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TANGENT-FILLING PLANE CURVES OVER FINITE FIELDS

SHAMIL ASGARLI AND DRAGOS GHIOCA

Abstract. We study plane curves over finite fields whose tangent lines at smooth Fq-points
together cover all the points of P2(Fq).

1. Introduction

The investigation of algebraic curves over finite fields is an ever-growing research topic.
Stemming from the intersection of algebra, number theory and algebraic geometry, it influ-
ences a wide array of fields such as coding theory and combinatorial design theory [HKT08].
As one specific example in this vast body of work, finding curves with many Fq-rational points
remains an interesting challenge. The motivation behind searching for extremal curves ranges
from purely theoretical reasons (e.g. understanding the sharpness of Hasse-Weil inequality)
to more applied constructions (e.g. obtaining a rich configuration of points).

It is already instructive to restrict attention to plane curves. We list a few different
definitions from the literature for a given projective irreducible plane curve C ⊂ P

2 of degree
d over a finite field Fq to have “a lot of Fq-rational points”.

(a) We say that C is a maximal curve if #C(Fq) = q + 1 + (d − 1)(d − 2)
√
q, namely, the

curve achieves the equality in the Hasse-Weil upper bound for its Fq-rational points.
(b) We say that C is plane-filling if C(Fq) = P

2(Fq), that is, C contains each of the q2+q+1
distinct Fq-points of P

2.
(c) We say that C is blocking if C(Fq) is a blocking set, that is, C meets every Fq-line L at

some Fq-point.

The main purpose of the present paper is to introduce a new concept that indicates in yet
another way that the curve contains many Fq-points.

(d) We say that C is tangent-filling if every point P ∈ P
2(Fq) lies on a tangent line TQC to

the curve C at some smooth Fq-point Q.

Regarding the literature, we note that curves satisfying (a) have been thoroughly studied
in many papers ranging from foundational work [CHKT00,GK09,GGS10] to the more recent
discoveries [BM18,BLM23]. The curves satisfying (b) have been analyzed by [HK13,DC18,
Hom20]. Finally, the curves satisfying (c) have been recently examined by the authors in
joint work with Yip [AGY22a,AGY22b,AGY23a,AGY23b].

Our first theorem shows that a curve of a low degree cannot be tangent-filling. We first
state the result when the ground field is Fp for some prime p. For convenience, we state the
result for d ≥ 3 and discuss the case d = 2 in Remark 2.2.

Theorem 1.1. Let C ⊂ P
2 be an irreducible plane curve of degree d ≥ 3 defined over Fp

where p is a prime. If p ≥ 4(d− 1)2(d− 2)2, then C is not tangent-filling.
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We have an analogous result for an arbitrary finite field Fq.

Theorem 1.2. Let C ⊂ P
2 be an irreducible plane curve of degree d ≥ 2 defined over Fq. If

p > d and q ≥ d2(d− 1)6, then C is not tangent-filling.

Let us briefly compare the bounds in these two theorems. The bound p ≥ O(d4) in
Theorem 1.1 is replaced with a pair of bounds p > d and q ≥ O(d8) in Theorem 1.2. From
one perspective, Theorem 1.2 provides worse bounds on q, and it remains open to improve
q ≥ O(d8) to q ≥ O(d4). From another perspective, Theorem 1.2 provides better bounds on
the characteristic p; for instance, when q = pn with n = 4, the bound p4 = q ≥ O(d8) is
equivalent to p ≥ O(d2), which is a weaker hypothesis than the earlier bound p ≥ O(d4). It
is also natural to consider the situation where we restrict our attention to a more restrictive
class of smooth curves; in this case, Remark 2.3 explains to obtain a slightly improved result.

We are also interested in finding examples of tangent-filling curves. Clearly, any smooth
plane-filling curve is tangent-filling. Since the degree of the smallest plane-filling curve over
Fq is q+2 by [HK13], it is natural to search for tangent-filling curves with degrees less than
q + 2. Our next theorem exhibits an example of a tangent-filling curve of degree q − 1.

Theorem 1.3. Let q ≥ 11 and p = char(Fq) > 3. The curve C defined by the equation

xq−1 + yq−1 + zq−1 − 3(x+ y + z)q−1 = 0

is an irreducible tangent-filling curve.

Remark 1.4. We note that if char(Fq) = 2 in Theorem 1.3, then the curve C is reducible, as
it contains the lines x = y, y = z and z = x.

On the other hand, if char(Fq) = 3, then curve C in Theorem 1.3 is smooth, but it is not
tangent-filling since no tangent line at a point of C(Fq) passes through any of the points
[1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1]. This claim can be easily checked since the points
[x0 : y0 : z0] ∈ C(Fq) have the property that x0y0z0 6= 0 (the proof of this fact follows
similarly as in Lemma 3.2, which characterizes the Fq-points of C when char(Fq) > 3), while
the equation of the tangent line at the point [x0 : y0 : z0] ∈ C(Fq) is

xq−2

0 · x+ yq−2

0 · y + zq−2

0 · z = 0.

Finally, a simple computer check shows that the curve C from Theorem 1.3 is not tangent-
filling when q ∈ {5, 7} (see also Remark 3.7).

While we expect that d = q − 1 is not the smallest possible degree of a tangent-filling
curve, we believe that Theorem 1.3 is novel in several ways. First, checking the tangent-
filling condition over Fq requires careful analysis of the Fq-points of the curve. Second, in
our previous work with Yip [AGY22a], we found several families of blocking smooth curves
of degree less than q and so, it was natural to test those families whether they are also
tangent-filling; however, none of the tested families of blocking smooth curves turned out to
be tangent-filling. This suggests that finding tangent-filling curves may be very challenging,
much more than the case of blocking curves. In particular, finding tangent-filling curves
of degree less than q seems very difficult in general. Quite interestingly, the curve from
Theorem 1.3 is not blocking since C(Fq) does not intersect the Fq-lines x = 0, y = 0, z = 0
and x+ y + z = 0 (see also Corollary 3.3).

We remark that when q has a special form, there are more optimal examples. The note-
worthy example is the Hermitian curve Hq defined by x

√
q+1 + y

√
q+1 + z

√
q+1 = 0 when q is
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a square. We will see in Example 3.1 that Hq is a tangent-filling curve. Thus, for q square,
there is a (smooth) tangent-filling curve of degree

√
q + 1.

Inspired by the example in the previous paragraph, we may ask for the most optimal curve
that has the tangent-filling property.

Question 1.5. What is the minimum degree of an irreducible tangent-filling plane curve
over Fq?

Let us explain a heuristic that suggests that the optimal degree may not be too far away
from

√
q even for a general q. Consider a collection L of Fq-lines such that

(1.1)
⋃

L∈L

L(Fq) = P
2(Fq).

By viewing each line as a point in the dual space (P2)∗, the condition (1.1) is equivalent to L
being a blocking set in (P2)∗(Fq). There are plenty of blocking sets with size a constant mul-
tiple of q; for instance, the so-called projective triangle, a well-known example of a blocking
set, has 3

2
(q + 1) points for odd q [Hir79]. So, we choose L that satisfies (1.1) and |L| = c0q

for some constant c0 > 0. Next, suppose that it is possible to pick distinct Fq-points Pi ∈ Li

for each Li ∈ L, so that Pi 6= Pj for i 6= j. Let us impose the condition that a degree d
curve passes through the point Pi and has contact order at least 2 with the line Li at the
point Pi. For each value of i, this imposes 2 linear conditions in the parameter space P

N of
plane curves of degree d, where N =

(

d+2

2

)

− 1. Assuming that
(

d+2

2

)

− 1 > 2|L| = 2c0q, we
obtain a curve of degree d satisfying each of these local conditions. By construction, each
such curve is tangent to the line Li at the point Pi, and tangent-filling property is enforced
by (1.1). The main issue is that all such resulting curves may be singular at one (or more) of
the points Pi. While the bound of the form d > c1

√
q for some constant c1 > 0 is predicted

by this heuristic, it seems very challenging to make this interpolation argument precise.

Structure of the paper. In Section 2, we borrow tools from classical algebraic geometry
and combinatorics of blocking sets to prove our Theorems 1.2 and 1.1. In Section 3, we prove
Theorem 1.3 by studying in detail the geometric properties of the given curve C, such as
its singular locus and irreducibility, along with an arithmetic analysis for the equation of a
tangent line at a smooth Fq-point of C.

Acknowledgments. We thank the anonymous referee for their useful comments and sug-
gestions, which improved our presentation.

2. Curves of low degree are not tangent-filling

In this section, we prove Theorem 1.2 and Theorem 1.1. We start with preliminary geo-
metric constructions. Given a plane curve C, recall that the dual curve C∗ parametrizes
the tangent lines to C. More formally, C∗ is the closure of the image of the Gauss map
γG : C → (P2)∗ mapping a regular point P on C to the line TPC.

When the Gauss map γG is separable, the geometry of the tangent lines to the curve in
characteristic p is similar to the behaviour observed in characteristic 0. It turns out that
the curve C is reflexive (that is, the double dual (C∗)∗ can be canonically identified with C
itself) if and only if γG is separable [Wal56]. Thus, all curves in characteristic 0 are reflexive.
In positive characteristic p, the condition p > d is sufficient to ensure that a plane curve of
degree d is reflexive [Par86, Proposition 1.5].
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2.1. Bitangents. For a given plane curve C, we say that a line L is bitangent to C if L
is tangent to the curve C in at least two points. The following is a well-known result in
classical algebraic geometry; we include its proof to emphasize how the hypothesis p > d is
used. Since it is possible to have a curve with infinitely many bitangents [Pie94, Example
2], the lemma below would not be true if we completely remove the assumption p > d.

Lemma 2.1. Let C ⊂ P
2 be a geometrically irreducible plane curve of degree d ≥ 2 defined

over Fq such that p > d. Then C has at most 1

2
d2(d− 1)2 many bitangents.

Proof. The condition p > d guarantees that the Gauss map γG is separable. The dual curve
C∗ has degree δ ≤ d(d− 1). Since C∗ is geometrically irreducible, it has at most

(

δ−1

2

)

many
singular points [Har92, Exercise 20.18]. Every bitangent of the curve C corresponds to some
singular point of C∗, because γG is separable [Wal56]. Thus, the number of bitangents to C
is at most

(

δ − 1

2

)

≤
(

d(d− 1)− 1

2

)

=
1

2

(

d2 − d− 1
) (

d2 − d− 2
)

≤ 1

2

(

d2 − d
) (

d2 − d
)

as desired. �

The previous lemma would hold if we replaced the hypothesis p > d with the weaker
hypothesis that the Gauss map of C is separable.

2.2. Strange curves. We say that an irreducible plane curve C of degree d ≥ 2 over a field
K is strange if all the tangent lines to the curve C at its smooth K-points are concurrent.
This is equivalent to requiring that the dual curve of C is a line. Since the double dual of a
strange curve cannot be the original curve, it follows that strange curves must be nonreflexive.
In particular, strange curves can only exist when p = char(K) > 0. Strange curves do exist
[Pie94, Example 1]: for instance, all the tangent lines to the curve xyp−1 − zp = 0 pass
through the point [0 : 0 : 1]. The paper [BH91] contains several results on various properties
and characterizations of strange curves.

As mentioned in the beginning of the section, the hypothesis p > d ensures that the curve
is reflexive. Thus, a plane curve of degree d ≥ 2 cannot be strange whenever p > d. This
fact will be crucially used in the proofs below, when we verify that the Fq-points of the dual
curve C∗ do not produce a trivial blocking set.

2.3. Proofs of Theorem 1.1 and Theorem 1.2. We now present the proof of our first
main theorem which roughly states that tangent-filling curves over Fp cannot exist when p
is larger than a quadratic function of d.

Proof of Theorem 1.1. We first assume that C is geometrically irreducible. We start by
observing that the hypothesis p ≥ 4(d− 1)2(d− 2)2 implies p > d for d ≥ 3. Thus, the curve
C is reflexive, and in particular, C is not strange, meaning that deg(C∗) > 1. By applying
Hasse-Weil bound [AP96, Corollary 2.5], we have

#C(Fp) ≤ p+ 1 + (d− 1)(d− 2)
√
p.

Suppose, to the contrary, that C is tangent-filling. Let B ⊆ C∗(Fq) correspond to the set of
tangent Fp-lines to the curve C at smooth Fp-points. It is clear that

#B ≤ #C(Fp) ≤ p+ 1 + (d− 1)(d− 2)
√
p.(2.1)
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Note that B is a blocking set by definition of tangent-filling; indeed, each Fp-line in the dual
projective plane parametrizes lines passing through a fixed point, so B meets every Fp-line
in the dual space. Since 1 < deg(C∗) ≤ d(d− 1) < p+ 1, the set B is a non-trivial blocking
set, that is, B cannot contain all the Fp-points of some Fp-line in (P2)∗(Fp). Indeed, C∗ is
irreducible (as it is the image of the irreducible curve C through the map γG) and has degree
less than p+ 1. By Blokhuis’ theorem [Blo94],

#B ≥ 3

2
(p+ 1).(2.2)

Combining (2.1) and (2.2), we get p+1+ (d− 1)(d− 2)
√
p ≥ 3

2
(p+1) which contradicts the

hypothesis p ≥ 4(d− 1)2(d− 2)2.
Now, suppose that C is not geometrically irreducible. Since C is irreducible but not

geometrically irreducible, we conclude that #C(Fp) ≤ d2

4
(see [CM06, Lemma 2.3] or [AG23,

Remark 2.2]). In particular, the number of distinct tangent Fp-tangent lines to C is at most
d2

4
. Since each Fp-line covers p+ 1 points of P2(Fp), all the tangent lines to C at its smooth

Fp-points together can cover at most d2

4
·(p+1) distinct Fq-points. Since p ≥ 4(d−1)2(d−2)2,

it is immediate that d2

4
· (p+ 1) < p2 + p+ 1, so C is not tangent-filling. �

Remark 2.2. Note that the inequality p ≥ 4(d − 1)2(d − 2)2 automatically implies p > d
when d ≥ 3. However, when d = 2, the inequality p ≥ 4(d − 1)2(d − 2)2 is vacuous, and
p = 2 is allowed. When p = 2 and d = 2, the smooth conics are strange curves, which are
therefore tangent-filling because the tangent lines at the Fq-rational points of this conic are
all the q + 1 lines passing through some given point in P

2(Fq). So, Theorem 1.1 does not
hold when p = d = 2; on the other hand, Theorem 1.1 continues to hold when d = 2 and
p > 2 with essentially the same proof as the one above.

We proceed to prove our second main result concerning tangent-filling curves over an
arbitrary finite field Fq.

Proof of Theorem 1.2. We first assume that the curve C is geometrically irreducible, that
is, irreducible over Fq. We claim that C∗ is not a blocking curve. Suppose, to the contrary,
that C∗(Fq) is a blocking set in (P2)∗(Fq). Since p > d, the curve C is not strange, that is,
deg(C∗) > 1. Since 1 < deg(C∗) ≤ d(d − 1) < q + 1, the set B is a non-trivial blocking set
by the same reasoning given in the proof of Theorem 1.1. By [AGY23a, Lemma 4.1],

(2.3) #C∗(Fq) > q +
q +

√
q

deg(C∗)
≥ q +

q +
√
q

d(d− 1)
.

On the other hand, the number of Fq-points on the dual curve C∗ is bounded above:

(2.4) #C∗(Fq) ≤ #C(Fq) + #{bitangents to C defined over Fq}.
Combining Lemma 2.1, Hasse-Weil bound applied to C [AP96, Corollary 2.5], and (2.4), we
obtain an upper bound:

(2.5) #C∗(Fq) ≤ q + 1 + (d− 1)(d− 2)
√
q +

1

2
d2(d− 1)2.

Comparing (2.3) and (2.5), we obtain

(d− 1)(d− 2)
√
q +

1

2
d2(d− 1)2 + 1 >

q +
√
q

d(d− 1)
,
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or equivalently,

(2.6) d(d− 1)2(d− 2)
√
q +

1

2
d3(d− 1)3 + d(d− 1) > q +

√
q

Since
√
q ≥ d(d− 1)3, we have

√
q ≥ 1

2
d2(d− 1) which allows us to deduce,

q +
√
q ≥ d(d− 1)2 · ((d− 1)

√
q) +

√
q

≥ d(d− 1)2 · ((d− 2)
√
q +

√
q) + d(d− 1)

≥ d(d− 1)2 ·
(

(d− 2)
√
q + 1

2
d2(d− 1)

)

+ d(d− 1)

= d(d− 1)2(d− 2)
√
q +

1

2
d3(d− 1)3 + d(d− 1)

contradicting (2.6). We conclude that C∗ is not a blocking curve, which means that C is not
tangent-filling.

When C is irreducible but not geometrically irreducible, we know that #C(Fq) ≤ d2

4
, so

we apply the same argument (with p replaced with q everywhere) at the end of the proof of
Theorem 1.1. We conclude that C is still not tangent-filling. �

Remark 2.3. Kaji [Kaj89] proved that the Gauss map of a smooth plane curve over Fq must be
purely inseparable. Consequently, a smooth plane curve must have finitely many bitagents.
Moreoever, only smooth strange curves are conics in characteristic 2. These observations
together tell us that Theorem 1.2 holds for smooth curves even when the hypothesis p ≥ d
is removed as long as d ≥ 3.

3. Explicit examples of tangent-filling curves

We start with an example of a plane curve of degree
√
q + 1 which is tangent-filling over

Fq when q is a square.

Example 3.1. Let q be a prime power such that q is a square. The curve Hq defined by

x
√
q+1 + y

√
q+1 + z

√
q+1 = 0

is tangent-filling over Fq. The curve Hq is known as the Hermitian curve in the literature.
It can be checked that Hq has exactly (

√
q)3 + 1 distinct Fq-points. Moreover, the set

Hq(Fq) forms a unital in the sense of combinatorial geometry, meaning that the points can
be arranged into subsets of size

√
q + 1 so that any two points of Hq(Fq) lie in a unique

subset. In particular, it can be shown that every Fq-line meets Hq(Fq) in either 1 or
√
q + 1

points [BE08, Theorem 2.2]. As a result, Hq is a blocking curve over Fq.
To show that Hq is a tangent-filling curve, we let P0 = [a : b : c] to be a point in P

2(Fq).
We are searching for a point Q = [x0 : y0 : z0] ∈ Hq(Fq) such that TQ(C) contains P0. This
is equivalent to finding [x0 : y0 : z0] ∈ Hq(Fq) such that

(3.1) x
√
q

0 a+ y
√
q

0 b+ z
√
q

0 c = 0.

Note that the map [x : y : z] 7→ [x
√
q : y

√
q : z

√
q] is a bijection on the set P2(Fq), and therefore

also on Hq(Fq) because Hq(Fq) is defined over Fq. Thus, there exists [x1 : y1 : z1] ∈ Hq(Fq)
with the property that

[x0 : y0 : z0] =
[

x
√
q

1 : y
√
q

1 : z
√
q

1

]

.
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In other words, it suffices to find [x1 : y1 : z1] ∈ Hq(Fq) such that

(3.2) xq
1a+ yq1b+ zq1c = 0.

Since x1, y1, z1 are elements of Fq, we see that (3.2) is equivalent to

(3.3) x1a+ y1b+ z1c = 0.

Let L be the Fq-line defined by ax + by + cz = 0. Since Hq(Fq) is a blocking set, the
equation (3.3) is satisfied for some Q = [x1 : y1 : z1] ∈ Hq(Fq), as claimed. This argument
also shows that the dual of the Hermitian curve is isomorphic to itself.

For the remainder of the paper, we will focus on the curve C defined by the equation

(3.4) xq−1 + yq−1 + zq−1 − 3(x+ y + z)q−1 = 0.

Unless otherwise stated, we will assume that p = char(Fq) > 3.
We will study the curve C by first finding the singular points, and then checking that C

is irreducible. Finally, we will prove that C is tangent-filling, establishing Theorem 1.3.

3.1. Rational points of the curve. We start by finding all the Fq-points on C.

Lemma 3.2. The set C(Fq) is equal to the set of all points [x : y : z] ∈ P
2(Fq) such that

xyz(x+ y + z) 6= 0.

Proof. Since xq−1 = 1 holds for every x ∈ F
∗
q, the conclusion is clear from (3.4). �

Corollary 3.3. The curve C is not blocking.

Proof. Consider the Fq-line L = {z = 0}. Then C ∩L has no Fq-points due to the condition
in Lemma 3.2. Thus, C(Fq) is not a blocking set. �

3.2. Singular points of the curve. Our goal is to determine the singular points of the
curve C over Fq.

Proposition 3.4. The curve C has only one singular point, namely [1 : 1 : 1].

Proof. By looking at the partial derivatives of the defining polynomial in (3.4), any singular
point [x0 : y0 : z0] of C must satisfy,

(3.5) xq−2

0 = yq−2

0 = zq−2

0 = 3(x0 + y0 + z0)
q−2.

In particular, any singular point [x0 : y0 : z0] ∈ C(Fq) satisfies:

(3.6) x0y0z0(x0 + y0 + z0) 6= 0.

So, without loss of generality, we may assume that z0 = 1. Thus, a potential singular point
takes the form [x0 : y0 : 1] and satisfies x0y0 6= 0 by equation (3.6). Applying (3.5), we get

(3.7) xq−2

0 = yq−2

0 = 3(x0 + y0 + 1)q−2 = 1.

We begin by computing the expression (x0 + y0 + 1)q−2,

(3.8) (x0 + y0 + 1)q−2 =
(x0 + y0 + 1)q

(x0 + y0 + 1)2
=

1 + xq
0 + yq0

(1 + x0 + y0)2
.

The two equations (3.7) and (3.8) together give,

(3.9)
3 + 3x2

0 + 3y20
(1 + x0 + y0)2

= 1.

7



We can rearrange (3.9) into

x2

0 + y20 − x0y0 − x0 − y0 + 1 = 0

which can be expressed as a degree 2 equation in y0:

y20 − y0(x0 + 1) + x2

0 − x0 + 1 = 0.

Solving for y0, we obtain

(3.10) y0 =
x0 + 1 + (x0 − 1)γ

2

where γ satisfies γ2 = −3. We compute yq0 using (3.10):

(3.11) yq0 =
xq
0 + 1 + (xq

0 − 1)γq

2
.

We also compute y20 using (3.10):

y20 =
(x2

0 + 2x0 + 1) + 2(x0 + 1)(x0 − 1)γ + (x2
0 − 2x0 + 1) · (−3)

4

which simplifies to:

(3.12) y20 =
−x2

0 + 4x0 − 1 + (x2
0 − 1)γ

2
.

Since yq−2

0 = 1 by (3.7), we know that yq0 = y20. Equating (3.11) and (3.12),

(3.13)
−x2

0 + 4x0 − 1 + (x2
0 − 1)γ

2
=

xq
0 + 1 + (xq

0 − 1)γq

2
.

We proceed by analyzing two cases, depending on whether γ ∈ Fq or γ /∈ Fq.
Case 1. γ ∈ Fq.
In this case, we have γq = γ. Using xq

0 = x2
0 which is implied by (3.7), the equation (3.13)

yields,
−x2

0 + 4x0 − 1 + (x2
0 − 1)γ

2
=

x2
0 + 1 + (x2

0 − 1)γ

2
.

which simplifies to (x0 − 1)2 = 0, and so x0 = 1. Using (3.10), we obtain y0 = 1 as well.
This results in the singular point [1 : 1 : 1] of the curve C.

Case 2. γ /∈ Fq.
In this case, γ ∈ Fq2 \ Fq because γ2 = −3. Since γq is the Galois conjugate of γ, we have

γq = −γ. Thus, (3.13) yields,

−x2
0 + 4x0 − 1 + (x2

0 − 1)γ

2
=

xq
0 + 1− (xq

0 − 1)γ

2
.

This simplifies (due to xq
0 = x2

0) to,

(x0 − 1)2 = (x2

0 − 1)γ.

We can eliminate the case x0 = 1 because that will only bring us back to the singular point
[1 : 1 : 1] already analyzed in the previous case. After dividing both sides of the preceding
equation by x0 − 1, and solving for x0, we get

(3.14) x0 =
1 + γ

1− γ
.
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Using the relation γ2 = −3, the formula (3.14) simplifies to,

(3.15) x0 =
γ − 1

2
.

Applying (3.10), we obtain

(3.16) y0 =
−γ − 1

2
.

Since γ2 = −3, we have two solutions (once γ is chosen, −γ is also a solution). Thus, (3.15)
and (3.16) allow us to conclude that there are two potential singular points on the curve C:

[

γ − 1

2
:
−γ − 1

2
: 1

]

and

[−γ − 1

2
:
γ − 1

2
: 1

]

However, both of these points above satisfy x0+y0+1 = 0. By equation (3.6), none of these
two points is singular on the curve C.

We conclude that Case 2 does not occur after all, and the point [1 : 1 : 1] is the unique
singular point of C. �

3.3. Irreducibility of the curve. We begin with a general irreducibility criterion for a
plane curve of degree at least 3 with a unique singular point.

Lemma 3.5. Suppose that D = {F = 0} is a plane curve defined over a field K with
deg(F ) ≥ 3 and a unique singular point P0 ∈ D(K). After dehomogenizing f(x, y) :=
F (x, y, 1) and applying translation, we may assume that (0, 0) is the singular point of the
affine curve {f = 0}. Assume that the quadratic term A2(x, y) in the expansion of f around
(0, 0) cannot be written as L(x, y)2 for some L(x, y) ∈ K[x, y] (in other words, the equation
A2(x, y) = 0 has precisely two solutions in P

1(K)). Then the plane curve D is irreducible
over K.

Proof. Since (0, 0) is a singular point of {f = 0}, we can then express

f(x, y) = A2(x, y) + A3(x, y) + . . .

where Ai(x, y) is a homogeneous polynomial of degree i in x and y. By hypothesis, A2(x, y)
splits over K as a product L1(x, y) ·L2(x, y) of two distinct nonzero linear forms. If f(x, y) =
g(x, y) ·h(x, y) where g(0, 0) = h(0, 0) = 0, then we claim that the component curves {g = 0}
and {h = 0} meet at the point (0, 0) with multiplicity 1. Indeed, the expansions of g(x, y)
and h(x, y) around the origin (0, 0) must necessarily take the form (after multiplication by
a suitable nonzero constant):

g(x, y) = L1(x, y) +B2(x, y) +B3(x, y) + . . .

and

h(x, y) = L2(x, y) + C2(x, y) + C3(x, y) + . . .

respectively, where Bi(x, y) and Ci(x, y) are homogeneous polynomials of degree i in x and
y. Since L1(x, y) and L2(x, y) are distinct linear forms which generate the maximal ideal of
K[x, y] at (0, 0), then the two curves {g = 0} and {h = 0} meet with multiplicity 1 at (0, 0).

We show that the plane curve D = {F = 0} is irreducible over K. Assume, to the contrary,
that F = G ·H for some homogeneous polynomials G and H with positive degrees d1 and
d2, respectively. Let g(x, y) := G(x, y, 1) and h(x, y) := H(x, y, 1). After applying Bézout’s

9



theorem, d1d2 intersection points (counted with multiplicity) of {G = 0} and {H = 0} must
be singular points of D. Since D has a unique singular point, namely (0, 0) in the affine
chart z = 1, the local intersection multiplicity at the origin must be at least d1d2 ≥ 2. This
contradicts the fact that {g = 0} and {h = 0} meet with multiplicity exactly 1 at (0, 0). �

Proposition 3.6. The curve C defined by (3.4) is geometrically irreducible.

Proof. By Proposition 3.4, the curve C has the unique singular point [1 : 1 : 1]. Expanding
the equation xq−1 + yq−1 + 1 − 3(x + y + 1)q−1 = 0 around the point (1, 1), we are led to
analyze:

(1 + (x− 1))q−1 + (1 + (y − 1))q−1 + 1− 3(3 + (x− 1) + (y − 1))q−1

After expanding, the first nonzero homogeneous form in (x − 1) and (y − 1) has degree 2,
and is given by:

2 · 3q−2 ·
[

(x− 1)2 − (x− 1)(y − 1) + (y − 1)2
]

.

Since the discriminant of the quadratic s2 − st + t2 is −3 6= 0 in Fq, the hypothesis of

Lemma 3.5 is satisfied. Thus, C is irreducible over Fq. �

3.4. Tangent-filling property. In this final subsection, we give the proof that the curve
C defined by (3.4) is tangent-filling over Fq.

Proof of Theorem 1.3. Let P = [a0 : b0 : c0] be an arbitrary point in P
2(Fq). We want to

find a smooth Fq-point Q = [x0 : y0 : z0] of C such that P is contained in the tangent line
TQC. From Lemma 3.2, we know that an Fq-point [x0 : y0 : z0] is a point on the curve C if
and only if

(3.17) x0y0z0(x0 + y0 + z0) 6= 0

Note that P is contained in the tangent line TQC if and only if

(3.18) a0 ·
(

3sq−2

0 − xq−2

0

)

+ b0 ·
(

3sq−2

0 − yq−2

0

)

+ c0 ·
(

3sq−2

0 − zq−2

0

)

= 0

where s0 = x0 + y0 + z0. Using the fact that sq−1 = 1 for each s ∈ F
∗
q, we rewrite (3.18) as

(3.19)
3(a0 + b0 + c0)

x0 + y0 + z0
=

a0
x0

+
b0
y0

+
c0
z0
.

Note that all the denominators in (3.19) are nonzero because Lemma 3.2 guarantees that
xyz(x+ y + z) 6= 0 for any Fq-point [x : y : z] of the curve C.

Case 1. Suppose a0b0c0(a0 + b0 + c0) 6= 0 and [a0 : b0 : c0] 6= [1 : 1 : 1].
In this case, the point P = [a0 : b0 : c0] is already smooth in C(Fq) by Lemma 3.2 and

Proposition 3.4. Hence, we may take Q = P because P always belongs to TPC.
Case 2. Suppose a0 + b0 + c0 = 0.
In this case, (3.19) yields

(3.20)
a0
x0

+
b0
y0

+
c0
z0

= 0.

We search for a solution [x0 : y0 : z0] 6= [1 : 1 : 1] satisfying (3.17).
Subcase 2.1. a0 + b0 + c0 = 0 and a0b0c0 6= 0.

10



Since char(Fq) > 3, we cannot have a0 = b0 = c0. We may assume, without loss of
generality, that b0 6= c0. Let z0 = 1 and y0 = −1, and solve for x0 according to the
equation (3.20):

x0 =
a0

b0 − c0
∈ F

∗
q

Clearly, [x0 : y0 : z0] 6= [1 : 1 : 1] and (3.17) is satisfied.
Subcase 2.2. a0 + b0 + c0 = 0 and a0b0c0 = 0.
By symmetry, we may assume that a0 = 0; since a0 + b0 + c0 = 0, then we have [a0 : b0 :

c0] = [0 : 1 : −1] and so, equation (3.20) yields y0 = z0. The point [x0 : y0 : z0] = [2 : 1 : 1]
satisfies both (3.17) and (3.20). This concludes our proof that all points [a0 : b0 : c0] for
which a0 + b0 + c0 = 0 belong to a tangent line at a smooth Fq-point of C.

Case 3. a0 + b0 + c0 6= 0 and a0b0c0 = 0.
Since we seek points [x0 : y0 : z0] with x0 + y0 + z0 6= 0, we can scale [a0 : b0 : c0] and

[x0 : y0 : z0] so that

a0 + b0 + c0 = 3 and x0 + y0 + z0 = 9

The equation (3.19) now reads,

(3.21) 1 =
a0
x0

+
b0
y0

+
3− a0 − b0
9− x0 − y0

;

Since a0b0c0 = 0, we may assume by symmetry that a0 = 0. As a result, (3.21) reads

(3.22) 1 =
b0
y0

+
3− b0
z0

.

If b0 /∈ {0,−3, 3}, then we let z0 = 6, y0 = 6b0/(3 + b0) and x0 = (9 − 3b0)/(3 + b0). Note
that [x0 : y0 : z0] 6= [1 : 1 : 1] and satisfies both (3.22) and (3.17).

If b0 = 0, then we simply choose [x0 : y0 : z0] = [2 : 4 : 3] 6= [1 : 1 : 1] which satisfies both
(3.22) and (3.17).

If b0 = −3, then we get the solution [x0 : y0 : z0] = [−1 : 6 : 4] 6= [1 : 1 : 1] which satisfies
both (3.22) and (3.17).

If b0 = 3, then we get the solution [x0 : y0 : z0] = [2 : 3 : 4] 6= [1 : 1 : 1] which satisfies both
(3.22) and equation (3.17).

Case 4. [a0 : b0 : c0] = [1 : 1 : 1].
We can assume a0 = b0 = c0 = 1, and also x0 + y0 + z0 = 9 after scaling [x0 : y0 : z0].

Then equation (3.19) yields,

(3.23) 1 =
1

x0

+
1

y0
+

1

9− x0 − y0
.

Our goal is to find a solution (3, 3) 6= (x0, y0) ∈ F
∗
q × F

∗
q to (3.23).

After multiplying (3.23) by x0y0(9− x0 − y0), we obtain

9x0y0 − x2

0y0 − x0y
2

0 = 9y0 − x0y0 − y20 + 9x0 − x2

0 − x0y0 + x0y0,

which we rearrange as follows:

y20(x0 − 1) + y0(x0 − 1)(x0 − 9)− x0(x0 − 9) = 0.

Our goal is to show that the number of Fq-points on the affine curve Y given by the equation:

(3.24) y2(x− 1) + y(x− 1)(x− 9)− x(x− 9) = 0
11



is strictly more than the number of points which we want to avoid from the set:

(3.25) {(0, 9), (0, 0), (9, 0), (3, 3)}.
Indeed, besides the point (3, 3), the points (x0, y0) on the curve (3.24) which we have to
avoid are the ones satisfying the equation:

x0y0 · (x0 + y0 − 9) = 0.

We note that there are only three such points on the curve (3.24): (0, 0), (0, 9) and (9, 0);
this follows easily from the equation (3.24) after substituting either x = 0, or y = 0, or
x = 9− y.

Now, for each Fq-point (x0, w0) 6= (1, 0) on the affine conic Ỹ given by the equation

w2 = (x− 1)(x− 9),

we have the Fq-point (x0, y0) on Y given by

(3.26) (x0, y0) :=

(

x0,
−(x0 − 1)(x0 − 9) + (x0 − 3)w0

2(x0 − 1)

)

.

Since there are q − 2 points (x0, w0) 6= (1, 0) on Ỹ (Fq) (because we have q + 1 points on its
projective closure in P

2 and only two such points are on the line at infinity), we obtain (q−2)

Fq-points on Y . Now, if (x1, w1) 6= (x0, w0) are distinct points on Ỹ (Fq) \ {(1, 0)}, then we
get the corresponding points on Y (Fq) are also distinct unless x0 = x1 = 3 as can be seen

from (3.26). There are at most 2 points on Ỹ (Fq) having x-coordinate equal to 3 (which in

fact happens when q = 7, in which case (3,±3) ∈ Ỹ (F7)). Thus, we are guaranteed to have
at least (q−3) distinct points in Y (Fq). Hence, as long as q > 7, we are guaranteed to avoid
the points listed in (3.25).

Therefore, the curve C is tangent-filling under the hypothesis q > 7 and char(Fq) > 3. �

Remark 3.7. The result in Theorem 1.3 is sharp in a sense that when q = 7, the curve
xq−1+ yq−1+ zq−1−3(x+ y+ z)q−1 = 0 is not tangent-filling. Indeed, one can check that for
the point P = [1 : 1 : 1], there is no smooth F7-point Q on this curve C such that P ∈ TQC.
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