
Training neural networks with structured noise improves classification and
generalization

Marco Benedetti1, ∗ and Enrico Ventura1, 2, †

1Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma, Italy
2Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, F-75005 Paris, France

The beneficial role of noise-injection in learning is a consolidated concept in the field of artificial
neural networks, suggesting that even biological systems might take advantage of similar mecha-
nisms to optimize their performance. The training-with-noise algorithm proposed by Gardner and
collaborators is an emblematic example of a noise-injection procedure in recurrent networks, which
can be used to model biological neural systems. We show how adding structure to noisy training
data can substantially improve the algorithm performance, allowing the network to approach perfect
retrieval of the memories and wide basins of attraction, even in the scenario of maximal injected
noise. We also prove that the so-called Hebbian Unlearning rule coincides with the training-with-
noise algorithm when noise is maximal and data are stable fixed points of the network dynamics.

I. INTRODUCTION

The development of models and tools from theoretical
physics has greatly contributed to our understanding of
how the brain is able to learn concepts [1]. An initial
approach to brain modeling used recurrent networks
composed of binary neurons, connected through pairwise
interactions. Each neuron could be either active or
silent, based on the signals received from its neighbors.
By incorporating realistic rules for updating neuron
states (i.e. the neural dynamics), these networks exhib-
ited dynamic multistability, resulting in the formation
of many attractors. Such systems, called attractor
neural networks, are of considerable interest for multiple
reasons: they can be modeled through the tools of
statistical mechanics [2]; they constitute a simplified
version of modern artificial neural networks, and yet
they present a resemblance with biological neuronal
systems.
The landscape of attractors is shaped by both the
dynamics and choice of couplings between neurons. The
process of modification of the interactions, necessary to
guarantee that concepts presented to the network are
stored as attractors, is studied in neuroscience under
the name of synaptic plasticity. It is often modeled
with discrete time learning algorithms, that see a set
of training data (i.e. the concepts themselves or some
representations of them) and update the interactions
to reinforce memory retrieval. Modern artificial neural
networks, based on deep and non-recurrent architec-
tures, exploit the same principle to train connections
between neurons from a data-set and perform a task
(e.g. classification, generation of new data).

Attractor neural networks, as associative memory
devices, share numerous formal analogies with classifiers
from statistical learning. An important notion in this

∗ The two authors contributed equally
† Corresponding author: enrico.ventura@uniroma1.it

context is overfitting, namely when a model becomes
too focused on the details of the specific training
set, instead of understanding the broader structure
highlighted by the data. In attractor neural networks,
an overfitting model would translate into a system
which is not able to associate corrupted versions of a
concept to the concept itself. In this case, one says
that generalization to unseen samples is lacking in the
system. Generalization can be improved by means of
regularization techniques, such as injecting noise in the
training process. Data-augmentation procedures [3, 4],
in particular, act on the training data themselves, by
performing transformations (e.g. translating, rotating,
blurring) to increase the heterogeneity of the data-set.
Even if such procedures are practical and successful
in the matter of deep networks, there are only few
examples of theory-based criteria for choosing how to
engineer noise to inject in the training process [4, 5]. Our
work considers a simple learning algorithm for attractor
neural networks that employs noise-injection during
training. In the context of attractor neural networks,
noise-injection refers to a random alteration of the
neuronal activity encoding the concepts to be learned.
The objective of our study is twofold: establishing a
theoretical criterion for generating the most effective
noise to be utilized in training, thereby optimizing the
performance of an associative memory model; showing
that injecting a maximal amount of noise, subject to
specific constraints, turns the learning process into
an unsupervised procedure, which is faster and more
biologically plausible. Specifically, we prove that when
noise is maximal, our algorithm converges to Hebbian
Unlearning, a well known unsupervised learning rule [6].

Section II presents the neural network model consid-
ered in this work, as well as some relevant learning algo-
rithms for training this architecture.
Section III introduces and characterizes the training-
with-noise algorithm [7], emphasizing its relation with
Support Vector Machines and with the optimization
problem studied by Wong and Sherrington [8].

ar
X

iv
:2

30
2.

13
41

7v
5

 [
co

nd
-m

at
.d

is
-n

n]
 2

9
M

ar
 2

02
4

2

Section IV contains our main results. We derive an an-
alytical characterization of optimal noisy training data,
focusing on the extreme case of injecting maximal noise.
We demonstrate that generating optimal noise translates
into producing training data-points whose features ad-
here to specific constraints, which we refer to as the struc-
ture of the noise. When the level of noise is maximal,
minima and low saddle points in the energy landscape
defined by Hebb’s learning rule are shown to be good
training configurations according to our analytical char-
acterization.
In Section V we show that, when noise is maximal (and
our theoretical criterion applies), the Hebbian Unlearn-
ing rule emerges from the training-with-noise procedure.
In this setting, the famously good performance of Heb-
bian Unlearning acts as a confirmation of our analytical
characterization of effective training configurations.

II. THE MODEL

We consider a fully connected network of N binary
neurons {Si = ±1}, i ∈ [1, .., N], linked by couplings
Jij . The network is endowed with a dynamics

Si(t+ 1) = sign

 N∑
j=1

JijSj(t)

 , i = 1, .., N (1)

which can be run either in parallel (i.e. synchronously) or
in series (i.e. asynchronously in a random order) over the
i indices. We will mainly concentrate on asynchronous
dynamics, in which case eq. (1) can only converge to fixed
points, when they exist [1]. This kind of network can
be used as an associative memory device, i.e. a system
that is capable of reconstructing a number p of memories
{ξµi } = ±1, µ ∈ [1, ..., p] when the dynamics is initial-
ized to configurations that resemble them. Such neural
networks can be studied through the tools of statistical
mechanics [2, 9–11], and they can give relevant insights
from the biological point of view [1, 12].
In this work, we will concentrate on i.i.d. memories,
generated with a probability P (ξµi = ±1) = 1/2. No-
tice that memories are binary, as the network states are.
With an appropriate choice of the couplings, the model
can store an extensive number of memories p = αN ,
where α is called load of the network. The network per-
formance can be benchmarked in terms of the dynamic
stability achieved by the memory vectors, and the ability
of the system to retrieve blurry examples of the latter.
We define classification as the capability to perfectly re-
trieve each memory when the dynamics is initialized to
the memory itself. It is convenient to define, for all site
index i and memory index µ, the stability

∆µ
i =

ξµi√
Nσi

∑
j=1

Jijξ
µ
j , σi =

√√√√ N∑
j=1

J2
ij/N. (2)

When for a given µ all ∆µ
i , i ∈ [1, ..., N] are positive, ξ⃗µ

is correctly classified, i.e. it is a fixed point of eq. (1).
We define generalization as the capability to retrieve the
memory, or a configuration that is strongly related to
it, by initializing the dynamics on a corrupted version
of the memory. This property of the neural network is
related to the size of the basins of attraction to which
the memories belong, and does not imply classification.
A good measure of the performance in this sense is the
retrieval map

mf (m0) :=
〈 1

N

N∑
i=1

ξµi S
µ
i (∞)

〉
, (3)

i.e. the overlap between memory ξ⃗µ and S⃗µ(∞), where

S⃗µ(∞) is a fixed point, reached initializing the dynamics

in a state with overlap m0 with ξ⃗µ. For the rest of
this work, the symbol · will denote the average over
different realizations of the memories and ⟨·⟩ the average
over different realizations of the initial state. In the
classification regime, one obtains mf = 1 when m0 = 1.

We now provide for some notable examples of learning
rules implemented on recurrent neural networks, which
will often be mentioned in the rest of this work. All these
procedures can be conceived as an iterative modification
of the couplings on the basis of an initial choice of J and
a set of training data presented to the network.

A. Linear Perceptron & Support Vector Machine
(SVM)

Given the fully connected architecture, we want to find
a set of couplings that satisfies the constraints

∆µ
i > k, ∀µ, i , (4)

with k being a positive parameter. This problem can
be solved by the linear perceptron algorithm developed
by [13–15], an iterative procedure leading to dynamically
stable memories and tunable generalization performance.
Specifically, we are going to refer to linear perceptron as
the adaptation of the classical perceptron to recurrent
neural networks, introduced in [16–18]. Given a value of
the load α, condition (4) is satisfiable up to a maximum
value of kmax(α). The maximum capacity achievable by
the network is αP

c = 2, with kmax(2) = 0. Starting
from any initialization of the coupling matrix J such that
Jii = 0 ∀i, all constraints in (4) will be satisfied after a
number of iterations of the following serial update

δJ
(d)
ij = λ

p∑
µ=1

Θ(k −∆µ
i) ξ

µ
i ξ

µ
j , δJ

(d)
ii = 0, (5)

where λ is a small positive learning rate, d is the algo-
rithm time step and Θ(x) is the Heaviside function. Per-
ceptron learning is supervised, in the sense that eq. (5)

3

requires the explicit knowledge of the memories, at each
step of training. One can also symmetrize equation (5)
as

δJ
(d)
ij =

λ

2

p∑
µ=1

[
Θ(k −∆µ

i) + Θ
(
k −∆µ

j

)]
ξµi ξ

µ
j ,

δJ
(d)
ii = 0,

(6)

obtaining a lower critical capacity and a general decreas-
ing of the function kmax(α) due to the symmetry con-
straint [14, 19]. It has been shown numerically that, given
α, the larger is k, with 0 < k < kmax(α), the wider are
the basins of attraction. In line with the past literature
[16, 20] we call a maximally stable perceptron, such that
k = kmax(α), a Support Vector Machine (SVM).

B. Hebb’s rule

Hebb’s (or Hebbian) learning prescription [12, 21] con-
sists in building up the connections between neurons as
an empirical covariance of the memories, i.e.

JH
ij =

1

N

p∑
µ=1

ξµi ξ
µ
j , JH

ii = 0. (7)

This rule allows retrieving memories up to a critical ca-
pacity αH

c = 0.138 [9]. Notably, when α < αH
c memories

are not perfectly recalled, but only reproduced with a
small number of errors. On the other hand, when α > αH

c

interference between memories makes the learning rule
completely ineffective, shifting the system into an obliv-
ion regime. The landscape of attractors given by Hebb’s
rule is rugged and disseminated with spurious states, i.e.
stable fixed points of the dynamics that are far from the
memories [10].

C. Hebbian Unlearning

Inspired by the brain functioning during REM sleep
[22], the Hebbian unlearning algorithm (HU) [6, 19, 23–
26] is a training procedure leading to classification and
good generalization in a symmetric neural network.
Training starts by initializing the connectivity matrix ac-
cording to Hebb’s rule eq. (7) (i.e. J (0) = JH). Then,
the following procedure is iterated at each step d:

1. Initialization of the network on a random neural
state.

2. Run the asynchronous dynamics (1) until conver-

gence to a stable fixed point S⃗(d).

3. Update couplings according to:

δJ
(d)
ij = − λ

N
S
(d)
i S

(d)
j , δJ

(d)
ii = 0, (8)

where λ is a small positive learning rate. HU is a unsu-
pervised learning algorithm, in the sense that each step of
training does not require explicit knowledge of the mem-
ories, but rather relies on implicit information encoded
in the dynamics, i.e. in the current coupling matrix J (d).
This algorithm was first introduced to prune the Hebbian
energy landscape from proliferating spurious attractors
[1, 10]. Classification is achieved by running the algo-
rithm when α ≤ αU

c with αU
c ≃ 0.6. In this regime, HU

creates large basins of attraction around the memories,
comparable in size to those of a SVM [19].

III. TRAINING WITH NOISE

The concept of learning from noisy examples, in-
troduced in [27], is at the basis of a pioneering study
by Gardner and collaborators [7], in an attempt to
improve generalization in attractor neural networks.
Here, we report the algorithm and characterize, for
the first time, its performance over fully connected
neural networks. Importantly, we find strong numerical
evidence of a connection between the training-with-noise
algorithm and the optimization problem studied in
[8, 11]. The loss function for this problem, minimized by
the training-with-noise algorithm, will be at the core of
the analysis contained in our work.

A. Gardner’s algorithm

The training-with-noise (TWN) algorithm [7] consists
in starting from any initial coupling matrix J (0) with
null entries on the diagonal, and updating recursively
the couplings according to

δJ
(d)
ij =

λ

N
Θ

(
−ξ

µd
i

N∑
k=1

JikS
µd
k

)
ξ
µd
i S

µd
j , δJ

(d)
ii = 0, (9)

where λ is a small learning rate and µd ∈ [1, ..., p] is a

randomly chosen memory index. In this setting, S⃗µd is a
noisy data-point, generated as

Sµd

i = χµd

i ξµd

i , (10)

with χµd

i i.i.d. variables, sampled with probability

P (χµd

i = x) =
(1 +mt)

2
δ(x−1)+

(1−mt)

2
δ(x+1). (11)

Notice that S⃗µd are binary variables, as the ξµd

i are. The
training overlap mt is a control parameter for the level
of noise injected during training, corresponding to the

expected overlap between S⃗µd and ξ⃗µd , i.e.

mt =
1

N

N∑
i=1

ξµd

i Sµd

i +O
(1√

N

)
. (12)

4

The algorithm would converge when every configuration
with overlap mt with a memory generates on each site
a local field aligned with the memory itself. TWN is a
supervised learning algorithm, in the sense that eq. (9)
requires the explicit knowledge of the memories, at each
step of training.

B. A loss function for TWN

The goal of this subsection is to connect the purely
empirical TWN introduced in [7] with the optimization
problem studied in [8, 11]. We show that TWN globally
minimizes a loss function. This will allow us to get valu-
able analytical insights on its performance.
Let us define the function

L(m,J) = − 1

αN2

N,p∑
i,µ

erf

(
m∆µ

i√
2(1−m2)

)
. (13)

Wong and Sherrington [8, 11] propose an elegant analysis
of a network designed to optimize L(m,J) given m, i.e.
whose couplings correspond to the global minimum of
L(m,J). The physical meaning of L(m,J) comes from
the identity

L(m,J) = − 1

N

N∑
i=1

〈
ξνi sign

(N∑
j=1

JijSν
j (0)

)〉
, (14)

where Sν(0) is a configuration with overlap m with mem-
ory ξν . The RHS of eq. (14) is the opposite of the one-
step retrieval map, defined by selecting one memory, sam-
pling a noisy state having overlap m with the memory,
and measuring the overlap obtained after a single step of
synchronous dynamics (1). Hence, minimizing L(m,J)
means driving the first step of the retrieval dynamics to-
wards the memories, enlarging their attraction basins.
The coupling matrix J(m) resulting from the optimiza-
tion of eq. (13) depends on m. Some of their findings,
relevant to this work, are:

1. For any m0, the maximum value of the one-step
retrieval map −L(m0, J(m)) is obtained at m =
m0.

2. When m → 1−, the minimization of the function
L(m,J(m)) trains a linear perceptron with maxi-
mal stability, i.e. a SVM.

3. When m → 0+, the minimization of L(m,J(m))
leads to a Hebbian connectivity matrix Jij ∝ JH

ij .

We now proceed to establish a connection between the
TWN procedure and the theoretical results obtained by
Wong and Sherrington. When the network is trained
through TWN, the resulting coupling matrix depends on
mt, i.e. J = J(mt). It is crucial to stress the difference
between the variables m and mt: the former is a param-
eter of eq. (13), the latter is the level of noise used by the

training algorithm. It comes out that eq. (13) is relevant
to the TWN procedure, since iterating eq. (9) leads to
a decrease of L(m,J(mt)), for any value of m and mt.
In fact, considering a small variation of the stabilities
induced by the algorithm update

∆µ
i → ∆µ

i + δ∆µ
i ,

and performing a Taylor expansion of (13) at first order
in O(N−1/2), one obtains (see Appendix A 1)

L
′
= L+

N∑
i=1

δLi, (15)

where

δLi = −Θ

(
−ξµd

i

N∑
k=1

JikS
µd

k

)
λ

ασiN5/2
·

·
√
2m ·mt√
π(1−m2)

exp

(
− m2∆

µ2
d

i

2(1−m2)

)
.

(16)

Hence, δLi is strictly non-positive when λ
N is small, so

that the Taylor expansion is justified. Moreover, we

FIG. 1: Lines in the main plot report the function
L(m = 0.5, J(mt)) for different training overlaps as
functions of the number of algorithm steps d. The

dashed line represents the theoretical minimum value
from [8]. All measures are averaged over 5 realizations
of the couplings J . Choice of the parameters: N = 100,
α = 0.3, λ = 1, the initial couplings are Gaussian with

unitary mean, zero variance and J
(0)
ii = 0 ∀i.

numerically find that iterating (9) with a given value of
mt drives L(m = mt, J(mt)) to its theoretical absolute
minimum computed in [8], as reported in fig. 7. As a

5

0.2 0.4 0.6 0.8 1.0
mt

0.3

0.4

0.5

0.6

0.7

0.8

0.9

mf (1)

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 2: mf (1) as a function of mt and α. Warmer
shades of color are associated to higher retrieval

performances. The black dashed line represents the
boundary of the retrieval regime according to the

criterion in Appendix C, white dots signal the points
where basins of attraction to which memories belong

are larger than ones obtained from a SVM at N = 200.

consequence, the performance of the TWN algorithm
can be completely described in the analytical framework
of [8] and L(m = mt, J) can be considered as the loss
function optimized by the TWN algorithm.

C. TWN performance

The same analytical techniques applied in [8] can
be used to determine whether the TWN algorithm is
capable to reach perfect classification. We find that
the distribution of stabilities in the trained network
(see equation (B6)) has always a tail in the negative
values, implying that classification is never reached. The
only exception to this statement are the trivial cases
of mt = 1− (SVM limit) and mt = 1 (linear percep-
tron with k = 0), where all memories are stable for α ≤ 2.

The generalization properties of a network trained
through TWN are now discussed. The color map in
fig. 2 reports the numerical estimate of the retrieval
map mf at m0 = 1, extrapolated in the N → ∞ limit,
as a measure of the distance between a given memory
and the closest attractor. In Appendix C we propose
an empirical criterion to separate a retrieval phase from
a non-retrieval one. In the first region, the memory
appears to close to an attractor when N → ∞, while
in the second region the closest attractor is typically
orthogonal in the thermodynamic limit. Such criterion is
based on assuming that mf (m0), measured with respect
to the attractor of the basin to which a given memory
belongs and not the memory itself, always develops a

plateau starting in m0 = 1 and ending in some mc < 1
when N → ∞. The behavior of the basin radius is then
observed numerically as a function of mt: when the
plateau disappears (i.e. mc = 1) then one can suppose
that basins get shattered in the configurations space due
to the interference with the other attractors, and this
occurs at some value of mt. The transition between the
two regions is reported as a dashed line in fig. 2.
In the retrieval region, we compute the typical size
of the basins of attraction, as described in Appendix
C. White dots in fig. 2 signal the combinations of
(mt, α) where the basins obtained by TWN algorithm
resulted larger than the ones shaped by a SVM at the
same value of α. One can conclude that for most of
the retrieval region the generalization performance is
worse than the SVM, which maintains larger basins of
attraction; on the other hand, at higher values of α the
trained-with-noise network sacrifices its classification
property to achieve a basin that appears wider than
the SVM one. We want to stress the importance of a
comparison between the TWN and the corresponding
SVM, since numerical investigations have shown the
latter to achieve extremely large basins of attraction,
presumably due to the maximization of the stabilities
[19, 28].

In conclusion, the TWN algorithm never outperforms
the corresponding SVM in terms of attraction basins size
without reducing its classification capabilities. This ob-
servation moves our research for a modification to the
TWN algorithm, which can ensure a performance that is
similar to the SVM one even at lower values of mt and
higher loads α.

IV. THE OPTIMAL STRUCTURE OF NOISE

As previously stated, SVMs are considered to be
highly efficient associative memory models, due to their
very good classification and generalization capabilities.
Wong and Sherrington’s analytical argument proves
that minimization of L(m = 1−, J) trains a SVM.
The TWN procedure proposed by Gardner and col-
laborators, relying on a Bernoulli process to generate
noise, accomplishes this task only when mt = 1− (see
Section III). Injecting a larger amount of noise during
training would deteriorate the performance: specifically,
mt = 0+ trains a Hebbian neural network. Nevertheless,
training a network with examples that are nearly un-
correlated with the memories can significantly speed up
the sampling process, since such states can be generated
in an unsupervised fashion, without knowledge of the
memories (as seen for the HU algorithm in Section IIC).
Such unsupervised processes are also considered more
biologically plausible.
In this Section, we show that it is possible to use
maximally noisy configurations (i.e. mt = 0+) to train a
network that resembles a SVM, by means of the TWN

6

algorithm. This translates into approaching the global
minimum of L(m = 1−, J(0+)). For this purpose, one
must change the way noisy data are generated: they
need to meet specific constraints which lead to internal
dependencies among the features (i.e. a structure). We
derive a theoretical condition characterizing the optimal
structure of noise, and show that specific configurations
in the Hebbian energy landscape, including local min-
ima, match well the theoretical requirements.

A. The optimal noise condition

It will be helpful for our purposes to implement a sym-
metric version of rule (9), i.e.

δJ
(d)
ij =

λ

N

(
Θ
(
− ξµd

i

N∑
k=1

JikS
µd

k

)
ξµd

i Sµd

j +

+Θ
(
− ξµd

j

N∑
k=1

JjkS
µd

k

)
ξµd

j Sµd

i

)
.

(17)

Henceforth in the paper, TWN will be understood as
the symmetric update rule eq. (17). Since SVMs show
a high degree of symmetry in the J matrix [16, 18], we
extend the results presented in Section III to the cur-
rent case. This assumption is well-supported by fur-
ther numerical analysis. Equation (17) can be reformu-
lated explicitly by rewriting the Heaviside function as
Θ(x) =

(
1 + sign(x)

)
/2, leading to

δJ
(d)
ij =

λ

2N

(
ξµd

i Sµd

j + Sµd

i ξµd

j

)
− λ

2N

(
S1,µd

i Sµd

j + Sµd

i S1,µd

j

)
,

(18)

where S1,µd

i := sign
(∑N

k=1 JikS
µd

k

)
corresponds to one

step of the dynamics. In the maximal noise casemt = 0+,
the variation of L(m,J) in one step of the algorithm is
then (see Appendix A2)

δL ∝ m√
2π(1−m2)

N,p∑
i,µ

ωµ
i exp

(
− m2∆µ2

i

2(1−m2)

)
, (19)

where the weights ωµ
i are given by

ωµ
i =

1

2σi

(
mµχ

1,µ
i +m1,µχ

µ
i

)
, (20)

with

χµ
i = ξµi S

µd

i , χ1,µ
i = ξµi S

1,µd

i , (21)

and

mµ =
1

N

N∑
j=1

Sµd

j ξµj , m1,µ =
1

N

N∑
j=1

S1,µd

j ξµj . (22)

Notice that definitions eq. (21) and eq. (22) mirror
eq. (10) and eq. (12), but describe the relation between

training data points and a generic memory ξ⃗µ, not just

the specific ξ⃗µd picked for the training step. Since our
goal is to approach the performance of a SVM, we are
interested in the limit m → 1−. When m → 1−, the
Gaussian factors in eq. (19) are tightly peaked around
zero. Since we want δL to be negative, we need, for most
of the pairs i, µ,

ωµ
i < 0 if ∆µ

i ∼ 0. (23)

The more negative ωµ
i is when ∆µ

i ∼ 0, the more power-
ful is its contribution to approach the SVM performances.
Equation (23) is the main result of our work: it gives the

condition that maximally noisy states S⃗µd must satisfy
to train an attractor neural network approaching the per-
formance of a SVM. Selecting training data that satisfy
equation (23) amounts to imposing specific internal de-
pendencies among the noise units χ⃗, which are no more
i.i.d. random variables, as it was in [7]. We refer to
such dependencies as structure of the noise. One should
also bear in mind that training is a dynamic process:
to reduce L(m = 1−, J(0+)) condition (23) should hold
throughout training.

B. Numerical Analysis

As seen in section III, traditional TWN relies on fully
random states, i.e. very high states in the energy land-
scape defined by the function

E[S⃗|J] = −1

2

∑
i,j

SiJijSj . (24)

Since E plays the role of the Lyapunov function of
the dynamics when couplings Jij are symmetric [1],
the dynamic rule in eq. (1) always converges to local
minima of E, in the same framework. Inspired by other
learning algorithms that make use of particular states in
the energy landscape, e.g. the HU procedure described
in section IIC, we want to test numerically whether
configurations sampled at different altitudes of the
landscape are characterized by an internal structure that
satisfies condition (23). To do so, we sample training
configurations according to the Gibbs-Boltzmann mea-
sure by means of a Monte Carlo routine at temperature
T . Temperature acts as a control parameter: when
T = 0 training configurations are stable fixed points
of eq. (1). Higher values of T progressively reduce the
structure of noise in training configurations, and in the
limit T → ∞, training configurations are the same as
in the TWN algorithm. The Monte Carlo of our choice
is of the Kawasaki kind [29], to ensure that all training

7

configurations are at overlap1 mt = 0+. We are going
to use this technique to probe the states across two
types of landscapes: the one resulting from a Hebbian
initialization and the one resulting from a Sherrington-
Kirkpatrick (SK) model [30], where couplings are i.i.d.
Gaussian with zero mean.

Figure 3 reports numerical results for a network ini-
tialized according to Hebb’s prescription eq. (7), for four
different temperatures. Each panel shows the distribu-
tion of (∆µ

i , ω
µ
i). Data points are collected over fifteen

realizations of the network, then plotted and smoothed
to create a density map. We are interested in the typical
behavior of ωµ

i when ∆µ
i = 0, which can be estimated

by a linear fit of the data. We consider the intercept
ωemp(0) of the best fit line as an indicator of the typi-
cal value of ωµ

i around ∆µ
i = 0. We find that at high

temperature ωemp(0) gets closer to zero, suggesting low
quality in terms of training performance. On the other
hand, at lower temperatures the sampled training con-
figurations favor both classification and generalization,
since ωemp(0) is more negative.
For a comparison, one can study the distribution of ωµ

i
in the case of a random initialization of the coupling ma-
trix J . We chose the SK model [30] as a case of study.
Panels (a) and (b) in fig. 4 report the smoothed distribu-
tion of (∆µ

i , ω
µ
i) showing a different scenario with respect

to the Hebbian one. The distribution looks anisotropic,
as in the Hebbian case, yet the stabilities are centered
Gaussians, so ωemp(0) is positive. In particular, things
appear to improve when T increases, in contrast with the
previous case of study. Panel (c) shows the Pearson co-
efficient between ωµ

i and ∆µ
i , at various T : both Hebb’s

and SK show some mutual dependence, but ωµ
i and ∆µ

i
in the Hebbian landscape appear to be more correlated.
Finally, panel (d) shows ωemp(0) in both cases. This
measure is consistent with the indication coming from
the Pearson coefficient: while for the Hebb’s initializa-
tion ωemp(0) remains significantly negative and reaches
the lowest values at low temperatures2, the random case
shows the opposite trend, with the estimated ωemp(0)
staying generally close to zero.

Going back to the Hebbian energy landscape, one can
also study how the distribution of (∆µ

i , ω
µ
i) evolves dur-

ing the training process. Fig. 5a shows the value of
ωemp(0) at different time steps of the training process,
for different values of α, when training configurations are
sampled at T = 0. We find that ωemp(0) < 0 through-
out training for α ≤ 0.6. The progressive increase of

1 For the sake of the experiment, we say that a state has overlap
mt = 0+ with one memory ξ⃗ if mt ∈ (0, N−1/2).

2 Specifically, the lowest value of ωemp(0) in the Hebbian case is
reached at low, but non-zero temperature. This suggests that
saddles in the energy landscape also can be good training con-
figurations: the study of this particular case is reported in Ap-
pendix D.

ωemp(0) means that fixed points of the initial Hebbian
landscape are better training configurations compared to
fixed points at intermediate stages of training. In the
last part of training, points reacquire more negative val-
ues, but this is not a reliable indication of good perfor-
mance: as shown in fig. 5c, in this part of the process
the standard deviation of the couplings σi is comparable
to O(λ · N−1/2), and the expansion of the L in eq. (19)
is not valid. The last part of the training, where σi ≃ 0
∀i, has been neglected from the plot. This picture is
confirmed by the study of the Pearson correlation coef-
ficient between ωµ

i and the associated stabilities ∆µ
i (see

fig. 5,b). High values of the Pearson coefficient show a
strong dependence of the structure of noise on the rela-
tive stabilities. For all α, the Pearson coefficient is high-
est at d = 0, and progressively decreases during training,
suggesting that the quality of the training configurations
is deteriorating. The final increase in the coefficient is,
again, due to the vanishing of the standard deviations
σi of the couplings, and does not indicate good perfor-
mance.

V. HEBBIAN UNLEARNING IS TRAINING
WITH STRUCTURED NOISE

The total update to the couplings at time D by the
symmetric TWN algorithm in eq. (9) can be decomposed
as a sum of two contributions

∆Jij(D) = ∆JN
ij (D) + ∆JU

ij (D). (25)

The first, which will be referred to as noise contribution,
is expressed in terms of noise units as

∆JN
ij (D) =

λ

2N

D∑
d=1

ξ
µd
i ξ

µd
j χ

µd
j +

λ

2N

D∑
d=1

ξ
µd
j ξ

µd
i χ

µd
i , (26)

while the second, which will be referred to as unlearning
contribution, is given by

∆JU
ij (D) = − λ

2N

D∑
d=1

(
S1,µd

i Sµd

j + Sµd

i S1,µd

j

)
. (27)

Notice that, in the maximal noise casemt = 0+, ∆JN
ij (D)

averages to zero over the process. When the number of
steps D is proportional to N/λ, its variance is of order
O(λ/N), leading to

∆JN
ij (D) = O

(√
λ

N

)
. (28)

Hence, when mt = 0+ and λ/N → 0, the noise contri-
bution is negligible, and the TWN update rule reduces
to

δJ
(d)
ij = − λ

2N

(
S1,µd

i Sµd

j + Sµd

i S1,µd

j

)
. (29)

8

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

10

5

0

5

10

0.5 0.0 0.5

(a)

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

8

6

4

2

0

2

4

6

8

0.5 0.0 0.5

(b)

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

6

4

2

0

2

4

6

0.5 0.0 0.5

(c)

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

8

6

4

2

0

2

4

6

0.5 0.0 0.5

(d)

FIG. 3: Distribution of ωµ
i as a function of ∆µ

i for training configurations sampled with a Monte Carlo at
temperature T = 0 i.e. stable fixed points only (a), T = 0.5 (b), T = 1 (c), T = 8 (d), on a Hebbian network.

Warmer colors represent denser region of data points. The full black line is the non-weighted best fit line for the
points, the dotted white line represents ω = 0, the red dot is the value of the best fit line associated with ∆ = 0.

Sub-panels to each panel report a zoom of the line around ∆ = 0. Measures have been collected over 15 samples of
the network, and observations show that finite size effects are negligible. Choice of the parameters: N = 500,

α = 0.5.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.4

0.2

0.0

0.2

0.4

0.5 0.0 0.5

(a)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.4

0.2

0.0

0.2

0.4

0.5 0.0 0.5

(b)

0 1 2 3 4 5 6 7 8

T
0.04

0.06

0.08

0.10

0.12

0.14

Pe
ar

so
n

co
ef

fic
ie

nt

Hebb's
SK

(c)

0 1 2 3 4 5 6 7 8
T

0.30

0.25

0.20

0.15

0.10

0.05

0.00

em
p(

0)

Hebb's
SK

(d)

FIG. 4: (a), (b): Distribution of ωµ
i as a function of ∆µ

i for training configurations sampled with a Monte Carlo at
temperature T = 0 i.e. stable fixed points only (a), and T = 8 (b) on a SK model. Warmer colors represent denser

region of data points. The full black line is the non-weighted best fit line for the points, the dotted white line
represents ω = 0, the red spot is the value of the best fit line associated with ∆ = 0. Sub-panels to each panel report
a zoom of the line around ∆ = 0. (c), (d): Comparison between the Hebbian initialization and the Random one

through evaluation of: the Pearson coefficient between ωµ
i and ∆µ

i (c) and the estimated value of ωemp(0) from the
dispersion plots (d). Measures have been collected over 15 samples of the network. Choice of the parameters:

N = 500, α = 0.5.

In this limit, if fixed points of the dynamics are used for

training, i.e. S⃗µd = S⃗1,µd , TWN and the HU converge to
the same update rule.
Hence, the two algorithms must perform equally when
we employ stable fixed points of the dynamics as train-
ing data-points. In order to test numerically this state-
ment we proceed in the following manner: the network
is initialized according to Hebb’s learning rule; we train
J by means of: the TWN update rule (18) using stable

fixed points of the dynamics with overlap 3 m = 0+; the
HU update rule (8) using stable fixed points of the dy-
namics randomly sampled in the landscape (as described
in section IIC). The resulting networks are compared af-
ter a fixed amount of iterations D, verifying that they
overlap significantly. More precisely, fig. 6 compares the

3 Fixed points are sampled by initializing the network with an
overlap in (0, N−1/2) with one memory, and then running the
dynamics to a fixed point. Typically, such an initial overlap
implies the same order of magnitude for the final overlap.

9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
d /N

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

em
p(

0)

= 0.3
= 0.4
= 0.5
= 0.6

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
d /N

0.05

0.10

0.15

0.20

0.25

0.30

Pe
ar

so
n

co
ef

fic
ie

nt

= 0.3
= 0.4
= 0.5
= 0.6

(b)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
d /N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

×10 3

= 0.3
= 0.4
= 0.5
= 0.6

O(N 1/2)

(c)

FIG. 5: The TWN algorithm is implemented by sampling stable fixed points of the network dynamics with mt = 0+.
(a) The empirical measure of ωµ

i around ∆µ
i = 0 for the case of stable fixed points as a function of the rescaled

number of iterations of the learning algorithm. Error bars are given by the standard deviations of the measures. (b)
Pearson coefficient measured between ωµ

i and ∆µ
i . (c) The standard deviation of the couplings during learning,

defined as σ = 1
N

∑
σi. Points are averaged over 50 samples and the choice of the parameters is: N = 100, λ = 10−2.

0.02 0.01 0.00 0.01 0.02
JTWN

0.02

0.01

0.00

0.01

0.02

JH
U

FIG. 6: Elements of the J matrix obtained from HU vs.
the one resulting from TWN for one realization of the
memories after the same amount of training steps.

Choice of the parameters: N = 500, α = 0.5,
λ = 5 · 10−3.

elements of the two matrices for one of our experiments,
reporting a strong correlation between the two.

Numerically, it is known that HU performs as well as
SVMs when α < αHU

c (see [19]). Our analysis of the
optimal structure of noise can explain this excellent per-
formance. In fact, as showed by fig. 4d, local minima
of an energy landscape initialized according to Hebb’s
learning rule yield very negative ωµ

i when ∆µ
i ∼ 0, driv-

ing the network towards the SVM solution.

Interestingly, the weights ωµ
i have a precise geometric in-

terpretation in the case of HU, where ωµ
i = mµχ

µ
i . Define

the following N -dimensional vectors: J⃗i as the collection
of the elements contained in the ith row of the connectiv-
ity matrix, η⃗µi = ξµi ξ⃗

µ and η⃗i
µd = Sµd

i S⃗µd , where S⃗µd is
the training configuration. Then, at iteration d, one has

ωµ
i = (η⃗i

µd · η⃗iµ)/N. (30)

On the other hand, stabilities can be written as

∆µ
i =

J⃗i · η⃗µi√
Nσi

, (31)

and the HU rule becomes

δJ⃗i
(d)

= − λ

N
η⃗i

µd . (32)

It follows that δ∆µ
i ∝ −ωµ

i : a negative value of ωµ
i will

increase the degree of alignment between J⃗i and η⃗µi ,
improving the stability. Such an anisotropic distribution
of the sampled η⃗i

µd around η⃗i
µ is exactly what condi-

tion (23) prescribes for good training configurations.
Notice that this anisotropy is hidden in the space

of configurations, where minima S⃗µd of the energy

landscape surround memories ξ⃗µ isotropically. The fact
that ωµ

i are not i.i.d. variables (as one would have
for χµ

i generated as a consequence of eq. (10)), but
rather their statistics depends (i, µ), is the real physical
interpretation of the data-structure. Interestingly,
considering only the transformed memories η⃗i

µ that
have ∆µ

i ∼ 0 is sufficient to drag all stabilities above zero.

Finally, it is essential to note that, since the train-
ing overlap under consideration is close to 0, stable fixed

10

points can be sampled in a full unsupervised fashion:
when the dynamics is initialized at random (which im-
plies having an overlap mt = 0+ with some memory) it
will typically conserve a small overlap (with the same
memory) even at convergence [31]. As a consequence,
the argument presented above holds, and a supervised
algorithm as TWN can be reduced to a more biologically
plausible and faster unsupervised learning rule, as the
HU one.

VI. CONCLUSIONS

Gardner’s training-with-noise (TWN) algorithm [7]
showed that noise can be injected during training to
increase generalization, i.e. the capability of neural
networks to retrieve memories by receiving corrupted
stimuli [32–35]. In Section III we showed that TWN is
well described by Wong and Sherrington’s calculations
in [8, 11]. This implies convergence to a Hebbian matrix
or a Support Vector Machine (SVM) when learning
random configurations with, respectively, maximal (i.e.
mt = 0+) or minimal (i.e. mt = 1−) amount of noise.
The training overlap mt can be then tuned to interpolate
between these two models.
In Section IV we consider the maximal noise scenario
represented by mt = 0+, and derived the condition to
be satisfied by the noise in order to approach the per-
formance of a SVM. Specifically, the entries of training
configurations (i.e. the data features) are constrained
by internal dependencies that we call structure. We
have explored the landscape of attractors numerically,
and showed that in the lower levels of a Hebbian energy
landscape there exist a band of maximally noisy saddle
states which are excellent training data. Specifically
such states, among which we also find local minima of
the energy, are able to train a network which shares the
same properties of a SVM.
In Section V we proved that, when stable fixed points
of the dynamics are used as training data, the TWN
algorithm and the HU algorithm are equivalent. This
sheds light over why basins of attraction generated by
HU are extremely large, as shown in [19]: training data
are such as to approach the global minimum of the loss
function of a SVM, which is known in literature to have
high associativity properties.

As neuroscientists become more convinced of the im-
portance of sleep in memory consolidation [36, 37], con-
nections arise between unsupervised training algorithms
on machines and synaptic plasticity processes that occur
outside the wakeful hours [22, 38–40]. In light of these
remarks and the work presented in this article, one might
conceive natural learning as a two-phase process. Dur-
ing a first online phase, external stimuli are processed by
the network through the standard TWN algorithm. One
can imagine the stimuli to be maximally noisy versions
of some unknown archetypes embedded into the environ-
ment. As a consequence, training will shape a pure Heb-
bian landscape of attraction out of the retrieval regime.
In a second offline phase, the early formed network sam-
ples structured noisy neural configurations, still weakly
correlated with the archetypes, from the landscape of at-
tractors. Such states could be, for instance, stable fixed
points of the neural dynamics. These neural configura-
tions are then processed by the same kind of TWN al-
gorithm, and memory is consolidated by centering the
unconscious archetypes in the middle of large basins of
attraction.
In this context, the results contained in this work make
progress on two fronts. On one side, they shed light over
the structure of noise that is optimal for learning in neu-
ral networks, helping to develop a finer theory behind the
very empirical techniques of noise injection implemented
in training deep networks [3, 32, 41, 42]. On the other
side, they draw a connection between unsupervised, and
thus more biologically relevant, learning processes and
the supervised ones, from which most of the modern the-
ory of neural networks derive.

ACKNOWLEDGMENTS

The authors are particularly grateful to their men-
tors Enzo Marinari, Giancarlo Ruocco and Francesco
Zamponi for precious suggestions and support. They
also thank Fabian Aguirre Lopez, Aldo Battista, Si-
mona Cocco, Giampaolo Folena, Rémi Monasson and
Mauro Pastore for useful discussions, as well as an anony-
mous referee for useful comments that have improved the
manuscript.

[1] D.J. Amit. Modeling Brain Function. Cambridge Uni-
versity Press, 1989.

[2] M. Mezard, G. Parisi, and M. Virasoro. Spin Glass The-
ory and Beyond: An Introduction to the Replica Method
and Its Applications, volume 9 ofWorld Scientific Lecture
Notes in Physics. World Scientific, 1986.

[3] C. Shorten and T. M. Khoshgoftaar. A survey on Image
Data Augmentation for Deep Learning. Journal of Big
Data, 6(1):1, 2019.

[4] L. Zhao, T. Liu, X. Peng, and D. Metaxas. Maximum-
Entropy Adversarial Data Augmentation for Improved
Generalization and Robustness. In Advances in Neu-
ral Information Processing Systems, volume 33, pages
14435–14447. Curran Associates, Inc., 2020.

[5] A. Achille and S. Soatto. Information dropout: Learn-
ing optimal representations through noisy computation.
IEEE transactions on pattern analysis and machine in-
telligence, 40(12):2897–2905, 2018.

11

[6] J.J. Hopfield, D.I. Feinstein, and R.G. Palmer. ‘Unlearn-
ing’ has a stabilizing effect in collective memories. Nature,
304(5922):158, 1983.

[7] E. J. Gardner, D. J. Wallace, and N. Stroud. Training
with noise and the storage of correlated patterns in a neu-
ral network model. Journal of Physics A: Mathematical
and General, 22(12):2019, 1989.

[8] K.Y.M. Wong and D. Sherrington. Neural networks op-
timally trained with noisy data. Physical Review E,
47(6):4465, 1993.

[9] D. J. Amit, H. Gutfreund, and H. Sompolinsky. Storing
Infinite Numbers of Patterns in a Spin-Glass Model of
Neural Networks. Physical Review Letters, 55(14):1530,
1985.

[10] E. Gardner. Structure of metastable states in the Hop-
field model. Journal of Physics A: Mathematical and
General, 19(16):L1047, 1986.

[11] K.Y.M. Wong and D. Sherrington. Optimally adapted at-
tractor neural networks in the presence of noise. Journal
of Physics A: Mathematical and General, 23(20):4659,
1990.

[12] D.O. Hebb. The Organization of Behavior : A Neuropsy-
chological Theory. John Wiley and Sons, 1949.

[13] E. Gardner. The space of interactions in neural network
models. Journal of Physics A: Mathematical and Gen-
eral, 21(1):257, 1988.

[14] E. Gardner, H. Gutfreund, and I. Yekutieli. The phase
space of interactions in neural networks with definite
symmetry. Journal of Physics A: Mathematical and Gen-
eral, 22(12):1995, 1989.

[15] M. Minsky and P. Seymour. Perceptrons: an introduction
to computational geometry. MIT Press, 1969.

[16] A. Battista and R. Monasson. Capacity-resolution trade-
off in the optimal learning of multiple low-dimensional
manifolds by attractor neural networks. Physical Review
Letters, 124(4):048302, 2020.

[17] N. Brunel, V. Hakim, P. Isope, J.P. Nadal, and B. Bar-
bour. Optimal Information Storage and the Distribution
of Synaptic Weights: Perceptron versus Purkinje Cell.
Neuron, 43(5):745–757, 2004.

[18] N. Brunel. Is cortical connectivity optimized for storing
information? Nature Neuroscience, 19(5):749–755, 2016.

[19] M. Benedetti, E. Ventura, E. Marinari, G. Ruocco, and
F. Zamponi. Supervised perceptron learning vs unsuper-
vised Hebbian unlearning: Approaching optimal memory
retrieval in Hopfield-like networks. The Journal of Chem-
ical Physics, 156(10):104107, 2022.

[20] B. Schölkopf and A.J. Smola. Learning with Kernels:
Support Vector Machines, Regularization, Optimization,
and Beyond. The MIT Press, 2018.

[21] J.J. Hopfield. Neural networks and physical systems with
emergent collective computational abilities. Proceedings
of the National Academy of Sciences, 79(8):2554, 1982.

[22] F. Crick and G. Mitchison. The function of dream sleep.
Nature, 304(5922):111, 1983.

[23] J.L. Van Hemmen, L.B. Ioffe, R. Kühn, and M. Vaas.
Increasing the efficiency of a neural network through un-
learning. Physica A: Statistical Mechanics and its Appli-
cations, 163(1):386, 1990.

[24] J.L. van Hemmen and N. Klemmer. Unlearning and Its
Relevance to REM Sleep: Decorrelating Correlated Data.
In J.G. Taylor, C.L.T. Mannion, J.G. Taylor, E.R. Ca-
ianiello, R.M.J. Cotterill, and J.W. Clark, editors, Neural
Network Dynamics, page 30. Springer London, London,

1992.
[25] E. Ventura, S. Cocco, R. Monasson, and F. Zam-

poni. Unlearning regularization in Boltzmann Machines.
arXiv:2311.09418, 2024.

[26] M. Benedetti, L. Carillo, E. Marinari, and M. Mézard.
Eigenvector dreaming. Journal of Statistical Mechanics:
Theory and Experiment, 2024(1):013302, 2024.

[27] Y. Le Cun. Learning Process in an Asymmetric Thresh-
old Network. In Disordered Systems and Biological Or-
ganization, page 233. Springer, Berlin, Heidelberg, 1986.

[28] B.M. Forrest. Content-addressability and learning in neu-
ral networks. Journal of Physics A: Mathematical and
General, 21(1):245, 1988.

[29] M. Newman and G. Barkema. Monte Carlo Methods in
Statistical Physics. Oxford University Press, 1999.

[30] D. Sherrington and S. Kirkpatrick. Solvable Model of a
Spin-Glass. Physical Review Letters, 35(26):1792, 1975.

[31] T.B. Kepler and L.F. Abbott. Domains of attraction in
neural networks. Journal de Physique, 49(10):1657, 1988.

[32] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. Dropout: A simple way to prevent
neural networks from overfitting. Journal of Machine
Learning Research, 15:1929, 2014.

[33] T. Tadros, G. Krishnan, R. Ramyaa, and Bazhenov M.
Biologically inspired sleep algorithm for increased gener-
alization and adversarial robustness in deep neural net-
works. International Conference on Learning Represen-
tations, 2019.

[34] D. Saad and S. Solla. Learning with Noise and Regu-
larizers in Multilayer Neural Networks. In Advances in
Neural Information Processing Systems, volume 9. MIT
Press, 1996.

[35] B. Schottky and U. Krey. Phase transitions in the gen-
eralization behaviour of multilayer perceptrons: II. The
influence of noise. Journal of Physics A: Mathematical
and General, 30(24):8541, 1997.

[36] J.D. Creery, D.J. Brang, J.D. Arndt, A. Bassard, V.L.
Towle, J.X. Tao, S. Wu, S. Rose, P.C. Warnke, N.P. Issa,
and K.A. Paller. Electrophysiological markers of mem-
ory consolidation in the human brain when memories
are reactivated during sleep. Proceedings of the National
Academy of Sciences, 119(44):e2123430119, 2022.

[37] N. Maingret, G. Girardeau, R. Todorova, M. Goutierre,
and M. Zugaro. Hippocampo-cortical coupling mediates
memory consolidation during sleep. Nature Neuroscience,
19(7):959, 2016.

[38] G. Girardeau and V. Lopes-dos Santos. Brain neural
patterns and the memory function of sleep. Science,
374(6567):560–564, 2021.

[39] G. Hinton. The Forward-Forward Algorithm: Some Pre-
liminary Investigations. arXiv:2212.13345, 2022.

[40] J. Hinton and T.J. Sejnowski. Unsupervised Learning:
Foundations of Neural Computation. The MIT Press,
1999.

[41] U.M. Tomasini, L. Petrini, F. Cagnetta, and M. Wyart.
How deep convolutional neural networks lose spatial in-
formation with training. Machine Learning: Science and
Technology, 4(4):045026, 2023.

[42] L. Bonnasse-Gahot and J.P. Nadal. Categorical Percep-
tion: A Groundwork for Deep Learning. Neural Compu-
tation, 34(2):437, 2022.

[43] S. Diamond and S. Boyd. CVXPY: A Python-Embedded
Modeling Language for Convex Optimization. Journal of
Machine Learning Research, 17:1, 2016.

12

[44] V.S. Dotsenko, N.D. Yarunin, and E.A. Dorotheyev. Sta-
tistical mechanics of Hopfield-like neural networks with
modified interactions. Journal of Physics A: Mathemat-
ical and General, 24(10):2419–2429, 1991.

[45] T. Aspelmeier, R.A. Blythe, A.J. Bray, and M.A. Moore.

Free energy landscapes, dynamics and the edge of chaos
in mean-field models of spin glasses. Physical Review B,
74(18):184411, 2006.

[46] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Opti-
mization by simulated annealing. Science, 220(4598):671,
1983.

Appendix A: Descending over the L function

1. Training with noise

At each step of the algorithm, a memory label µd is sampled at random and the update (9) is performed over the
couplings. The new value of the L function (13) is

L
′
= − 1

αN2

N,p∑
i,µ

erf

 m∆µ
i√

2(1−m2)
+

λm

Nσi

√
2N(1−m2)

ϵµd

i ξµi ξ
µd

i

∑
j ̸=i

Sµd

j ξµj

 , (A1)

where

ϵµd

i = Θ

(
ξµd

i

N∑
k=1

JikS
µd

k

)
. (A2)

Since δσi ∝ λ
N

Ji

σi
+O

(
λ
N

)3
and the mean Ji of the couplings along line i equals zero by initialization and it is naturally

maintained null during the algorithm, we have considered σ′
i ≃ σi. Then L′ can be rewritten as

L
′
=− 1

αN2

N,p∑
i,µ̸=µd

erf

(
m∆µ

i√
2(1−m2)

+O

(
1

N

))
−

− 1

αN2

N∑
i

erf

(
m∆µd

i√
2(1−m2)

+
λm ·mt

σi

√
2N(1−m2)

ϵµd

i +O

(
1

N

))
,

(A3)

where we have used that 1
N

∑
j ̸=i ξ

µ
j S

µd

j = O(N−1/2) when µ ̸= µd and mt = O(1) . We thus expand the errorfunction

at the first order in O(N−1/2) obtaining the variations to L in equation (16).
As a technical comment, note that standard deviation along one row of the couplings matrix σi (see eq. (2)) is a
variable quantity over time, and numerics suggest it is slowly decreasing. As a result, the expansion performed to
determine the variation of L (see eq. (A3) in Appendix A1) might not be justified after a certain number of steps,
leading to a non-monotonic trend of the loss function. The non-monotonic trend of L(mt, J(mt)) due to this effect
is shown in the inset of fig. 7. However, this inconvenience can be overcome by rescaling the learning rate λ into
λi = λ · σi at each iteration, obtaining the curves in fig. 7.

2. Training with structured noise

The new value of L is derived by using equation (17) to evaluate the variation of stabilities

L
′
= − 1

αN2

N,p∑
i,µ

erf

(
m∆µ

i√
2(1−m2)

+
λmξµi ξ

µd

i

2Nσi

√
2N(1−m2)

N∑
j=1

Sµd

j ξµj +
λmξµi S

µd

i

2Nσi

√
2N(1−m2)

N∑
j=1

ξµd

j ξµj −

− λmξµi S
1,µd

i

2Nσi

√
2N(1−m2)

N∑
j=1

Sµd

j ξµj − λmξµi S
µd

i

2Nσi

√
2N(1−m2)

N∑
j=1

S1,µd

j ξµj

)
,

(A4)

where σ
′

i ≃ σi as in the previous paragraph. We now redefine χµ
i = ξµi S

µd

i , χ1,µ
i = ξµi S

1,µd

i , mµ = 1
N

∑N
j=1 S

µd

j ξµj and

m1,µ = 1
N

∑N
j=1 S

1,µd

j ξµj and expand the errorfunction at the first order in O(N−1/2) obtaining

δL =
mλ√

2πα2N5(1−m2)

N,p∑
i,µ

1

2σi

[
(mµχ

1,µ
i +m1,µχ

µ
i)− (mµξ

µ
i ξ

µd

i +Mµd
µ χµ

i)
]
exp

(
− m2∆µ2

i

2(1−m2)

)
, (A5)

13

0 1 2 3 4 5 6 7 8
d 1e4

5

4

3

2

1

0

1e 1

, mt = 0.2
, mt = 0.5
, mt = 0.9

0 2 4 6 8
1e4

0.5

0.4

0.3

0.2

0.1

0.0 , mt = 0.5

0.5

1.0

1.5

2.0

2.5

1e 1

, mt = 0.5
O(N 1/2)

FIG. 7: The blueish lines in the main plot report the function L(m = 0.5, J(mt)) for different training overlaps as
functions of the number of algorithm steps d. The dotted line represents the theoretical minimum value from [8].
The learning strength λ has been rescaled by the standard deviation of the couplings as described in the text. The
subplot reports the case mt = 0.5 when the learning strength is not rescaled: L is in blue, while a measure of the
standard deviation of the couplings, defined as σ = 1

N

∑
σi, is reported in red : the value λ ·N−1/2 of the standard

deviation is depicted in light gray to properly signal the moment when equation (16) loses its validity. All measures
are averaged over 5 realizations of the couplings J . Choice of the parameters: N = 100, α = 0.3, λ = 1, the initial

couplings are Gaussian with unitary mean, zero variance and J
(0)
ii = 0 ∀i.

where Mµd
µ = 1

N

∑N
i=1 ξ

µ
i ξ

µd

i . Equation (A5) can be decomposed in

δL = δLN + δLU , (A6)

where δLU contains the weight

ωµ
i =

1

2σi

(
mµχ

1,µ
i +m1,µχ

µ
i

)
, (A7)

while δLN contains

Ωµ
i =

1

2σi

(
mµξ

µ
i ξ

µd

i +Mµd
µ χµ

i

)
. (A8)

We study the two contributions numerically, on a Hebbian network, i.e. with no learning going on, for the case of
mt = 0+. The Pearson coefficient is measured between the vector of the stabilities ∆µ

i and the weights ωµ
i as well as

with Ωµ
i separately. This quantity should underline an eventual reciprocal dependence between ωµ

i ,Ω
µ
i and ∆µ

i . The
test is repeated over states sampled by a Monte Carlo at different temperatures T . Results are reported in fig. 8a
where it is evident that Ωµ

i does not have any correlation with ∆µ
i , while the dependence of ωµ

i on the stabilities is
evident. Moreover, we measured the indicator ωemp(0), signaling the typical values of the weights ωµ

i and Ωµ
i when

∆µ
i ∼ 0 (see Section IV for further details), as reported in fig. 8b. The plot clearly shows that Ωµ

i is small and
generally fluctuating around zero. These aspects hold during the training procedure also, as it can be observed by
performing the same measure at different step of the TWN procedure over states with mt = 0+. We will thus refer
to δLU as the relevant contribution to the variation of the function L.

14

0 1 2 3 4 5 6 7 8
T

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pe
ar

so
n

co
ef

f.
U,
N,

(a)

0 1 2 3 4 5 6 7 8

T

0.30

0.25

0.20

0.15

0.10

0.05

0.00

em
p(

0)

U,
N,

(b)

FIG. 8: (a) Pearson coefficient between ωµ
i , Ω

µ
i and the stabilities ∆µ

i , (b) ωemp(0) for the case of a Hebbian network
at different temperatures T . Configurations at a given temperature T have been sampled by a Monte Carlo of the
Kawasaki kind, in order to choose only maximally noisy states (mt = 0+). Points are collected from 15 samples of

the network. Choice of the parameters: N = 500, α = 0.5.

Appendix B: Training with noise - Classification analysis

We now resume the computations performed in [8, 11] to analyze the classification performance of TWN. We restrict
ourselves to a spherical space of interactions such that∑

j ̸=i

J2
ij = N ∀i, (B1)

We want to compute the probability distribution of the stabilities that now become

∆µ
i = ξµi

N∑
j=1

Jij√
N

ξµj . (B2)

The partition function of the model is then given by

Z =

∫ ∏
i,j

dJijδ

∑
j ̸=i

J2
ij −N

 exp
(
− βL(mt, J)

)
, (B3)

where β is the inverse annealing temperature of the problem and the loss function L is defined in eq. (13). The
distribution of the stabilities is

ρmt(∆) =
1

Z

∫ ∏
j

dJ•jδ

(∑
j

J2
•j −N

)
exp

(
β
∑
µ

erf

(
mtξ

µ
•
∑

j J•jξ
µ
j√

2N(1−m2
t)

))
δ

(
ξ1•
∑
j

J•j√
N

ξ1j −∆

)
, (B4)

where · denotes the average over the realizations of the memories and we have neglected the factorization over i,
since we treat the optimization process as independent along the lines of the Jij matrix. Index i has been nevertheless
substituted by • for the sake of completeness. Replicas can be used to evaluate the normalization, i.e.

1/Z = lim
n→0

Zn−1. (B5)

15

The replica calculation in the replica symmetric ansatz [2] when β → ∞ leads to the following expression for the
density of the stabilities

ρmt(∆) =
1√
2π

(
1 +

√
2

π

m3
tχ

(1−m2
t)

3/2
∆exp

(
− m2

t∆

2(1−m2
t)

))
exp−w(∆)2

2
, (B6)

where χ and w are derived by solving the following two equations

w = x−
√
2mtχ√

π(1−m2
t)

exp

(
− m2

tx
2

2(1−m2
t)

)
, (B7)

∫ +∞

−∞
Dw (x∗(w,χ)− w)

2
= α−1, (B8)

with x∗ being the solution of (B7) and Dw being the standard Gaussian measure with zero mean and unitary variance.

Appendix C: Training with noise - Generalization analysis

We report here a general experimental procedure to measure the average size of the basins of attraction of a fully
connected neural network of finite size N and a given choice of the control parameters.
The network is firstly trained according to an algorithm of our choice. Once the couplings have been found, the
asynchronous version of dynamics (1) is initialized in one of the memories. The dynamics is run until convergence
onto the attractor associated to the basin of belonging of the memory. Now the retrieval map mf (m0) is measured
with respect to that particular attractor, and the procedure is repeated over different memories and realizations of the
network. The average radius of the basin of attraction is then measured as the value of 1−m0 where mf (m0) equals
a reference value. In our case such value is mf = 0.98. We have applied this procedure on networks trained either as
SVMs and with the TWN algorithm. In the former case a convex algorithm contained in the cvxpy Python domain
[43] is implemented to train the network. To be more specific, N independent machines are trained to correctly

classify p = αN binary memories of the kind of ξ⃗µ ∈ {−1,+1}N having as labels ξµi with i ∈ [1, .., N].
Regarding the dynamics, the stability of fixed points is in general implied by some properties of the couplings, mainly
their degree of symmetry. For the case of the TWN algorithm we start from a random symmetric matrix, as done in
[31]: the update of the couplings will only perturb the initial symmetry yet allowing the measures to be still consistent
with the theory. On the other hand, numerics show that SVMs are sufficiently symmetric to let the asynchronous
dynamics converge. The comparison between the retrieval maps obtained for the two algorithms with α = 0.45 and
N = 200 is reported in fig. 9. The curve relative to the SVM is fixed, while the one associated with the TWN is
changing with respect to the training overlap mt.
Even if the SVM always reaches classification of the memories for α < 2 [13], a network trained with noise might
show two different behaviors: one associated to retrieval where each memory is close to an attractor, and one related
to non-retrieval where the memory is far from its attractor and the basins of attraction might contain orthogonal
configurations with respect to the central attractor. In particular network models where couplings are assembled
according to particular rules (e.g. [21, 44]) the transition between these two regimes can be computed analytically. In
the case of TWN this cannot be done. It is then important to find an empirical criterion to divide the two behaviors
as a function of (mt, α). Let us assume that when N ≫ 1 the retrieval map mf (m0) develops a plateau starting from
m0 = 1 and ending in some limit value m0 = mc < 1 such that mf = 1 along all this interval (as in fig. 9). Hence,
one can associate the formation of such a plateau with the existence of a cohesive basin of attraction, where close
configurations in hamming distance to the attractor converge to the attractor. One then wants to measure the value
of mt at which such property of the basin disappears. As a possible estimate, it is convenient to consider the m∗

t such
that

dmf

dm0
(m∗

t)
∣∣∣
m0=1

= 1. (C1)

The numerical extrapolation of the overlap in fig. 2 at different values of N shows a good agreement between the
approximate separation between the two regions showed in fig. 2 and the line estimated by condition (C1).

16

0.0 0.2 0.4 0.6 0.8 1.0
m0

0.0

0.2

0.4

0.6

0.8

1.0

m
f

SVM
TWN, mt = 0.05
TWN, mt = 0.2
TWN, mt = 0.5
TWN, mt = 0.8

FIG. 9: Retrieval map mf (m0) in the case of networks trained through SVM and TWN algorithms. Curves are
shown as a function of mt and compared with the bisector, indicated with a dashed black line. Points are averaged

over 10 samples. Choice of the parameters: N = 200, α = 0.45.

Appendix D: Training with Saddles

Notice, from both panels (c), (d) of fig. 4, the existence of an optimum which does not coincide with the stable
fixed points of the dynamics (i.e. T = 0). As noted in previous studies on spin glasses [45], one can associate
configurations probed by a Monte Carlo at finite temperatures with configurations which are typically saddles in the
energy landscape with a given saddle index. The saddle index is defined as the ratio between the number of unstable
sites under the dynamics (see eq. (1)) and the total number of directions N . Stable fixed points have f = 0, while
random configurations are expected to have f = 1/2. In order to check whether a particular f is capturing relevant
features of the virtuous training configurations, we sampled training data according to the requirement that their
saddle fraction assumes a specific value f and mt = 0+. Saddles are then employed for training the network according
to eq. (9). Sampling is performed by randomly initializing the network on a configuration having training overlap
mt = 0+ with a reference memory, and performing a zero temperature dynamics on the landscape defined by the new
energy

E(S⃗|f, J) = 1

2

 1

N

N∑
i=1

Θ(−Si

N∑
j=1

JijSj)− f

2

, (D1)

where Θ(x) is the Heaviside function. Yet again, the value of mt was maintained constant during the descent. The
left panel in fig. 10 shows how the minimum stability evolves during the training process while a TWN algorithm is
initialized in the Hebbian matrix and learns saddles of different indices. For a network of N = 100 and α = 0.35,
we found that classification (i.e. positive minimum stability) is reached until a certain value of f , suggesting that
saddles belonging to this band are indeed good training data. The band of saddles that are suitable for learning
shrinks when α increases until such states do not significantly satisfy eq. (23) anymore. Such limit capacity is located
around the critical one for HU. It should be stressed that the precise performance as a function of f is quite sensitive
to the sampling procedure. Simulated annealing routines [46] have also been employed to minimize (D1), obtaining
qualitatively similar results yet not coinciding with the ones reported in fig. 10. A qualitative study of the basins of
attraction of the network has been performed and reported in the right panel in fig. 10. Specifically, the retrieval map
mf (m0) has been measured relatively to the saddle indices f at the first time they reached classification, in analogy
to what has been measured in [19]. The curves coincide quite well, suggesting that finite sized networks trained with

17

different f assume similar volumes of the basins of attraction when they are measured at the very first instant they
reach classification. The plot also shows that the generalization performance is comparable with the one of a SVM
trained with the same choice of the control parameters.

0.0 0.2 0.4 0.6 0.8
d /N

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

m
in

f = 0.0
f = 0.05
f = 0.15
f = 0.3
f = 0.45

0.0 0.2 0.4 0.6 0.8 1.0
m0

0.0

0.2

0.4

0.6

0.8

1.0

m
f

SVM

FIG. 10: Left: Minimum stability ∆min = mini,µ(∆
µ
i) as a function of the algorithm steps on a network trained with

the TWN routine that learns saddles of various indices f . The initial matrix is assembled according to the Hebb’s
rule. Full dots report the amount of iterations needed to accomplish classification. Right: the retrieval map mf (m0)
as measured on the positions of the colored dots from the right panel, with the same color code being applied. A
comparison with a SVM trained with the same choice of the parameters is also presented through the dashed blue
line. All measures are averaged over 5 samples with the shaded region indicating the experimental errors. The

choice of the parameters is: N = 100, α = 0.35, λ = 10−3.

	Training neural networks with structured noise improves classification and generalization
	Abstract
	Introduction
	The model
	Linear Perceptron & Support Vector Machine (SVM)
	Hebb's rule
	Hebbian Unlearning

	Training with noise
	Gardner's algorithm
	A loss function for TWN
	TWN performance

	The optimal structure of noise
	The optimal noise condition
	Numerical Analysis

	Hebbian Unlearning is Training with Structured Noise
	Conclusions
	Acknowledgments
	References
	Descending over the L function
	Training with noise
	Training with structured noise

	Training with noise - Classification analysis
	Training with noise - Generalization analysis
	Training with Saddles

