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Abstract

In 1964 Vizing proved that starting from any k-edge-coloring of a graph G one can
reach, using only Kempe swaps, a (A + 1)-edge-coloring of G where A is the maximum
degree of G. One year later he conjectured that one can also reach a A-edge-coloring
of G if there exists one. Bonamy et. al proved that the conjecture is true for the case of
triangle-free graphs. In this paper we prove the conjecture for all graphs.

1 Introduction

In 1964 Vizing proved that the chromatic index of a graph G (i.e.the minimum number of colors
needed to properly colors the edges of G), denoted by x'(G), is at most A(G) + 1 colors, where
A(G) is the maximum degree of G.

Theorem 1. Any simple graph G satisfy x'(G) < A(G) + 1.

The proof heavily relies on the use of Kempe changes. Kempe changes were introduced
by Kempe in his unsuccessful attempt to prove the 4-color theorem, but it turns out that this
concept became one of the most fruitful tool in graph coloring. Throughout this paper, we only
consider proper edge-colorings, and so we will only write colorings to denote proper edge-
colorings. Given a graph GG and a coloring (3, a Kempe chains C' is a maximal bichromatic
component (Kempe chains were invented in the context of vertex-coloring, but the principle
remains the same for edge-coloring). Applying a Kempe swap (or Kempe change) on C' consists
in switching the two colors in this component. Since C' is maximal, the coloring obtained after
the swap is guaranteed to be a proper coloring, and if C'is not the unique maximal bichromatic
component containing these two colors, the coloring obtained after the swap is a coloring
different from [, as the partition of the edges is different.

The Kempe swaps induce an equivalence relation on the set of colorings of a graph G; two
colorings /3 and [’ are equivalent if one can find a sequence of Kempe swaps to transform /3
into . In 1964, Vizing actually proved a stronger statement, he proved that any k-coloring of
a graph G (with & > A(GQ)) is equivalent to a (A(G) + 1)-coloring of G.

Theorem 2. Let G be a graph and (3 a k-coloring of G (with k > A(G)). Then there exists a
(A(G) + 1)-coloring B’ equivalent to /3.
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Note that some graphs only need A colors to be properly colored. One year later, Vizing
proved that this result is generalizable to multigraphs, and ask the following question:

Question 3. For any (multi)graph GG and for any k-coloring 3 of G, is there always an optimal
coloring equivalent to /3 ?

Note that both in Theorem 1 and in Question 3 we do not have the choice in the target
coloring. If we can choose a specific target optimal coloring, then the question can be refor-
mulated as a reconfiguration question.

Question 4. For any (multi)graph GG and for any k-coloring 3, is any optimal coloring always
equivalent to 3 ?

If true, Question 4 would imply the following conjecture, as it suffices to take the optimal
target coloring as an intermediate between the two non-optimal colorings.

Conjecture 5. Any two non-optimal colorings are equivalent.
Mohar proved the weaker case where we have one additional color [Moh06].
Theorem 6 ([Moh06]). All (x'(G) + 2)-colorings are equivalent.

When considering the stronger case, McDonald & al. proved that the conjecture is true for
graphs with maximum degree 3 [MMS12], Asratian and Casselgren proved that it is true for
graphs with maximum degree 4 [AC16], and Bonamy & al. proved that the conjecture is true
for triangle-free graphs. In this paper, we prove that the conjecture is true for all graphs.

Theorem 7. Let G be a graph, all its (x'(G) + 1)-edge colorings are Kempe-equivalent.

Theorem 7 is a direct consequence of the following Lemma which is the main result of this
paper.

Lemma 8. Let G be a graph, any (X'(G) + 1)-coloring of G is equivalent to any x'(G)-coloring
of G.

2 General setting of the proof

The proof inherits the technical setup of [BDK'21], in this section, we introduce this setting,
and give the general outline of the proof of the main result.

2.1 Reduction to \'(G)-regular graphs

The general setting of the proof follows that of [BDK " 21] which itself follows that of [MMS12]
and of [AC16]. We first show that we can reduce the problem to the class of regular graphs.
Indeed, given a graph G and a coloring (3, we can build a graph G’ s.t. :

« G'is Y/ (G)-regular,
« the coloring /3 can be completed into a coloring /5’ of G’, and
« if'a coloring 7/ is equivalent to 5’ in G, then the restriction of 7' to G is equivalent to /3.

To build G’ we step-by-step build a sequence G, - - - , Gy = G’ where ateach step, §(G;11) =
0(G;) + 1 (where §(G;) is the minimum degree of GG;). For any G, the graph GG, is build as
follows:



- take two copies of GG;, and

« add a matching between a vertex and its copy if this vertex has minimum degree in G,.

It is clear that G’ is x’(G)-regular, and to extend a coloring of G; to a coloring of G4,
it suffices to copy the coloring for each copy of &;, and since the edges of the matching con-
nect two vertices of minimum degree, there will always be an available colors for those edges.
Moreover, a Kempe swap in G; has a natural generalization in G;;: if a swap in G; corre-
sponds to more than one swap in (G;,1, it suffices to apply the swap on all the corresponding
components in G, ;. From now on, we will only consider x’-regular graphs.

Note that colorings in regular graphs are easier to handle as the two following properties
are verified:

« forany (A(G))-coloring of a x'(G)-regular graph G, every vertex v is incident to exactly
one edge of each color, and each color class is a perfect matching, and

« for any (A(G) + 1)-coloring « of a x/(G)-regular graph G, every vertex v is incident
to all but one color, we call this color the missing color at v, and denote it by m, (v) (we
often drop the o when the coloring is clear from the context).

From now on, in the rest of the paper, we only consider y’-regular graphs.

2.2 The good the bad and the ugly

The general approach to Theorem 7 is an induction on the chromatic index. Given a graph G,
a A(G)-coloring avand a (A(G) +1)-coloring /3, our goal is to find a sequence of Kempe swaps
to transform [ into a. To do so, we consider a color class in «, say the edges colored 1. These
edges induce a perfect matching M in G, thus, if we can find a coloring /3’ equivalent to 3 s.t.
for any edge e, 5'(e) = 1 < «(e) = 1, then we can proceed by induction on G' = G \ M,
noting that x'(G’) = x’(G) — 1, and that the restrictions of a and /5’ to G’ only use A(G) — 1,
and A(G) colors respectively.

So, given a (A(G) + 1)-coloring /5 of G, we can partition the edges of G into three sets, an
edge e is called:

« good,if e € M and fB(e) =1,
« bad,ife € M and $(e) # l,and
« ugly,ife & M and fB(e) = 1.

A vertex missing the color 1 is called a free vertex. Toward contradiction, we assume that /3 is
not equivalent to o, and we consider a (A(G)+1)-coloring /5’ equivalent to 5 which minimizes
the number of ugly edges among the colorings equivalent to 3 that minimize the number of
bad edges, we call minimal such a coloring. Thus, if we can find a coloring 3" equivalent to 5’
where the number of bad is strictly lower than in ', or with the same number of bad edges,
and strictly fewer ugly edges, we get a contradiction.

2.3 Fan-like tools

In his proof of 64, Vizing introduce a technical tool to apply Kempe swaps on an edge-coloring
in very controlled way: Vizing’s fans. To define them, we first need to define an auxiliary
digraph. Given a graph G, a (A(G) + 1)-coloring 3 of G and a vertex v, the directed graph
D, is defined as follows:



« the vertex set of D, is the set of edges incident with v, and

« we put an arc between two vertices vv; and vv, of D,, if the edge vv, is colored with
the missing color at v;.

The fan around v starting at the edge e, denoted by X,(e), is the maximal sequence of
vertices of D, reachable from the edge e. It is sometime more convenient to speak about the
color of the starting edge of a fan, if ¢ is a color, X, (c) denotes the fan around v starting at
the edge colored c incident with v. Note that since the graph G is x'(G)-regular, each vertex
misses exactly one color, and thus, in the digraph D,, each vertex has outdegree at most 1.
Hence a fan & is well-defined and we only have three possibilities for the fan X"

« X is a path,
« X isacycle, or

« X is a comet (i.e. a path with an additional arc between the sink and an internal vertex

of the path) .

If X = (vvy,--- ,vvg) is a fan, v is called the central vertex of the fan, and vv; and vy, are
respectively called the first and the last edge of the fan (similarly, v; and vy, are the first and
last vertex of X respectively).

Given a (A(G) + 1)-coloring /3 of G, and fan X = (vvy, - - - , vvy) which is a cycle around
a vertex v, where each vertex v; misses the color i (and so each edge vv; is colored (i — 1)), we
can define the coloring 3’ = X ~!(3) as follows:

« for any edge vv; not in X, §'(vv;) = (vv;), and
« for any edge vv; in X, f'(vv;) = i and m(v;) =i — 1

The coloring X~!(3) is called the invert of X, and we say that X is invertible if X and
X~1(B) are equivalent. In this paper, we prove that in any coloring, any cycle is invertible.

Lemma 9. In any (x'(G) + 1)-coloring of a x'(G)-regular graph G, any cycle is invertible.

We prove Lemma 9 in Section 2.4, and prove here Theorem 7. The proof of Theorem 7 is
derived from the proof of Theorem 1.6 in [BDK"21]. We first need the following results from
[BDK"21] and [AC16] which we restate here (in a slightly different way).

Observation 10 ([BDK " 21]). In a minimal coloring, every bad edge is adjacent to an ugly edge.

Lemma 11 ([BDK"21]). In a minimal coloring, any ugly edge uv is such that the fans X, (uv)
and X, (uv) are cycles.

Lemma 12 ([AC16]). In a minimal coloring both ends of an ugly edge are adjacent to a free
vertex.

We first show that in a minimal coloring, there always exists a bad edge adjacent to an
ugly edge and incident with a free vertex.

Lemma 13. In a minimal coloring, there exists a bad edge adjacent to an ugly edge and incident
with a free vertex.



Proof. Let (3 be a minimal coloring, if there is no bad edge in 3, then all the edges of M are
colored 1 in /3 as desired. So there exists a bad edge e in /3, and by Observation 10, e is adjacent
to an ugly edge ¢/. By Lemma 12, there exists a free vertex u adjacent to an end of ¢/. As u
is a free vertex, u is incident with a bad edge, we denote by v the neighbor of u such that the
edge uv is bad. If v is a free vertex, then we swap the single edge uv to obtain a coloring with
fewer bad edges, so v is not free, and thus wv is adjacent to an ugly edge; this concludes the
proof. 0

We are now ready to prove Theorem 7, but we first need some terminology and notations.
Given a coloring «, for any pair of colors a,b, we denote by K (a, b) the graph induced in G
by the edges colored a and b. The Kempe chain involving these two colors and containing the
element x € V(G) U E(G) is denoted by K¢ (a, b) (we often drop the o when the coloring is
clear form the context). It is important to note that if a, b, c and d are 4 different colors, then
swapping a component of K (a, b) before or after swapping a component of K (¢, d) does not
change the coloring obtained after the two swaps.

Note also that in an edge-coloring, any Kempe chain K (a, b) is a connected bipartite sub-
graph of maximum degree 2, hence it is either a path, or an even cycle. To distinguish the
notions of fans that can be paths or cycles, when a Kempe component C' of K (a, b) is a path
(respectively an even cycle) we say that C' si a (a, b)-bichromatic path (respectively a (a, b)-
bichromatic cycle). If u is a vertex missing the color a, then K,(a,b) is a (a, b)-bichroamtic
path whose ends are u and another vertex missing either a or b.

Proof of Theorem 7. Let 3 be a minimal coloring. By Lemma 13, there exists a bad edge uv
such that u is free and v is incident with an ugly edge vw. By Lemma 11, the fans X, (vw)
and X, (vw) are both cycles. The vertex v does not belong to X, (vw), otherwise, by Lemma 9
we invert X, (vw) and obtain a coloring with strictly fewer bad edges. Hence, the vertex w is
missing a color ¢ different from ¢ = f(uv) (otherwise, X, (vw) is a cycle of size 2 containing
u). We now consider the component C' = K, (c, ¢), note that since w is missing the color ¢/,
this component is a (¢, ¢’)-bichromatic path. If the component C' does not contain the vertex
v, then we swap it to obtain a coloring where w is missing the color of the edge uv and we are
done. Thus, C' contains v and we have to distinguish whether v is between u and w in C or u
is between w and v.

Case 13.1 (u is between w and v in C).

In this case, by Lemma 9 we can invert X, (vw) to obtain a coloring where the component
K,(c,d) is now a (¢, ¢)-bichromatic cycle that we swap. In the coloring obtained after the
swap, X, (uv) is a cycle, and so by Lemma 9 we can invert it to obtain a coloring with strictly
fewer bad edges; a contradiction.

Case 13.2 (v is between w and u in C).

In this case, we consider the cycle X, (vw). If it does not contain the vertex u, we invert it by
Lemma 9 and obtain a coloring where u and v are free, so it suffices to swap the edge uv to
obtain a coloring with strictly fewer bad edges. Hence the vertex u belongs to X, (vw). After
inverting this cycle, we obtain a minimal coloring where uwv is still bad, v is free, and vw is
ugly (the edge vw is not ugly anymore in this coloring). By Lemma 11, the fan X, (uw) is a
cycle. The situation is now similar to the previous case: we invert the cycle X, (uw) to obtain
a coloring where the component K (c, ) is a (¢, ¢)-bichromatic cycle. After swapping this
cycle we obtain a minimal coloring where X, (uv) is a cycle. After inverting this cycle, we
obtain a coloring with one fewer bad edge; a contradiction.

O



2.4 General outline and notations

The proof is an induction on the size of the cycles. Towards contradiction, assume that there
exist non-invertible cycles. A minimum cycle V is a non-invertible cycle of minimum size (i.e.
in any coloring, any smaller cycle is invertible).

A cycle of size 2 is clearly invertible as it only consists of a single Kempe chain composed
of exactly two edges: to invert the cycle, it suffices to apply a Kempe swap on this component;
so the size of a minimum cycle is at least 3.

We now need some more notations. For any fan V = (vvy, - - - , vvg), V (V) denotes the set
of vertices {vy, - - - v; }, and E(V) denotes the set of edges {vvy, - - - v, }. We denote by 5(V)
the set of colors involvedin V (i.e. 5(V) = B(E(V))Um(V(V))Um(v)); if V involves the color
¢, M (X, ¢) denotes the vertex of V' (V) missing the color c. There is a natural order induced by a
fan on its vertices (respectively on its edges), and if ¢ < j we say that the vertex v; (respectively
the edge vv;) is before the vertex v; (respectively the edge vv;). For two vertices v; and v; of
V we define the subfan V,, ,,,) as the subsequence (vv;, Vvi11, - - - vv;). We often write Vs,
Vou;s V<o, and V.. to respectively denote the subfans (v;, - - vg), (Vig1, - Uk)s(v1, -+ , i),
and (Ul, B "Uifl)-

If the fan V is a cycle in a coloring 8 means applying a sequence of Kempe swaps to obtain
the coloring X (). If V is a fan which is a path, inverting } means applying a sequence
of single-edge Kempe swaps on the edges of V such that the ends of the first edge of V are
missing the same color f(vv;). Note that we often only partially invert paths, i.e. we apply
a sequence of single-edge Kempe swaps on the edges of the paths until we reach a coloring
with a specific missing color at the central vertex.

AcycleV = (vvy, - -+ ,vvy) is called saturated if for any i, v; € K,(m(v), m(v;)). Lemma 2.3
of [BDK"21], which we restate here, guarantees that if a cycle is not invertible, then it is sat-
urated.

Lemma 14 ([BDK"21]). Let V be a cycle, if V is not saturated, then) is invertible.
This directly implies the same result for any minimum cycle.
Lemma 15. Any minimum cycle is saturated.

Let X C F(G) U V(G), 8 a coloring and ' a coloring obtained from [ by swapping a
component C'. The component is called X -stable if :

. forany v € X, m?(v) = m” (v), and
. forany e € X, 5(e) = f'(e).

In this case, the coloring (3’ is called X -identical to f3.
IfS = (Cy,---,C%) is a sequence of swaps to transform a coloring [ into a coloring 5’

where each C; is a Kempe component. The sequence S~ is defined a the sequence of swaps
(Ck, -+ ,C1). Such a sequence is called X -stable is each C} is X -stable.

Observation 16. Let X C V(G)U E(G), and S a sequence of swaps that is X -stable. Then the
sequence S~ is also X -stable.

If a sequence S is X-stable, then the coloring obtained after apply S to (3 is called X-
equivalent to . Note that the notion of X-equivalence is stronger than the notion of X-
identity. Since two colorings [ and 3’ may be X -identical but not X -equivalent if there exists
a coloring 5" in the sequence between [ and (' that is not X -identical to 5. We first have the
following obsevration that we will often use in this paper.
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Observation 17. Let X' be a subfan in a coloring (3, v be a vertex which is not in V(X), and
S = (Cy,---,C%) be a sequence of trivial swaps of edges incident with v, (81, - -, Bx) be the
colorings obtained after each swap of S. If for anyi € {0,---  k}, mPi(v) & Bo(X), then the
sequence S is (X')-stable.

Proof. Otherwise, assume that S is not X'-stable. Since the vertex v is not in V' (X'), then no
edge of X has been changed during the sequence of swap. Thus the missing color of a vertex
of X has been changed during the sequence of swaps, we denote by z the first such vertex.
Let s; be the swap that change the color of the edge vz, it means that in the coloring 3;_; the
vertices v and x are missing the same color, so mPi-1 € Bo(X); a contradiction. O

The following observation gives a relation between X -equivalence and (G )-identity be-
tween colorings.

Observation 18. Let (3 be a coloring, X C V(G) U E(G), 81 a coloring X -equivalent to 3, and
Bo a coloring (G \ X)-identical to [3,. Then, there exists a coloring [33 equivalent to 35 that is
X -identical to 35 and (G \ X)-identical to J.

Proof. Let S be the sequence of swaps that transforms [ into ;. Since 3, is X-equivalent
to 3, the sequence S is X-stable and thus £(S) N E(X) = V(S) N V(X) = (. Since fs is
(G \ X)-identical to 31, it is S-identical to ;. So applying S~! to 3, is well-defined and gives
a coloring (3 S-identical to /3. We first prove that (3 is (G \ X )-identical to 5. The coloring (;
is (G'\ S)-identical to the coloring 3 by definition of S, and the coloring /3, is (G \ X )-identical
to 31, so the coloring 35 is (G'\ (X US))-identical to 3. Again by definition of S~! the coloring
Bsis (G'\ S)-identical to B, soitis (G \ (S U X))-identical to 3. Since the coloring [ is also
S-identical to f3, in total, it is (G \ X )-identical to /.

We now prove that 3 is X -identical to 5. Since E(S)N E(X) = V(S)NV(X) = (), we
have that £(X) C E(G) \ E(S) and V(X) C V(G) \ V(S). Moreover, the coloring (3 is
(G'\ S)-identical to 35 by definition of S, so the coloring (3 is X -identical to /3, as desired. [J

If X is a fan, when two colorings are (V(X) U E(X))-identical (respectively (V(X) U
E(X))-equivalent), we simply write that the two colorings are X'-identical (respectively X-
equivalent). Similarly, if two colorings are ((V (G)UE(G))\ X )-identical (respectively ((V (G)U
E(G))\ X)-equivalent), we simply write that the two colorings are (G \ X )-identical (respec-
tively (G \ X)-equivalent).

Remark that if V is a cycle in a coloring 3, then the coloring V~1(3) is (G \ V)-identical
to 3. So from the previous observation we have the following corollary.

Corollary 19. Let V be a cycle in a coloring (3. If there exists a coloring 3’ V-equivalent to 3
where )V is invertible, then V is invertible in (3.

Proof. Let 3" = V~1(3'). The coloring /3’ is V-equivalent to 3 and 3" is (G'\ V)-identical to /3.
So by Observation 18 there exists a coloring 5 that is V-identical to 5" and (G \ V)-identical
to (3. So the coloring S35 is (G'\ V)-identical to V~!(3).

Moreover, the coloring 3” is V-identical to V~(f3), so the coloring f33 is also V-identical
to V~1(3). Therefore we have 33 = V~!(3) as desired. O

From the previous corollary, we have the following observation.

Observation 20. Let V be a minimum cycle in coloring 3, and B’ a coloring V-equivalent to
[. Then in the coloring (', the sequence )V is also a minimuu cycle such that for any e € E(V),
B(e) = B'(e), and for anyv € V(V), m?(v) = m” (v).
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We often simply say that the cycle V is the same minimum cycle in the coloring /.
A cycle V = (vvy,--- ,vvy) is called tight if for every i v; € K, ,(m(v;),m(v;—1)). A
simple observation is that any minimum cycle V is tight.

Observation 21. LetV = (vvy, -+ ,vvy) be a minimum cycle in a coloring [3. Then the cycle
V is tight.

Proof. Assume that ) is not tight, so there exists i such thatv; € K, | (m(v;), mv;_1). Without
loss of generality, we assume that i = 2 and that each v; is missing the color j. Note that this
means that f(vvy) = 1, S(vvz) = 2 and S(vvy) = k.

We swap the component C;», = K,,(1,2) to obtain a coloring 3’ that is (V \ {v1})-
equivalent to the coloring 5. Thus each v; is missing the color j except v; which is now
missing the color 2. So now the fan V' = X, (k) is equal to (vvy, vvs, -+ ,vvg), and thus is a
cycle strictly smaller than V. Since V is minimum, this cycle is invertible, and we denote by
(" the coloring obtained after its inversion.

The coloring 5" is (G \ V')-identical to the coloring /', so in particular it is C 5-identical
to the coloring 3'. Moreover, the coloring 3" is (V \ {vvy, vvs, vo})-identical to the coloring
V~1(B), and we have 5" (vv,) = 2, 8”(vvy) = 1, and m®" (vy) = 2.

So now in this coloring the component K, (1, 2) is exactly C} o U {vvy, vv, }, and we swap
back this component to obtain a coloring 5”. The coloring 5" is now C} »-identical to 3, and
thus it is (G \ V)-identical to 5. Moreover, it is (V \ {vvy, vve, v2})-identical to 4", so it is
(V\ {vv1, vvg, v5})-identical to V(). Finally, we have 3" (vv;) = 1 = mP(vy), 8" (vvy) =
2 = mP(vy), and m?" (vy) = 1 = B(vvy), so the coloring 3 is V-identical to V~1(/3). Since it
is also (G \ V)-identical to 3, we have 3" = V~!(f3) as desired. O

The proof of Lemma 9, is a consequence of the two following Lemmas.

Lemma 22. Let V be a minimum cycle. For any color c different from m(v), the fan X,(c) is a
cycle.

Lemma 23. Let X and ) be two cycles around a vertex v. For any pair of vertices (z,2') in
(YVUX UY)? the fan Z = X (c./) is a cycle containing 2.

We prove Lemma 22 in section 2.5, and Lemma 23 in section 5, and prove here Lemma 9.

Proof of Lemma 9. To prove the Lemma, we prove that the graph GG only consists of an even
clique where each vertex misses a different color. This is a contradiction since in any (A(G) +
1)-coloring of an even clique, for any color ¢, the number of vertices missing the color ¢ is
always even. By Lemma 22, all the fans around v are cycles, so each neighbor of v misses a
different color. Moreover, by Lemma 23, there is an edge between each pair of neighbors of v,
so G = N[v] = Ka()+1. By construction, G is A(G)-colorable, so G is an even clique and
each vertex misses a different color, this concludes the proof. O

2.5 Only cycles around v: a proof of lemma 22

In this section, we prove Lemma 22. If X and X’ are two fans, then X’ and X’ are called
entangled if for any ¢ € 5(X) N B(X"), M(X,c) = M(X’,c). To prove Lemma 22 we need
the two following lemmas.

Lemma 24. LetV be a minimum cycle in a coloring 3 and let v and u’ be two vertices of V. Then
fanUd = X,(m(u')) = (uuy, - - - ,uwy) is a cycle entangled with V).



Lemma 25. Let V be a minimum cycle in a coloring 3, v and u' be two vertices of V, and
U= X,(m)) = (uu,--- ,uw). Then for any j < I, the fan X, (B(uu;)) is a cycle.

Note that by Lemma 24, we can directly conclude that N[v] is a clique. Moreover, we
directly have the following corollary.

Corollary 26. LetV = (vvy, - -+ ,vvy) be a minimum cycle in a coloring 3. Then for any j < k,
the fan X,,(m(v)) is a cycle entangled with V.

Proof. Let j < kandU = X,,(m(v;_1)) = X,,(B(vv;)). Then the first edge of U is vv;, and
since v is missing the color m(v), the second edge of U is colored m(v). By Lemma 24, U is a
cycle entanlged with V, so since X, (m(v)) = U, the fan X,,(m(v)) is a cycle entangled with
V as desired. O

We prove Lemma 24 in Section 3, Lemma 25 in Section 4, and prove here Lemma 22.

Proof of Lemma 22. Assume that there exists a fan W = (vwy, -+, vwy)
around v which does not induce a cycle, we first prove that )V is not a path.

Claim 27. The fan VW cannot induce a path.

Proof. Without loss of generality, we assume that the vertex v is missing the color 1. Assume
that WV induces a path, so m(v) = m(w;) = 1. Let v' € V, by Corollary 26, we have that
U = X (1) is a cycle containing v in (. If we apply a single-edge Kempe swap on vwy, then
we obtain a coloring where m(w;) = m(v) = f(vw,); we denote by [ this coloring, and
without loss of generality, we assume that f(vw,;) = 2. Again, by Corolloary 26, we also have
that U’ = X,/ (2) is a cycle containing v in the coloring 3, so U NU’ # ), let v'w” be the first
edge they have in common, and let w = M (U, f(v'w")) and w' = MU', (v'w”)). We now
have to distinguish whether v € {w, w'} or not.

Case 27.1 (v & {w,w'}).

In this case, mg(w) = mg (w) = mg(w') = mg(w'); we denote by c this color. By Lemma 25,
X,(c) is a cycle containing w in 3, and X, (c) is a cycle containing v’ in 3, so w = w'; a
contradiction.

Case 27.2 (v € {w,w'}).

The case v = w and v = w’ being symmetrical, we can assume that v = w. In this case, in
the coloring (', w' is missing the color ¢,, but by Lemma 25 X, (1) is a cycle containing w
or V is invertible, however, in the coloring ', X, (1) induces a path which is a single edge; a
contradiction.

O

Thus the fan WV is not a path. Now assume that WV is a comet, then there exists w and w’
in W which are missing the same color c. At least one of them is not in K, (1, ¢), the two cases
being symmetrical, we can assume without loss of generality that w is not in K,(1,¢). So if
we swap the component K,,(1, ¢), we obtain a coloring where the fan X, (3(vw;)) is a path;
a contradiction, so WV is a cycle. O



3 Fans around V: a proof of Lemma 24

In this section, we prove Lemma 24 which will be often used in the proof of Lemma 25.

Proof. We first prove that the fan ¢/ cannot induce a path.
Claim 28. The fan U cannot induce a path.

Proof. Otherwise, assume that the fan ¢/ is a path, without loss of generality, we can assume
that ¢/ is of minimal length (if / is not minimal, since it is a path, it contains a strictly smaller
path). Thus U contains only one edge colored with a color in 5(V) \ {c,}: its first edge. We
now need to distinguish whether ;' = j — 1 or not (i.e. whether v = v; and v/ = v, are
consecutive or not in V).

Case 28.1(j' =7 —1).

In this case, U = X, (uv), and the edge colored ¢, incident with w is just after uv in U. As
U is a path, we can invert it until we reach a coloring where m(u) = m(v) = ¢,. Since U
is minimal, no edge incident with a vertex of V different from u has been recolored during
the inversion. In the coloring obtained after the inversion, the fan (vv;iq,--- ,vv; = vu) is
a path that we can invert until we reach a coloring where m(v) = m(v,+1) = j, we denote
by [ this coloring. Since V was tight in the coloring (3, in the coloring 3’ we have C' =
Kfj/_l(j,j —-1) = Kfj_l(j,j — 1) U{vv;_1} \ {vvj1,vv; = vu}, so we swap this component
to obtain a coloring where m(v) = m(u) = j — 1, then we swap the edge uv and obtain a
coloring where (uw;_1,- -+ ,uug) is a path that we invert. In the coloring obtained after the
inversion, we have that the component K., ,(j,j — 1) is exactly C'U {vv;}, if we swap this
component back we obtain exactly V"1(3).

Case 282 (j' # 7 —1).

In this case, since U is a path, we can invert it until we reach a coloring 3’ where m(u) =
cw = j'. Note that, similarly to the previous case, this inversion has not changed the colors
of the edges incident with the vertices of V, except those incident with u. We now consider
the component K,(j’, ¢,) (which can have changed during the inversion of i as we swapped
an edge colored j’), and we need to distinguish whether or not the vertices v’ and u belong to
this component; clearly these vertices does not both belong to this component.

Subcase 28.2.1 (v’ & K,(j', ¢cy))-

In this case, we swap the component C' = K, (j’,c,) to obtain a coloring where
(vUj41,--- ,vvy) is a path that we invert until we reach a coloring where
m(v) = m(vj41) = ¢, we denote by 3’ this coloring. As V was tight in 3, we have that
C; = Kfj’_l(j,j —-1) = Kfj_l(j,j — 1)\ {vvj11,vv; = vu}, so we swap this component to
obtain a coloring where (vv;/41, - - - ,vvj_1) is a path that we invert until we reach a coloring
where m(v) = m(vj11) = j'. In the coloring obtained after the inversion, the component
Ky (7', ¢cy) is exactly C' U {vu'}, thus we swap it back. Note that as [{c,/, ¢, j,7 — 1} = 4,
we can swap back C' before C;. In the coloring obtained after swapping back the component,
we have that the fan (uw;_q, - - -, uuy) is a path that we invert. In the coloring obtained after
the inversion, the component K, (j, j — 1) is exactly C'U {vv;_1, vv; = vu}, thus we swap
back this component and obtain exactly V~1(3).

So v’ belongs to the component K, (7', c¢,).

Subcase 28.2.2 (u & K,(cy, cy)).

In this case, we swap the component C' = K,(j’, ¢, ), note that, from the previous case, nei-
ther v nor ' belong to this component. In the coloring obtained after the swap, the fan
(vvj11, -+ ,vv;) is a path that we invert until we reach a coloring where m(v) = m(v;41) =
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cy; we denote by /' this coloring. As )V was tight in 3, we have that C; = K@Ll (7,7 —1) =
Kfj_l (7,7 —1)U{vvj_1} \ {vv,41, vv; = vu}, so we swap this component to obtain a coloring
where m(v) = m(u) = j— 1, then we swap the edge uv to obtain a coloring where K, (c,/, ¢,)
is exactly C. Hence we swap back this component, and in the coloring obtained after the swap,
the fan (uw;_q, - -+ , uug) is a path that we invert until we reach a coloring where m(u) = j. In
this coloring, the component K, ,(j,j — 1) is exactly C; U {vv;_1, vv; = vu}, thus we swap
back this component to obtain exactly V~1(3).

O

Before proving that the fan I/ is not a comet, we prove that {/ and V are entangled.

Claim 29. The fansU andV are entangled.

Proof. Assume that U/ and V are not entangled, then there exist w = v; € Vandw' = uy € U
distinct from w with m(w) = m(w’) = ¢. f m(w) = m(v) = ¢,, then, since V is saturated,
w € Ky(cy, ), so we swap K, (c,, c) to obtain a coloring where V is still a cycle of the same
size, but where X, (c,/) is a path, by the previous claim, this is a contradiction.

So m(w) # m(v), and therefore, we successively swap the components K, (t,t + 1) with
t € (s,--+,7). Note that this sequence of swaps has not changed the colors of the edges
incident with a vertex of V; it can though have changed the colors of the edges of /. However,
it is guaranteed that in the coloring obtained after the swaps, there exists a color ¢ € (V)
such that X, (c’) is a path, which is a contradiction by the previous claim. U

We now prove that ¢/ is not a comet.

Claim 30. The fanU is not a comet.

Proof. Assume that U is a comet, then there exist w and w’ in U with m(w) = m(w') = ¢
and where w’ is after w in the sequence. By the previous claim, as ¢/ and V are entangled,
we have that ¢ ¢ (V). We now consider the component C,, = K,(c, ¢,). If w' is not in C,,
then we swap C,y = K,(c, ¢,) to obtain a coloring where w’ belongs to the fan X, (c,/) with
m(w’) = m(v); this contradicts the fact that X, (c,/) and V are entangled. Note that if u is in
C’, and m(v) € S(U), after swapping C’ the sequence X, (c,/) now starts at the edge colored
¢ in 3, but this does not change the reasoning. So the vertex w’ belongs to C, and thus the
vertex w does not belong to C,, so we can swap C,, = K,(c, ¢,) to obtain a coloring where
the sequence X, (m(u’)) contains w which is missing the color m(v), a contradiction. Note
that if u € C,, then after swapping C,,, we obtain a coloring where w’ comes before w in the
fan X, (m(v)). Similarly to the previous case, this does not change the reasoning. O

From the previous claims, the fan I/ is a cycle entangled with ) as desired. U

4 Cycles around v starting with u: a proof of
Lemma 25

In this section we prove Lemma 25. To prove the lemma we actually prove a stronger state-
ment, bu we need first some definitions.

Definition 31. Leti > 0, we define the property Py,cqx (%) as the following: For any minimum cy-
cleV in a coloring /3, for any pair of vertices u and v’ of V, letl = X,,(m(u')) = (uwuy, - - -, uwy).
If B(uu;_;) # m(v), then X, (B (uu,_;) is not a path.
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Definition 32. Leti > 0, we define the property P (i) as follows:

For any minimum cycle V in a coloring 3, for any pair of vertices u and v’ of V, let U =
Xu(m(u)) = (wuy, -+, uw). If B(uw—;) # m(v), then the fan X,(5(uww,_;) is a saturated
cycle containing w;_;_1,

Lemma 25 is a direct consequence of the following lemma.
Lemma 33. The property P(i) is true for all i.

The proof of the lemma is an induction on 7. However, before starting to prove the lemma,
we need to introduce the notion of (V, u)-independent fan for a vertex u of a cycle V.

4.1 (V,u)-independent fans

Let V be a minimum cycle in a coloring 3, and u a vertex of V. A (V, u)-independent subfan
X is a subfan around v such that (V) N B(X) = {B(u)}. We naturally define a (V, u)-
independent path (respectively a (), u)-independent cycle) as a (V, u)-independent subfan
that is also a path (respectively a cycle). If v is a vertex not in X missing a color ¢, we say that
X avoids v if the last vertex of X is also missing the color c.

We first prove the following.

Lemma 34. Let V be a minimum cycle in a coloring 3, u a vertex of V, Y = (uyi,--- ,uy,) a
(V, u)-independent subfan avoiding v and x the extremity of K, (m(u), m(v)) which is not y,.
Then the fan X, (8(uy1)) is a path containing x which is missing the color m(v).

We decompose the proof into five separate lemmas.

Proof of Lemma 34. Without loss of generality, we assume that the vertices v and u are re-
spectively missing the colors 1 and 2, and that 5(uy;) = 4. Since the fan V is a minimum
cycle in the coloring £, it is saturated by Lemma 15, so u € K,(1,2) and thus y, € K,(1,2).
We now swap the component C » = K, (1,2) to obtain a coloring V-equivalent to 3, where
Y is now a (V, u)-independent path. By Lemma 39, the fan X,(4) is a comet containing the
other extremity of K, (1,2) which is z. In this coloring, the vertex x is missing the color 2,
therefore in the coloring /3, the fan X, (4) is a path containing = which is missing the color 1
as desired. U

Lemma 35. Let X = (vvy,--- ,vvy) be a path of length at least 3 in a coloring 3, u = v; for
somei € [3, k], v = v;_1,u = vy, and C a (B(vu), m(u))-bichromatic path between u" and v’
that does not contain v. Then [3 is equivalent to a coloring [3' such that:

« Bis (G \ (C' U X))-identical to 3,

« 0 is (X, )-identical to 3,

. forany edge j € [2.i — 1], m” (v;) = (vvy),
- m” (W) = B(ou),

 for any edge j € [1,i — 2], 5/ (v0;) = m?(vy),
. B(vu") = o),

« foranyedgee € C:
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- if B(e) = B(vu), then B'(e) = m®(u), and
— ifBle) = mP (), then (€)= Blvu),

Proof. Without loss of generality, we assume that the vertices v is missing the color 1, that the
edge vu' is colored 2, and that the edge vu is colored 3. Note that this means that m(u”) = 3.
In the coloring f3, the fan X is a path, so we invert this path, and denote by /3, the coloring
obtained after the inversion. The coloring /35 is (G'\ X')-identical to the coloring 3 so C'is still
a (2, 3)-bichromatic path between v’ and u” that does not contain v. Moreover, for any edge
j € [1,i], B2(vv;) = mP(v;) and mP2 (v;) = B(vv;). So the coloring Bs is (X, v, ,U{u”, vu'})-
identical to §’. The vertex v’ is now missing the color 2, and the edge vu” is now colored 3.
Moreover, the vertex v is now missing the color 2, so K,(2,3) = C U {vu"}. We now swap
this component and denote by 35 the coloring obtained after the swap.

The coloring 5 is (G \ (C'U X'))-identical to the coloring 5, so itis (G \ (C'UX))-identical
to B’. Moreover, for any edge e € C":

« if f(e) = 2, then f3(e) = 3, and
« if B(e) = 3, then f3(e) = 2.

So the coloring s is also C-identical to §'; thus it is (G \ X')-identical to J'.

The coloring 5 is (Xjy, s, U {u”, vu'})-identical to (s, so it is (Xjy,, ) U {t”, vu'})-
identical to #’. In the coloring (3, the edge vu” is now colored 2, and the vertex u’ is now
missing the color 3. So the coloring 5 is also ({vu”, u’})-identical to 4, and thus it is X'~
identical to /4’ In total, the coloring (3 is (G \ X%, )-identical to the coloring /3.

Finally, the coloring 33 is X-,-identical to the coloring 3, and the verices v and u are both
missing the color 3. So in the coloring (3 the fan X, (1) is now a path. We invert this path
and denote by [, the coloring obtained after the inversion. The coloring /3, is X, -identical
to the coloring [, so it is A%, -identical to the coloring 3’. Moreover, the coloring (3, is also
(G \ A%, )-identical to the coloring f33, so it is (G \ A%, )-identical to the coloring '. In total

the coloring [, is identical to the coloring 4’ as desired. U
Lemma 36. LetV = (vvy, - - -, vvy) a cycle of length at least 3 in a coloring , u = v;, v’ = v;1;
and v = v;_, three consecutive vertices of V, Y = (uy,--- ,uy;) a (V,u)-independent path,

By = Y7 B), C a(B(vu), m(u'))-bichromatic path in the coloring (y between u” and u’ that
does not containv noru, X = E(C)UE(V)U(V (V)U{v}\{u}), and 3}, a coloring X -equivalent
to By. If there exists a coloring 3' equivalent to (3, such that:

« 3 is (G \ X)-identical to (35,

e B"is (V\ {u/,vu”, u, vu})-identical to V7(3),
« B'(vu") = By (v),

. B'(vu) = m® (u"), and

e m () = By(vu),

« foranyedgee € C:

- if By(e) = B(vu), then B'(e) = m(u'), and
— ifByle) = m(u), then B'(c) = Hvu).



Then the cycle V is invertible.

Proof. Let v = V~!(3). Without loss of generality, we assume that the vertex v and u are
respectively missing the colors 1 and 2 in the coloring 3, and that f(vu) = 3. This means that
B'(vu") = B (o) = Blvu') = mP(u) = 2 and m” (v') = B, (vu) = Bvu) = mP(u") = 3.
By definition the coloring 3y is (G'\ (Y U{u}))-identical to 8. Since YV is a (V, u)-independent
path, we have E(Y)NE(V) = 0,and V(Y)NV (V) = 0. So, in particular Sy (vu) = f(vu) = 3.
The coloring ' is ({vu})-identical to 33, so 3'(vu) = 3.

Since the coloring ' is (G \ X)-identical to 3}, and /), is X-equivalent to Sy, by Ob-
servation 18, there exists a coloring 5” which is X-identical to 5" and (G \ X)-identical to
By.

The coloring 4" is (G \ X )-identical to Sy, soitis (G \ (X UY U{u}))-identical to 8. This
means that 4" is (G \ (V U Y U ('))-identical to 3, and thusitis (G \ (V U Y U C))-identical
to . Moreover, 3" is X-identical to 5/, and " is (V \ ({«/, vu”, u, vu})-identical to v, so 4" is
(V\ ({o/, vu”, u, vu})-identical to . In total, the coloring 8" is (G \ (CUYU{u', vu", u, vu}))-
identical to ~.

In the coloring fy, the fan X, (2) is now a path, and we have E(X,(2)) = E()) and
V(Xu(2)) = V(Y). So in any coloring (Y U {u})-identical to Sy, the fan X, (2) is a path. The
p"is (G \ X)-identical to Sy, F(X) N E(Y) = @ and V(X) N (V(Y) U {u}) = 0, so 5" is
(Y U {u})-identical to By, and thus X" (2) is a path that we invert. Let 35 be the coloring
obtained after the inversion.

By definition of ), the coloring /33 is () U {u})-identical to the coloring /. So it is }-
identical to the coloring v, and u is now missing the color 2. The coloring 5 is also (G \
(Y U {u}))-identical to 8", so it is (G \ (C U {u/, vu”, u,vu}))-identical to 7, and we have
Bs(vu") = B"(vu") = 2, Bs(vu) = F"(vu) = 3 and m?(u') = m? (u') = 3. Note that the
coloring f5 is also C-identical to the coloring 3”.

The path C'is a (2, 3)-bichromatic path between «” and u" and does not contain v nor w, so,
in the coloring /33, we have K,/ (2,3) = C' U {vu”, vu}. We now swap this component and de-
note by /3 the coloring obtained after the swap. The coloring 5y is (G \ (CU{w, vu”, u, vu}))-
identical to the coloring f33, so itis (G \ (C'U{u/, vu”, u,vu}))-identical to . Moreover, since
B3 is C-identical to 4", for any edge e € C"

« if 8"(e) = f3(e) = 2, then ¢(e) = 3, and
« if §”(e) = f3(e) = 3, then f(e) = 2.

So the coloring 3y is C'-identical to the coloring 3y, and thus it is C'-identical to the coloring
7. Finally, we have:

« mP (u) = 3 = Bvu) = m7(u),

« By(vu) =2 =m"(u) = y(vu),

e mPr () = 2 = B(ow!) = m7 (), and
« By(vu) =3 =m’(u") = y(vu").

Finally we have that 8y is (C'U {u/, vu”, u, vu})-identical to v, so it is identical to -y, and
V is invertible as desired. O
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Lemma 37. LetV = (vvy,--- ,vv;) a minimum cycle in a coloring B, u = v;, v/ = vy and
u” = v;_1 three consecutive vertices of V, and Y = (uyy,--- ,uy;) a (V, u)-independent path,
C = Ky(m(u),m(u”))\ {vu,vu'}, and X = CUE(V)U(V(V)U{v} \ {u}). In any coloring

8%, that is X -equivalent to the coloring 3y = Y~'(3), the fan X,,(m”(u)) is not a path.

Proof. Without loss of generality, we assume that the vertices v and u are respectively missing
the colors 1 and 2, and that 5(vu) = 3. This means that S(vu') = mP(vu) = 2, mP(u") =

B(vu) = 3, and m” (u) = 4. Assume that X = X, 3’(2) is a path. The vertex v is still missing
the color 1 in the coloring 3y and thus it is still missing 1 in 3},. The coloring By is (V \ {u})-
identical to the coloring 3 and so is the coloring 33,. So {u',v"} C V(X') and ), (vu) = B(vu),
sou € V(X), and thus the size of X is at least 3. Note that this means that V (V) = V(X,).

The cycle V is a minimum cycle in 3, so by Observation 21, it is tight and in particular,
u € Ky (2,3). So the C'is a (2, 3)-bichromatic path between u” and v’ that does not contain u
nor v. Since ) is a (V, u)-independent path, the coloring 3y is C-identical to 5. The coloring
By is C-equivalent to 3y so C' is still the same bichromatic path in the coloring f3,.

Since X is a path of path of length at least 3, by Lemma 35 there exists a coloring /3’ such
that:

« B'is (G'\ (C'U X))-identical to 33,
« 3"is (X5, )-identical to (3},

for any edge j € [2,i — 1], m% (v;) = B, (vv;),
(o) = B (vu) = 3,

. for any edge j € [1,i — 2], §'(vv;) = mP¥ (vv;),
B'(ou”) = By(vu') = 2,

for any edge e € C:

- if B(e) = By(vu) = 3, then §'(e) = m% (u) = 2, and
— if B(e) = m™ (u) = 2, then 8'(e) = B (vu) = 3.

The coloring ' is (G'\ (C'UX))-identical to 3),, and is A, -identical to 3),. So the coloring
B is (G'\ X)-identical to 3.

Lety = V~'(B). For any j € [2,7 — 2], we have 3'(vv;) = m™ (v;) = mP(v;) = y(vv;),
and m? (v;) = B5,(vv;) = B(vv;) = m?(v;), so the coloring A’ is (V\ {/, v/, u”, vu”, u, vu})-
identical to 7. Moreover, 3'(vu) = m? (u') = mP(v') = y(ve/) and m? (u") = By(vu”) =
B(vu") = m7Y(u"). So in total the coloring 4" is (V' \ {v/, vu”, u, vu})-identical to the coloring
7.

The coloring (3’ is A,-identical to (3},, so in particular, 5'(vu) = 3, (vu) = m% (u"). We
also have that #'(vu”) = 2 = B, (vu'), and m? (v') = 3 = B}, (vu).
Finally, for any edge e in C"

. if fy(e) = B(e) = 2, then f'(e) = 3, and
« if By(e) = B(e) = 3, then ('(e) =

So by Lemma 36, the cycle V is invertible; a contradiction. O
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Lemma 38. LetV = (vvy, - - -, vvi) be a minimum cycle in a coloring B, w = v;, v = vj11, and
u" = v;_; three consecutive vertices of V and ) a (V, u)-independent path. Then in the coloring

By = Y~YB), the fan X = X,(m”(u)) = (vay,--- ,vwy) is a cycle.

Proof. By Lemma 37, the fan X is not a path. To show that it is a cycle, we prove that X isnot a
comet. Otherwise, assume that X is a comet, then there exists i < s such that m(x;) = m(x;).
Without loss of generality, we assume that m”(v) = 1, m?(u) = B(vu') = 2, B(vu) =
mP (u") = 3 and m (z;) = m?”(x,) = 4. We now have to distinguish the cases.

Case 38.1 (4 & B(V)).
In the coloring (3, the fan V is a minimum cycle, so by Observation 21, it is tight and in par-
ticular, u € K,»(2,3). Let C' = K,»(2,3) \ {vu’, vu}. The path C is a (2, 3)-bichromatic path
between u” and v’ which does not contain v nor u. Since ) is a (V, u)-independent path, the
coloring 3y is C-identical to 3, and thus C' is still a (2, 3)-bichromatic path between u” and v’
which does not contain v nor v. Let X = CU E(V) U (V(V) U {v} \ {u}). We now consider
the components of K (1,4) in the coloring 3y. The vertices x; and x4 are not both part of
K,(1,4). Note that we may have x; = u. If x; does not belong to K,(1,4), then we swap the
component C 4 = K,,(1,4) to obtain a coloring 3’ X-equivalent to 3y where the fan X,(2)
is now a path. By Lemma 37; this is a contradiction.

Soz; € K,(1,4), and thus z; ¢ K,(1,4). Similarly to the previous case, we now swap
the component K, (1, 4) and obtain a coloring X -equivalent to /5y, where X, (2) is a path. By

Lemma 37 this is again a contradiction.

Case 38.2 (4 € B(V)).

In this case, we have that z; € V(). Since ) is a (V, u)-independent path, it does not contain
any vertex missing the color 4 so (3 is {z,}-identical to 3y, and this vertex is still missing
the color 4 in the coloring 3. Since V is a minimum cycle in the coloring /3, by Lemma 15
it is saturated, so x; € K,(1,4), and thus x; ¢ K,(1,4). We now swap the component
Ci4 = K, (1,4), and denote by ' the coloring obtained after the swap. The fan ) was a
(V, u)-independent path in the coloring /3, so the coloring /' is V-equivalent to 3, and ) is
still a (V, u)-independent path in this coloring. We now invert ) and obtain a coloring 3},
which is (X/¥(2) \ {z,})-equivalent to the coloring (3. So now, in the coloring /3!, the fan
X,(2) is a path, by Lemma 37 this is a contradiction.

O
Lemma 39. LetV = (vvy, - - -, vv;) a minimum cycle in a coloring 3, v = vj andu' = v;41 two
consecutive vertices of V, Y = (uyi,-- - ,uy,) a (V,u)-independent path, and x the extremity

of K, (m(u),m(v)) which is not y,. Then the fan X,(8(uy,)) is a comet containing x which is
missing the color m(u).

Proof. We assume that ) is of minimum size such that X = X,(3(uy;)) is not a comet con-
taining = missing the color m(u). Without loss of generality, we assume that m(v) = 1,
m(u) = Bvu') = 2, B(uv) = mP(u") = 3, and B(uy,) = 4.

If |Y| = 1, then ) consists of a single edge. We swap this edge, and denote by /' the
coloring obtained after the swap. In the coloring 3, by Lemma 38, the fan X,(2) is a cycle. In
this coloring, the vertex u is missing the color 4, so 4 € 5'(X,(2)). Let X’ = (vxy,- -+ ,vzy)
be the maximal subfan of X, (2) starting with an edge colored 4, and not containing any edge
of V. Note that E(X”) = E(X) and V(X') = V(X). Note also that we have m?” (z,) = 2. The
subfan X’ does not contain any edge of V, thus is does not contain the vertex u, and so it does
not contain any vertex missing the color 4. So the coloring /3 is X-equivalent to the coloring
f', and thus in the coloring (3, the fan X,(4) = (vxy,- - ,vxs, v, -+ ,vu) is a comet where
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x5 and v are both missing the color 2. In the coloring f3, the cycle V is a minimum cycle, so it is
saturated by Lemma 15, and thus u € K, (1,2)and z, ¢ K,(1,2). If x; isnotin K, (1,2), then
we swap C 2 = K, (1,2), to obtain a coloring 5” which is (XY UV U Y) \ {zs})-equivalent
to 5. We now invert the path ), and obtain a coloring where X,(2) is a path, by Lemma 38
this is a contradiction.

So || > 1. The size of Y is minimum, so for any subpath X, (5(uy;)) of Y with j > 1,
the fan X,(3(uy;)) is a comet containing z. So the fan X, (4) does not contain any vertex
missing a color in $()), otherwise it would be a comet containing z. Hence the coloring
By = Y~1(B) is X-equivalent to . In the coloring 3y, the fan X, (2) is a cycle by Lemma 38.
Moreover, it contains the fan X’ since u is missing the color 4 in the coloring [3y. Therefore,
in the coloring f3, the fan X = (vzxy,- - ,vxs,vu/, -+ vu) is a comet containing ) where
xs and u are both missing the color 2. Similarly to the previous case, since ) is a minimum,
it is saturated by Lemma 15, so u € K,(1,2), and thus z, ¢ K,(1,2). If 2, & K,(1,2),
then we swap C 2 = K, (1,2), and obtain a coloring where X,(4) is a path. This coloring
is YV-equivalent to 3, and thus if we invert ) we obtain a coloring where X, (2) is a path, a
contradiction by Lemma 38. U

In the following section we prove the property P(0).

4.2 Proof of P(0)

In this section we prove the following lemma.
Lemma 40. The property P(0) is true.
To prove that P(0) is true, we need the following lemma.

Lemma 41. LetV = (vvy, - - - ,vvy) be a minimum cycle in a coloring B, u = v; and u' = vy
two vertices of V. If uv' € E(G)N, and B(uw’) # m(v), then the fan X = X, (B(uv)) is a

saturated cycle.
The following lemma is the first step of the proof of Lemma 41.

Lemma 42. LetV = (vvy, - - - ,vvy) be a minimum cycle in a coloring B, u = v; and u' = vj
two vertices of V. Ifuu’ € E(G) and S(uu') # m(v), then the fan X = X,(B(uv’)) is not a
path.

Proof. Otherwise, assume that X’ is a path. Without loss of generality, we assume that the
vertices v, u and v’ are respectively missing the colors 1, 2 and 3. Since f(uu’) € {1,2, 3}, we
also assume that $(uu’) = 4. Finally, we assume that X is of length one, indeed if the length
of X is more than one, we invert it until we reach a coloring 3’ V-equivalent to § where it has
length one without changing the color of uu/'.

We denote by x the only vertex of X, and by 3 the coloring obtained after swapping
the edge vz. The coloring (35 is V-equivalent to ', so V is the same minimum cycle in the
coloring 3, by Observation 20. By Lemma 24, the fans i/ = X' (3) = (uuy,--- ,uw;) and
U' = X(3) are both cycles and uu/ is the last edge of both of these cycles; we denote by w
the vertex missing 4 in U. Note that since J(uu’) = 4, the vertex w is the vertex u;_;, and
U = (uuq, - ,uw,uu’). We first remark that 4 ¢ 5(V), otherwise the fan E(X) = E(V),
and the fan X is a cycle and thus is not a path, as desired.

We first prove some basic properties on the fan /.
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Proposition 43. The fan U contains an edge colored 1, and there is no edge colored with a color
in (V) between the edge colored 1 and the edge colored 4 inU.

Proof. We first prove that there is an edge colored 1 in the fan /. Assume that I/ does not
contain any edge colored 1 in the coloring ’. Since the fan U is a cycle, it means that it
does not contains any vertex missing the color 1, and in particular it does not contain v. So
the coloring [, is also U-equivalent to the coloring 5’. Therefore, i = U’ and U’ contains the
vertex w that is still missing the color 4. The fan ¢/’ is thus not entangled with V, by Lemma 24
we have a contradiction.

So the fan U contains an edge colored 1. Since by Lemma 24, the fan I/ is a cycle entangled
with V, it contains the vertex v which is missing the color 1, and thus it contains the edge uwv,
and also the edge vv;_; (recall that vv;_; is the edge just before vu = vv; in the sequence V).
Note that the vertex v’ and v;_; may be the same vertex.

We now prove that, in the sequence U, there is no edge colored with a color in 5(V)
between the edge colored 1 and the edge colored 4. Assume on the contrary that there exists
such an edge uu, colored with a color ¢ € (V). Similarly to the previous proof, this means
that in the coloring (s, the fan X, (c) is the sequence (wuy, w1, - -+, uw, uu') with m(w) =
m(v) = 4. So this fan is not entangled with } and by Lemma 24 we again get a contradiction.

O

Let y; be the neighbor of u connected to u by the edge colored 1, and y, the vertex just after
y1 in the sequence U. Note that since '(uu’) # 1, the vertex y; is different from the vertex v’
but may be equal to the vertex w. In this case, the vertices y, and u’ are the same vertex.

Proposition 44. The edge uy, belongs to the component K, (1, B(vu')).

Proof. Assume that uy, does not belong to K, (1, B(vu')). If the edge vu' is just after the edge
vuinthe fan V (i.e. if j/ = j+ 1), then it means that 3(vu’) = 3, and since (uy;) = 1, we have
that the vertex u does not belong to the component K,(1, 3). So the fan V is not saturated, by
Lemma 15 we have a contradiction. So the edge vu’ is not the edge just after the edge vu in
the fan V, and without loss of generality, we assume that 5(vu’) = 5.

Let C15 = K,,(1,5), we first prove that the vertex x belongs to this component. Since
the vertex y; is not in K, (1, 5), we have that K, (1,5) # C 5. The fan V is a minimum cycle,
it is saturated by Lemma 15, so after swapping C' 5, we obtain a coloring /3" V-equivalent to
f’. By Observation 20 the cycle V is the same minimum cycle in this coloring. In the coloring
[" the edge uuy; is now colored 5, and the fan X, (5) still contains the vertex w missing the
color 4. Moreover, the vertex z is still missing the color 1, so we swap the edge vu to obtain
a coloring V-equivalent to 8” where X,,(5) contains the vertex w which is missing the color
m(v) = 4. So X,,(5) is not entangled with V), and by Lemma 24 we have a contradiction.

Therefore, the vertex = belongs to the component 'y 5. We first swap the component C 5
and obtain a coloring 3” V-equivalent to 4’. In the coloring /5”, the fan X, (5) now contains
the vertex w that is still missing 4. So the vertex X, (5) contains the vertex u' and we have
X,(5) = X, (3).

Since the cycle V is minimum, by Observation 21, it is tight. In the coloring 3", the
vertex = is now missing the color 5, we now apply a sequence a of Kempe swaps of the
form K,(m(v,_1),m(vy)) fort € (3 — 1,5/ = 2,---,j + 1) to obtain a coloring /33 where
m(x) = m(vj_1) = 2. Note that each of these swaps is V-stable since after each swap the fan
V is a minimum cycle and thus is tight. Moreover, since no edge of U between uy, and uu' is
colored with a color in 5'(V), the coloring (33 is Uy, .,-equivalent to 5”.
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Hence we have X, (083(uy1))<w = (uy1, uys, - - -, uw). The edge uy; may have been recol-
ored during the sequence of swaps, but in the coloring 33, uy; is guaranteed to be colored with
a color in f5(V). In the coloring (3, the vertices x and u are missing the same color 2 and the
vertex v is still missing the color 1. the cycle V is minimum, so it is saturated by Lemma 15,
and therefore x ¢ K,(1,2).

We swap the component C 5 = K,(1,2) to obtain a coloring where v and z are missing
the same color 1 and where the edge vz is colored 4. We now swap the edge vz, and denote by
B4 the coloring obtained after theses swaps. The coloring 3,4 is V-equivalent to 33, and is also
Xou(Ba(uyr))ys,w)-equivalent to the coloring 35. The vertices v and w are missing the same
color 4, so X, (f4(uy1)) and V are not entangled in this coloring, and thus by Lemma 24 we
have a contradiction. U

Proposition 45. In the coloring [35, the vertex = belongs to K, (2,4).

Proof. Otherwise, assume that it is not the case. In the coloring 5, the fan V is a minimum
cycle, so it is saturated by Lemma 15. Therefore the vertex u belongs to K,(2,4) and the
vertex w does not belong to this component. By Proposition 43 X, (1) contains the vertex w.
We swap the component C5 4 = K,,(2,4), and obtain a coloring 3" V-equivalent to 5’. By
Observation 20, the cycle V is still the same minimum cycle in the coloring 5", and now the
vertex w is missing the color 2. The coloring 5" is also X, (1),-equivalent to the coloring
f’, so where X, (1) still contains the vertex w. The vertex z is still missing the color 4, so we
swap the edge vu to obtain a coloring (3 where X, (1) contains the vertex w missing the color
2, and thus X, (1) is a path. By Lemma 24 we have a contradiction. U

We are now ready to prove the lemma. We need to distinguish whether or not j = j' + 1.

Case 45.1 (j = j' + 1).
In this case, we have 3'(vu) = m” («/) = 3. In the coloring 3/, the fan V is saturated, so u’ €
K,(1,3) and thusuy; € K,/(1,3). Let Cy 3 = Ky (1,3)\{uyy, vu}, Cy zisa (1, 3)-bichromatic
path between v’ and y;. In the coloring (2, we consider the component Cs 4 = K,,(2,4); this
component contains the vertex = by Proposition 45. After swapping Cs 4 we obtain a coloring
P35 V-equivalent to V where the fan X, (1) is a path. By Observation 20 the fan V is still the
same minimum cycle in the coloring 5. Moreover, the coloring 33 is ('} 3-equivalent to the
coloring /35, and thus (' 3-equivalent to the coloring ', so C 3 is still a (1, 3)-bichromatic
path between " and ;.

By Proposition 43 there is no edge in F/(X,,(1)) colored with a color in 54(V), so we invert
X, (1) to obtain a coloring /35 that is (C 3 U (V \ {u}))-equivalent to §,. In the coloring 3, the
vertex y; is missing the color 1, so K,/(1,3) = C} 3, and we swap this component; we denote
by 5 the coloring obtained after the swap.

In the coloring s, the vertices u and u’ a both missing the color 1, so we swap the edge
uu' to obtain a coloring where u and ' are missing the color 4. In the coloring [s, the fan
X,(2) is now a path that we invert to obtain a coloring (s. In the coloring g, the edge uw
is colored 2, and the vertex u is now missing the color 4, so K,(2,4) = Cy4 U {uw}, and we
swap back this component, we denote by [3; the coloring obtained after this swap. Note that
since [{1,2,3,4}| = 4, we can swap back C5 4 before C 3.

In the coloring 7, the vertices u and v are both missing the color 2, and the edge vu is
colored 3, so we swap the edge vu to obtain a coloring where u and v are both missing the
color 4. In the coloring obtained after the swap, the vertices u and y; are both missing the
color 3, so the fan X,(4) is now a path that we invert. We denote by [ the coloring obtained
after the swap.
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In the coloring (s, the edge uu' is colored 1, and the edge uy; is colored 3, so K,(1,3) =
Ch 3U{un, uy, } and this componentis a (1, 3)-bichromatic cycle that we swap. In the coloring
obtained after the swap, the component K,(3,4) = {uv’,u'}, and it suffices to swap this
component to obtain exactly V~!(3’). Since V is a minimum cycle, this is a contradiction.

So j # j + 1, and since the role of u and v’ is symmetric, we also have that j* # j + 1.
Therefore, inn the cycle V, there exists a vertex v; and v;_; such that [{u, v, v;_1,v;_1}| =
4. Without loss of generality, we assume that ' (vu') = m” (vy_;) = 5, and that #'(vu) =
mﬂ/(vj,l) = 6.

Case45.2 (j £ j' + 1).

For this case, we need to distinguish the cases based on the shape of
Cis5 = Ky (1,5). Since V is saturated in the coloring ', by Proposition 44, C' 5 also con-
tains v and v;_1, and therefore this component is a (1, 5)-path in this coloring. Moreover,
the fan V' is tight by Observation 21, so K, ,(2,6) contains vv;;1, and vu. Let Chs =
Ky, ,(2,6) \ {vu,vvj41}. The path Cyg is a (2, 6)-bichromatic path between v, and v;_;.

There are two cases, in the coloring [, either C 5 is such that u is between v;,_; and yj,
or y; is between vj_; and u. We start both cases by swapping C5 4 = K,,(2,4) in the coloring
B2, by Proposition 45 the vertex w belongs to this component, and after the swap we have
m(w) = m(z) = m(u) = 2. By Proposition 43 X, (1) is a path that we invert to obtain a
coloring 33 ({uu'} U (V \ {u}))-equivalent to f3s.

In the coloring f;, depending on the shape of C 5, either u is in C' = K, | (1,5), or y;
belongs to this component. We now have to distinguish the cases. Both cases are pretty similar,
their proofs rely on the same principle: apply Kempe swaps to reach a coloring where the edges
of E(V) U {vw'} induce two fans that are cycles smaller than V (and that are invertible since
V is minimum).

Subcase 45.2.1 (u belongs to C).
In this case, C' = K,,_,(1,5) is a (1, 5)-bichromatic path between v;._; and u and there is a
(1,5)-bichromatic path C’ between y; and v’

From the coloring (33, we swap the component C' to obtain a coloring 34 where the fan
Xy(5) = (vu/, vvj49, - -+ ,vvj_1,vu) is a cycle strictly smaller that V), so since V is minimum,
this cycle is invertible. Moreover, the fan X, (1) = (vz,vv,41,- - ,vvj_1) is also a cycle
strictly smaller than V, and so it is also invertible.

After inverting these two cycles, we obtain a coloring where the component &, (1,5) =
C U {vvj_1,vu} is (1, 5)-bichromatic cycle that we swap back; we denote by f35 the coloring
obtained after the swap. Now the component K, (1,5) is exactly C’ and we swap it to obtain
a coloring [s.

In the coloring g, the fan X,(3) = (vu/,vu,vvj_1--- ,vvj41) is now a cycle strictly
smaller than V, so we invert it. In the coloring obtained after this inversion, the (2,6)-
bichromatic path Cy ¢ is still a path between v, and v;_;, but now v;_, is missing the color
6, and v;;; is missing the color 2. So K, (2,6) = (5, and we swap this component. Let 3
be the coloring obtained after the swap.

In the coloring f37, the fan X, (1) = (vv/,vvji4q,-- - ,vv;_1,vx) is now a cycle strictly
smaller than V and we invert it. In the coloring obtained after the inversion, K, (1, 5) is now
exactly C’, and we swap back this component adn denote by fs the coloring obtained after
the swap.

In the coloring [3s, the vertices y; and u are both missing the color 1, so the fan X, (2) is now
a path that we invert to obtain a coloring where u and w are missing the color 2. In the coloring
obtained after the inversion, the component K, (2, 6) is exactly Cy s U {vv;_1,vu} and we
swap back this component. In the coloring obtained after the swap, the component K (2, 4)
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is exactly Cy 4, and thus after swapping back this component, we obtain exactly V~'(3'); a
contradiction.

Subcase 45.2.2 (y; belongs to C).

In this case, C' = K, ,_,(1,5) is a (1, 5)-bichromatic path between v;_; and y; and there is a
(1,5)-bichromatic path C’ between u and u'. From the coloring /33, we swap the component C'
to obtain a coloring where X, (2) = (vvj11,- - ,vvy_1, vx) is a cycle strictly smaller than V,
so it is invertible. After inverting it, we obtain a coloring where the component K, , (2, 6) is
exactly C5 . We swap this component and denote by 3, the coloring obtained after the swap.

In the coloring f4, the fan X, (1) = (vvj_y,- - ,vv,41, vu) is now a cycle stricly smaller
than V, so it is invertible. After inverting it, the component K,/(1,5) is now exactly C" U
{vv/;vu} and so it is a (1, 5)-bichromatic cycle containing vu and vu'. After swapping this
component, we obtain a coloring where the fan X, (1) = (vu/, vv;141, -+ ,0vj_1,vx) is now
a cycle strictly smaller than V, and we invert it. We denote by 35 the coloring obtained after
the inversion.

In the coloring f35, the component Ky, (1,5) is exactly C, and we swap back this com-
ponent. After the swap we obtain a coloring where the fan X, (5) = (vu, vvj4q,-- - ,vv;_1) is
now a cycle strictly smaller than V), and so we invert it and denote by /3 the coloring obtained
after the swap.

In the coloring [, the component K,/ (1,5) is now exactly C’ and we swap back this
component. After the swap we obatin a coloring where u and y; are both missing the color
1, so the fan X, (2) is now a path that we invert. We denote by /3; the coloring obtained after
the swap.

In the coloring 37 the component K, , (2, 6) is exactly C5 ¢ U {vv;_1,vu} and we swap it
back. After the swap of this component, we obtain a coloring where K,,(2,4) is exactly C 4.
After swapping back this component, we obtain exactly V(). This is a contradiction.

O
From the previous lemma we derive the following corollary.

Corollary 46. LetV = (vvy, - - - ,vv) be a minimum cycle in a coloring 5, u = v; andu’ = v;
two vertices of V. Ifuu’ € E(G) and B(uu') = m(v), then no fan around v is a path.

Proof. Assume that there exists a fan X’ around v which is a path. It suffices to swap the last
edge vz of X to obtain a coloring 3 (VU{uu'})-equivalent to 5 such that X, (52 (uu’)) = {vz}
is now a path (of length one). By Observation 20, the fan V is a minimum cycle in the coloring
Bs, so by Lemma 42, we get a contradiction. O

We are now ready to prove Lemma 41

Proof of Lemma 41. Let V = (vvy, - - - ,vv;) be a minimum cycle in a coloring 3, u = v, and
u' = vy two vertices of V. Without loss of generality, we assume that the vertices v, u and u’
are respectively missing the colors 1, 2 and 3. By Lemma 24, the fan i/ = X,(m(u’)) is a cycle
entangled with V, so the edge uu' is in F(G). Assume the (uu') # 1.

We first prove that X, (f(uw)) is a saturated cycle. If f(uu') € B(V), then X, (B (uu’))
is exactly the fan V. Since V is minimum, by Lemma 15, it is saturated, so X, (8 (uu’)) is a
saturated cycle as desired.

Hence assume that f(uu’) ¢ B(V), and without loss of generality, say f(uu') = 4. By
Lemma 42, then fan X, (4) is not a path.

We now prove that X,(4) is not a comet. Suppose that X, (4) = (vwy, - - - , vw,) is a comet.
So there exists ¢ < t with m(w;) = m(w;), we denote by c this color. If ¢ € 5(V), the cycle
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V is a subfan of the fan X, (4), and thus w; = M(V,¢) € V(V) and w; ¢ V (V). Since V is
minimum, it is saturated by Lemma 15, so w; € K,(1,¢), and thus w; ¢ K,(1,c). We now
swap the component K, (1, c) and obtain a coloring 5 (V U {uu’})-equivalent to 3, so the
cycle V is also a minimum cycle in the coloring 35 by Observation 20. In the coloring f35, the
fan X, (52 (uw’)) = X, (4) is a now path, by Lemma 42 this is a contradiction.

So ¢ & B(V). The vertices w; and w; are not both part of K, (1, ¢). If w; is not in K,(1, ¢),
we swap K, (1, ¢) and obtain a coloring /35, (V U {uu’})-equivalent to /3. So the coloring /s,
by Observation 20, the fan V is a minimum cycle. But the fan X, (4) = X, (/2(uu’)) is now a
path, a contradiction by Lemma 42.

So the vertex w; belongs to the component K, (1, ¢) and thus w; does not belong to this
component. We now swap K, (1, ¢) and obtain a coloring (5 which is (V U {uu'})-equivalent
to S. So by Observation 20, the fan V is still the same minimum cycle in (3, but the fan
X,(4) = X, (Ba(un')) is now a path, again a contradiction by Lemma 42.

Therefore the fan X,(4) is a cycle. We now prove that is it saturated. Note that since X,(4)
is a cycle, 5(X,(4)) N B(V) = {1}. Assume that X,(4) = (vwy, - - - ,vwy) is not saturated, so
there exists 7 such that w; € K, (1, m(w;)). We now have to distinguish whether w; = w; or
not.

Case 46.1 (w; # wy).
This case is similar to the case where X, (4) is a comet. In this case, the vertex w; is missing a
color which isnotin {1, 2, 3, 4}, and we can assume without loss of generality that m(w;) = 5.
Since w; does not belong to K, (1,5), we swap the component K,,,(1,5) to obtain a coloring
B (V U {uu'})-equivalent to /3. In the coloring /35, by Observation 20, the fan V is the same
minimum cycle, but the fan X, (4) = (wy, - - - , w;) is now a path, a contradiction by Lemma 42.
Case 46.2 (w; = wy).
In this case, w; does not belong to K, (1, 4). We first swap the component C 4 = K,,,(1,4). If
uu' ¢ C' 4, then we obtain a coloring 52 (V U {uu’}) equivalent to 3. So by Observation 20,
the fan ) is a minimum cycle in the coloring (s, but now the fan X, (4) = X, (62(ut')) =
(vwy, - -+ ,vwy) is now a path; a contradiction by Lemma 42.

So the edge uw’ is in C 4. After swapping C' 4, we obtain a coloring 35 (V)-equivalent to
B, so V is still a minimum cycle. But now fy(uu’) = 1, and X, (4) is a path, so by Corollary 46,
we have a contradiction.

Hence X, (4) is a saturated cycle as desired.

The proof of P(0) is a direct consequence of the two previous lemmas.

Proof of Lemma 40. Let V be a minimum cycle around a vertex v in a coloring 3, u and '
two vertices of V, U = X,(m(u')) = (uuy,--- ,uy), assume that f(uu’) # m(v) and let
W = X,(B(uw)) = (vwy, - -+ ,vw,). Without loss of generality, we assume that the vertices
v, u and ' are respectively missing the colors 1, 2, and 3, and that the edge uu’ is colored 4.

We first prove that W is a saturated cycle containing u;_;. By Lemma 41, the fan W is a
saturated cycle, and thus w; is missing the color 4. We now prove that the fan WV contains the
vertex u;_1.

If4 € B(V), then W =V, and since U is entanlged with ) by Lemma 24, we have that
w—1 = ws € ¥V = W. So the color 4 is not in 5(V).

Assume that the fan W does not contain w;_1, so in particular, u;_; # ws. The cycle W is
saturated, so ws € K,(1,4), and thus u;_; ¢ K,(1,4). By Lemma 49

cue K, (1,4),
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« there exists j < ! — 1 such that (uu;) = 1, and
« the subfan (uu;jiq,- -+ ,uw_1) is a (V, u)-independent subfan.

We now consider the coloring /3’ obtained from /3 after swapping the component C; 4 =
Ky, ,(1,4). Let X = (uujiq,- -+, uw—q). The coloring ' is (WUWU (X \ {w;—1}))-equivalent
to /3, so V is a minimum by Observation 20, and W = X, (4) is still a cycle. The vertex v is still
missing the color 1, but now the vertex u;_; is missing the color 1, the edge uu; is colored 4,
and the edge uw, is colored 1. So now X, (4) = &’ = (uu;,--- ,uy;) is a (V, u)-independent
subfan avoiding the vertex v. By Lemma 34 the fan X,(4) is a path; a contradiction. U

We now prove some properties of the fans around a vertex of a minimum cycle.

4.3 Fans around the vertices of a minimum cycle
We first prove that some fans around a vertex of a minimum cycle are not paths.

Proposition 47. LetV = (vq, - - - ,vy) be a minimum cycle in a coloring 3, u = v; and v’ = v;
two vertices of V, andU = X,(m(u")) = (uuq, -+ ,uw;), and w = ug a vertex of U. Then for
any colorc € B(V), the fan W = X,,(¢) = (wwy, - - - ,wwy) is not a path.

Proof. Otherwise assume that the fan WV is a path. The vertex w is not a vertex of V(V),
otherwise since )V is a path, by Lemma 24 we have a contradiction. So the vertex w is not in
V(V).

We invert it until we reach a coloring 3, where m”(w) € S(V UU.,), we denote by
¢’ this new missing color. Since ¢ € (W), the color ¢ is well defined. The coloring s, is
(VUU_s)-equivalent to 8. Thus by Observation 20, the sequence V is still a minimum cycle in
the coloring 3. Let U’ = X, (m”2(v)) = (uul,- -+ ,uu}). Since By is (U-,)-equivalent to 3,
we have thatU_, = UL, so the edge uw is also in E(U’), it is exactly the edge uu!. If ¢ € B(V),
then U’ is not entangled with V in the coloring (s, a contradiction by Lemma 24. If ¢ € SU_,
then U’ is now a comet in the coloring (5, again, by Lemma 24 we have a contradiction. [

Lemma 48. Leti > 0, V be a minimum cycle in a coloring 3, u and u' two vertices of V,
U=X,(m)) = (uu, - ,uw), andc € B(V)U B(U<y,)- Ifu; € V(V) U {v}. Then the fan
X = X, (c) = (uxy, - -+ ,u;xs) is not a path.

Proof. Assume u; ¢ V (V) and that X is a path. Without loss of generality, we assume that
there is no edge in AJ;, ;] colored with a color in B(V) U B(U.,,), otherwise, it suffices to
consider the subfan of X" starting with this edge, this fan is also a path. We now invert X and
obtain a coloring /3’ where m(u;) = c. The coloring 8" is (V U U, )-equivalent to 3. So by
Observation 20, the fan V is a minimum cycle in the coloring f’. If ¢ € 3(V), now the fan
Xu(m(u')) contains the vertex u; which is missing the color ¢ € 3(V), so X, (m(u)) is not
entangled with V. If m(u;) € (U<, let v’ = M(Uy,,c). Then X, (m(u’)) is now a comet
since it contains the vertices u; and u” both missing the color c. In both cases, by Lemma 24
we have a contradiction. U

We now prove a sufficient condition for a fan around a vertex of a minimum to contain an
edge colored with the color missing at the central vertex of the minimum cycle.

Lemma 49. Let V be a minimum cycle in a coloring 5, w and u' two vertices of V, U =
Xu(m(u) = (wuy, -+ yuw) andi < 1. If B(uu;) # m(v), m(u;) € (V) andu; & K,(m(v), m(u;)),
then:
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» u € Ky (m(v), m(u)),
« there exists j < i such that f(uu;) = m(v), and
« the subfan (uujiq,-- - ,uuw;) is a (V, u)-independent subfan.

Proof. Let V, u, u’ and U be as in the lemma. Without loss of generality, we assume that
the vertices v, u, and u’ are respectively missing the colors 1, 2 and 3. Assume that u; &
K,(1,m(u;)). Since the cycle V is minimum, by Lemma 15 it is saturated, so for any u” €
V(V),u" € K,(m(v),m(u")), thus u; € V(V), so without loss of generality, we may assume
that u; is missing the color 4. We first consider the component C 4 = K, (1, 4). In the coloring
B, by Lemma 24, U is a cycle entangled with V, so it does not contain any other vertex missing
4. Since v ¢ C 4, then V(C1 4) NV (U) = {w;}. After swapping (' 4, we obtain a coloring /5’
(V(U) \ {u;})-identical to 8 where u; is now missing the color 1. Note that the coloring (3’ is
also V-equivalent to (3, and thus V is still a minimum cycle in ’. Moreover the vertex v is still
missing the color 1 in .

We first prove that the vertex u belongs to (' 4 and that there is an edge colored 1 in
{uuy, -+ ,uu;—1}. If u & Cy 4, or if there is no edge colored 1 in {wuy, - - -, uu;_;}, then the
coloring /3’ is also (£ (Ujyu, uu,)) )-identical to 3, and so X, (3) now contains the vertex u; which
is missing the color 1, so X, (3) is not a cycle entangled with V. Since the cycle V is minimum,
we have a contradiction by Lemma 24. So u € (' 4 and there is an edge wu; with j < ¢ colored
1.

We now prove that (uw;q,- -+ ,uy;) is a (V, u)-idenpendent subfan. Note that we have
have j + 1 = i (i.e. the subfan is of length 1). Since 5’ is (V(U) \ {u;})-identical to /3, the
sequence (U1, - - - ,uu;) is a subfan. Assume that there exists s € {j + 1,--- , i} such that
B(uus) € B(V). Then, in the coloring 3, X, (B(uus)) contains the vertex w; that is missing
the color 1, thus it is not a cycle entangled with V, by Lemma 24, this is a contradiction. [

Lemma 50. Let V be a minimum cycle in a coloring 3, u and u' two vertices of V, U =
Xu(m(u')) = (uuy,--- ,uw) and i < 1 such that m(u;) & B(V). Let 3’ be a coloring ob-
tained from 3 by swapping a (m(v), c)-component C' that does not contain v for some color
c & (B(U<y,) U{m(v)}). If there exists a coloring 3" such that:

« " is (V UU<y,)-equivalent to ', and
» m” (u;) € B'(V) U B" (Ucw,).
Then
e uc(C,
« there exists j < i such that f(uu;) = m(v), and
« the subfan (uujiq,-- - ,uw;) is a (V, u)-independent subfan in 3.

Proof. Let V, U, u, v/, B, and c be as in the lemma. Without loss of generality, we assume
that the vertices v, u, and u’ are respectively missing the colors 1, 2 and 3. Assume that there
exists such a coloring 3”. Note that since m(u;) ¢ 5(V), the vertex u; is not in V. The cycle
V is a minimum cycle in 3, so it is saturated by Lemma 15. Therefore, if ¢ € ((V), then
M(V,c) € K,(1,¢), and thus M (V,c) ¢ C. So " is V(V)-equivalent to 5. Moreover, v & C
so 3" is also (E(V) U {v})-equivalent to 3. Therefore, the coloring 5’ is (V U {v})-equivalent
to 5.

24



We first prove that the vertex u belongs to C' and that there exists an edge colored 1 in
U<y,. Assume that u does not belong to C, or that there is no edge colored 1 in U, in 3. We
show that 8” is (V U U.,,)-equivalent to 5. To prove it, it suffices to prove that ' is U, -
equivalent to 3. The swap between 3 and 3’ only changes the colors of edges colored 1 or c.
Since {1, ¢} N B(U~,,) = 0 this means that the coloring 3’ is U.,,-equivalent to /3. Since /' is
also (VU {v})-equivalent to /3, in total it is (V UU.,, )-equivalent to 5. Note that the missing
color of v may be different in /5" and 5”. Since 3" is (V U U.,, )-equivalent to ', the coloring
p" is (V U U, )-equivalent to 3. Note that the missing color of v may be different in 5’ and
B". Hence, in the coloring /3", by Observation 20, the cycle V is a minimum cycle and we have
that X, (m(u')) now contains the vertex u; which is missing a color in (8”(V) U 5" (U<y,)).
Let ¢ be this color. Since the cycle V is minimum in 5", by Lemma 24, X, (m(u')) is a cycle
entangled with V. If ¢ € 5”(V), then X, (m(u’)) is not entangled with V, and if ¢ € 5" (U-,,)
then X, (m(u’)) is a comet. In both cases, we have a contradiction. So u € C, and there exists
j < isuch that f(uu;) = 1.

We now prove that the subfan X' = (uw;q,- -, uu;) is a (V, u)-independent subfan in .
Note that we have have j+1 = i (i.e. the subfan is of length 1). If X' is not a (V, u)-independent
subfan, then there exists s € {j + 1,--- ,i} such that ¢ € S(uus) € (V). Recall that the
coloring " is (V U {v})-equivalent to 3, and thus that 5" is also (V U {v})-equivalent to .
In the coloring /3, the edge uu; is now colored ¢, and this is the only edge in E(U.,,) that
has been recolored during the swap of C'. Moreover, the cycle V is minimum in (3, and thus
by Lemma 24, then fan / is a cycle, and does not contain any vertex missing the color 1 in
V (U, u;)). Since ¢ € (U<, ), the coloring 3 is also V' (Uju;, u;])-equivalent to the coloring
B, and so it is X-equivalent to 3. The coloring 3" is U.,,-equivalent to ', so it is (X" \ {u;}-
equivalent to 5 and thus the fan X, (¢) now starts with the edge uus and contains the vertex
u; ¢ V(V) which is missing a color in 5(V) = 8”(V). Since V is also a minimum cycle in /5",
by Lemma 24, X, () is a cycle entangled with V; this is a contradiction. O

In the following section we prove some properties that are guaranteed if the property P is
true up to some 7.

4.4 Properties guaranteed by P(7)

The following lemma guarantees that the last vertices of two cycles will be the same.

Lemma 51. Leti > 0, V be a minimum cycle around a vertex v in a coloring (3, u and u”
two vertices of V, U = X5(mP(u")) = (uuy,--- ,uy), B a coloring (V U Uiy (i 1y ) Y

U X(B(uun)-equivalent o 3 and ' = X (m” (i) = (- i) If
7€10,i—

1))

« foranyj < i P(j) is true, and

o« {mP(v), m” (0)} N BUW,_ ;) =0
then for anyt < i, w4 = u_,.

Proof. Let i, V, U, U, B, ', v, u, and u” be as in the lemma. Assume that P(j) is true for
all j < 4, that {m®(v), m” (v)} N BUp,_ 1)) = 0 and that there exists ¢ < i such that
¢ 7# us_y, without loss of generality, we may assume that such a ¢ is minimum. The cycle
V is a minimum cycle in 3, and 3’ is V-equivalent to 3, so by Observation 20, the cycle V is
also a minimum cycle in the coloring . Therefore by Lemma 24, the fans &/ and U’ are both
cycles entangled with V respectively in 3 and /3. Note that since m”(v) ¢ BU,_ i1y u))s
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and that P(j) is true for all j < 4, for all j < 4, the fan X, (5(uw_;) is a cycle containing
u;—j_1. Moreover, this also means that no vertex in V (U}, _, ,)) is missing the color m(v), and
thus none of them is v. Therefore the vertex v may be missing a different color in 5 and in /3.
Note also that, in the coloring /3, the edge u1;_; may be colored m”(v) or m? (v).

We first show that ¢ # 0. Since the fans &/ and U’ are both cycles we have m”(u;) =
m? (us) = m?(u"), and moreover, U and U’ are entangled with V) so u; = u” = v/, and thus
t #0.

Since ¢ is minimum, u;_;—1) = u’s_(t_l). Moreover, 3’ is U[ul_(i_l)M]-equivalent to (3, so in
particular S(uw—(-1)) = f'(vw—-1)) = B'(uug_(,_,)), without loss of generality, we assume
that this color is 1. This means that both the vertices u;_; and u/,_, are missing the color 1. To
reach a contradiction we show that both these vertices belong to a same cycle. Since 1 # m”(v)
and P(t — 1) is true, then X?(1) is a cycle containing u;_,. Similarly 1 # m?” (v) and P(t — 1)
is true so X/7'(1) is a cycle containing v/, _,. However, the coloring 8'is (  |J  X,(B(uw_;))-
J€[0,i—1]
equivalent to the coloring 3, so in particular X?(1) = X' (1); we denote by X this fan. The
fan X is a cycle and contains two vertices u;_; and us_,; that are both missing the color 1, this

is a contradiction.

O

Now we prove that we can guarantee that there is no path around the central vertex of a
minimum cycle

Lemma 52. Leti > 0,V be a minimum cycle around a vertex v in a coloring (3, u and u" two
vertices of V,U = X2 (m(u")) = (uuy,- -+ ,uw), and X = (vay,--- ,vx,) a fan around v. If

e foranyj <i P(j) is true,
o Puear (1) is true, and

 Bluwi) = m(v),
then X is not a path.

Proof. Leti, V, U, X, B, v, u, and u” be as in the lemma, and without loss of generality we
assume that m(v) = 1. Assume that for any j < i P(j) is true, that P,..x(?) is true, that
B(uu;—;) = m(v) and that X is a path. The fan X is a path so the vertex x; is also missing
the color 1, without loss of generality, we assume that 5(vzs) = 2. Note that this means that
X,(2) is also a path (of length 1). The cycle V is minimum and by Lemma 24 the fan U/ is a
cycle entangled with V. Since $(uw;—;) = 1, no edge in E(U,_,_,,.u,) is colored 1. Since
P(j) is true for all j < 4, X, (8(uw_;) is a cycle for all j < 4; since X,,(2) is a path, no edge in
EUp,_ ;) is colored 2 either.

We now consider the coloring /3 obtained from 3 by swapping the edge vz,. Note that
in the coloring (#, the vertex v is now missing the color 2, and the fan X' (1) is now a path
(of length 1). The coloring [’ is clearly V-equivalent to § so by Observation 20, the fan V is
a minimum cycle in the coloring 3’. Let U’ = X' (m(u")) = (uu},--- ,ur)). No edge in
E(u[w_(i_nm}) is colored 1, so no vertex in V' (U, ,.,)) is missing the color 1, and thus /'
is also Z/I[ul_(i_l))M]—equivalent to (. Finally since no edge in E(“[ul—(i—l)vul]) is colored 1 and
P(j)is true for all j < i, the fans X, (/5(uw,_;)) are cycles for all j < i. Therefore the coloring
plisalso ( |U X,(B(uw—;))-equivalent to . By Lemma 51, for any ¢t < i w—y = ul_,,

J€[0,i—1]
so in particular u;_; = u’_,. In the coloring 5’ the edge wu,_; is still colored 1, and now the
vertex v is missing the color 2. Since Py (%) is true the fan X7 (1) is not a path, this is a

contradiction. O
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The next lemma considers (V, u)-independent cycles.

Lemma 53. Leti > 0, V be a minimum cycle in a coloring 3, u and u' two vertices of V,

U= X,(m') = (vuy,--- ,uw), h < i such that f(uw—,) = m(v), ¢ a color not in (V)
such that Y = X, () = (uyr,--- ,uy,) is a (V,u)-independent cycle different from U and
X = X, () = (vxy, - ,vx,) is a cycle different from V withy, = x; = z, and " a color in

BV). If P(j) is true for all j < i, then Z = X (") is not a path.

Proof. Without loss of generality, we assume that the vertices v, u and u’ are respectively
missing the colors 1, 2, and 3; we also assume that ¢ = 4. Note that since U/ and ) are
different cycles, we have S(U) N B(Y) = {m(u)} = {2}, and since X and V are different
cycles, we have that 5(V) N 5(X) = {m(v)} = 1. Assume that the fan Z is a path. The fan V
is a minimum cycle, so by Lemma 24, the fan I/ is a cycle entangled with V), and thus u; = /.

We first invert Z until we reach a coloring 3’ where m(z) = ¢ € (B(V)UB(X)UB(Y))\{4}.
The coloring ' is V-equivalent to 3, so by Observation 20, the cycle V is the same minimum
cycle in the coloring 5. The coloring 3’ is also U-equivalent to 3, so, in the coloring /3, the
fan X, (3) is exactly Y. Since the property P(j) is true for all j < h, for any j < h such that
B(uw_j) # 1, the fan X, (5(uw;_;)) is a saturated cycle containing u;_;_;.

We first show that ¢ ¢ (V). Otherwise, assume that ¢ € 5(V), then ¢ ¢ () since Y
is a (V, u)-independent cycle, and ¢ /3(X) since X is different from V. So the coloring 5’
is (X U Y \ {z})-equivalent to /5. Hence, in the coloring ', the fans X, (4) and X, (4) still
contain the vertex z. If ¢ = 1, then in the coloring /', since the fan X, (4) still contains the
vertex z, we have that X,(4)<. is a (V, u)-independent subfan avoiding v. However, the fan
X,(4) is now a path containing z, by Lemma 34, we have a contradiction. So ¢ /. Since the
fan V is a minimum cycle in the coloring /', it is saturated by Lemma 15, thus z ¢ K, (1, ¢).
We now swap the component C . = K,(1, ¢), and denote by 3" the coloring obtained after
the swap. The coloring 5” is V-equivalent to (5, so V is still a minimum cycle in the coloring
[" by Observation 20. The coloring 5" is also (X, (4)<.) U X,(4))-equivalent to /', so the fan
X, (4) still contains the vertex z which is now missing the color 1. Similarly to the previous
case, the subfan X, (4)<, is now a (V, u)-independent subfan avoiding v, and X, (4) is now a
path; again by Lemma 34, we have a contradiction. Without loss of generality, we assume that
c=5.
Case 53.1 (5 & B(X)).

In this case, the coloring 3" is (X \ {z})-equivalent to 3, and so in the coloring /', the fan
X,(4) still contains the vertex z which is now missing the color 5.

Subcase 53.1.1 (5 € B(U<y,_,)).

Let 2’ be the vertex of ., , missing the color 5. If the vertex 2’ does not belong to K, (1, 5),
then we swap the component C 5 = K,/(1,5), and denote by 3" the coloring obtained after
the swap. The coloring 3" is clearly V-equivalent to ', so by Observation 20, the cycle V is
still the same minimum cycle in the coloring 5”. Since in the coloring ', there is no edge
colored 1 or 5 inU,,_,, the coloring 3" is also U.,,_,-equivalent to 3. So in the coloring 3",
the fan X, (3) still contains the vertex 2’ which is now missing the color 1, and thus X,(3)
is not entangled with V. By Lemma 24, we have a contradiction. So the vertex 2’ belongs to
K,(1,5), and thus the vertex z does not belong to K,(1,5). We now swap the component
Ci5 = K.(1,5), and denote by (" the coloring obtained after the swap. The coloring /"
is also V-equivalent to /', so the fan V is a minimum cycle in the coloring 3”. Moreover,
since 5 € B(U<y, ,), 5 & B(Y). We also have that 5 ¢ (X)), so in total, the coloring 5" is
(YUX\ {z})-equivalent to the coloring 4’. This means that in the coloring /5", the fan X, (4)
still contains the vertex z which is now missing the color 1, so X, (4)<. isa (V, u)-independent
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subfan avoiding v. We also have that the fan X,(4) is now a path containing the vertex z, so
by Lemma 34 we have a contradiction.

Subcase 53.1.2 (5 € f(Usy,_,))-

Let s be such that m(u;_5) = 5. The fan X, (5) is a saturated cycle containing u;_, so the vertex
u;—s belongs to the component K, (1, 5), and the vertex z does not belong to this component.
We now swap the component K, (1, 5) and denote by 5" the coloring obtained after the swap.
Since the color 5 is not in 3(X,,(4)), the coloring 5" is (X, (4) \ {z})-equivalent to #’. So in the
coloring 3", the fan X, (4) still contains the vertex z which is missing the color 1, so it is now
a path. Since the color 5 is in 3(Us,,_, ), it is not in 5()), so the coloring 5" is (X, (4) \ {z})-
equivalent to /', and thus X,(4) still contains the vertex z. So the subfan X,(4)<, is now a
(V, u)-independent subfan avoiding v. By Lemma 34, the fan X, (4) is a path not containing
z; a contradiction.

Subcase 53.1.3 (5 € S(Y)).

Let 2’ be the vertex of ) missing the color 5 in the coloring /3. The vertices z and 2’ are both
missing the color 5 in the coloring ', so at least one of them is not in K, (1, 5). If the vertex
z is not in K, (1,5), then we swap the component C; 5 = K,(1,5), and denote by " the
coloring obtained after the swap. The coloring 5" is V-equivalent to ', so the cycle V is the
same minimum cycle in the coloring 5” by Observation 20.

If the vertex u does not belong to C 5, then the fan X, (5) now contains the vertex z which
is missing the color 1. Thus X, (5)<, is now a (V, u)-independent subfan avoiding v, and by
Lemma 34, the fan X, (5) is a path. However, 5" (uu;,_) = B(uw;_) = 1, and the property
P(j) is true for all j < h, so by Lemma 52, there is no path around v. This is a contradiction.

So the vertex u belogns to C' 5, and now X,,(1) contains the vertex z which is missing the
color 1. So X, (1) is not entangled with V, and by Lemma 24, we also have a contradiction.

Case 53.2 (5 € B(X)). Let 2’ be the vertex of X’ missing the color 5 in the coloring .

Subcase 53.2.1 (5 € f(U<y,_,))-

Let 2" be the vertex of U, , missing the color 5 in the coloring 3. Note that we may have
2" = 7. The vertices z and z” are both missing the color 5 in the coloring 3/, so they are not
both part of K, (1,5). If 2” is not in K, (1,5), then we swap K.~(1,5), and denote by 3" the
coloring obtained after the swap. The coloring 5" is V-equivalent to 3, so by Observation 20,
the cycle V is the same minimum cycle in the coloring /5”. Since there is no edge colored 1 or
5in E(Ue,), the coloring 5" is also U< ,»-equivalent to the coloring /', so X, (3) still contains
the vertex z” which is now missing the color 1, so it is not entangled with V), by Lemma 24,
this is a contradiction.

So the vertex z” belongs to K,(1, 5), and thus the vertex z does not belong to this compo-
nent. We swap the component C 5 = K1, 5, and denote by /5" the coloring obtained after the
swap. In the coloring 3", the fan X, (5) still contains the vertex z which is missing the color 1,
so this fan is now a path. If the vertex u does not belong to C| 5, then 5" (uu;_p) = 1. Since the
property P(j) is true for all j < h, there is no path around v, a contradiction. So the vertex u

belongs to C 5. Now in the coloring 5", the fan U’ = X,(3) = (uw), - - - , uuy ) is smaller, but
for any j < h, we still have that u;_; = uj,_; € V/(U’). Note that we have 2" = uy_, ;. So
we have U’ = (uul, - ,uu)_, | = uz", uu;_p,--- ,uw;). Since the property P(j) is true for

all j < h, the fan X, (8(uu;_p)) = X,(5) is a cycle, a contradiction.

Subcase 53.2.2 (5 € f(Usy,_,))-

Let s be such that m”(u;_,) = 5. In the coloring 3, since the property P(s) is true, the fan
X,(5) is a saturated cycle containing u. But the color 5 is in X, so the fan X, (5) also contains
the vertex z, and thus X, (5) = X In the coloring (', the fan X, (5) still contains the vertex z

28



which is now missing the color 5. Since the property P(s) is true, the cycle X,(5) is a a cycle
containing the vertex u;_g, so we have a contradiction.

Subcase 53.2.3 (5 € B())).
Let z” be the vertex of )) missing the color 5 in the coloring /3. Note that we may have 2" = 2/.
Since the vertices z and z” are both missing the color 5 in the coloring ', they are not both
part of K,(1,5). If z is not in K,(1,5), then we swap the component K,(1,5) = (5 and
denote by 5" the coloring obtained after the swap. The coloring 5" is V-equivalent to 3’, so
by Observation 20, the cycle V is the same minimum cycle in the coloring 5”. Moreover, the
coloring 3" is also (X, (5) \ {z})-equivalent to (', so this fan is now a path containing z.

If the vertex u does not belong to C' 5, then the coloring 8" is (X, (5) \ {z})-equivalent to
f', and thus X, (5) still contains the vertex z which is now missing the color 1. So the subfan
Xu(<)<. isnow a (V, u)-independent subfan avoiding v, and it also contains z, by Lemma 34,
the fan X, (5) is a path that does not contain z, a contradiction.

So the vertex u belogns to C 5, and now in the coloring ", the fan X, (1) contains the
vertex z which is missing the color 1. So this fan is not entangled with V, by Lemma 24, we
also have a contradiction.

Subcase 53.2.4 (5 & (B(Y) U B(U))).
The vertices z and 2’ are both missing the color 5, so at least one of them is not in K, (1, 5).
If the vertex z is not in K,(1,5), since P(j) is true for all j < h, then for all j < h,
the vertex z is not in X, (/5(uw;—;)). We now swap the component C; 5 = K,(1,5) to obtain
a coloring 3" where the subfan X, (4) is now a (V, u)-independent subfan avoiding v. The
coloring 3" is V-equivalent to ', so by Observation 20 the cycle V is the same minimum
cycle in the coloring '. By Lemma 34, the fan X,(4) is now a path that does not contain z.
Since for all j < h, P(j) is true and z does not belong to X, (5(uu;_;), the coloring 5" is also
( U Xu(B(uu—j)))-equivalent to the coloring /.
J€l0.h]
If the vertex u does not belong to C} 5, then the coloring /5 is also U equivalent to the
coloring /3. The edge uu;_, is still colored 1, and the property P(j) is true for all j < h. By

Lemma 52 there is no path around v, a contradiction. So the vertex u belongs to the component

C1 5, and the edge wu;_j, is now colored 5. Let U’ = X' (3) = (uu},--- ,uu}). Since z ¢
Xo,(B(uw—;)) forall j < h, the coloring 5" is ( |J X, (8(uw;—;)))-equivalent to the coloring
J€[0,h]

f', and it is also U-.,,_, -equivalent to the coloring [, so by Lemma 51, for all j < h, we have
u;_; = w—j. In particular, u;_;, = w;_p. The coloring 3" is X,(5)<.-equivalent to the coloring
f', so in the coloring 3", the fan X, (5) still contains the vertex z which is now missing the
color 1, therefore the fan X, (5) is a path. Since P(h) is true, we have a contradiction.

So the vertex z belongs to K, (1,5), and the vertex z’ does not belong to this component.
We now swap the component C; 5 = K,/(1,5), and obtain a coloring 5" that is V-equivalent
to 5. By Observation 20, the fan V is the same minimum cycle in the coloring 5”. Since the
property P(j) is true for all j < h, and 2 is not in K, (1, 5), then for all j < h, the vertex 2’ is
not in X, (8(uw_;)), and the coloring 5" is ( |J X,(8(uw—;)))-equivalent to the coloring

J€l0,h]
B'. In the coloring 3", the fan X, (4) is now a path, so similarly to the previous case, the vertex
u belongs to the component C 5. Therefore, in the coloring 5", the edge uw;_j, is colored 5.

LetU' = (uwi,- - ,uuy). Since the coloring 5" is ( |J X,(B(uw_;)))-equivalent to the
J€[0,h]

coloring ', by Lemma 51, for any j < h we have uf,_j = w;_;. The coloring 3" is U,

equivalent to #’, so v is in A", and thus we have X, (1) = X, (5) = U'. So there exists a vertex

2 missing the color 5 in the fan X, (1). Note that since m(z’) = 1 and m(z”) = 5 we have
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z # 7", however, we may have z”” = z, and in this case there exists a vertex in X, (1) missing
a color in 3(X,(4)<.). We now have to distinguish the cases.

Subsubcase 53.2.4.1 (2" # z).
We consider the coloring /. In this coloring, the vertex z” is in X,,(5) since u is in C 5. If the
vertex 2" also belongs to C 5, then now X, (5)<.~ is a subfan avoiding v. If there is en edge uu"
in F(X,(5)<.) colored with a color in 5'()) then the fan X, (5’'(uu"))) is not entangled with
V), and by Lemma 24 we have a contradiction. So the subfan X, (5)<.~ is a (V, u)-independent
subfan avoiding v. By Lemma 34 the fan X,(5) is a path, however, in the coloring 3’ the fan
X,(5) still contains the vertex z that is misisng the color 5, so X,,(5) is a cycle, a contradiction.
So the vertex 2" does not belong to C} 5, and thus is still missing the color 5 in the coloring
('. We now swap the component K (1, 5) to obtain a coloring 3¢ where X, (5)<.~isa (V, u)-
independent subfan avoiding v, and where X,,(5) is a cycle. Again by Lemma 34 we have a
contradiction.

Subsubcase 53.2.4.2 (2" = 7).
So there exists a vertex w in X,,(5) such that m(w) € f'(X,(4)<.) and w ¢ V (X, (4)<.). We
now need to distinguish whether or not m(w) = 4.

Subsubsubcase 53.2.4.2.1 (m(w) # 4).

In this case, without loss of generality, assume that m(w) = 6, and let w’ be the vertex of
X,(4)<, missing the color 6. The vertices w and w’ are both misisng the color 6, so they are
not both part of K,(1,6).

If w' is not in K, (1,6), then we swap C; ¢ = K,/ (1,6) to obtain a coloring " where
Xu(4) <y is a (V, u)-independent subfan avoiding v. The coloring 5" is V-equivalent to V, so
the fan V is still the same minimum cycle in the coloring 3’ by Observation 20. So by Lemma 34
the fan X, (4) is a path that does not contain w’. If the vertex u does not belong to C ¢, then
the coloring 3" is U-equivalent to 7', the property P(j) is true for all j < hand 5" (uwy;_p) = 1
so by Lemma 52 there is no path around v, a contradiction.

So the vertex u belongs to C ¢, and we have 3" (uu;_,) = 6. Let U’ = XP'(3) =
(uwuf, - -+ ,uuj,). The coloring 5" is ( |J X,(B(uw;_;)))-equivalent to the coloring 5’ and

J€[0,h]

is Us.,_,-equivalent to the coloring 3’ so by Lemma 51, for all j < h we have uj,_; = u;;.
In the coloring /', the fan X,(4) contains the vertex 2’ missing the color 5, and the fan X,,(5)
is a cycle that contains the vertex z, and in the coloring 5", the fan X, (4) is a path. So there
exists a vertex w” in X, (4) that is missing the color 6 in the coloring 5’ and that belongs to
C) 6. this vertex is now missing the color 1 in the coloring 3”. If w” is in X?'(4)<.s, then the
fan X?"(6) is now a comet containing two vertices (z and 2’) missing the color 5. Since the
property P(h) is true, we have a contradiction. So the vertex w” si in X7 (5). But now, in the
coloring 3", the fan X, (6) contains the vertex z which is still missing the color 5, and the fan
X,(5) is a path, so the fan X,(6) is a path. Again since P(h) is true, we have a contradiction.
So the vertex w’ belongs to K,(1, 6).

Therefore, the vertex w does not belong to K,(1,6), and we swap the component C; s =
K, (1,6) to obtain a coloring 5" where X, (5)<, is a subfan avoiding v. The coloring 5" is
V-equivalent to the coloring (5, so by Observation 20, the fan V is the same minimum cycle
in the coloring 4”. Similarly to the previous case, the subfan X, (5)<,, is a (V, u)-independent
subfan avoiding v, so X,(5) is a path, and the vertex u belongs to C . Since the vertex z is
still missing the color 5, it means that in the coloring 4" the fan X, (1) now contains the vertex
w which is missing the color 1, and so it is not entangled with V. By Lemma 24 we have a
contradiction.
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Subsubsubcase 53.2.4.2.2 (m(w) = 4).

Since the fan ) = X, (5) is a path in the coloring /3, the fan X, (4) is a path in the coloring /5. In
the coloring /3’ we invert the path X, (5) until we reach a coloring where m(z) € (X, (5)<w)
and denote by " the coloring obtained after the inversion. Note that since 4 € 5'(X,(5)) N
B(Xu(5)<w) the inversion is well defined. The coloring 5" is V-equivalent to £’ so the fan
YV is the same minimum cycle in the coloring 5”. The coloring 5" is also U-equivalent to /3,
so X?"(3) = U and since P(j) is true for all j < h, the fan X, (8"(uw;_;)) is a saturated
cycle if 5" (uw_;) # 1. The coloring 5" is (X,(4) \ {z})-equivalent to /', so the fan X, (4)
still contains the vertex 2z’ which is missing 5, and the vertex z. Finally, the coloring 5" is
Xu(5)<w-equivalent to the coloring (’. Let ¢, be the missing color of z in 5", and let w’ be the
vertex of X, (5)<, missing the color c,. Note that is ¢, = 4, then we have v’ = w.

The proof is similar to the previous case, and we now consider the components of K (1, c,).
The vertices z and w’ are both missing the color ¢, so at least of them is not in K,(1,c,). If
the vertex z is not in K, (1, c,), then we swap the component C ., = K,(1,¢c,) to obtain a
coloring [3; that is V-equivalent to 3”. By Observation 18 the fan V is the same minimum
cycle in the coloring ff, and now X, (4)<, is a (V, u)-independent subfan avoiding v, so by
Lemma 34 the fan X,(4) is now a path not containing z. Note that the coloring /3y is also

( U Xu(B(uw—j)))-equivalent to the coloring 3”. If the vertex u does not belong to C .,
J€E[0,h]

then the coloring 3y is U-equivalent to ", and in particular ¢ (uw;_s) = 1. Since P(j) is true
for all 7 < h, by Lemma 52 there is no path around v, a contradiction.

So the vertex u belongs to C ., and now S¢(uw;_s) = 6. Since the fan X, (4) is now a
path that does not contain z, it means that in the coloring 5" there is a vertex w” in X, (4)
which is missing the color ¢, and which also belongs to C'; ... It means that in the coloring
By, the fan X, (c,) is now a path containing z. Let i’ = Xﬁf(?)) = (uul,--- ,uuy). The
coloring (¢ is Us,,_,-equivalent to " and is also ( |J X, (5(uw;—;)))-equivalent to 3", so

j€[0,h]
for all j < h, we have uj, ; = u;_; by Lemma 51. In particular u;_;, = u;_j. Since P(h) is
true, and [ (uuy_,) = c., the fan X,(c,) is a cycle, a contradiction.

So the vertex z belongs to K,(1, c,) and the vertex w’ does not belong to this component.
We now swap the component C ., = K,,(1, c;) and denote by [, the coloring obtained after
the swap. The coloring f3; is V-equivalent to 5" so by Observation 18 the fan V is the same

minimum cycle in the coloring . The coloring (3 is also ( |J X,(8(uw;_;)))-equivalent
JE[0,h]

to the coloring 3”. In the coloring f; the subfan X, (5)<,s is now a subfan avoiding v. If
there is an edge uu” in E(X,(5)<,) colored with a color in S¢(V), then X, (8(uu")) is not
entangled with V and by Lemma 24 we have a contradiction. So the subfan X, (5)<,  is a
(V, u)-independent subfan avoiding v and thus by Lemma 34 the fan X,(5) is now a path that
does not contain w’. Similarly to the previous case, this means that the vertex u belongs to
the component C ., and thus that 8;(uw;_s) = c,. The fan X, (5) still contains the vertex
z which is missing the color c,, and the fan X, (5) is a path, so the fan X,(c,) is a path. Let

U = Xﬁf(?)) = (uul,--- ,uuy). Since P(j) is true for all j < h and since the coloring
Bris (U Xu(B(uw-—;)))-equivalent to the coloring /5", by Lemma 51 for j < h, we have
J€[0,h]

up_; = w—j. In particular, wj_;, = w;—;. The edge uuy_, is now colored c, and the property
P(h) is true, so the fan X,(c.) is a cycle. This is a contradiction.

O

Before proving the induction step of the proof we need to introduce a new property implied

by P(i).
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4.5 The property Q(i)

Definition 54. Leti > 0, we define the property (i) as follows:

For any minimum cycle V in a coloring 3, for any pair of vertices u and v’ of V, let U =
Xu(m(u)) = (wuy,- - ,uw). If f(uw;_;) # m(v), then for any color ¢ € [(V), the fan
Xu,_._,(c) is a cycle entangled with V and U, _,_,.

We now prove that the property () is implied by the property P(i). And we first prove
th following lemma concerning saturated cycles around the centrel vertex of a minimum cycle.

Lemma 55. Let V = (vvy, - - - ,vv;) be a minimum cycle in a coloring 3, u = v; and v’ = v;
two vertices of V and W = (vwy, - -+ ,vw;) a saturated cycle around v. Then the fans VW and
U = X,(m(u')) are entangled.

Proof. By Lemma 24, the fan i/ is a cycle entangled with V), so if W = V), the fans VW and U/ are
entangled as desired. So assume that W # ) and that WV is not entangled with ¢//. Without
loss of generality, we assume that the vertices v, v and u’ are respectively missing the colors
1, 2, and 3. Since W # V and W is centered at v, we have that 5(W) N 8(V) = {1}. Since
W and U are not entangled, there exists ¢ € 5(U) N (W) such that M (U, c) # M(W,c).
Without loss of generality, since ¢ ¢ {1, 2,3}, we assume that ¢ = 4 and that u; = M (U, 4)
is the first such vertex in U; up to shifting the indices in W, we also assume that m(w;) = 4,
and thus that W = X, (4).

Since the cycle W is saturated, the vertex w; belongs to K,(1,4), so the vertex z does not
belong to K, (1,4). We swap the component C; 4 = K,(1,4) and denote by /3, the coloring
obtained after the swap.

If u & C 4, or there is no edge colored 1 in U_;, then the coloring 5 is (V U W U U;)-
equivalent to 5. Hence, in the coloring s, the fan V is a minimum cycle by Observation 20,
but now the fan X, (m(u') = (uuy, -, uu;) is now a path, by Lemma 24, this is a contradiction.

Sou € () 4, and there is an edge colored 1 in U/.;. Since by Lemma 24, the cycle U/ is entan-
gled with V), the edge uv;_; and the edge uv are in E({/). We denote by x the vertex connected
to u y the edge colored 1 and by ¢;_; the missing color of v;_; in 5. Note that we may have
vj_1 = v/, and thus ¢;_y = 2. The fan{ is of the form (uuy, - - - , uvj_q, uv, uzx,- -, uw;, - - -, w').
The coloring (5 is (V)- equivalent to 3, so by Observation 20, the cycle V is a minimum cycle
in 5. But now the fan X, (4) is a comet where v and u; are missing the same color 1, more pre-
cisely, X,,(4) = (ux, - -+ ,uu;, - -+ ,uu', uuy, - - - ,uvj_1,uv). Note that X, (3) is a cycle which
is a subsequence of X, (4). If there is an edge colored with a color ¢ € 5(V) in X, (4) between
the edges ux and uw;, then the fan X, (c) is a comet, which is a contradiction by Lemma 24.

So there is no edge colored with a color ¢ € 5(V) in X, (4) between the edges uz and uu;.
Since the fan V is a minimum cycle, it is saturated by Lemma 15, so u € K,(1,2), and thus
u; & K,(1,2). We now swap the component K, (1, 2) to obtain a coloring 5. The coloring
Bs is (V U W)-equivalent to [, so the fan V is a minimum cycle in 35 by Observation 20.

We now show that V is invertible in the coloring 3. The cycle V is tight by Observation 21,
so the vertex u belongs to the component C5 ;_; = Ky, _, (2, ¢j_1), thus the edges vu and vv; 4
also belong to C5 ;_1. In the coloring s, the fan X, (4) is now a path that we invert until we
reach a coloring 3, where m(u) € (V). Note that since 4 € S(W), the inversion is well-
defined and moreover, since [33 is also (WW)-equivalent to 3, we have 53(WW) = B(W). Since
u & W, by Observation 17, the coloring 3, is (W)-equivalent to 33, so W is still the same
cycle in 34. Moreover, since 33(X,(4)) N 53(V) = {2}, the coloring By is (V \ {u} U Cy;_1)-
equivalent to ;.
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We denote by w, the vertex of W such that m”(u) = m”(w,), and we denote by c; this
missing color. Note that we may have that w; = ws, and thus ¢, = 4. The vertices u and w;
are missing the same color c;, so they are not both part of the component K,(1,¢;) and we
now have to distinguish the cases.

Case 55.1 (u ¢ K, (1, ¢5)). In this case, we swap the component C ., = K,(1, ¢;) and obtain a
coloring that we denote by [35. Since {1, ¢, 2, ¢;_1} = 4, the coloring [35 is (C j_1)-equivalent
to (4, soitis (Cy ;_1)-equivalent to 5. In the coloring (35, the vertex u is now missing the color
1, so the fan X, (m(u)) = (vv;41, - -+ ,vv;_1,vu) is now a path that we invert, we denote by g
the coloring obtained after the inversion. In the coloring [3s, the vertices v;; and v are missing
the color 2, and the vertex u is missing the color ¢; ;. So now the component Cy ; ; = Ky,
is exactly Cs j_1 U{vv;_1} \ {vu,vv;;,} and we swap it. After this swap, the vertices v and u
are missing the same color ¢;_, and the edge uv is colroed 1; we swap this edge and we denote
by [3; the coloring obtained after the swap. In the coloring (3;, the vertex u is missing the color
1, so the component K (1, ¢;) is now exactly C| .., so we swap back this component. Note
that since {1, 2, ¢;, ¢j_1} = 4, we can swap back C ., before C; ; ;. In the coloring obtained
after the swap, the fan X, (2) is now a path that we invert, and we denote by (s the coloring
obtained after the inversion. In the coloring s, the vertex u is now missing the color 2, so the
component K,,,_,(2,¢;_1) is now exactly C; ;_; U{uv}. After swapping back this component
we obtain exactly V"!(f33), a contradiction.

Case 55.2 (u € K,(1,cs)). The principle in the same as in the previous case, but instead of
changing the missing color of u, we will change the missing of of v using the fan X, (c;) to
transform V into a path. As u belongs to K, (1, ¢,), the vertex w, does not belong to this
component. So we swap the component C ., = K, (1, ¢s) to obtain a coloring where X,(c;)
is now a path that we invert; we denote by 5 the coloring obtained after the inversion. Note
that since X, (c;) was a cycle in 4, we have 84(X,(cs)) N B4(V) = {1},and so {2,¢;_1} N
B1(X,(cs)) = 0. Hence the coloring f35 is (Cs j_1)-equivalent to the coloring (4. In the coloring
s, the fan X, (2) = (vvj11,- -+ ,vu) is now a path that we invert, and we denote by [ the
coloring obtained after the swap. Similarly to the previous case, in the coloring [, the vertices
v and v, are missing the color 2, and the vertex u is missing the color ¢;_;. So in the coloring
B, the component C; ;| = K,,_,(2,¢;_1) is exactly Cy ;1 U {vv; 1} \ {vvjqq, vu}, and we
swap it to obtain a coloring where the vertices u and v are missing the color c¢;_; and where the
edge uv is colored cg. After swapping the edge uv, we obtain a coloring where, the fan X, (1)
is now a path that we invert, we denote by 7 the coloring obtained after the inversion. In
the coloring (7, the component K, (1, ¢,) is exactly C ., and we swap back this component.
Note that since [{1,2, ¢;, ¢;_1}| = 4, we can swap back this component before C; ; ;. In the
coloring obtained after the swap, the fan X, (2) is now a path that we invert, we denote by
Bs the coloring obtained after the swap. In the coloring fg, the vertex u is now missing the
color 2, so the component K,,_, (2, ¢;1) is now exactly Cy ; ; U {vu} and we swap back this
component to obtain V~!(33) as desired.

U
Lemma 56. Leti > 0, if P(i) is true for all j < i, then Q(j) is true for all j < i.

Proof. Let ¢ > 0, V be a minimum cycle in a coloring 3, u and u’ two vertices of V, U =
Xu(m(u')) = (uuq,- -+ ,uy;), and assume that P(j) is true for all ;7 < i. Without loss of
generality, we assume that the vertices v, u and v’ are respectively missing the colors 1, 2, and
3.Lett < ¢, and z = u;_4_1. We prove that Q(t) is true.

Claim 57. The vertex z is not missing a color in (V).
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Proof. Otherwise, assume that m(z) € [(V). The fan V is a minimum cycle in § so by
Lemma 24, then fan U/ is a cycle entangled with V.

If m(z) # 1, then since U is a cycle entangled with V by Lemma 24, we have z € V (V) so
by Lemma 24 for any color ¢ € 5(V), X.(c) is a cycle entangled with V. Moreover, since the
property P(t) is true, so X, (5(uz)) = (vwy, - -+ ,w,) is a saturated cycle, and by Lemma 55 is
is entangled with «/ = X, (m(v')) and X,(m(u)) = (221, ,22,.), and thus u;_; 5 = w, =
Zr_1, 80 Q(t) is true.

If m(z) = 1, then since U is entangled with V, we have z = v. So for any ¢ € B(V),
X.(c) =V and thus is a cycle entangled with V. Moreover, this means that 5(uz) = [(uv)
and thus m(u;_y_2) = f(uv), so u;_4_» is the vertex just before u in the cycle V. By definition
of V, the fan X,(m(u) contains this vertex, and thus )(¢) is true. In both cases, we have a
contradiction. U

Claim 58. There is no edge in E(U-.) colored with a color beta(V).

Proof. We first prove that there is no vertex in V(U-,) \ {«'} missing a color ¢ € S(V).
Otherwise, assume that there exists such a vertex z’. The cycle V is minimum in 3(}), so by
Lemma 24, the fan U/ is entangled with V. If ¢ # 1, then 2’ € V (V). By Lemma 24, the fan
U = X,(m()) = (uul, - - ,uuy)isacycle entangled with V, sou), = 2’ and V' (U) = V(U').
Thus there exists ¢’ < ¢ such that z = ul’ — ¢’ — 1. Since ¢ is minimum, (') is true, and thus
Q(t) is true.

If c = 1, then 2’ = v since U is entangled with V, and §(uz’) = S(uv). Let 2" be the vertex
just before 2’ in Y. Since B(uz’') = f(u ) then m(2”) = B(uv) € B(V). Since m(z) & B(V),
we have that 2 # z. This means that 2" is a vertex in V' (U-.) \ {«’} missing a color in 5(V),
this is a contradiction. U

/

Let ¢ € B(V), we prove that Z = X,(c) = (221, - - , 2%,) is a cycle entangled with V and
Us..

By Claim 57 m(z) € B(V), so without loss of generality, we assume that z is missing the
color 4. By Lemma 48 the fan Z is not a path. Before proving that Z is not a comet, we first

prove that is it entangled with V and U/>,,_,_,.
Proposition 59. The fan Z is entangled withV and U, _, .

Proof. Otherwise, assume that there exists s such that m(z;) € B(V) U S(Us.) and z, &
V(V) UV (Us,). Without loss of generality, we assume that such an s is minimum. We also
assume that there is no edge colored with a color in 3(V) in E (2, .,_,]). Otherwise, if such
an edge 2z, exists, is suffices to consider the fan X, (5(zz;)) = (224, - , 225). We now have
to distinguish the cases.

Case 59.1 (m(zs) = 1).

In this case, since, P(t) is true, X, (4) is a saturated cycle containing z, so v € K,(1,4), and
thus z; ¢ K.(1,4). We now swap the component C, 4, = K, (1,4), and denote by ' the
coloring obtained after the swap. In the coloring (7', the fan X, (c) is now a path. The coloring
B is V-equivalent to [, so V is still a minimum cycle in 5’. If the coloring /' is also Uc.-
equivalent to 3 (i.e., C 4 does not contain u or there is no edge colored 1 in U/), then z is still
a vertex of U = X,,(3), and the fan X, (c) is now a path, by Lemma 48 this is a contradiction.
So the vertex u belongs to '} 4, and there is an edge uwy, colored 1 in U... So in the coloring
f', the edge uuy, is now colored 4, and the edge u;_, is now colored 1. The fan X, (4) is still
a saturated cycle containing z, but now the fan X,,(4) is also a cycle containing z. In this
coloring the fan X, (c) is a path, so by Lemma 53, we have a contradiction.
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Case 59.2 (m(zs) = ¢ € (V) \ {1}).
In this case, since V is minimum, it is saturated by Lemma 15, thus z; ¢ K, (1, ). We now
swap the component C; » = K, (1, '), and denote by (' the coloring obtained after the swap.
This coloring is V-equivalent to 3, so V is still a minimum cycle in the coloring 5’. By Claim 58,
there is no edge with a color in $(V) in U-,, so [’ is U ,-equivalent to 5. Moreover, let
U = X53) = (wd, - - ,uuj); the coloring 8’ is also ( |J X, (B(uu;)))-equivalent to 3
je[0,t
since each of these fans are saturated cycles, and the vei‘te[:x ]zs does not belong to any of
them. So by Lemma 51, in the coloring f’, for any j < (¢t + 1), u;_j = u;_;. In particular,
uy_, 1 = w—t—1 = 2. But now X, (c) is not entangled with {v} since it contains the vertex z;
which is missing the color 1. This case is similar to the previous one.
Case 59.3 (m(zs) = ¢ € B(U=,)).
Let u;_j, be the vertex of U, missing the color ¢’. In this case, since P(j) is true for all
J < t, the fan X, (5(uw_;)) is a saturated cycle. In particular, the vertex u;_; belongs to
the component K,(1, '), and so z; does not belong to this component. We now swap the
component C » = K, (1,¢), and denote by /3 the coloring obtained after the swap. Let
U = X2 (3) = (uuh,--- ,uul,). If the coloring 3’ is U ,-equivalent to 3, then for the same
reason as in the previous case, z is exactly the vertex uj, _, ;, and X,(c’) is now not entangled
with {v} since it contains the vertex z, that is missing the color 1. This case is similar to the
first one. So (' is not U-,-equivalent to 3, and thus since it is {u;_p,}-equivalent to (5, the
component C'; » contains the vertex u. We now have to distinguish whether or not, in the
coloring 3 there is an edge uu, colored 1 in U_..

Subcase 59.3.1 (There an edge uw, colored 1 in U.,).

In this case, in the coloring ', the edge uu, is now colored ¢, and the edge wu;_p; is now
colored 1. In the coloring f’, the fan X, (4) is now a cycle since it contains the vertex u;_,
which is still missing the color ¢, and X, (¢) now contains the vertex z which is still missing
the color 4. The fan X, (4) is still a cycle containing also the vertex z, and the fan U/’ now
contains an edge uu;_, colored 1 such that p < ¢.

We now consider the components of K (1,4). If the vertex z does not belong to the com-
ponent K, (1,4), then we swap it to obtain a coloring 3” where X,(4) is now a path. Let
U = X2 3) = (uul,--- juupy). fu & K,(1,4), then 8" (uu;_,) = B"(uup,_,) = 1, but
p < t,and P(j) is true for all j < ¢, so by Lemma 52 we have a contradiction. Similarly, if
u € K,(1,4), then now 3”(uw_;) = 1. Since 8" is |J X,(5(uu;))-equivalent to 3’, by

J€[0,t—1]
Lemma 51, for any j < ¢, uj,_; = uy_,. So the edge uwu;_, is exactly the edge uuj,, . This edge
is colored 1, and P(j) is true for all j < ¢, so by Lemma 52, we have a contradiction.

So the vertex z belongs to K, (1,4), and therefore the vertex z; does not belong to this
component. We now swap the component C 4 = K, (1,4), and denote by 3" the coloring
obtained after the swap. Let " = X?"(3) = (uu/,--- ,uull,). Whether or not the vertex u
belongs to the component C' 4, the fan X, (3) contains an edge uuj,_; colored 1 where j < ¢ (if
u belongs to the component, 3 (uu"l" —t) = 1,and 8" (uuy,_,) = 1). Moreover, we have that
the fan X, (4) is a cycle containing z, the fan X,(4) is a cycle containing z, the fan X, (c) is a
path, and, and the property P(j) is true for all j < ¢, so by Lemma 53, we have a contradiction.
Subcase 59.3.2 (There is no edge colored 1 in U_).

In this case, the coloring ' is Uc.-equivalent to S. We now consider the components of
K(1,4). If z does not belong to K,(1,4), then we swap the component K, (1,4) and obtain
a coloring where X, (3) still contains the vertex z which is now missing the color 1. In the
coloring, the cycle V is still a minimum cycle since 5’ is V-equivalent to 3, so by Lemma 24,
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we have a contradiction.

So the vertex z belongs to K,(1,4), and thus z, does not belong to this component. We
now swap the component C; 4 = K, (1,4), and denote by 5" the coloring obtained after the
swap. The coloring 3" is U ,-equivalent to 3, so z € X,,(3). However, now the fan X, (c) is
a path, by Lemma 48, we have a contradiction.

Case 59.4 (m(zs) = ¢ = m(u;_4_2)).

In this case, since ¢ ¢ (), without loss of generality, we assume that ¢ = 5. We now
consider the components of K (1,5). If u;_;_5 does not belong to K,(4,5), then we swap the
component Cy 5 = K, , ,(4,5), and denote by /' the coloring obtained after the swap. Let
U = X% (3) = (uuj,--- ,uul). The coloring 3" is (V U U-.)-equivalent to 3, and for any
j < t, u;,_j = u;_j, and u;,_j = w;_j_1 otherwise. Note that this means that I’ = 1 — 1, i.e.
|U'| = |U| — 1. If the color 5 is not in X”(4), then X, (4) is still a cycle containing z, and
thus it does not contain u; ;o = M (X,(3),4), since the property P(t) is true, we have a
contradiction.

So the color 5 is in X?(4). If v belongs to Cj 5, then we are a in case similar to the pre-
vious one where X (4) is a cycle containing z, and thus which does not contain u;_;_y =
M(X,(3),4). Since P(t) is true, we have a contradiction. So v does not belong to Cy 5, and
now, in the coloring f’, the fan X, (5) is a comet containing the vertices z and u;_;_» that are
both missing the color 4. We now consider the components of K(1,4). Since the property
P(t) is true, X, (4) is a saturated cycle, to u;_;_» belongs to K,(1,4), and thus z does not be-
long to this component. We now swap the component K, (1,4), and obtain a coloring where
{uz} is a (V, u)-independent subfan avoiding v, and where X,(5) is a path containing z, by
Lemma 34 we have a contradiction.

So the vertex u;_;_5 belongs to the component K, (4, 5), and therefore, the vertex x4 does
not belong to this component. We now swap the component K, (4, 5), to obtain a coloring
(VUU)-equivalent to 3, where X, (c) is now a path, by Lemma 48, we again get a contradiction.

O

So the fan Z is entangled with V and U, , ,. We now prove that it is not a comet. Assume
that Z is a comet, then there exists h < r such that m(z,) = m(z,) = c. By Proposition 59,
c & B(V)UB(Usy,_,_,- Without loss of generality, we assume that ¢ = 5, and we now consider
the components of K (1,5). The vertices zj, and z, are not both part of K,(1,5).

If 2;, does not belong to K,(1,5), then we swap C;5 = K,(1,5), and denote by /3’ the
coloring obtained after the swap. Let U’ = X' (3) = (uu},--- ,uu),). The property P(j) is
true for all j < ¢, so the coloring 5'is ( |J X, (8(uw,_;)))-equivalent to /3 since each of these

7€[0,p]

fans are saturated cycle. Hence by Lemma 51, for any j < (¢ + 1), uj,_ ;= W—j. In particular,
z = uy_, ;. If the vertex z does not belong to C 5 or ¢ # 1, then the coloring /' is Z_,,
equivalent to 5. The fan X,(c) now contains the vertex z;, which is missing the color 1, by
Proposition 59 we have a contradiction. So the vertex z belongs to C'; 5, and ¢ = 1. Thus, in the
coloring ', the edge zz; is now colored 5, and the edge 2z, is now colored 1. If the vertex
2, belongs to the component (' 5, it is now missing the color 1 in the coloring ', and X, (1) is
now a fan that contains this vertex. So the fan X,,(1) is not entangled with V), a contradiction
by Proposition 59. If the vertex z, does not belong to the component, then the fan X, (1) now
contains the vertex z, which is missing the color 1, again, a contradiction by Proposition 59.

So the vertex z;, belongs to K,(1,5), and thus the vertex z, does not belong to the compo-
nent. We now swap the component C; 5 = K, (1,5) and denote by 3’ the coloring obtained
after the swap. Similarly to the previous case, If the vertex z does not belong to (' 5, or if
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¢ # 1, then the coloring 3" is Z_, -equivalent to the coloring 3, and now X, (c) contains the
vertex z, missing the color 1, by Proposition 59 this is a contradiction. So the vertex z belongs
to C} 5, and ¢ = 1. In this case, the fan X, (1) stills contains the vertex z, which is missing the
color 1. Again by Proposition 59, this is a contradiction.

Therefore, the fan Z is a cycle entangled with V and U/, , , and thus Q(t) is true as
desired. U

We are now ready to prove that P(7) is true for all .

4.6 Proof of P(1)

Proof of Lemma 33. Let i > 0, V be a minimum cycle in a coloring (3, u and u’ two vertices
of V,U = X, (m(u)) = (uuq, -+ ,uw;), and assume that P(7) not verified. Without loss of
generality, we assume that ¢ is minimum, ans that the vertices v, u and v’ are respectively
missing the colors 1, 2 and 3. By Lemma 40, the property P(0) is true, so ¢ > 0. Assume that
Buw—;) # 1 and let X = X, (5 (uw;—;)).

Claim 60. There is no edge in E(U-.,,_,) colored with a color in (V)
Proof. The proof is similar to the proof of Claim 58 of Lemma 56. O

We first prove that P,.q(7) is true (i.e. that X is not a path).
Claim 61. The property Pyeqr(2) is true.

Proof. Assume that 5'(uw;_;) # 1 and that X = X, (/5(uu;—;)) is a path. Then we have that
Bluu;—;) ¢ B(V). Without loss of generality, we assume that 5(uu;_;) = 4. Moreover, we
have that m(u;_;) # 1. Since P(j) is true for all j < 4, for all j < 4, if B(uw;_;) # 1, then
Xu(B(uwy_;) is a saturated cycle. We now invert X’ until we reach a coloring where X, (4) is
a path of length 1; we denote by 2 the only vertex of this coloring. Up to a relabeling of the
colors, we assume that v is also missing the color 1 in 5. The coloring 5’ is V-equivalent to
the coloring 3, so V is the same minimum cycle in the coloring 3. So by Lemma 24 the fan
U = X,(m(u')) = (uul,---,uuy) is a cycle entangled with V. Moreover, the coloring ('
is (U Xo(B(uw—;)))-equivalent to 3, so by Lemma 51, for any j < i, uj_; = u;—, the fan
1<

X,(B'(uuy_;)) is a saturated cycle containing uj, _; ;. So in particular, uu;,_; € E(U’), and
there is a vertex missing the color 4 in /. Let 2’ be this vertex. Note that since X,,(4) is a path,
for all j <4, X, (8 (uu;_;)) does not contain the vertex z'.

We now swap the edge vz, and denote by 3" the coloring obtained after the swap. If the
coloring 3" is U'-equivalent to ', then it means that v ¢ V(U’). So in the coloring 5" the
fan X, (3) = U’ contains the vertex 2’ which is still missing the color 4. This color is also the
missing color of the vertex v. Thus, U’ is not entangled with V, and by Lemma 24, we have a
contradiction.

So the vertex v belongs to V' (i’), and in the coloring /', the fan X, (1) contains the vertex
2" which is missing the color 4. If there is an edge uu” of E(V,(1)<./) colored with a color
of B”, then X, (5" (uu")) is not entangled with V), so by Lemma 24, we have a contradiction.
Therefore, the subfan X, (1)<, is a (V, u)-independent subfan avoiding v. The coloring 5"
is UL -equivalent to the coloring /', so in the coloring 3", the fan " = X,(3) is equal to
(uul, - uv, uug,_i), e uuy = uu').

Since P(j) is true for all j < 4, for all j < i the fan X, (8" (uuj_;)) is a saturated cycle

containing wy_; ;. In particular, the fan X, (5" (uwj,_(;_,)) is a saturated cycle containing
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uy,_;. Without loss of generality, we assume that m(u,_;,) = 5. The vertex uj,_, belongs
to the component K,(4,5), so the vertex 2z’ does not belong to this component. We now
swap the component Cy 5 = K,/(4,5), and denote by (3 the coloring obtained after the swap.
Note that (33 is V-equivalent to 8", so by Observation 20 the cycle V is the same minimum
cycle in the coloring [33. The coloring f; is also U”-equivalent to 5", so we still have that
Xu(3) = (uul, - uv,uug,_,;, -+ uu), = uu').

If the vertex z does not belong to C4 5, then we can swap back the edge vz. The fan
Xu(3) = X, (1) still contains the vertex 2’ which is missing the color 5, and X, (8" (uuy_,; ;))is
still a saturated cycle containing the vertex u;,_,. Since P(i—1) is true, we have a contradiction.
So the vertex z belongs to Cj 5, and in the coloring (33 the vertex z is missing the color 5.

Since the property P(j) is true for all j < i, by Lemma 56, the property Q(i—1) is true, and
so the fan X, (2) is a cycle containing 2/, and therefore there is an edge u}, ,z. We denote
by ¢ the color of this edge. We now swap this edge, and denote by /3, the coloring obtained
after the swap. The coloring 3, is V-equivalent to /35, so the fan V is the same minimum cycle
in the coloring 34 by Observation 20. The coloring f is also X, (3)<u, , so the vertex w;,_;

is still in X, (3). Note that now the vertex u, , and 2’ are both missing the color ¢. We now
have to distinguish the case.

Case 61.1 (¢’ = 1).

In this case, the fan X, (1) contains the vertex 2’ missing the color 1, and the fan X, (3) contains
the vertex u;,_, missing the color 1. So the fan X, (3) is a comet containing two vertices missing
the color 1, so by Lemma 24, we have a contradiction.

Case 61.2 (¢ € B5(V)).
In this case, since u},_, € V(X,(3)), the fan X,,(3) is not entangled with V), so by Lemma 24,
we have a contradiction.

Without loss of generality, we now assume that ¢’ = 6.
Case 61.3 (6 € Bg(Xu(?))@;_)).

In this case, the fan X, (3) is now a comet where two vertices are missing the color 6, thus by
Lemma 24, we also have a contradiction.

Case 61.4 (6 € ﬁg(Xu(3)>u2/_i))~

Let t < i such that m®(u},_,) = 6. Since P(t — 1) is true, in the coloring 33, the fan X, (6) is
a cycle containing uj, ,. Since P(i — 1) is true, the fan X, (5) is a cycle containing uj,_,. We
first prove that in the coloring (33, we have X, (5) = X, (6). In the coloring f,, the vertex uj,
is missing the color 6, so the fan X,,(3) is equal to (uu, - - -, uv, uwy_;, wwy 4y, uuy =
uu'), and uj,_, is now the vertex missing the color 6 in this cycle. Since P(¢ —1) is true, the fan
X,(6) is now a cycle containing uj, .. The only vertices whose missing color is different in J;
and [, are the vertices u),_, and z’. In the coloring (3, since 2’ & X, (6), if u}, _, € V(X,(6))
the coloring 3, is X, (6)-equivalent to the coloring (3. This means that in the coloring 3, the
fan X, (6) is a cycle containing the vertex u},_,, and not containing uj, _,, a contradiction. So
in the coloring 3, the vertex uj, ; belongs to X,(6), and thus X,(5) = X, (6) as desired.

So, in the coloring s, the cycle X, (5) contains the vertex uj,_, which is missing the color
6. We now consider the coloring ;. The fan X, (5) still contains the vertex uj,_, which is still
missing the color 6. The fan X, (6) is a saturated cycle containing the vertex uj,_,, so the fna
X,(b) is a comet containing X, (6) as a subfan. The cycle X, (6) is saturated, so u},_, belongs
to K,(4,6), and thus 2’ does not belong to this component.

We now swap the component Cy s = K./(4,6), and denote by 5 the coloring obtained
after the swap. The coloring 35 is V-equivalent to 34, so the fan V is the same minimum
cycle in the coloring 5. Since the vertex uj,_, & Cy¢, and S4(uu),_) = 4, the vertex u does not
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belong either to Cy ¢, and therefore the coloring 35 is X, (3)-equivalent to the coloring /3. The
fan X, (1) still contains the vertex 2z’ which is now missing the color 4, so the subfan X, (1)<,
is a (V, u)-independent subfan avoiding v. By Lemma 34, the fan X, (1) is a path that does
not contain 2’. In the coloring s, the vertex z is still missing the color 5, and we still have
Ps(vz) = 1. If the vertex uj,_, does to belong to Cy ¢, then the coloring (5 is X, (5)-equivalent
to 34, and therefore the fan X, (1) is a comet containing X, (6) as a subfan. So the vertex uj,_,
belongs to the component C} ¢, and it is now missing the color 4.

In the coloring f35, the fan X, (5) still contains the vertex u},_, which is now missing the
color 4. So there is no edge uu” in E(X,(5)<u, )) colroed with a color in 35(V), otherwise,

Xu(Bs(uu)) is not entangled with V, and by Lemma 24 we have a contradiction. So the subfan
Xu(5)<w, , is a (V,u)-independent subfan avoiding v. By Lemma 34, the fan X, (5) is a path
that does not contain uj, ,, a contradiction.

Case 61.5 (6 & B5(X4(3)) N Bs(V) U {1}).

In the coloring f34, the vertex uj,_, is missing the color 6, and uuj,_, € E(X,(3)). So we have
X.(6) = X,(3). Since the fan X, (5) also contains the vertex v/, either X,(5) = X,(6) =
Xu(3), or X,(5) is a comet which contains X, (3) as a subfan.

Subcase 61.5.1 (X, (5) = X.(3)).

Let 2" be the vertex of X,,(3) missing the color 5. Note that we may have 2" = z. Since P(i—1)
is true, the fan X, (5) is now a cycle containing 2”. But u}, , is the only vertex whose missing
color is different in 53 and /34, so in the coloring f3,, the fan X, (5) still contains the vertex u;,_,
which is now missing the color 6. Therefore, the fan X, (6) is equal to the fan X,(5) and is
a saturated cycle containing 2" and uj,_,. The vertex z is still missing the color 5, so the fan
X,(1) is now a comet containing X,,(5) as a subfan.

Since the fan X, (6) is saturated, the vertex u,_, belongs to the component K,4, 6, and
thus the vertex 2’ does not belong to this component. We now swap the component Cy ¢ =
K./ (4,6), and denote by 5 the coloring obtained after the swap. The coloring 35 is V-
equivalent to 3, so the fan V is a minimum cycle in this coloring. Now the fan X, (1) still
contains the vertex z’ which is now missing the color 4, so it is a (V, u)-independent subfan
avoiding v so by Lemma 34, the fan X, (1) is a path. But the coloring 5 is also X, (1)-equivalent
to the coloring (4, so the fan X, (1) is a comet. This is a contradiction.

Subcase 61.5.2 (X, (5) is a comet containing X, (3)).

Let uj,_, be the first vertex of X,,(5) which is not in X,,(3), and let 2” be the vertex of X,(3)
missing the color ¢; = m(uj,_,). In the coloring s, since P(t — 1) is true, the fan X,(¢;) is
a saturated cycle containing uj,_,. If the coloring 3, is X, (c:)-equivalent to the coloring Ss,
then in the coloring /3, the fan X, (¢;) still contains the vertex uj, ,, and thus does not contain
the vertex z”. Since P(t — 1) is true, we have a contradiction.

So the coloring £, is not X, (¢;)-equivalent to the coloring /3. Since u,_, and 2’ are the
only vertices whose missing color are different in 33 and 34, and 2’ € V(X,(c;)), we have that
uy_; € V(X,(ct)). In the coloring 35 the vertex uj,_; is also in X,,(5), so in this coloring we
have X, (5) = X,(ct). Therefore, the vertex uj,_, also belongs to X, (5) in the coloring f3;.

In the coloring [, the vertex u), , is now missing the color 6, and since P (¢ —1) is true, the
fan X, (¢;) is a saturated cycle containing the vertex z”. So in this coloring, we have X, (¢;) =
X,(6). However, in this coloring, the vertex uj,_, still belongs to X, (5), it also belongs to
X, (5) and is still missing hte color ¢;. The cycle X, (¢;) is saturated, so the vertex z” belongs
to the component K, (4, ¢;), and thus the vertex uj,_, does not belong to this component. We
now swap the component K !, (4, ¢;) and denote by 5 the coloring obtained after the swap.

—t

The coloring (5 is V-equivalent to (4, so by Observation 20, the fan V is a minimum cycle
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in the coloring f5. The coloring [ is also ((X,(5)UX,(5))\{u}_,})-equivalent to the coloring
B4, so the vertex w;,_, still belongs to both X,,(5) and X, (5). So the subfan X, (5)<.;, isa

(V, u)-independent subfan avoiding v, by Lemma 34, the fan X,(5) is a path that does not
contain u;,_,. Again we have a contradiction.

O

By the previous claim, we have that X" is not a path, we now prove that it is not a comet.
Assume that X = (vzy,--- ,vx;) is a comet where z; and x; are missing the same color c;.
Since x; and x; are both missing the color ¢, at least one of them is not in K,(1,¢s). Since
P(j) is true for all j < 4, for all j < 4, if S(uw_;) # 1, then X,(B(uw_;)) is a cycle, so
p)N(C U BX(B(uw-;)))) = 0.

J€[0,i—1]
Case 61.6 (cs & B(Uy>,_,))-
If x4 is not in K, (1, ¢,), then we swap the component C; ., = K, (1, ¢;) and obtain a coloring
B" which is V-equivalent to /3, so the fan V is the same minimum cycle in the coloring /. In
the coloring (', the fan X, (4) is now a path. Moreover, ¢, & B(Us,,_,), and by Claim 60, so
1 ¢ B(Usy,_,). Therefore, the coloring ' is U, ,-equivalent to the coloring 5. Let U’ =
X5(3) = (wuy,--- ,uu}). Since B(X)N( U B(X,(B(uu_;)))) = 0, the coloring 3’ is

Jj€[0,i—1]

( U B(X,(B(uw_j)))-equivalent to 5. So by Lemma 51, for all j < 4, we have u),_, = u;_;.
J€[0,i—1]
In particular u), _, = w;_,. Since '(uuj_;) = 4, and Pweak(i) is true, the fan X, (4) is not a
path.

Similarly, if x; ¢ K,(1,c;), we swap the component C ., = K,,(1,c;). Note that V is
a minimum cycle, so it is saturated by Lemma 15, and thus z; ¢ V' (V). The coloring 3’ is
therefore V-equivalent to V), so the fan V is the same minimum cycle in this coloring. The
fan X,(4) is now a path the coloring 3'. Let U’ = X2(3) = (uu),--- ,uu)). Similarly
to the previous case, the coloring 3" is U, ,-equivalentto Sand ( |J B(X,(5(uwi—,)))-

Jj€[0,i—1]
equivalent to 3. So by Lemma 51, for all j < 4, we have u;,_j = w_;. Inparticular, uj,_; = w_,,
and ' (uu),_;) = 4. Since Pyeqr(7) is true, the fan X, (4) is not a path, a contradiction.

Case 61.7 (cs € B(Usy, ,))-

Let ¢’ be such that m(u;_y) = c,. Since P(j) is true for all j < i, the fan X, (c;) is saturated
cycle containing u;_y = x;. So the vertex x; does not belong to K, (1, ¢5). We now swap the
component Cy ., = K, (1, ¢,) to obtain a coloring 3’ where X, (4) is now a path. The coloring
B is V-equivalent to (3, so by Observation 20, the cycle V is the dame minimum cycle in the
coloring /3'. If the vertex u does not belong to (' ., then the coloring /3’ is also U-equivalent
to 3, and thus X, (3) = U. Since f'(uu;_;) = 4, and P,eq(i) is true, the fan X, (4) is not a
path. this is a contradiction.

So the vertex u belongs to C ., and in the coloring 3', the edge uu;__1) is now col-
ored 1. Let /' = X/ (3). The coloring 3’ is Us,, ,-equivalent to 3. The coloring /' is
also (U B(Xu(B(uw_;)))-equivalent to /3, so by Lemma 51, for any j < ¢’ we have

JEO—1]
u;_j = u;_;. In particular, uf,_(t,_l) = U—(¢—1). Now the edge uu;,_(t,_l) is colored 1, and the
fan X,(4) is a path. Since P(j) is true for all j < ¢/, by Lemma 52 there is not path around v,
a contradiction.

So the fan X = (vzy,--- ,vx;) is a cycle, we now prove that it is saturated. Otherwise,
there exists x; such that 3 & K,(1,m(z,)). Note that since P(j) is true for all j < i, for
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all j < 4, the fan X, (5(uw;_;)) is a saturated cycle, so 5(X,(8(uw—;))) N B(X) = 0, and in

particular z; & 5(Usy,_,).

Case 61.8 (m(xs) # 4).

Without loss of generality, assume that m(x;) = 5. Since x; does not belong to K,(1,5), we

swap the component (' 5 = K, (1,5) and obtain a coloring /5’ where X,(4) is a path. The

coloring 3’ is V-equivalent to (3, so by Observation 20, the cycle V is the same minimum cycle in

the coloring 3'. LetU’ = X7 (3) = (uu}, - - - ,uuj,). Moreover,5 & B(Us.,_,), and by Claim 60,

the color 1 does not appear either in U, _,. The coloring /" isalso (  |J B(X,(5(uw—,)))-
J€[0,i—1]

equivalent to /3, so by Lemma 51, for any j < 7, we have u;_j = w_;. In particular, uj,_; =

w—;. The edge wuj,_, is still colored 4 in the coloring 5 and the property P,.q(%) is true, so

X,(4) is not a path, a contradiction.

Case 61.9 (m(xs) = 4).

In this case, we swap the component C; 4 = K, (1,4) and denote by ' the coloring obtained

after the swap. If the vertex u does not belong to this component, then we are in a coloring

similar to the previous case. So the vertex u belongs to C 4, and we have f'(uu;_;) = 1.

In the coloring ' is V-equivalent to /3, so by Observation 20, the cycle V is the same mini-

mum cycle in this coloring. The fan X,,(4) is now a path in the coloring 3. LetU’ = X7 (3) =

(uuf,--- ,uuy). The coloring 3" isU-,,_,-equivalentto 5,andisalso ( |J B(X,(B(uw—,)))-
J€[0,i—1]

equivalent to 5. So by Lemma 51 for all j < i, we have uy,_; = w;_;. In particular uj,_; = u; ;.

The property P(j) is true for all j < i,a nd P,.q(7) is also true, so by Lemma 52 there is no

path around v. This is a contradiction.

So the fan X = (vxy,--- ,vzy) is a saturated cycle, and thus x; € K, (1,4). Since P(i) is
false, we have z; # w;_;_1. So the vertex u;_; 1 which is also missing the color 4 does not
belong to K,(1,4). We now swap the component C; 4 = K,,_, ,(1,4) and denote by /5’ the
coloring obtained after the swap. Be Lemma 50, the vertex u belongs to C'y 4, there is an edge
uu” colored 1 in U, _,, and the subfan X,(1)<,, . is a (V, u)-independent subfan. So in the
coloring ', the vertex u,_; is now missing the color 1, the edge uu” is now colored 4, and the
subfan X, (4)<,,_, is a (V, u)-independent subfan avoiding v. By Lemma 34, the fan X, (4) is
a path. However, the coloring 5’ is X, (4)-equivalent to the coloring 3, so the fan X,(4) is a

cycle, a contradiction. O

5 Cycles interactions

In this section we prove Lemma 23.

Proof. We first prove that all the three cycles are tight and saturated.
Claim 62. The cycles V, X, and Y are saturated and tight.

Proof. As the fan V is not invertible, it is saturated by Lemma 15. If X’ or ) are not saturated
(without loss of generality, we can assume that A is not saturated), then we swap a component
K (¢y,¢,) with w in X and u € K,(c,, ¢,) to transform 3 into a coloring where V is still a
cycle of the same size, and where a fan around v is a path, by Lemma 22, V is invertible in
this coloring, and so it is in the original coloring. Similarly, assume that X’ or ) is not tight,
without loss of generality, we can assume that A is not tight. Then we can find two consecutive
vertices of X, u;, and u;_; such that the component K, , (m(u;), m(u;—1)) does not contain
u;. If we swap this component, we obtain a coloring where V is still a cycle of the same size,
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and where a fan around v is a comet, again by Lemma 22, V is invertible in this coloring, and
so it is in the coloring f3. O

By Lemma 24, we already have that if (2, 2’) € V?, then X, (c./) is a cycle containing 2/, so
we now assume that (z, 2’) is not in V2.

Claim 63. The fan Z is not a path.

Proof. As Z is a path, we invert it until we reach a coloring where m(z) € (5(V) U B(X) U
B(Y)) \ {ms(z)}. In this coloring, the fan V is still a cycle of the same size, and, there is a fan
around v which is a path or a comet, by Lemma 22, this is a contradiction. O

Claim 64. The fan Z is entangled with V, X, and ).

Proof. Let us assume that there exists 2" € Z\ (VU YU X) with m(2") € (8(V) U B(Y) U
B(X))\ {c.}. f m(2") = ¢,, since the cycles are saturated by Claim 62, K, (c,, ¢,) does
not contain any vertex of (V U )Y U X'), and after swapping it, we obtain a coloring where
V is still a cycle of the same size and where Z is a path, by Claim 63, this is a contradiction.
If m(2") # c,, then, since the cycles are saturated, the component K~ (c,, m(z")) does not
contain any vertex of (VU Y U X)), so if we swap it, we obtain a coloring which corresponds
to the previous case. U

Claim 65. The fan Z is not a comet.

Proof. Assume that Z is a comet, there exist z; and zo with m(z;) = m(z) = c¢. By the
previous claim, we have that ¢ € (8(V) U B(X) U B())), otherwise, Z is not entangled with
one of these cycles. Hence, the component K, (c, m(z)) either contains z; or z, and without
loss of generality we can assume that z; ¢ K,(c,m(z)). If we swap K, (¢, m(z)) we obtain a
coloring where no edge of (V U X U )) has changed and where Z is a path, by Claim 63 this
is a contradiction. U

By the previous claims, Z is a cycle, and as it is entangled with the three other cycles, it
contains 2’; this concludes the proof.

O
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