′′ is also (V ∪ {v})-equivalent to β.
In the coloring β ′, the edge uuj is now colored c, and this is the only edge in E(U<ui

) that
has been recolored during the swap of C . Moreover, the cycle V is minimum in β, and thus
by Lemma 24, then fan U is a cycle, and does not contain any vertex missing the color 1 in
V (U[uj, ui]). Since c 6∈ β(U<ui

), the coloring β ′ is also V (U[uj , ui])-equivalent to the coloring
β, and so it is X -equivalent to β. The coloring β ′′ is U<ui

-equivalent to β ′, so it is (X \ {ui}-
equivalent to β and thus the fan Xu(c

′) now starts with the edge uus and contains the vertex
ui 6∈ V (V) which is missing a color in β(V) = β ′′(V). Since V is also a minimum cycle in β ′′,
by Lemma 24,Xv(c

′) is a cycle entangled with V ; this is a contradiction.

In the following section we prove some properties that are guaranteed if the property P is
true up to some i.

4.4 Properties guaranteed by P (i)

The following lemma guarantees that the last vertices of two cycles will be the same.

Lemma 51. Let i > 0, V be a minimum cycle around a vertex v in a coloring β, u and u′′

two vertices of V , U = Xβ
u (m

β(u′′)) = (uu1, · · · , uul), β
′ a coloring (V ∪ U[ul−(i−1)),ul] ∪⋃

j∈[0,i−1]

Xv(β(uul−j))-equivalent to β and U ′ = Xβ′

u (mβ′

(u′′)) = (uu′
1, · · · , uu

′
s). If

• for any j < i P (j) is true, and

• {mβ(v), mβ′

(v)} ∩ β(U[ul−(i−1),ul])) = ∅

then for any t 6 i, ul−t = u′
s−t.

Proof. Let i, V , U , U ′, β, β ′, v, u, and u′′ be as in the lemma. Assume that P (j) is true for
all j < i, that {mβ(v), mβ′

(v)} ∩ β(U[ul−(i−1),ul])) = ∅ and that there exists t 6 i such that
ul−t 6= us−t, without loss of generality, we may assume that such a t is minimum. The cycle
V is a minimum cycle in β, and β ′ is V-equivalent to β, so by Observation 20, the cycle V is
also a minimum cycle in the coloring β ′. Therefore by Lemma 24, the fans U and U ′ are both
cycles entangled with V respectively in β and β ′. Note that since mβ(v) 6∈ β(U[ul−(i−1),ul])),
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and that P (j) is true for all j < i, for all j < i, the fan Xv(β(uul−j) is a cycle containing
ul−j−1. Moreover, this also means that no vertex in V (U[ul−i,ul]) is missing the colorm(v), and
thus none of them is v. Therefore the vertex v may be missing a different color in β and in β ′.
Note also that, in the coloring β, the edge uul−i may be coloredmβ(v) or mβ′

(v).
We first show that t 6= 0. Since the fans U and U ′ are both cycles we have mβ(ul) =

mβ′

(us) = mβ(u′′), and moreover, U and U ′ are entangled with V so ul = u′′ = u′
s, and thus

t 6= 0.
Since t is minimum, ul−(t−1) = u′

s−(t−1). Moreover, β ′ is U[ul−(i−1),ul]-equivalent to β, so in
particular β(uul−(t−1)) = β ′(uul−(t−1)) = β ′(uu′

s−(t−1)), without loss of generality, we assume
that this color is 1. This means that both the vertices ul−t and u′

s−t are missing the color 1. To
reach a contradictionwe show that both these vertices belong to a same cycle. Since 1 6= mβ(v)
and P (t− 1) is true, thenXβ(1) is a cycle containing ul−t. Similarly 1 6= mβ′

(v) and P (t− 1)
is true soXβ′

v (1) is a cycle containing u′
s−t. However, the coloring β

′ is (
⋃

j∈[0,i−1]

Xv(β(uul−j))-

equivalent to the coloring β, so in particular Xβ
v (1) = Xβ′

v (1); we denote by X this fan. The
fan X is a cycle and contains two vertices ul−t and us−t that are both missing the color 1, this
is a contradiction.

Now we prove that we can guarantee that there is no path around the central vertex of a
minimum cycle

Lemma 52. Let i > 0, V be a minimum cycle around a vertex v in a coloring β, u and u′′ two

vertices of V , U = Xβ
u (m(u′′)) = (uu1, · · · , uul), and X = (vx1, · · · , vxs) a fan around v. If

• for any j < i P (j) is true,

• Pweak(i) is true, and

• β(uul−i) = m(v),

then X is not a path.

Proof. Let i, V , U , X , β, v, u, and u′′ be as in the lemma, and without loss of generality we
assume that m(v) = 1. Assume that for any j < i P (j) is true, that Pweak(i) is true, that
β(uul−i) = m(v) and that X is a path. The fan X is a path so the vertex xs is also missing
the color 1, without loss of generality, we assume that β(vxs) = 2. Note that this means that
Xv(2) is also a path (of length 1). The cycle V is minimum and by Lemma 24 the fan U is a
cycle entangled with V . Since β(uul−i) = 1, no edge in E(U[ul−(i−1),ul]) is colored 1. Since
P (j) is true for all j < i,Xv(β(uul−j) is a cycle for all j < i; sinceXv(2) is a path, no edge in
E(U[ul−(i−1),ul]) is colored 2 either.

We now consider the coloring β ′ obtained from β by swapping the edge vxs. Note that
in the coloring β ′, the vertex v is now missing the color 2, and the fan Xβ′

v (1) is now a path
(of length 1). The coloring β ′ is clearly V-equivalent to β so by Observation 20, the fan V is
a minimum cycle in the coloring β ′. Let U ′ = Xβ′

u (m(u′′)) = (uu′
1, · · · , uu

′
s)). No edge in

E(U[ul−(i−1),ul]) is colored 1, so no vertex in V (U[ul−i,ul]) is missing the color 1, and thus β ′

is also U[ul−(i−1)),ul]-equivalent to β. Finally since no edge in E(U[ul−(i−1),ul]) is colored 1 and
P (j) is true for all j < i, the fansXv(β(uul−j)) are cycles for all j < i. Therefore the coloring
β ′ is also (

⋃

j∈[0,i−1]

Xv(β(uul−j))-equivalent to β. By Lemma 51, for any t 6 i ul−t = u′
s−t,

so in particular ul−i = u′
s−i. In the coloring β ′ the edge uus−i is still colored 1, and now the

vertex v is missing the color 2. Since Pweak(i) is true the fan Xβ′

v (1) is not a path, this is a
contradiction.
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The next lemma considers (V, u)-independent cycles.

Lemma 53. Let i > 0, V be a minimum cycle in a coloring β, u and u′ two vertices of V ,
U = Xu(m(u′) = (uu1, · · · , uul), h 6 i such that β(uul−h) = m(v), c′ a color not in β(V)
such that Y = Xu(c

′) = (uy1, · · · , uyr) is a (V, u)-independent cycle different from U and

X = Xv(c
′) = (vx1, · · · , vxs) is a cycle different from V with yr = xs = z, and c′′ a color in

β(V). If P (j) is true for all j 6 i, then Z = Xz(c
′′) is not a path.

Proof. Without loss of generality, we assume that the vertices v, u and u′ are respectively
missing the colors 1, 2, and 3; we also assume that c′ = 4. Note that since U and Y are
different cycles, we have β(U) ∩ β(Y) = {m(u)} = {2}, and since X and V are different
cycles, we have that β(V)∩ β(X ) = {m(v)} = 1. Assume that the fan Z is a path. The fan V
is a minimum cycle, so by Lemma 24, the fan U is a cycle entangled with V , and thus ul = u′.

We first invertZ until we reach a coloring β ′ wherem(z) = c ∈ (β(V)∪β(X )∪β(Y))\{4}.
The coloring β ′ is V-equivalent to β, so by Observation 20, the cycle V is the same minimum
cycle in the coloring β ′. The coloring β ′ is also U-equivalent to β, so, in the coloring β ′, the
fan Xu(3) is exactly U . Since the property P (j) is true for all j 6 h, for any j 6 h such that
β(uul−j) 6= 1, the fanXv(β(uul−j)) is a saturated cycle containing ul−j−1.

We first show that c 6∈ β(V). Otherwise, assume that c ∈ β(V), then c 6∈ β(Y) since Y
is a (V, u)-independent cycle, and c 6 β(X ) since X is different from V . So the coloring β ′

is (X ∪ Y \ {z})-equivalent to β. Hence, in the coloring β ′, the fans Xu(4) and Xv(4) still
contain the vertex z. If c = 1, then in the coloring β ′, since the fan Xu(4) still contains the
vertex z, we have that Xu(4)6z is a (V, u)-independent subfan avoiding v. However, the fan
Xv(4) is now a path containing z, by Lemma 34, we have a contradiction. So c 6 1. Since the
fan V is a minimum cycle in the coloring β ′, it is saturated by Lemma 15, thus z 6∈ Kv(1, c).
We now swap the component C1,c = Kz(1, c), and denote by β ′′ the coloring obtained after
the swap. The coloring β ′′ is V-equivalent to β ′, so V is still a minimum cycle in the coloring
β ′′ by Observation 20. The coloring β ′′ is also (Xu(4)6z)∪Xv(4))-equivalent to β ′, so the fan
Xu(4) still contains the vertex z which is now missing the color 1. Similarly to the previous
case, the subfan Xu(4)6z is now a (V, u)-independent subfan avoiding v, and Xv(4) is now a
path; again by Lemma 34, we have a contradiction. Without loss of generality, we assume that
c = 5.

Case 53.1 (5 6∈ β(X )).
In this case, the coloring β ′ is (X \ {z})-equivalent to β, and so in the coloring β ′, the fan
Xv(4) still contains the vertex z which is now missing the color 5.

Subcase 53.1.1 (5 ∈ β(U<ul−h
)).

Let z′ be the vertex of U<ul−h
missing the color 5. If the vertex z′ does not belong toKv(1, 5),

then we swap the component C1,5 = Kz′(1, 5), and denote by β ′′ the coloring obtained after
the swap. The coloring β ′′ is clearly V-equivalent to β ′, so by Observation 20, the cycle V is
still the same minimum cycle in the coloring β ′′. Since in the coloring β ′, there is no edge
colored 1 or 5 in U<ul−h

, the coloring β ′′ is also U<ul−h
-equivalent to β ′. So in the coloring β ′′,

the fan Xu(3) still contains the vertex z′ which is now missing the color 1, and thus Xu(3)
is not entangled with V . By Lemma 24, we have a contradiction. So the vertex z′ belongs to
Kv(1, 5), and thus the vertex z does not belong to Kv(1, 5). We now swap the component
C1,5 = Kz(1, 5), and denote by β ′′ the coloring obtained after the swap. The coloring β ′′

is also V-equivalent to β ′, so the fan V is a minimum cycle in the coloring β ′′. Moreover,
since 5 ∈ β(U<ul−h

), 5 6∈ β(Y). We also have that 5 6∈ β(X ), so in total, the coloring β ′′ is
(Y ∪X \{z})-equivalent to the coloring β ′. This means that in the coloring β ′′, the fanXu(4)
still contains the vertex z which is nowmissing the color 1, soXu(4)6z is a (V, u)-independent
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subfan avoiding v. We also have that the fan Xv(4) is now a path containing the vertex z, so
by Lemma 34 we have a contradiction.

Subcase 53.1.2 (5 ∈ β(U>ul−h
)).

Let s be such thatm(ul−s) = 5. The fanXv(5) is a saturated cycle containing ul−s, so the vertex
ul−s belongs to the componentKv(1, 5), and the vertex z does not belong to this component.
We now swap the componentKz(1, 5) and denote by β ′′ the coloring obtained after the swap.
Since the color 5 is not in β(Xv(4)), the coloring β ′′ is (Xv(4)\{z})-equivalent to β ′. So in the
coloring β ′′, the fanXv(4) still contains the vertex z which is missing the color 1, so it is now
a path. Since the color 5 is in β(U>ul−h

), it is not in β(Y), so the coloring β ′′ is (Xu(4) \ {z})-
equivalent to β ′, and thus Xu(4) still contains the vertex z. So the subfan Xu(4)6z is now a
(V, u)-independent subfan avoiding v. By Lemma 34, the fan Xv(4) is a path not containing
z; a contradiction.

Subcase 53.1.3 (5 ∈ β(Y)).
Let z′ be the vertex of Y missing the color 5 in the coloring β. The vertices z and z′ are both
missing the color 5 in the coloring β ′, so at least one of them is not in Kv(1, 5). If the vertex
z is not in Kv(1, 5), then we swap the component C1,5 = Kz(1, 5), and denote by β ′′ the
coloring obtained after the swap. The coloring β ′′ is V-equivalent to β ′, so the cycle V is the
same minimum cycle in the coloring β ′′ by Observation 20.

If the vertex u does not belong to C1,5, then the fanXu(5) now contains the vertex z which
is missing the color 1. Thus Xu(5)6z is now a (V, u)-independent subfan avoiding v, and by
Lemma 34, the fan Xv(5) is a path. However, β ′′(uul−h) = β(uul−h) = 1, and the property
P (j) is true for all j 6 h, so by Lemma 52, there is no path around v. This is a contradiction.

So the vertex u belogns to C1,5, and now Xu(1) contains the vertex z which is missing the
color 1. So Xu(1) is not entangled with V , and by Lemma 24, we also have a contradiction.

Case 53.2 (5 ∈ β(X )). Let z′ be the vertex of X missing the color 5 in the coloring β.

Subcase 53.2.1 (5 ∈ β(U<ul−h
)).

Let z′′ be the vertex of U<ul−h
missing the color 5 in the coloring β. Note that we may have

z′′ = z′. The vertices z and z′′ are both missing the color 5 in the coloring β ′, so they are not
both part of Kv(1, 5). If z′′ is not in Kv(1, 5), then we swap Kz′′(1, 5), and denote by β ′′ the
coloring obtained after the swap. The coloring β ′′ is V-equivalent to β ′, so by Observation 20,
the cycle V is the same minimum cycle in the coloring β ′′. Since there is no edge colored 1 or
5 inE(U6z′′), the coloring β ′′ is also U6z′′-equivalent to the coloring β ′, soXu(3) still contains
the vertex z′′ which is now missing the color 1, so it is not entangled with V , by Lemma 24,
this is a contradiction.

So the vertex z′′ belongs toKv(1, 5), and thus the vertex z does not belong to this compo-
nent. We swap the componentC1,5 = Kz1, 5, and denote by β ′′ the coloring obtained after the
swap. In the coloring β ′′, the fanXv(5) still contains the vertex z which is missing the color 1,
so this fan is now a path. If the vertex u does not belong toC1,5, then β ′′(uul−h) = 1. Since the
property P (j) is true for all j 6 h, there is no path around v, a contradiction. So the vertex u
belongs to C1,5. Now in the coloring β ′′, the fan U ′ = Xu(3) = (uu′

1, · · · , uu
′
l′) is smaller, but

for any j 6 h, we still have that ul−j = u′
l′−j ∈ V (U ′). Note that we have z′′ = u′

l′−h−1. So
we have U ′ = (uu′

1, · · · , uu
′
l−h−1 = uz′′, uul−h, · · · , uul). Since the property P (j) is true for

all j 6 h, the fanXv(β(uul−h)) = Xv(5) is a cycle, a contradiction.

Subcase 53.2.2 (5 ∈ β(U>ul−h
)).

Let s be such that mβ(ul−s) = 5. In the coloring β, since the property P (s) is true, the fan
Xv(5) is a saturated cycle containing us. But the color 5 is inX , so the fanXv(5) also contains
the vertex z, and thus Xv(5) = X . In the coloring β ′, the fanXv(5) still contains the vertex z
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which is now missing the color 5. Since the property P (s) is true, the cycle Xv(5) is a a cycle
containing the vertex ul−s, so we have a contradiction.

Subcase 53.2.3 (5 ∈ β(Y)).
Let z′′ be the vertex of Y missing the color 5 in the coloring β. Note that we may have z′′ = z′.
Since the vertices z and z′′ are both missing the color 5 in the coloring β ′, they are not both
part of Kv(1, 5). If z is not in Kv(1, 5), then we swap the component Kz(1, 5) = C1,5 and
denote by β ′′ the coloring obtained after the swap. The coloring β ′′ is V-equivalent to β ′, so
by Observation 20, the cycle V is the same minimum cycle in the coloring β ′′. Moreover, the
coloring β ′′ is also (Xv(5) \ {z})-equivalent to β ′, so this fan is now a path containing z.

If the vertex u does not belong to C1,5, then the coloring β ′′ is (Xu(5) \ {z})-equivalent to
β ′, and thus Xu(5) still contains the vertex z which is now missing the color 1. So the subfan
Xu(<)6z is now a (V, u)-independent subfan avoiding v, and it also contains z, by Lemma 34,
the fanXv(5) is a path that does not contain z, a contradiction.

So the vertex u belogns to C1,5, and now in the coloring β ′′, the fan Xu(1) contains the
vertex z which is missing the color 1. So this fan is not entangled with V , by Lemma 24, we
also have a contradiction.

Subcase 53.2.4 (5 6∈ (β(Y) ∪ β(U))).
The vertices z and z′ are both missing the color 5, so at least one of them is not in Kv(1, 5).

If the vertex z is not in Kv(1, 5), since P (j) is true for all j 6 h, then for all j 6 h,
the vertex z is not in Xv(β(uul−j)). We now swap the component C1,5 = Kz(1, 5) to obtain
a coloring β ′′ where the subfan Xu(4) is now a (V, u)-independent subfan avoiding v. The
coloring β ′′ is V-equivalent to β ′, so by Observation 20 the cycle V is the same minimum
cycle in the coloring β ′. By Lemma 34, the fan Xv(4) is now a path that does not contain z.
Since for all j 6 h, P (j) is true and z does not belong to Xv(β(uul−j), the coloring β ′′ is also
(

⋃

j∈[0,h]

Xv(β(uul−j)))-equivalent to the coloring β ′.

If the vertex u does not belong to C1,5, then the coloring β ′′ is also U equivalent to the
coloring β ′. The edge uul−h is still colored 1, and the property P (j) is true for all j 6 h. By
Lemma 52 there is no path around v, a contradiction. So the vertex u belongs to the component
C1,5, and the edge uul−h is now colored 5. Let U ′ = Xβ′′

u (3) = (uu′
1, · · · , uu

′
l′). Since z 6∈

Xv(β(uul−j)) for all j 6 h, the coloring β ′′ is (
⋃

j∈[0,h]

Xv(β(uul−j)))-equivalent to the coloring

β ′, and it is also U>ul−h
-equivalent to the coloring β ′, so by Lemma 51, for all j 6 h, we have

u′
l−j = ul−j. In particular, u′

l−h = ul−h. The coloring β ′′ isXu(5)<z-equivalent to the coloring
β ′, so in the coloring β ′′, the fan Xu(5) still contains the vertex z which is now missing the
color 1, therefore the fan Xu(5) is a path. Since P (h) is true, we have a contradiction.

So the vertex z belongs to Kv(1, 5), and the vertex z′ does not belong to this component.
We now swap the component C1,5 = Kz′(1, 5), and obtain a coloring β ′′ that is V-equivalent
to β ′. By Observation 20, the fan V is the same minimum cycle in the coloring β ′′. Since the
property P (j) is true for all j 6 h, and z′ is not inKv(1, 5), then for all j 6 h, the vertex z′ is
not in Xv(β(uul−j)), and the coloring β ′′ is (

⋃

j∈[0,h]

Xv(β(uul−j)))-equivalent to the coloring

β ′. In the coloring β ′′, the fanXv(4) is now a path, so similarly to the previous case, the vertex
u belongs to the component C1,5. Therefore, in the coloring β ′′, the edge uul−h is colored 5.

Let U ′ = (uu′
1, · · · , uu

′
l′). Since the coloring β ′′ is (

⋃

j∈[0,h]

Xv(β(uul−j)))-equivalent to the

coloring β ′, by Lemma 51, for any j 6 h we have u′
l′−j = ul−j . The coloring β ′′ is U6v

equivalent to β ′, so v is in U ′′, and thus we haveXu(1) = Xu(5) = U ′. So there exists a vertex
z′′ missing the color 5 in the fan Xu(1). Note that since m(z′) = 1 and m(z′′) = 5 we have
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z 6= z′′, however, we may have z′′ = z, and in this case there exists a vertex inXu(1) missing
a color in β(Xu(4)6z). We now have to distinguish the cases.

Subsubcase 53.2.4.1 (z′′ 6= z).
We consider the coloring β ′. In this coloring, the vertex z′′ is inXu(5) since u is in C1,5. If the
vertex z′′ also belongs toC1,5, then nowXu(5)6z′′ is a subfan avoiding v. If there is en edge uu′′

inE(Xu(5)6z′′) colored with a color in β ′(V) then the fanXu(β
′(uu′′))) is not entangled with

V , and by Lemma 24 we have a contradiction. So the subfanXu(5)6z′′ is a (V, u)-independent
subfan avoiding v. By Lemma 34 the fan Xv(5) is a path, however, in the coloring β ′ the fan
Xv(5) still contains the vertex z that is misisng the color 5, soXv(5) is a cycle, a contradiction.

So the vertex z′′ does not belong to C1,5, and thus is still missing the color 5 in the coloring
β ′. We now swap the componentKz′′(1, 5) to obtain a coloring βf whereXu(5)6z′′ is a (V, u)-
independent subfan avoiding v, and where Xu(5) is a cycle. Again by Lemma 34 we have a
contradiction.

Subsubcase 53.2.4.2 (z′′ = z′).
So there exists a vertex w in Xu(5) such thatm(w) ∈ β ′(Xu(4)6z) and w 6∈ V (Xu(4)6z). We
now need to distinguish whether or notm(w) = 4.

Subsubsubcase 53.2.4.2.1 (m(w) 6= 4).
In this case, without loss of generality, assume that m(w) = 6, and let w′ be the vertex of
Xv(4)6z missing the color 6. The vertices w and w′ are both misisng the color 6, so they are
not both part of Kv(1, 6).

If w′ is not in Kv(1, 6), then we swap C1,6 = Kw′(1, 6) to obtain a coloring β ′′ where
Xu(4)6w′ is a (V, u)-independent subfan avoiding v. The coloring β ′′ is V-equivalent to V , so
the fanV is still the sameminimum cycle in the coloring β ′ by Observation 20. So by Lemma 34
the fan Xv(4) is a path that does not contain w′. If the vertex u does not belong to C1,6, then
the coloring β ′′ is U-equivalent to β ′, the propertyP (j) is true for all j 6 h and β ′′(uul−h) = 1
so by Lemma 52 there is no path around v, a contradiction.

So the vertex u belongs to C1,6, and we have β ′′(uul−h) = 6. Let U ′ = Xβ′′

u (3) =
(uu′

1, · · · , uu
′
l′). The coloring β ′′ is (

⋃

j∈[0,h]

Xv(β(uul−j)))-equivalent to the coloring β ′ and

is U>ul−h
-equivalent to the coloring β ′ so by Lemma 51, for all j 6 h we have u′

l′−j = ul−j .
In the coloring β ′, the fanXv(4) contains the vertex z′ missing the color 5, and the fanXv(5)
is a cycle that contains the vertex z, and in the coloring β ′′, the fan Xu(4) is a path. So there
exists a vertex w′′ in Xv(4) that is missing the color 6 in the coloring β ′ and that belongs to
C1,6. this vertex is now missing the color 1 in the coloring β ′′. If w′′ is in Xβ′

v (4)6z′ , then the
fan Xβ′′

v (6) is now a comet containing two vertices (z and z′) missing the color 5. Since the
property P (h) is true, we have a contradiction. So the vertex w′′ si inXβ′

v (5). But now, in the
coloring β ′′, the fanXv(6) contains the vertex z which is still missing the color 5, and the fan
Xv(5) is a path, so the fanXv(6) is a path. Again since P (h) is true, we have a contradiction.
So the vertex w′ belongs to Kv(1, 6).

Therefore, the vertex w does not belong to Kv(1, 6), and we swap the component C1,6 =
Kw(1, 6) to obtain a coloring β ′′ where Xu(5)6w is a subfan avoiding v. The coloring β ′′ is
V-equivalent to the coloring β ′, so by Observation 20, the fan V is the same minimum cycle
in the coloring β ′′. Similarly to the previous case, the subfanXu(5)6w is a (V, u)-independent
subfan avoiding v, so Xv(5) is a path, and the vertex u belongs to C1,6. Since the vertex z is
still missing the color 5, it means that in the coloring β ′′ the fanXu(1) now contains the vertex
w which is missing the color 1, and so it is not entangled with V . By Lemma 24 we have a
contradiction.
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Subsubsubcase 53.2.4.2.2 (m(w) = 4).
Since the fanY = Xz(5) is a path in the coloring β, the fanXz(4) is a path in the coloring β ′. In
the coloring β ′ we invert the pathXz(5) until we reach a coloring wherem(z) ∈ β ′(Xu(5)6w)
and denote by β ′′ the coloring obtained after the inversion. Note that since 4 ∈ β ′(Xz(5)) ∩
β(Xu(5)6w) the inversion is well defined. The coloring β ′′ is V-equivalent to β ′ so the fan
V is the same minimum cycle in the coloring β ′′. The coloring β ′′ is also U-equivalent to β ′,
so Xβ′′

u (3) = U and since P (j) is true for all j 6 h, the fan Xv(β
′′(uul−j)) is a saturated

cycle if β ′′(uul−j) 6= 1. The coloring β ′′ is (Xv(4) \ {z})-equivalent to β ′, so the fan Xv(4)
still contains the vertex z′ which is missing 5, and the vertex z. Finally, the coloring β ′′ is
Xu(5)6w-equivalent to the coloring β ′. Let cz be the missing color of z in β ′′, and let w′ be the
vertex of Xu(5)6w missing the color cz. Note that is cz = 4, then we have w′ = w.

The proof is similar to the previous case, and we now consider the components ofK(1, cz).
The vertices z and w′ are both missing the color cz so at least of them is not in Kv(1, cz). If
the vertex z is not in Kv(1, cz), then we swap the component C1,cz = Kz(1, cz) to obtain a
coloring βf that is V-equivalent to β ′′. By Observation 18 the fan V is the same minimum
cycle in the coloring βf , and now Xu(4)6z is a (V, u)-independent subfan avoiding v, so by
Lemma 34 the fan Xv(4) is now a path not containing z. Note that the coloring βf is also
(

⋃

j∈[0,h]

Xv(β(uul−j)))-equivalent to the coloring β ′′. If the vertex u does not belong to C1,cz ,

then the coloring βf is U-equivalent to β ′′, and in particular βf (uul−h) = 1. Since P (j) is true
for all j 6 h, by Lemma 52 there is no path around v, a contradiction.

So the vertex u belongs to C1,cz , and now βf (uul−h) = 6. Since the fan Xv(4) is now a
path that does not contain z, it means that in the coloring β ′′ there is a vertex w′′ in Xv(4)
which is missing the color cz and which also belongs to C1,cz . It means that in the coloring

βf , the fan Xv(cz) is now a path containing z. Let U ′ = X
βf
u (3) = (uu′

1, · · · , uu
′
l′). The

coloring βf is U>ul−h
-equivalent to β ′′ and is also (

⋃

j∈[0,h]

Xv(β(uul−j)))-equivalent to β ′′, so

for all j 6 h, we have u′
l′−j = ul−j by Lemma 51. In particular u′

l−h = ul−h. Since P (h) is
true, and βf (uu

′
l′−h) = cz, the fanXv(cz) is a cycle, a contradiction.

So the vertex z belongs toKv(1, cz) and the vertex w′ does not belong to this component.
We now swap the component C1,cz = Kw(1, cz) and denote by βf the coloring obtained after
the swap. The coloring βf is V-equivalent to β ′′ so by Observation 18 the fan V is the same
minimum cycle in the coloring βf . The coloring βf is also (

⋃

j∈[0,h]

Xv(β(uul−j)))-equivalent

to the coloring β ′′. In the coloring βf the subfan Xu(5)6w′ is now a subfan avoiding v. If
there is an edge uu′′ in E(Xu(5)6w′) colored with a color in βf(V), then Xu(βf(uu

′′)) is not
entangled with V and by Lemma 24 we have a contradiction. So the subfan Xu(5)6w′ is a
(V, u)-independent subfan avoiding v and thus by Lemma 34 the fanXv(5) is now a path that
does not contain w′. Similarly to the previous case, this means that the vertex u belongs to
the component C1,cz , and thus that βf (uul−h) = cz . The fan Xv(5) still contains the vertex
z which is missing the color cz , and the fan Xv(5) is a path, so the fan Xv(cz) is a path. Let

U ′ = X
βf
u (3) = (uu′

1, · · · , uu
′
l′). Since P (j) is true for all j 6 h and since the coloring

βf is (
⋃

j∈[0,h]

Xv(β(uul−j)))-equivalent to the coloring β ′′, by Lemma 51 for j 6 h, we have

u′
l′−j = ul−j . In particular, u′

l−h = ul−h. The edge uu′
l′−h is now colored cz and the property

P (h) is true, so the fanXv(cz) is a cycle. This is a contradiction.

Before proving the induction step of the proof we need to introduce a new property implied
by P (i).
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4.5 The property Q(i)

Definition 54. Let i > 0, we define the propertyQ(i) as follows:
For any minimum cycle V in a coloring β, for any pair of vertices u and u′ of V , let U =

Xu(m(u′)) = (uu1, · · · , uul). If β(uul−i) 6= m(v), then for any color c ∈ β(V), the fan

Xul−i−1
(c) is a cycle entangled with V and U>ul−i−2

.

We now prove that the property Q(i) is implied by the property P (i). And we first prove
th following lemma concerning saturated cycles around the centrel vertex of a minimum cycle.

Lemma 55. Let V = (vv1, · · · , vvk) be a minimum cycle in a coloring β, u = vj and u′ = vj′

two vertices of V and W = (vw1, · · · , vwt) a saturated cycle around v. Then the fans W and

U = Xu(m(u′)) are entangled.

Proof. By Lemma 24, the fan U is a cycle entangled with V , so ifW = V , the fansW and U are
entangled as desired. So assume that W 6= V and that W is not entangled with U . Without
loss of generality, we assume that the vertices v, u and u′ are respectively missing the colors
1, 2, and 3. Since W 6= V and W is centered at v, we have that β(W) ∩ β(V) = {1}. Since
W and U are not entangled, there exists c ∈ β(U) ∩ β(W) such that M(U , c) 6= M(W, c).
Without loss of generality, since c 6∈ {1, 2, 3}, we assume that c = 4 and that ui = M(U , 4)
is the first such vertex in U ; up to shifting the indices in W , we also assume that m(wt) = 4,
and thus thatW = Xv(4).

Since the cycleW is saturated, the vertex wt belongs to Kv(1, 4), so the vertex z does not
belong to Kv(1, 4). We swap the component C1,4 = Kz(1, 4) and denote by β2 the coloring
obtained after the swap.

If u 6∈ C1,4, or there is no edge colored 1 in U<i, then the coloring β2 is (V ∪ W ∪ U<i)-
equivalent to β. Hence, in the coloring β2, the fan V is a minimum cycle by Observation 20,
but now the fanXu(m(u′) = (uu1, ·, uui) is now a path, by Lemma 24, this is a contradiction.

So u ∈ C1,4, and there is an edge colored 1 in U<i. Since by Lemma 24, the cycle U is entan-
gled with V , the edge uvj−1 and the edge uv are inE(U). We denote by x the vertex connected
to u y the edge colored 1 and by cj−1 the missing color of vj−1 in β. Note that we may have
vj−1 = u′, and thus cj−1 = 2. The fanU is of the form (uu1, · · · , uvj−1, uv, ux, · · · , uui, · · · , uu

′).
The coloring β2 is (V)- equivalent to β, so by Observation 20, the cycle V is a minimum cycle
in β2. But now the fanXu(4) is a comet where v and ui are missing the same color 1, more pre-
cisely,Xu(4) = (ux, · · · , uui, · · · , uu

′, uu1, · · · , uvj−1, uv). Note that Xu(3) is a cycle which
is a subsequence ofXu(4). If there is an edge colored with a color c ∈ β(V) inXu(4) between
the edges ux and uui, then the fanXv(c) is a comet, which is a contradiction by Lemma 24.

So there is no edge colored with a color c ∈ β(V) inXu(4) between the edges ux and uui.
Since the fan V is a minimum cycle, it is saturated by Lemma 15, so u ∈ Kv(1, 2), and thus
ui 6∈ Kv(1, 2). We now swap the component Kui

(1, 2) to obtain a coloring β3. The coloring
β3 is (V ∪W)-equivalent to β2, so the fan V is a minimum cycle in β3 by Observation 20.

We now show that V is invertible in the coloring β3. The cycle V is tight by Observation 21,
so the vertex u belongs to the componentC2,j−1 = Kvj−1

(2, cj−1), thus the edges vu and vvj+1

also belong to C2,j−1. In the coloring β3, the fan Xu(4) is now a path that we invert until we
reach a coloring β4 where m(u) ∈ β(W). Note that since 4 ∈ β(W), the inversion is well-
defined and moreover, since β3 is also (W)-equivalent to β, we have β3(W) = β(W). Since
u 6∈ W , by Observation 17, the coloring β4 is (W)-equivalent to β3, so W is still the same
cycle in β4. Moreover, since β3(Xu(4)) ∩ β3(V) = {2}, the coloring β4 is (V \ {u} ∪ C2,j−1)-
equivalent to β3.
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We denote by ws the vertex of W such that mβ4(u) = mβ4(ws), and we denote by cs this
missing color. Note that we may have that wt = ws, and thus cs = 4. The vertices u and ws

are missing the same color cs, so they are not both part of the component Kv(1, cs) and we
now have to distinguish the cases.

Case 55.1 (u 6∈ Kv(1, cs)). In this case, we swap the componentC1,cs = Ku(1, cs) and obtain a
coloring that we denote by β5. Since {1, cs, 2, cj−1} = 4, the coloring β5 is (C2,j−1)-equivalent
to β4, so it is (C2,j−1)-equivalent to β3. In the coloring β5, the vertex u is nowmissing the color
1, so the fanXv(m(u)) = (vvj+1, · · · , vvj−1, vu) is now a path that we invert, we denote by β6

the coloring obtained after the inversion. In the coloring β6, the vertices vj+1 and v are missing
the color 2, and the vertex u is missing the color cj−1. So now the component C ′

2,j−1 = Kvj′−1

is exactly C2,j−1 ∪ {vvj−1} \ {vu, vvj+1} and we swap it. After this swap, the vertices v and u
are missing the same color cj−1, and the edge uv is colroed 1; we swap this edge andwe denote
by β7 the coloring obtained after the swap. In the coloring β7, the vertex u is missing the color
1, so the component Ku(1, cs) is now exactly C1,cs , so we swap back this component. Note
that since {1, 2, cs, cj−1} = 4, we can swap back C1,cs before C

′
2,j−1. In the coloring obtained

after the swap, the fan Xu(2) is now a path that we invert, and we denote by β8 the coloring
obtained after the inversion. In the coloring β8, the vertex u is now missing the color 2, so the
componentKvj−1

(2, cj−1) is now exactly C ′
2,j−1∪{uv}. After swapping back this component

we obtain exactly V−1(β3), a contradiction.

Case 55.2 (u ∈ Kv(1, cs)). The principle in the same as in the previous case, but instead of
changing the missing color of u, we will change the missing of of v using the fan Xv(cs) to
transform V into a path. As u belongs to Kv(1, cs), the vertex ws does not belong to this
component. So we swap the component C1,cs = Kws

(1, cs) to obtain a coloring where Xv(cs)
is now a path that we invert; we denote by β5 the coloring obtained after the inversion. Note
that since Xv(cs) was a cycle in β4, we have β4(Xv(cs)) ∩ β4(V) = {1},and so {2, cj−1} ∩
β4(Xv(cs)) = ∅. Hence the coloring β5 is (C2,j−1)-equivalent to the coloring β4. In the coloring
β5, the fan Xv(2) = (vvj+1, · · · , vu) is now a path that we invert, and we denote by β6 the
coloring obtained after the swap. Similarly to the previous case, in the coloring β6, the vertices
v and vj+1 are missing the color 2, and the vertex u is missing the color cj−1. So in the coloring
β6, the component C ′

2,j−1 = Kvj−1
(2, cj−1) is exactly C2,j−1 ∪ {vvj−1} \ {vvj′+1, vu}, and we

swap it to obtain a coloring where the vertices u and v are missing the color cj−1 andwhere the
edge uv is colored cs. After swapping the edge uv, we obtain a coloring where, the fanXv(1)
is now a path that we invert, we denote by β7 the coloring obtained after the inversion. In
the coloring β7, the componentKws

(1, cs) is exactly C1,cs and we swap back this component.
Note that since |{1, 2, cs, cj−1}| = 4, we can swap back this component before C ′

2,j−1. In the
coloring obtained after the swap, the fan Xu(2) is now a path that we invert, we denote by
β8 the coloring obtained after the swap. In the coloring β8, the vertex u is now missing the
color 2, so the componentKvj−1

(2, cj−1) is now exactly C ′
2,j−1 ∪ {vu} and we swap back this

component to obtain V−1(β3) as desired.

Lemma 56. Let i > 0, if P (i) is true for all j 6 i, then Q(j) is true for all j 6 i.

Proof. Let i > 0, V be a minimum cycle in a coloring β, u and u′ two vertices of V , U =
Xu(m(u′)) = (uu1, · · · , uul), and assume that P (j) is true for all j 6 i. Without loss of
generality, we assume that the vertices v, u and u′ are respectively missing the colors 1, 2, and
3. Let t 6 i, and z = ul−t−1. We prove that Q(t) is true.

Claim 57. The vertex z is not missing a color in β(V).
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Proof. Otherwise, assume that m(z) ∈ β(V). The fan V is a minimum cycle in β so by
Lemma 24, then fan U is a cycle entangled with V .

Ifm(z) 6= 1, then since U is a cycle entangled with V by Lemma 24, we have z ∈ V (V) so
by Lemma 24 for any color c ∈ β(V), Xz(c) is a cycle entangled with V . Moreover, since the
property P (t) is true, soXv(β(uz)) = (vw1, · · · , wx) is a saturated cycle, and by Lemma 55 is
is entangled with U = Xu(m(u′)) and Xz(m(u)) = (zz1, · · · , zzr), and thus ul−t−2 = wx =
zr−1, so Q(t) is true.

If m(z) = 1, then since U is entangled with V , we have z = v. So for any c ∈ β(V),
Xz(c) = V and thus is a cycle entangled with V . Moreover, this means that β(uz) = β(uv)
and thusm(ul−t−2) = β(uv), so ul−t−2 is the vertex just before u in the cycle V . By definition
of V , the fan Xz(m(u) contains this vertex, and thus Q(t) is true. In both cases, we have a
contradiction.

Claim 58. There is no edge in E(U>z) colored with a color beta(V).

Proof. We first prove that there is no vertex in V (U>z) \ {u′} missing a color c ∈ β(V).
Otherwise, assume that there exists such a vertex z′. The cycle V is minimum in β(V), so by
Lemma 24, the fan U is entangled with V . If c 6= 1, then z′ ∈ V (V). By Lemma 24, the fan
U ′ = Xu(m(z′)) = (uu′

1, · · · , uu
′
l′) is a cycle entangledwith V , so u

′
l′ = z′ and V (U) = V (U ′).

Thus there exists t′ < t such that z = ul′ − t′ − 1. Since t is minimum, Q(t′) is true, and thus
Q(t) is true.

If c = 1, then z′ = v since U is entangled with V , and β(uz′) = β(uv). Let z′′ be the vertex
just before z′ in U . Since β(uz′) = β(uv), then m(z′′) = β(uv) ∈ β(V). Since m(z) 6∈ β(V),
we have that z′′ 6= z. This means that z′′ is a vertex in V (U>z) \ {u

′} missing a color in β(V),
this is a contradiction.

Let c ∈ β(V), we prove that Z = Xz(c) = (zz1, · · · , zzr) is a cycle entangled with V and
U>z.

By Claim 57 m(z) 6∈ β(V), so without loss of generality, we assume that z is missing the
color 4. By Lemma 48 the fan Z is not a path. Before proving that Z is not a comet, we first
prove that is it entangled with V and U>ul−t−2

.

Proposition 59. The fan Z is entangled with V and U>ul−t−2
.

Proof. Otherwise, assume that there exists s such that m(zs) ∈ β(V) ∪ β(U>z) and zs 6∈
V (V) ∪ V (U>z). Without loss of generality, we assume that such an s is minimum. We also
assume that there is no edge colored with a color in β(V) in E(Z[z2,zs−1]). Otherwise, if such
an edge zzx exists, is suffices to consider the fanXz(β(zzx)) = (zzx, · · · , zzs). We now have
to distinguish the cases.

Case 59.1 (m(zs) = 1).
In this case, since, P (t) is true, Xv(4) is a saturated cycle containing z, so v ∈ Kz(1, 4), and
thus zs 6∈ Kz(1, 4). We now swap the component C1,4 = Kzs(1, 4), and denote by β ′ the
coloring obtained after the swap. In the coloring β ′, the fanXz(c) is now a path. The coloring
β ′ is V-equivalent to β, so V is still a minimum cycle in β ′. If the coloring β ′ is also U6z-
equivalent to β (i.e., C1,4 does not contain u or there is no edge colored 1 in U6z), then z is still
a vertex of U = Xu(3), and the fan Xz(c) is now a path, by Lemma 48 this is a contradiction.
So the vertex u belongs to C1,4, and there is an edge uuh colored 1 in U<z . So in the coloring
β ′, the edge uuh is now colored 4, and the edge ul−t is now colored 1. The fan Xv(4) is still
a saturated cycle containing z, but now the fan Xu(4) is also a cycle containing z. In this
coloring the fan Xz(c) is a path, so by Lemma 53, we have a contradiction.
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Case 59.2 (m(zs) = c′ ∈ β(V) \ {1}).
In this case, since V is minimum, it is saturated by Lemma 15, thus zs 6∈ Kv(1, c

′). We now
swap the componentC1,c′ = Kzs(1, c

′), and denote by β ′ the coloring obtained after the swap.
This coloring isV-equivalent to β, so V is still a minimum cycle in the coloring β ′. By Claim 58,
there is no edge with a color in β(V) in U>z , so β ′ is U>z-equivalent to β. Moreover, let
U ′ = Xβ′

u (3) = (uu′
1, · · · , uu

′
l′); the coloring β ′ is also (

⋃

j∈[0,t]

Xv(β(uuj)))-equivalent to β

since each of these fans are saturated cycles, and the vertex zs does not belong to any of
them. So by Lemma 51, in the coloring β ′, for any j 6 (t + 1), u′

l′−j = ul−j . In particular,
u′
l′−t−1 = ul−t−1 = z. But now Xz(c) is not entangled with {v} since it contains the vertex zs

which is missing the color 1. This case is similar to the previous one.

Case 59.3 (m(zs) = c′ ∈ β(U>z)).
Let ul−h be the vertex of U>z missing the color c′. In this case, since P (j) is true for all
j 6 t, the fan Xv(β(uul−j)) is a saturated cycle. In particular, the vertex ul−h belongs to
the component Kv(1, c

′), and so zs does not belong to this component. We now swap the
component C1,c′ = Kzs(1, c

′), and denote by β ′ the coloring obtained after the swap. Let
U ′ = Xβ′

u (3) = (uu′
1, · · · , uu

′
l′). If the coloring β ′ is U>z-equivalent to β, then for the same

reason as in the previous case, z is exactly the vertex u′
l′−t−1, andXz(c

′) is now not entangled
with {v} since it contains the vertex zs that is missing the color 1. This case is similar to the
first one. So β ′ is not U>z-equivalent to β, and thus since it is {ul−h}-equivalent to β, the
component C1,c′ contains the vertex u. We now have to distinguish whether or not, in the
coloring β there is an edge uup colored 1 in U<z .

Subcase 59.3.1 (There an edge uup colored 1 in U<z).
In this case, in the coloring β ′, the edge uup is now colored c′, and the edge uul−h+1 is now
colored 1. In the coloring β ′, the fan Xu(4) is now a cycle since it contains the vertex ul−h

which is still missing the color c′, and Xv(c
′) now contains the vertex z which is still missing

the color 4. The fan Xv(4) is still a cycle containing also the vertex z, and the fan U ′ now
contains an edge uul−p colored 1 such that p 6 t.

We now consider the components of K(1, 4). If the vertex z does not belong to the com-
ponent Kv(1, 4), then we swap it to obtain a coloring β ′′ where Xv(4) is now a path. Let
U ′′ = Xβ′′

u (3) = (uu′′
1, · · · , uu

′′
l′′). If u 6∈ Kv(1, 4), then β ′′(uul−p) = β ′′(uu′′

l′′−t) = 1, but
p 6 t, and P (j) is true for all j 6 t, so by Lemma 52 we have a contradiction. Similarly, if
u ∈ Kv(1, 4), then now β ′′(uul−t) = 1. Since β ′′ is

⋃

j∈[0,t−1]

Xv(β(uuj))-equivalent to β ′, by

Lemma 51, for any j 6 t, u′′
l′′−j = u′

l′−t. So the edge uul−t is exactly the edge uu′′
l′′−t. This edge

is colored 1, and P (j) is true for all j 6 t, so by Lemma 52, we have a contradiction.
So the vertex z belongs to Kv(1, 4), and therefore the vertex zs does not belong to this

component. We now swap the component C1,4 = Kzs(1, 4), and denote by β ′′ the coloring
obtained after the swap. Let U ′′ = Xβ′′

u (3) = (uu′′
1, · · · , uu

′′
l′′). Whether or not the vertex u

belongs to the componentC1,4, the fanXu(3) contains an edge uu′′
l′′−j colored 1where j 6 t (if

u belongs to the component, β ′′(uu′′l′′ − t) = 1, and β ′′(uu′′
l′′−p) = 1). Moreover, we have that

the fan Xu(4) is a cycle containing z, the fanXv(4) is a cycle containing z, the fan Xz(c) is a
path, and , and the propertyP (j) is true for all j 6 t, so by Lemma 53, we have a contradiction.

Subcase 59.3.2 (There is no edge colored 1 in U<z).
In this case, the coloring β ′ is U6z-equivalent to β. We now consider the components of
K(1, 4). If z does not belong to Kv(1, 4), then we swap the component Kz(1, 4) and obtain
a coloring where Xu(3) still contains the vertex z which is now missing the color 1. In the
coloring, the cycle V is still a minimum cycle since β ′ is V-equivalent to β, so by Lemma 24,
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we have a contradiction.
So the vertex z belongs to Kv(1, 4), and thus zs does not belong to this component. We

now swap the component C1,4 = Kzs(1, 4), and denote by β ′′ the coloring obtained after the
swap. The coloring β ′′ is U6z-equivalent to β ′, so z ∈ Xu(3). However, now the fan Xz(c) is
a path, by Lemma 48, we have a contradiction.

Case 59.4 (m(zs) = c′ = m(ul−t−2)).
In this case, since c′ 6∈ β(V), without loss of generality, we assume that c′ = 5. We now
consider the components of K(1, 5). If ul−t−2 does not belong to Kz(4, 5), then we swap the
component C4,5 = Kul−t−2

(4, 5), and denote by β ′ the coloring obtained after the swap. Let
U ′ = Xβ′

(3) = (uu′
1, · · · , uu

′
l′). The coloring β ′ is (V ∪ U>z)-equivalent to β, and for any

j 6 t, u′
l′−j = ul−j , and u′

l′−j = ul−j−1 otherwise. Note that this means that l′ = l − 1, i.e.
|U ′| = |U| − 1. If the color 5 is not in Xβ

v (4), then Xv(4) is still a cycle containing z, and
thus it does not contain ul−t−2 = M(Xu(3), 4), since the property P (t) is true, we have a
contradiction.

So the color 5 is in Xβ
v (4). If v belongs to C4,5, then we are a in case similar to the pre-

vious one where Xβ′

v (4) is a cycle containing z, and thus which does not contain ul−t−2 =
M(Xu(3), 4). Since P (t) is true, we have a contradiction. So v does not belong to C4,5, and
now, in the coloring β ′, the fanXv(5) is a comet containing the vertices z and ul−t−2 that are
both missing the color 4. We now consider the components of K(1, 4). Since the property
P (t) is true, Xv(4) is a saturated cycle, to ul−t−2 belongs to Kv(1, 4), and thus z does not be-
long to this component. We now swap the component Kz(1, 4), and obtain a coloring where
{uz} is a (V, u)-independent subfan avoiding v, and where Xv(5) is a path containing z, by
Lemma 34 we have a contradiction.

So the vertex ul−t−2 belongs to the componentKz(4, 5), and therefore, the vertex xs does
not belong to this component. We now swap the component Kzs(4, 5), to obtain a coloring
(V∪U)-equivalent to β, whereXz(c) is now a path, by Lemma 48, we again get a contradiction.

So the fanZ is entangledwith V andU6ul−t−2
. We now prove that it is not a comet. Assume

that Z is a comet, then there exists h < r such that m(zh) = m(zr) = c. By Proposition 59,
c 6∈ β(V)∪β(U>ul−2−t

. Without loss of generality, we assume that c = 5, and we now consider
the components of K(1, 5). The vertices zh and zr are not both part of Kv(1, 5).

If zh does not belong to Kv(1, 5), then we swap C1,5 = Kv(1, 5), and denote by β ′ the
coloring obtained after the swap. Let U ′ = Xβ′

u (3) = (uu′
1, · · · , uu

′
l′). The property P (j) is

true for all j 6 t, so the coloring β ′ is (
⋃

j∈[0,p]

Xv(β(uul−j)))-equivalent to β since each of these

fans are saturated cycle. Hence by Lemma 51, for any j 6 (t + 1), u′
l′−j = ul−j . In particular,

z = u′
l′−t−1. If the vertex z does not belong to C1,5 or c 6= 1, then the coloring β ′ is Z<zh

equivalent to β. The fan Xz(c) now contains the vertex zh which is missing the color 1, by
Proposition 59 we have a contradiction. So the vertex z belongs toC1,5, and c = 1. Thus, in the
coloring β ′, the edge zz1 is now colored 5, and the edge zzs+1 is now colored 1. If the vertex
zr belongs to the componentC1,5, it is now missing the color 1 in the coloring β ′, andXz(1) is
now a fan that contains this vertex. So the fanXv(1) is not entangled with V , a contradiction
by Proposition 59. If the vertex zr does not belong to the component, then the fanXz(1) now
contains the vertex zs which is missing the color 1, again, a contradiction by Proposition 59.

So the vertex zh belongs toKv(1, 5), and thus the vertex zr does not belong to the compo-
nent. We now swap the component C1,5 = Kzs(1, 5) and denote by β ′ the coloring obtained
after the swap. Similarly to the previous case, If the vertex z does not belong to C1,5, or if
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c 6= 1, then the coloring β ′ is Z<zr -equivalent to the coloring β, and now Xz(c) contains the
vertex zr missing the color 1, by Proposition 59 this is a contradiction. So the vertex z belongs
to C1,5, and c = 1. In this case, the fanXz(1) stills contains the vertex zr which is missing the
color 1. Again by Proposition 59, this is a contradiction.

Therefore, the fan Z is a cycle entangled with V and U>ul−t−2
and thus Q(t) is true as

desired.

We are now ready to prove that P (i) is true for all i.

4.6 Proof of P (i)

Proof of Lemma 33. Let i > 0, V be a minimum cycle in a coloring β, u and u′ two vertices
of V , U = Xu(m(u′)) = (uu1, · · · , uul), and assume that P (i) not verified. Without loss of
generality, we assume that i is minimum, ans that the vertices v, u and u′ are respectively
missing the colors 1, 2 and 3. By Lemma 40, the property P (0) is true, so i > 0. Assume that
β(uul−i) 6= 1 and let X = Xv(β(uul−i)).

Claim 60. There is no edge in E(U>ul−i
) colored with a color in β(V)

Proof. The proof is similar to the proof of Claim 58 of Lemma 56.

We first prove that Pweak(i) is true (i.e. that X is not a path).

Claim 61. The property Pweak(i) is true.

Proof. Assume that β ′(uul−i) 6= 1 and that X = Xv(β(uul−i)) is a path. Then we have that
β(uul−i) 6∈ β(V). Without loss of generality, we assume that β(uul−i) = 4. Moreover, we
have that m(ul−i) 6= 1. Since P (j) is true for all j < i, for all j < i, if β(uul−j) 6= 1, then
Xu(β(uul−j) is a saturated cycle. We now invert X until we reach a coloring where Xv(4) is
a path of length 1; we denote by z the only vertex of this coloring. Up to a relabeling of the
colors, we assume that v is also missing the color 1 in β ′. The coloring β ′ is V-equivalent to
the coloring β, so V is the same minimum cycle in the coloring β. So by Lemma 24 the fan
U ′ = Xu(m(u′)) = (uu′

1, · · · , uu
′
l′) is a cycle entangled with V . Moreover, the coloring β ′

is (
⋃

j<i

Xv(β(uul−j)))-equivalent to β, so by Lemma 51, for any j 6 i, u′
l′−j = ul−j , the fan

Xv(β
′(uu′

l′−j)) is a saturated cycle containing u′
l′−j−1. So in particular, uu′

l′−i ∈ E(U ′), and
there is a vertex missing the color 4 in U ′. Let z′ be this vertex. Note that sinceXv(4) is a path,
for all j < i, Xv(β

′(uu′
l−j)) does not contain the vertex z′.

We now swap the edge vz, and denote by β ′′ the coloring obtained after the swap. If the
coloring β ′′ is U ′-equivalent to β ′, then it means that v 6∈ V (U ′). So in the coloring β ′′ the
fanXu(3) = U ′ contains the vertex z′ which is still missing the color 4. This color is also the
missing color of the vertex v. Thus, U ′ is not entangled with V , and by Lemma 24, we have a
contradiction.

So the vertex v belongs to V (U ′), and in the coloring β ′, the fanXu(1) contains the vertex
z′ which is missing the color 4. If there is an edge uu′′ of E(Vu(1)6z′) colored with a color
of β ′′, then Xu(β

′′(uu′′)) is not entangled with V , so by Lemma 24, we have a contradiction.
Therefore, the subfan Xu(1)6z′ is a (V, u)-independent subfan avoiding v. The coloring β ′′

is U ′
6v-equivalent to the coloring β ′, so in the coloring β ′′, the fan U ′′ = Xu(3) is equal to

(uu′
1, · · · , uv, uu

′
l′−i), · · · , uu

′
l′ = uu′).

Since P (j) is true for all j < i, for all j < i the fan Xv(β
′′(uu′

l′−j)) is a saturated cycle
containing u′

l′−j−1. In particular, the fan Xv(β
′′(uu′

l′−(i−1)) is a saturated cycle containing
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u′
l′−i. Without loss of generality, we assume that m(u′

l′−i) = 5. The vertex u′
l′−i belongs

to the component Kv(4, 5), so the vertex z′ does not belong to this component. We now
swap the component C4,5 = Kz′(4, 5), and denote by β3 the coloring obtained after the swap.
Note that β3 is V-equivalent to β ′′, so by Observation 20 the cycle V is the same minimum
cycle in the coloring β3. The coloring β3 is also U ′′-equivalent to β ′′, so we still have that
Xu(3) = (uu′

1, · · · , uv, uu
′
l′−i, · · · , uu

′
l′ = uu′).

If the vertex z does not belong to C4,5, then we can swap back the edge vz. The fan
Xu(3) = Xu(1) still contains the vertex z′ which ismissing the color 5, andXv(β

′′(uu′
l′−i−1)) is

still a saturated cycle containing the vertexu′
l′−i. SinceP (i−1) is true, we have a contradiction.

So the vertex z belongs to C4,5, and in the coloring β3 the vertex z is missing the color 5.
Since the propertyP (j) is true for all j < i, by Lemma 56, the propertyQ(i−1) is true, and

so the fan Xu′
l−i
(2) is a cycle containing z′, and therefore there is an edge u′

l′−iz. We denote
by c′ the color of this edge. We now swap this edge, and denote by β4 the coloring obtained
after the swap. The coloring β4 is V-equivalent to β3, so the fan V is the same minimum cycle
in the coloring β4 by Observation 20. The coloring β4 is also Xu(3)<u′

l′−i
, so the vertex u′

l′−i

is still in Xu(3). Note that now the vertex u′
l′−i and z′ are both missing the color c′. We now

have to distinguish the case.

Case 61.1 (c′ = 1).
In this case, the fanXu(1) contains the vertex z′ missing the color 1, and the fanXu(3) contains
the vertex u′

l′−i missing the color 1. So the fanXu(3) is a comet containing two verticesmissing
the color 1, so by Lemma 24, we have a contradiction.

Case 61.2 (c′ ∈ β3(V)).
In this case, since u′

l′−i ∈ V (Xu(3)), the fan Xu(3) is not entangled with V , so by Lemma 24,
we have a contradiction.

Without loss of generality, we now assume that c′ = 6.

Case 61.3 (6 ∈ β3(Xu(3)<u′

l′−i
)).

In this case, the fanXu(3) is now a comet where two vertices are missing the color 6, thus by
Lemma 24, we also have a contradiction.

Case 61.4 (6 ∈ β3(Xu(3)>u′

l′−i
)).

Let t < i such thatmβ3(u′
l′−t) = 6. Since P (t− 1) is true, in the coloring β3, the fan Xv(6) is

a cycle containing u′
l′−t. Since P (i − 1) is true, the fan Xv(5) is a cycle containing u′

l′−i. We
first prove that in the coloring β3, we haveXv(5) = Xv(6). In the coloring β4, the vertex u′

l′−i

is missing the color 6, so the fanXu(3) is equal to (uu′
1, · · · , uv, uu

′
l′−i, uu

′
l′−(t−1), · · · , uu

′
l′ =

uu′), and u′
l′−i is now the vertex missing the color 6 in this cycle. Since P (t−1) is true, the fan

Xv(6) is now a cycle containing u′
l′−i. The only vertices whose missing color is different in β3

and β4 are the vertices u′
l′−i and z′. In the coloring β3, since z′ 6∈ Xv(6), if u′

l′−i 6∈ V (Xv(6))
the coloring β4 isXv(6)-equivalent to the coloring β3. This means that in the coloring β4, the
fan Xv(6) is a cycle containing the vertex u′

l′−t, and not containing u′
l′−i, a contradiction. So

in the coloring β3, the vertex u′
l′−i belongs to Xv(6), and thusXv(5) = Xv(6) as desired.

So, in the coloring β3, the cycleXv(5) contains the vertex u′
l′−t which is missing the color

6. We now consider the coloring β4. The fanXv(5) still contains the vertex u′
l′−t which is still

missing the color 6. The fan Xv(6) is a saturated cycle containing the vertex u′
l′−i, so the fna

Xv(5) is a comet containing Xv(6) as a subfan. The cycle Xv(6) is saturated, so u′
l′−i belongs

toKv(4, 6), and thus z′ does not belong to this component.
We now swap the component C4,6 = Kz′(4, 6), and denote by β5 the coloring obtained

after the swap. The coloring β5 is V-equivalent to β4, so the fan V is the same minimum
cycle in the coloring β5. Since the vertex u′

l′−i 6∈ C4,6, and β4(uu
′
l′−) = 4, the vertex u does not
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belong either toC4,6, and therefore the coloring β5 isXu(3)-equivalent to the coloring β4. The
fanXu(1) still contains the vertex z′ which is now missing the color 4, so the subfanXu(1)6z′

is a (V, u)-independent subfan avoiding v. By Lemma 34, the fan Xv(1) is a path that does
not contain z′. In the coloring β5, the vertex z is still missing the color 5, and we still have
β5(vz) = 1. If the vertex u′

l′−t does to belong to C4,6, then the coloring β5 isXv(5)-equivalent
to β4, and therefore the fanXv(1) is a comet containingXv(6) as a subfan. So the vertex u′

l′−t

belongs to the component C4,6, and it is now missing the color 4.
In the coloring β5, the fan Xu(5) still contains the vertex u′

l′−t which is now missing the
color 4. So there is no edge uu′′ in E(Xu(5)6u′

l′−t
)) colroed with a color in β5(V), otherwise,

Xu(β5(uu
′′)) is not entangledwith V , and by Lemma 24 we have a contradiction. So the subfan

Xu(5)6u′

l′−t
is a (V, u)-independent subfan avoiding v. By Lemma 34, the fan Xv(5) is a path

that does not contain u′
l′−t, a contradiction.

Case 61.5 (6 6∈ β3(Xu(3)) ∩ β3(V) ∪ {1}).
In the coloring β4, the vertex u′

l′−i is missing the color 6, and uu′
l′−i ∈ E(Xu(3)). So we have

Xu(6) = Xu(3). Since the fan Xu(5) also contains the vertex u′, either Xu(5) = Xu(6) =
Xu(3), or Xu(5) is a comet which containsXu(3) as a subfan.

Subcase 61.5.1 (Xu(5) = Xu(3)).
Let z′′ be the vertex ofXu(3)missing the color 5. Note that wemay have z′′ = z. SinceP (i−1)
is true, the fanXv(5) is now a cycle containing z′′. But u′

l′−i is the only vertex whose missing
color is different in β3 and β4, so in the coloring β4, the fanXv(5) still contains the vertex u′

l′−i

which is now missing the color 6. Therefore, the fan Xv(6) is equal to the fan Xv(5) and is
a saturated cycle containing z′′ and u′

l′−i. The vertex z is still missing the color 5, so the fan
Xv(1) is now a comet containing Xv(5) as a subfan.

Since the fan Xv(6) is saturated, the vertex u′
l′−i belongs to the component Kv4, 6, and

thus the vertex z′ does not belong to this component. We now swap the component C4,6 =
Kz′(4, 6), and denote by β5 the coloring obtained after the swap. The coloring β5 is V-
equivalent to β4, so the fan V is a minimum cycle in this coloring. Now the fan Xu(1) still
contains the vertex z′ which is now missing the color 4, so it is a (V, u)-independent subfan
avoiding v so by Lemma34, the fanXv(1) is a path. But the coloring β5 is alsoXv(1)-equivalent
to the coloring β4, so the fanXv(1) is a comet. This is a contradiction.

Subcase 61.5.2 (Xu(5) is a comet containingXu(3)).
Let u′

l′−t be the first vertex of Xu(5) which is not in Xu(3), and let z′′ be the vertex of Xu(3)
missing the color ct = m(u′

l′−t). In the coloring β3, since P (t − 1) is true, the fan Xv(ct) is
a saturated cycle containing u′

l′−t. If the coloring β4 is Xv(ct)-equivalent to the coloring β3,
then in the coloring β4 the fanXv(ct) still contains the vertex u′

l′−t, and thus does not contain
the vertex z′′. Since P (t− 1) is true, we have a contradiction.

So the coloring β4 is not Xv(ct)-equivalent to the coloring β3. Since u′
l′−i and z′ are the

only vertices whose missing color are different in β3 and β4, and z′ 6∈ V (Xv(ct)), we have that
u′
l′−i ∈ V (Xv(ct)). In the coloring β3 the vertex u′

l′−i is also in Xv(5), so in this coloring we
haveXv(5) = Xv(ct). Therefore, the vertex u′

l′−t also belongs to Xv(5) in the coloring β4.
In the coloring β4, the vertex u′

l′−i is nowmissing the color 6, and since P (t−1) is true, the
fanXv(ct) is a saturated cycle containing the vertex z′′. So in this coloring, we haveXv(ct) =
Xv(6). However, in this coloring, the vertex u′

l′−t still belongs to Xv(5), it also belongs to
Xu(5) and is still missing hte color ct. The cycle Xv(ct) is saturated, so the vertex z′′ belongs
to the componentKv(4, ct), and thus the vertex u′

l′−t does not belong to this component. We
now swap the componentKu′

l′−t
(4, ct) and denote by β5 the coloring obtained after the swap.

The coloring β5 is V-equivalent to β4, so by Observation 20, the fan V is a minimum cycle

39



in the coloring β5. The coloring β5 is also ((Xu(5)∪Xv(5))\{u
′
l′−t})-equivalent to the coloring

β4, so the vertex u′
l′−t still belongs to both Xu(5) and Xv(5). So the subfan Xu(5)6u′

l′−t
is a

(V, u)-independent subfan avoiding v, by Lemma 34, the fan Xv(5) is a path that does not
contain u′

l′−t. Again we have a contradiction.

By the previous claim, we have that X is not a path, we now prove that it is not a comet.
Assume that X = (vx1, · · · , vxt) is a comet where xs and xt are missing the same color cs.
Since xs and xt are both missing the color cs at least one of them is not in Kv(1, cs). Since
P (j) is true for all j < i, for all j < i, if β(uul−j) 6= 1, then Xv(β(uul−j)) is a cycle, so
β(X ) ∩ (

⋃

j∈[0,i−1]

β(Xv(β(uul−j)))) = ∅.

Case 61.6 (cs 6∈ β(Uu>l−1
)).

If xs is not inKv(1, cs), then we swap the componentC1,cs = Kxs
(1, cs) and obtain a coloring

β ′ which is V-equivalent to β, so the fan V is the same minimum cycle in the coloring β ′. In
the coloring β ′, the fan Xv(4) is now a path. Moreover, cs 6∈ β(U>ul−i

), and by Claim 60, so
1 6∈ β(U>ul−i

). Therefore, the coloring β ′ is U>ul−i
-equivalent to the coloring β. Let U ′ =

Xβ′

u (3) = (uu′
1, · · · , uu

′
l′). Since β(X ) ∩ (

⋃

j∈[0,i−1]

β(Xv(β(uul−j)))) = ∅, the coloring β ′ is

(
⋃

j∈[0,i−1]

β(Xv(β(uul−j)))-equivalent to β. So by Lemma 51, for all j 6 i, we have u′
l′−i = ul−i.

In particular u′
l′−i = ul−i. Since β ′(uu′

l′−i) = 4, and Pweak(i) is true, the fan Xv(4) is not a
path.

Similarly, if xt 6∈ Kv(1, cs), we swap the component C1,cs = Kxt
(1, cs). Note that V is

a minimum cycle, so it is saturated by Lemma 15, and thus xt 6∈ V (V). The coloring β ′ is
therefore V-equivalent to V , so the fan V is the same minimum cycle in this coloring. The
fan Xv(4) is now a path the coloring β ′. Let U ′ = Xβ′

u (3) = (uu′
1, · · · , uu

′
l′). Similarly

to the previous case, the coloring β ′ is U>ul−i
-equivalent to β and (

⋃

j∈[0,i−1]

β(Xv(β(uul−j)))-

equivalent to β. So by Lemma 51, for all j 6 i, we have u′
l′−j = ul−j . In particular, u′

l′−i = ul−i,
and β ′(uu′

l′−i) = 4. Since Pweak(i) is true, the fanXv(4) is not a path, a contradiction.

Case 61.7 (cs ∈ β(U>ul−1
)).

Let t′ be such that m(ul−t′) = cs. Since P (j) is true for all j < i, the fan Xv(cs) is saturated
cycle containing ul−t′ = xt. So the vertex xs does not belong to Kv(1, cs). We now swap the
componentC1,cs = Kxs

(1, cs) to obtain a coloring β ′ whereXv(4) is now a path. The coloring
β ′ is V-equivalent to β, so by Observation 20, the cycle V is the dame minimum cycle in the
coloring β ′. If the vertex u does not belong to C1,cs , then the coloring β ′ is also U-equivalent
to β, and thus Xu(3) = U . Since β ′(uul−i) = 4, and Pweak(i) is true, the fan Xv(4) is not a
path. this is a contradiction.

So the vertex u belongs to C1,cs , and in the coloring β ′, the edge uul−(t′−1) is now col-
ored 1. Let U ′ = Xβ′

u (3). The coloring β ′ is U>ul−t′
-equivalent to β. The coloring β ′ is

also (
⋃

j∈[0,t′−1]

β(Xv(β(uul−j)))-equivalent to β, so by Lemma 51, for any j 6 t′ we have

u′
l′−j = ul−j . In particular, u′

l′−(t′−1) = ul−(t′−1). Now the edge uu′
l′−(t′−1) is colored 1, and the

fanXv(4) is a path. Since P (j) is true for all j 6 t′, by Lemma 52 there is not path around v,
a contradiction.

So the fan X = (vx1, · · · , vxt) is a cycle, we now prove that it is saturated. Otherwise,
there exists xs such that xs 6∈ Kv(1, m(xs)). Note that since P (j) is true for all j < i, for
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all j < i, the fan Xv(β(uul−j)) is a saturated cycle, so β(Xv(β(uul−j))) ∩ β(X ) = ∅, and in
particular xs 6∈ β(U>ul−i

).

Case 61.8 (m(xs) 6= 4).
Without loss of generality, assume that m(xs) = 5. Since xs does not belong to Kv(1, 5), we
swap the component C1,5 = Kxs

(1, 5) and obtain a coloring β ′ where Xv(4) is a path. The
coloringβ ′ isV-equivalent to β, so by Observation 20, the cycleV is the sameminimumcycle in
the coloring β ′. LetU ′ = Xβ′

u (3) = (uu′
1, · · · , uu

′
l′). Moreover, 5 6∈ β(U>ul−i

), and by Claim 60,
the color 1 does not appear either in U>ul−i

. The coloring β ′ is also (
⋃

j∈[0,i−1]

β(Xv(β(uul−j)))-

equivalent to β, so by Lemma 51, for any j 6 i, we have u′
l′−j = ul−j . In particular, u′

l′−i =
ul−i. The edge uu′

l′−i is still colored 4 in the coloring β ′ and the property Pweak(i) is true, so
Xv(4) is not a path, a contradiction.

Case 61.9 (m(xs) = 4).
In this case, we swap the component C1,4 = Kxs

(1, 4) and denote by β ′ the coloring obtained
after the swap. If the vertex u does not belong to this component, then we are in a coloring
similar to the previous case. So the vertex u belongs to C1,4, and we have β ′(uul−i) = 1.
In the coloring β ′ is V-equivalent to β, so by Observation 20, the cycle V is the same mini-
mum cycle in this coloring. The fanXv(4) is now a path in the coloring β ′. Let U ′ = Xβ′

u (3) =
(uu′

1, · · · , uu
′
l′). The coloringβ

′ isU>ul−i
-equivalent to β, and is also (

⋃

j∈[0,i−1]

β(Xv(β(uul−j)))-

equivalent to β. So by Lemma 51 for all j 6 i, we have u′
l′−j = ul−j. In particular u′

l′−i = ul−i.
The property P (j) is true for all j < i,a nd Pweak(i) is also true, so by Lemma 52 there is no
path around v. This is a contradiction.

So the fan X = (vx1, · · · , vxt) is a saturated cycle, and thus xt ∈ Kv(1, 4). Since P (i) is
false, we have xt 6= ul−i−1. So the vertex ul−i−1 which is also missing the color 4 does not
belong to Kv(1, 4). We now swap the component C1,4 = Kul−i−1

(1, 4) and denote by β ′ the
coloring obtained after the swap. Be Lemma 50, the vertex u belongs to C1,4, there is an edge
uu′′ colored 1 in U<ul−i

, and the subfan Xu(1)6ul−i
is a (V, u)-independent subfan. So in the

coloring β ′, the vertex ul−i is now missing the color 1, the edge uu′′ is now colored 4, and the
subfan Xu(4)6ul−i

is a (V, u)-independent subfan avoiding v. By Lemma 34, the fan Xv(4) is
a path. However, the coloring β ′ is Xv(4)-equivalent to the coloring β, so the fan Xv(4) is a
cycle, a contradiction.

5 Cycles interactions

In this section we prove Lemma 23.

Proof. We first prove that all the three cycles are tight and saturated.

Claim 62. The cycles V , X , and Y are saturated and tight.

Proof. As the fan V is not invertible, it is saturated by Lemma 15. If X or Y are not saturated
(without loss of generality, we can assume thatX is not saturated), then we swap a component
Ku(cv, cu) with u in X and u 6∈ Kv(cv, cu) to transform β into a coloring where V is still a
cycle of the same size, and where a fan around v is a path, by Lemma 22, V is invertible in
this coloring, and so it is in the original coloring. Similarly, assume that X or Y is not tight,
without loss of generality, we can assume thatX is not tight. Thenwe can find two consecutive
vertices of X , ui, and ui−1 such that the component Kui−1

(m(ui), m(ui−1)) does not contain
ui. If we swap this component, we obtain a coloring where V is still a cycle of the same size,
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and where a fan around v is a comet, again by Lemma 22, V is invertible in this coloring, and
so it is in the coloring β.

By Lemma 24, we already have that if (z, z′) ∈ V2, thenXz(cz′) is a cycle containing z′, so
we now assume that (z, z′) is not in V2.

Claim 63. The fan Z is not a path.

Proof. As Z is a path, we invert it until we reach a coloring where m(z) ∈ (β(V) ∪ β(X ) ∪
β(Y)) \ {mβ(z)}. In this coloring, the fan V is still a cycle of the same size, and, there is a fan
around v which is a path or a comet, by Lemma 22, this is a contradiction.

Claim 64. The fan Z is entangled with V , X , and Y .

Proof. Let us assume that there exists z′′ ∈ Z \ (V ∪ Y ∪ X ) with m(z′′) ∈ (β(V) ∪ β(Y) ∪
β(X )) \ {cz}. If m(z′′) = cv , since the cycles are saturated by Claim 62, Kz′′(cz, cv) does
not contain any vertex of (V ∪ Y ∪ X ), and after swapping it, we obtain a coloring where
V is still a cycle of the same size and where Z is a path, by Claim 63, this is a contradiction.
If m(z′′) 6= cv , then, since the cycles are saturated, the component Kz′′(cv, m(z′′)) does not
contain any vertex of (V ∪ Y ∪ X ), so if we swap it, we obtain a coloring which corresponds
to the previous case.

Claim 65. The fan Z is not a comet.

Proof. Assume that Z is a comet, there exist z1 and z2 with m(z1) = m(z2) = c. By the
previous claim, we have that c 6∈ (β(V) ∪ β(X ) ∪ β(Y)), otherwise, Z is not entangled with
one of these cycles. Hence, the componentKz(c,m(z)) either contains z1 or z2, and without
loss of generality we can assume that z1 6∈ Kz(c,m(z)). If we swapKz1(c,m(z)) we obtain a
coloring where no edge of (V ∪ X ∪ Y) has changed and where Z is a path, by Claim 63 this
is a contradiction.

By the previous claims, Z is a cycle, and as it is entangled with the three other cycles, it
contains z′; this concludes the proof.
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