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Abstract. This paper describes several cases of adjunction in the homomorphism pre-
order of relational structures. We say that two functorsΛ and Γ between thin categories
of relational structures are adjoint if for all structuresA and B, we have that Λ(A)maps
homomorphically to B if and only if A maps homomorphically to Γ(B). If this is the
case, Λ is called the left adjoint to Γ and Γ the right adjoint to Λ. In 2015, Foniok and
Tardif described some functors on the category of digraphs that allow both left and
right adjoints. The main contribution of Foniok and Tardif is a construction of right ad-
joints to some of the functors identified as right adjoints by Pultr in 1970. We generalise
results of Foniok and Tardif to arbitrary relational structures, and coincidently, we also
provide more right adjoints on digraphs, and since these constructions are connected
to finite duality, we also provide a new construction of duals to trees. Our results are
inspired by an application in promise constraint satisfaction — it has been shown that
such functors can be used as efficient reductions between these problems.

Key words and phrases. relational structure, digraph, homomorphism, homomor-
phism duality, constraint satisfaction problem.

1. INTRODUCTION

The study of homomorphisms between (di)graphs and general relational structures
plays an important role in combinatorics and theoretical computer science [HN04, FV98,
KŽ17]. The importance in theoretical computer science stems, in particular, from the
fact that the Constraint Satisfaction Problem (CSP) and its relatives can be cast as the
problem of existence of a homomorphism from one relational structure to another. The
class of all relational structures of a given signature (e.g., all digraphs) admits the homo-
morphism preorder, where A ≤ B for two structure A and B if and only if there exists a
homomorphism from A to B. This preorder is interesting in its own right [HN04], and,
moreover, important computational problems such as non-uniform CSPs and promise
CSPs can be stated in terms of a relative position of an input structure with respect to
a fixed structure or a pair of fixed structures. Specifically, the CSP with a template A
(which is a fixed structure) asks whether a given structure I satisfies I ≤ A [FV98, KŽ17],
and the promise CSP with a templateA,B (which is a pair of structures such thatA ≤ B)
asks to distinguish between the cases I ≤ A and I 6≤ B [AGH17, KO22]; the promise
being that input falls into one of the two (disjoint) cases.

A (thin) functor from the class of structures of some signature to the class of struc-
tures of a possibly different signature is a mapping that is monotone with respect to
the homomorphism preorder. Many well-known examples of constructions in graph
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theory, such as the arc graph construction, are functors [FT13, FT15]. In this paper we
investigate a kind of homomorphism duality of such functors called adjunction — two
functors Λ and Γ form an adjoint pair if Λ(H) maps homomorphically to G if and only
ifHmaps homomorphically to Γ(G) for all relational structuresG,H of the correspond-
ing signatures. In this case, Λ is called a left adjoint of Γ and Γ is a right adjoint of Λ.
If, for some Γ, there exists such Λ we also say that Γ has (or admits) a right adjoint.

Adjunction is a core concept of category theory, although we should note that here
we work with posetal categories of relational structures, i.e., only existence of a homo-
morphism matters, rather than with the category of relational structures together with
homomorphisms. Adjoints between categories of relational structures in the stricter
categorical sense have been completely described by Pultr [Pul70]. Here, we call these
functors left and central Pultr functors (following the nomenclature of Foniok and Tardif
[FT15]) — a left Pultr functor is a left adjoint to a central Pultr functor. It is clear, that
each pair of left and central Pultr functors is adjoint in our sense as well. Neverthe-
less, there are more functors that admit a right adjoint than left Pultr functors, e.g.,
the afore-mentioned arc graph construction. In this paper, we ask the question which
central Pultr functors (i.e., the functors which admit a left adjoint by Pultr’s character-
isation) admit a right adjoint?

A necessary condition for a central Pultr functor to have a right adjoint was given by
Foniok andTardif [FT15]. They also provided explicit constructions of the right adjoints
for some of such functors mapping digraphs to digraphs. Loosely speaking, they gave
explicit constructions of right adjoints to functors that either do not change the domain
(i.e., the set of vertices) of the digraph, or such that the new domain is the set of edges
(arcs) of the input digraph. In the present paper, we extend their results by proving
an explicit construction that works with general relational structures. In particular,
we provide adjoints to some of the functors between classes of relational structures
satisfying the above-mentioned necessary condition, and that either do not change the
domain of the structure, or the new domain is one of the relations of the input structure.
Hence we prove a direct generalisation of [FT15] to arbitrary relational signatures (see
Sections 5 and 6). Furthermore, by composing right adjoints constructed in this way, we
obtain more adjunctions than [FT15] even for the digraph case (see Section 7). Finally,
we believe that our constructions are more intuitive than those provided by [FT15] —
in particular, the above mentioned necessary condition relates adjunction with finite

duality, and therefore a construction of a right adjoint is related to a construction of a
dual of a tree. Moreover, every finite tree can be built via natural inductive process. Our
constructions, and the proofs that they work, reflect this inductive process for certain
trees used in the definition of the functor.

2. PRELIMINARIES

We recall some basic definitions and notation. We use the symbol P (- ) to denote
the power set of a set - .

2.1. Structures and homomorphisms

A directed graph can be defined as a pair G = (�, �G) where� is the set of vertices
of G and �G ⊆ � × � is the set of edges of G. This is a special case of a relational
structure with a single relation of arity 2 as defined below.

Definition 2.1. A relational signature g is a tuple of relational symbols ', (, . . . where
each symbol is assigned a positive integer, called an arity and denoted by ar', ar(, . . . .

A relational g-structure is a tuple A = (�;'A, (A, . . . ), where � is a set called the
domain (or universe) of A, and 'A ⊆ �ar' , (A ⊆ �ar ( , . . . are relations on this domain
of the corresponding arity.

The relational symbols ', (, . . . in g are also referred to as g-symbols. When no confu-
sion can arise, we say a g-structure (dropping “relational”), or even simply a structure,
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when g is clear from the context. Two structures of the same signature are said to be
similar. Wewill call elements from the domain of some structure vertices, and tuples in a
relation ' of some structure '-edges, or simply edges if the symbol ' is either irrelevant
or clear from the context.

In the rest of the paper, we will not use the symbol + as a relational symbol — we
restrict its use to refer to the domain of the structure (e.g., in Definition 2.5 and Section 3
below).

Loosely speaking, a homomorphism between two similar structures is a map that
preserves relations, e.g., a graph homomorphism would be a map between the two
graphs that preserves edges. Formally, a homomorphism is defined as follows.

Definition 2.2. LetA and B be two structures of the same signature g . A homomorphism

5 : A → B is defined to be a mapping 5 : � → � such that, for each relational symbol
' in g and each (01, . . . , 0ar') ∈ 'A, we have

( 5 (01), . . . , 5 (0ar')) ∈ 'B.

We will write A → B if there exists a homomorphism from A to B. The set of all
homomorphisms from A to B is denoted by hom(A,B).

The above definition can be rephrased by saying that the function 5 : � → � has a
coordinate-wise action on each of the relations ', i.e., for each relational symbol ' in
the signature, the expression

5 ' ((01, . . . , 0ar')) = ( 5 (01), . . . , 5 (0ar'))

defines a function 5 ' : 'A → 'B. We use the symbol 5 ' throughout this paper.
Finally, since we will be extensively working with the homomorphism preorder, this

in particular means that we will often work with structures up to homomorphic equiva-
lence — we say that two structures A and B are homomorphically equivalent if we have
A → B and B → A. Such structures would be identified if we followed the standard
procedure to turn the homomorphism preorder into a proper partial order. Note that
two structures A and B are homomorphically equivalent if and only if for every struc-
ture C, we have C → A if and only if C → B, i.e., they allow homomorphisms from the
same structures. The same is also true for allowing homomorphisms to the same struc-
tures, i.e., A and B are homomorphically equivalent if and only if, for all C, we have
A → C if and only if B → C. A structure is called a core, if it is not homomorphically
equivalent to any of its proper substructures.

Certain structures called trees play a special role in this paper. We use a definition of
a tree equivalent to the one given in [NT00, Section 3]. Loosely speaking, a relational
structure is a tree if it is connected, contains no cycles, and none of its relations has
tuples with repeated entries. This is more precisely defined by using the incidence
graph of a structure.

Definition 2.3. The incidence graph of a structure A = (�;'A, . . . ) is a bipartite multi-
graph whose vertex set is the disjoint union of � and 'A for each relational symbol '.
There is an edge connecting every tuple (01, . . . , 0: ) ∈ 'A with every one of its coordi-
nates 08 ∈ �. In particular, if some element appears multiple times in this tuple, then
the edge connecting it to the tuple appears with the same multiplicity. In this case, the
incidence graph contains a cycle of length 2 (i.e., two parallel edges).

A g-structure is a (g-)tree if its incidence graph is a tree, i.e., an acyclic connected
digraph.

Remark 2.4. An undirected graph can be viewed as a relational structure with a single
relation � whose universe is the set of vertices+ . The relation � ⊆ + ×+ contains for
every edge two tuples (D, E) and (E,D). This means that no undirected graph with at
least one edge is a tree according to the above definition since if (D, E) is an edge, then
D, (D, E), E , (E,D) is a 4-cycle of the incidence graph. Intuitively, relational structures
with binary relations are directed graphs; an undirected graph is encoded as directed
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by including both orientations of each edge which results in a directed cycle of length
2. Under the above definition, a directed graph is a tree if it is an oriented tree.

We now fix notation for some small structures that will be used later.

Definition 2.5. Fix a relational signature f . We define the following structures:

• V1 is the structure with a single vertex, i.e., +1 = {1}, and empty relations, i.e.,
'V1 = ∅ for all f-symbols '.

• Let ( be a relational symbol, S1 is a structure with ar( vertices related by (

and all other relations empty. More precisely, (1 = {1, . . . , :} where : = ar( ,
(S1 = {(1, . . . , :)}, and 'S1 = ∅ for all f-symbols ' except ( .

Since adjunction is a form of duality, we will often mention homomomorphism du-
ality of structures.

Definition 2.6. A pair (T,D) of similar structures is called a duality pair if, for all
structures A similar to T, either T → A or A → D. In this case, D is called a dual to T.

It was shown in [NT00] that a structure has a dual if and only if this structure is
homomorphically equivalent to a tree. We will also give an alternative proof of one of
the implications in Section 4.

2.2. Pultr functors: gadget replacement and pp-constructions

Traditionally, in the CSP literature, pp-constructions would be described in the lan-
guage of logic using so called primitive positive formulae (logical formulae that use only
∃, ∧, and =). We refer to [BKW17, Definition 19] for details. In this paper, we define
“pp-constructions” using a language similar to [FT15, Definitions 2.1–2.3].

Definition 2.7. Let f and g be two relational signatures. A (f, g)-Pultr template is a
tuple of f-structures consisting of P, and Q' , one for each g-symbol ', together with
homomorphisms n8,' : P → Q' for each g-symbol ' and all 8 ∈ {1, . . . , ar'}.

Definition 2.8. Given a (f, g)-Pultr template as above, we define two functors Λ and Γ,
called (left and central) Pultr functors.

• Given a g-structure A, we define a f-structure Λ(A) in the following way: For
each 0 ∈ �, introduce to Λ(A) a copy of P denoted by P0 , and for each g-symbol
' and each (01, . . . , 0: ) ∈ 'A, introduce to Λ(A) a copy of Q' with the image
of P under n8,' identified with P08 for all 8 ∈ {1, . . . , :}.

• Given a f-structure B, we define a g-structure Γ(B) whose universe consists
of all homomorphisms ℎ : P → B. The relation 'Γ (B) where ' is a g-symbol
is then defined to contain all tuples (ℎ1, . . . , ℎ: ) of such homomorphisms for
which there is a homomorphism 6 : Q' → B such that ℎ8 = 6 ◦ n8,' for all
8 ∈ {1, . . . , :}.

Once the definitions are settled, it is not too hard to show that, for any Pultr template,
the corresponding Pultr functors Λ and Γ are left and right adjoints. This statement is
attributed to [Pul70], although it was rediscovered on numerous occasions, and it is
considered folklore in category theory.

The fact that both Λ and Γ are (thin) functors follows from the adjunction. It can
be also easily proved directly, for example, a homomorphism 5 Γ : Γ(A) → Γ(B) can be
obtained from a homomorphism 5 : A → B by setting 5 Γ (ℎ) = 5 ◦ℎ for each ℎ : P → A.

Example 2.9. Consider the Pultr template consisting of structures P = ({0, 1}; {(0, 1)})
and Q� = ({0, 1, 2}; {(0, 1), (1, 2)}) with n1 (0) = 0 and n1 (1) = 1, and n2 (0) = 1 and
n2 (1) = 2.

The corresponding central Pultr functor Γ is the arc-graph construction that is usu-
ally denoted by X ; given a (directed) graph G = (�, �G), the digraph X (G) is defined as
the graph with the vertex set �G and edges ((D, E), (E,F )) ∈ �G × �G.

The left Pultr functor Λ corresponding to this template provides a left adjoint to the
arc-graph construction, and can be explicitly described as follows: Given a digraph G,
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the digraph Λ(G) is constructed by replacing each vertex E ∈ � with a pair of vertices
E0, E1 connected by an edge, i.e., with (E0, E1) ∈ �Λ(G) . Furthermore, for each edge
(D, E) ∈ �G, we identify the vertices D1 and E0. For example, the image of a path of
length =, i.e., the digraph P= = ({0, . . . , =}; {(8, 8 + 1) | 8 ∈ {0, = − 1}) is the path of
length = + 1 consisting of vertices 00, 01 = 10, 11 = 20, . . . , =1.

Observe that, in this case, we have that Λ(Γ(P=)) is isomorphic to P= . This does
not need to happen for any digraph in place of P= , nevertheless, the existence of a
homomorphism Λ(Γ(G)) → G for all digraphs G follows from the adjunction in a
straightforward way.

We remark that the connection between the adjunction of left and central Pultr func-
tors and the algebraic reductions between CSPs has been described in [KOWŽ23, Sec-
tion 4.1]. Let us briefly mention that the central Pultr functors are pp-constructions
(more precisely, a structureA is pp-constructible from B if it is homomorphically equiv-
alent to the structure Γ(B) for some Pultr functor Γ), and the left Pultr functors are
called gadget replacements in this context.

The main contribution of the present paper is an investigation of the cases of Pultr
templates, forwhich Γ is also a left adjoint, i.e., it admits a right adjointΩ. The following
necessary condition for this was proved in [FT15] for the case of digraphs, but the proof
goes through verbatim for general structures; we include it for completeness.

Theorem 2.10 ([FT15, Theorem 2.5]). Let Λ and Γ be a pair of left and central Pultr

functors defined by a (f, g)-Pultr template. If Γ has a right adjoint, then, for each g-tree

T, Λ(T) is homomorphically equivalent to a f-tree.

Proof. A structure has a dual if and only if it is homomorphically equivalent to a tree
[NT00]. Thus, it suffices to prove that if Γ has both a left adjoint Λ and a right adjoint
Ω, and (T,D) is a duality pair, then (Λ(T),Ω(D)) is a duality pair as well. To show that,
observe that, for any A, Λ(T) 6→ A is equivalent to T 6→ Γ(A) since Λ is a left adjoint
to Γ. The latter condition is equivalent to Γ(A) → D, since D is a dual of T, which in
turn is equivalent to A → Ω(D), since Ω is a right adjoint to Γ. �

Corollary 2.11. If a central Pultr functor Γ has a right adjoint, then all the structures in

its Pultr template are homomorphically equivalent to trees.

Proof. As shown in [FT15] (and not hard to see), if the template consists of structures P
and Q' for g-symbols ', then P is isomorphic to Λ(V1) and Q' is isomorphic to Λ(R1)
for each g-symbol ' (where tree g-structures V1 and R1 are as in Definition 2.5). �

It is open whether the condition in Theorem 2.10 is also sufficient to have a right
adjoint. In this paper, as well as Foniok-Tardif do in [FT15], we focus on the cases
when P and Q'’s are actually trees, and we give a concrete construction of the adjoint
in two cases: P = V1 (this is shown in Section 5), and P = S1 is the tree with a single
(-edge for some f-symbol ( (this is shown in Section 6). Finally, in the last section, we
combine these two constructions to prove that if P and Q'’s are trees, and, moreover,
the images of P in Q' under the maps n8,' are either disjoint or intersect in one vertex,
then the corresponding central Pultr functor has a right adjoint (Theorem 7.3).

Finally, let us note a well-known fact from category theory that if Ω1 and Ω2 are
both right adjoints to Γ, then Ω1 (A) and Ω2 (A) are homomorphically equivalent for
all structures A. The proof is immediate from the definitions: both structures allow a
homomorphism from B if and only if Γ(B) → A.

3. AN INDUCTIVE CONSTRUCTION OF TREES

For our constructions, it will be convenient to describe g-trees by certain formal
terms. Our terms will correspond to trees that are rooted, either in a vertex or in an
edge (i.e., a tuple in one of the relations). Each term will correspond to a unique in-
ductive construction of a tree, but the same tree can be obtained by several inductive
constructions.
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edge� (pr2 edge� (vertex, vertex), vertex) edge� (vertex, pr2 edge� (vertex, vertex))

edge�
(

pr1 edge� (pr2 edge� (vertex, vertex), vertex), pr2 edge� (vertex, vertex)
)

Figure 1. Examples of terms and trees they represent.

We recall that we assume that none of the relational signatures uses+ as a relational
symbol. Each term will be either a+ -term (+ stands for vertices) or an '-term where '
is a relational symbol in g . The rules for the inductive construction of terms and their
semantics are as follows:

• vertex is a + -term.
• If C1, . . . , C: are+ -terms and ' is a :-ary symbol in g , then edge' (C1, . . . , C: ) is an
'-term.

• If C is an '-term and 8 ∈ {1, . . . , ar'}, then pr8 (C) is a + -term.

The rooted tree (T(C), AC ), where AC is the root, corresponding to a term C is defined
in the following way:

• T(vertex) is the one-vertex tree, rooted at its only vertex, i.e., T(vertex) = V1

and AC = 1.
• If C = edge' (C1, . . . , C: ) is an '-term, then T(C) is the tree obtained by taking the
disjoint union of the treesT(C8) (with roots AC8 ) and adding the tuple (AC1, . . . , AC: )
to the relation '. The root AC is defined to be this new tuple.

• If C = pr8 (B) is a + -term and AB = (E1, . . . , E:), then we set T(C) = T(B) and
AC = E8 .

The domain of T(C) is denoted by ) (C).
We say that C represents a tree T if T(C) is isomorphic to T, and that C represents a

tree T rooted in A if T(C) is isomorphic to T via an isomorphism mapping AC to A . The
same tree can in general be represented by several terms (see the following example),
but each term represents a unique tree up to isomorphism.

Example 3.1. The following are examples of terms and the trees they represent in the
relational signature of digraphs. The corresponding roots are highlighted. We drop the
brackets around arguments of pr8 to ease readability.

vertex edge� (vertex, vertex) pr2 edge� (vertex, vertex)

Note that the difference between the second tree and the third tree is the root; the
latter tree is obtained from the other by applying pr2, and thus only changing the root.
Further, we present a few examples of more complicated trees in Fig. 1.

We remark that a tree can be represented by multiple terms even when we fix the
root. For example, the last tree in Fig. 1 can be also represented by the term

edge�
(

pr2 edge� (vertex, pr1 edge� (vertex, vertex)), pr2 edge� (vertex, vertex)
)

.

Lemma 3.2. Fix a relational signature g . Any finite g-tree can be represented by a term.

More precisely,

• for every finite tree T and A ∈ ) , there is a + -term C such that T(C) is isomorphic

to T via an isomorphism that maps AC to A , and

• for every finite tree T and A ∈ 'T for some g-symbol ', there is an '-term C such

that T(C) is isomorphic to T via an isomorphism that maps AC to A .

The proof is a simple argument by induction on the number of edges of the tree. We
include it in detail to provide more intuition about terms.
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Proof. We prove this statement by induction on the number of edges of T. Each in-
duction step is moreover split in two: we first prove that trees with = edges rooted in
an edge can be represented, and then, assuming the above, we show that trees with =

edges rooted in a vertex can be represented.

(1) We start with = = 0. There is a single tree T with no edges, namely the tree
with one vertex. It cannot be rooted in an edge, but it can be rooted in its only
vertex. It is represented by the term vertex.

(2) Assume = > 0, and we can represent all trees rooted in a vertex with less than
= edges. Assume that T has = edges and is rooted in an edge (A1, . . . , A: ) ∈ 'T

for some :-ary symbol '. Removing this edge from T splits T into : connected
components T1, . . . , T: , where T8 contains A8 for each 8. Each of these compo-
nents is a tree. Assuming that T8 rooted in A8 is represented by the term C8 for
each 8, T rooted in (A1, . . . , A: ) is represented by edge' (C1, . . . , C: ).

(3) Assume that = > 0, and we can represent all trees rooted in an edge with at
most = edges. Let T be a tree with = edges and A ∈ ) . Since T is connected, A is
involved in some edge, say (E1, . . . , E:) ∈ 'T where : = ar' and A = E8 for some
8. Now, T rooted in (E1, . . . , E: ) is represented by an '-term C by the inductive
assumption, so T rooted in A is represented by pr8 (C). �

Finally, our constructions use the notion of a subterm of a term. Intuitively a subterm
of a term C is any proper term that appears as a part of C . The set of all subterms of C
encodes all intermediate byproducts of the inductive construction of T(C). Formally,
we define subterms as follows.

• The only subterm of vertex is itself.
• If C = edge' (C1, . . . , C: ) is an '-term, where C1, . . . , C: are + -terms and ' is a :-
ary symbol in g , then the set of its subterms consists of the term itself and all
subterms of C1, . . . , C: .

• If C = pr8 (B) is a + -term, where B is an '-term, then the set of its subterms
consists of the term itself and all subterms of B.

If B is a subterm of C , then we write B ≤ C , moreover, if B is a proper subterm of C , i.e.,
it is a subterm and B ≠ C , we write B < C . A + -subterm of a term C is a subterm which
is a+ -term, and similarly an '-subterm for a relational symbol ' is a subterm which is
an '-term.

For example, the term

C = edge�
(

pr1 (edge� (vertex, vertex)), pr1 (edge� (vertex, vertex))
)

has four distinct subterms: two �-terms, which are C and edge� (vertex, vertex), and two
+ -terms, which are pr1 (edge� (vertex, vertex)) and vertex.

We note that statements about terms can be proven by an inductive principle: show-
ing the statement is true for the term vertex, and then showing that if it is true for all
proper subterms of a term C , it is also true for C .

4. PRELUDE: DUALS TO TREES

Before we get to the main construction of adjoints, let us briefly discuss a simpler
construction of a dual of a tree. There are a few similarities between the construction
of duals and right adjoints to central Pultr functors: as we mentioned before (see the
proof of Theorem 2.10), if Γ is a central Pultr functor that has a left adjoint Λ and
a right adjoint Ω, and (T,D) is a duality pair, then (Λ(T),Ω(D)) is also a duality pair.
Moreover, our construction of the dual uses the inductive construction of trees from the
previous section in a similar way as the constructions of right adjoints in Sections 5 and
6, but the construction of a dual is conceptually easier, so we present it to create some
intuition that will be useful below. We also note that we show an explicit connection
between constructions of a dual and the construction of a right adjoint in Section 5.3.
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Again, we fix a relational signature. Recall that a pair (T,D) of similar structures
is called a duality pair if, for all structures A similar to T, either T → A or A → D.
In this case, D is called a dual to T, and it was shown in [NT00] that a structure has
a dual if and only if it is homomorphically equivalent to a tree. See [LLT07, NT05]
for other characterisations of finite duality. Our construction is loosely inspired by the
construction in [NT05].

Another way to look at duals is that for any structure A, a homomorphism A → D

should correspond to a ‘proof ’ that T 6→ A. How can one prove that a tree does not
map to a structure A if that is the case? This can be done by an inductive argument.
Let us outline this argument in the case T and A are digraphs. More precisely, we
describe a procedure that shows that, for a fixed root A ∈ ) and some 0 ∈ �, there is no
homomorphism from T to A that maps A to 0. Pick a neighbour B of A in T, and assume
that (A, B) ∈ �T, the other orientation is dealt with symmetrically. We can show that
there is no homomorphism from T to A mapping A to 0 by showing that, for none of
the neighbours 1 of 0 in A, there is a homomorphism T → A that maps the edge (A, B)
to (0,1). In turn, removing the edge (A, B) from T splits the tree into two subtrees T1,
containing A , and T2, containing B. A homomorphism T → A that maps (A, B) to (0,1)
is equivalent to a pair of homomorphisms T1 → A, that maps A to 0, and T2 → A, that
maps B to 1. We have thus reduced the claim to proving that there is no homomorphism
from (at least) one of the two smaller trees, and can therefore recursively repeat our
strategy for these two smaller trees. We further design a structure D, in which we can
encode proofs of the above form. In particular, the image of an element 0 ∈ A under
a homomorphism A → D will contain answers to questions of the form ‘Is there a
homomorphism T′ → A that maps A to 0?’ for all trees T′ and all roots A ∈ ) ′ that
would appear in the above inductive argument.

Definition 4.1. Let C& be an (-term for some relational symbol ( . Let T+ be the set of
all + -subterms of C& , and let T' be the set of all '-subterms of C& for each relational
symbol '. We define a structure D(C& ).

The domain of this structure, denoted by� (C&), is the set of all tuples E ∈ {true, false}T+ ,
indexed by+ -subterms of C& , such that Evertex = true.

To define edges, we introduce the following notation. For terms C1, . . . , C: ∈ T+ , a
relational symbol ' of arity : , and E1, . . . , E: ∈ � (C&), we let

&edge' (C1,...,C: )
(E1, . . . , E:) = E1C1 ∧ · · · ∧ E:C: .

A tuple (E1, . . . , E:) of vertices is related in a relation ' (of arity :) in D(C& ) if

(D1) For all C ∈ T( and 8 ∈ {1, . . . , :} such that pr8 (C) ∈ T+ , we have

&C (E
1, . . . , E:) ⇒ E8pr8 (C )

.

(D2) If ' = ( , i.e., if C& is an '-term, then

&C& (E
1, . . . , E:) = false.

If 4 = (E1, . . . , E: ), we will often write &C (4) instead &C (E1, . . . , E: ). Note that if
4 ∈ 'D(C& ) , then we have a tuple 4∗ ∈ {true, false}T' defined by 4∗C = &C (4), which
satisfies 4∗C& = false (assuming C& is an '-term). This draws a parallel to how vertices
are defined. Finally, note that item (D1) is essentially quantified by the + -subterms of
C& , since all of such subterms C ′, with the exception C ′ = vertex, are of the form pr8 (C)
for some C , and C and 8 are uniquely defined by C ′.

Theorem 4.2. For any relational structure Q that is homomorphically equivalent to

T(C& ) for some (-term C& where ( is a relational symbol, D(C& ) is a dual of Q.

Proof. Without loss of generality, we may assume that Q = T(C& ). We need to show
that, for all structures A, A → D(C& ) if and only if Q 6→ A.

First, assume that Q 6→ A. We define 5 : � → � (C& ) by putting, for each D ∈
� and each C ∈ T+ , 5 (D)C = true if there is a homomorphism ℎ : T(C) → A that
maps the root to D, and 5 (D)C = false otherwise. Clearly, 5 (D)vertex = true. Now,
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assume that 4 = (D1, . . . , D: ) ∈ 'A. Observe that &C ( 5
' (4)) is true if and only if there

is a homomorphism ℎ : T(C) → A mapping the root edge to 4. In other words, there
is a homomorphism ℎ : T(C) → A mapping the root edge to 4 if and only if there
are homomorphisms ℎ8 : T(C8 ) → A with ℎ8 (AC8 ) = D8 for all 8. Assuming that such
a homomorphism ℎ exists, the homomorphisms ℎ8 are defined as restrictions of ℎ to
the corresponding subtrees. Assuming homomorphisms ℎ8 exist, taking the union of
ℎ8 defines a mapping ℎ on all vertices of T(C). This mapping clearly preserves all edges
different from the root, since ℎ8 are homomorphisms, and it also preserves the root
edge, since it is mapped to 4 ∈ 'A. This means that ℎ is indeed a homomorphism. We
need to show that 5 ' (4) satisfies (D1) and (D2). For (D1), we want

&C ( 5
' (4)) ⇒ 5 (D8)pr8 (C ) ,

i.e., if there is a homomorphism T(C) → Amapping the root to 4 then there is a homo-
morphism T(pr8 (C)) → Amapping the root to D8 . This is trivial, since T(C) = T(pr8 (C))
and a homomorphism ℎ : T(C) → A that maps the root AC to (D1, . . . , D: ) necessarily
maps Apr8 (C ) to D8 . Finally, (D2) is clear from the definition, since we assumed that
Q 6→ A.

For the other implication, we first prove the following by induction on the term
C ≤ C& :

Claim 4.3. Let C ≤ C& and let ℎ : T(C) → D(C& ) be a homomorphism. Then ℎ(AC )C = true

if C is a + -term, and &C (ℎ
' (AC )) = true if C is an '-term.

(1) The case C = vertex is trivial.
(2) Let C = edge' (C1, . . . , Car'). We assume that ℎ : T(C) → A is a homomorphism

and ℎ(AC ) = (E1, . . . , Ear'). This in particular means that, for each 8, ℎ maps
the root of T(C8) to E8 . Hence, we can apply the inductive assumption on the
restrictions of ℎ to T(C8)’s to get that E8C8 = true for all 8, and consequently the
claim by the definition of &C (ℎ

' (AC )).
(3) Let C = pr8,' (C

′), and ℎ : T(C) → A. Note that T(C) = T(C ′), so ℎ is also a homo-

morphism from T(C ′). Let ℎ' (AC ′ ) = (E1, . . . , E:), and observe that ℎ(AC ) = E8 . By
the inductive assumption, this implies that&C ′ (ℎ

' (AC ′ )) = &C ′ (E
1, . . . , E:) = true.

Consequently, we get that ℎ(AC )C = E8C = true from (D1).

This concludes the proof of the claim. Assume for a contradiction that 5 : A → D(C& )
and6 : Q → A are homomorphisms. Since T(C& ) = Q, the above claim applied to C = C&
and the homomorphism ℎ = 5 ◦ 6 : Q → D(C& ), would imply that &C& (ℎ

' (AC& )) = true

which would contradict (D2). �

4.1. Example: Dual to a directed path

It is well known (see, e.g., [HN04, Proposition 1.20]) that a directed graph maps
homomorphically to the graph L: = ({1, . . . , :};<), where the edge relation is given by
the strict order on the domain, if and only if it does not allow a homomorphism from a
directed path with : edges (and : +1 vertices) — we denote this path by P: . This means
that L: is the dual of P: . Let us compare this observation with our construction of the
dual.

Fix : > 0. We pick the term

C: = edge�
(

pr2
(

edge�
(

. . . pr2 (edge� (vertex, vertex)), . . . , vertex
) )

, vertex
)

,

where edge� appears : times, to represent P: rooted in its last edge, i.e., the following
graph.

. . .

We also let B0 = vertex, C8 = edge� (B8−1, vertex) and B8 = pr2 (C8) for 8 ∈ {1, . . . , : − 1}.
Note that both C8 and B8 represent a path of length 8 — the difference is the root which
is either the last edge or the last vertex. Finally, note that B0, . . . , B:−1 and C1, . . . , C: are
the only subterms of C: .



Víctor Dalmau, Andrei Krokhin, and Jakub Opršal 10

By definition, a vertex of D(C:) is a tuple

D ∈ {true, false}{B0,...,B:−1 }

such that DB0 = true. This allows us to write them simply as ordered :-tuples whose
8-th entry is the value corresponding to B8−1.

To check whetherD is connected by an edge to E or not, we consider the expressions
&C8 (D, E) = DB8−1 ∧ EB0 for all 8. Using the definition, we get that (D, E) is an edge if

(D1) for all 8, &C8 (D, E) ⇒ EB8 since B8 = pr2 (C8),
1 and 1 The implication

&C8 (D, E) ⇒ Epr1 (C8 ) is not
needed since pr1 (C8) is
not a subterm of C: .

(D2) &C: (D, E) = false.

Since EB0 = true, we may simplify &C8 (D, E) = DB8−1 , and substitute into the conditions
above:

(1) DB8−1 ⇒ EB8 , for all 8 < : , and
(2) DB:−1 = false.

In particular, observe that D has no out-edge (i.e., there is no edge of the form (D, E) for
any E ) if its last entry is true.

It is not hard to see that L: maps to a dual constructed this way. We can construct
a homomorphism ℎ by mapping 8 ∈ {1, . . . , :} to the tuple starting with 8 true’s and
followed by all false’s, i.e.,

ℎ(1) = (true, false, . . . , false)

ℎ(2) = (true, true, false, . . . , false)

...

ℎ(:) = (true, true, . . . , true)

Note that this is exactly the same homomorphism that is constructed in the proof of
Theorem 4.2 (assuming A = L: ). And indeed, it is easy to check that if 8 < 9 , then ℎ(8)
and ℎ( 9) satisfy the conditions for an edge given above.

Naturally, there is also a homomorphism the other way. One such homomorphism
maps a tuple D that begins with 8 true’s followed by a false to 8. Again, it is easy to
check that if (D, E) is an edge then E has to begin with one more true. This establishes
that our construction is homomorphically equivalent to L: (as it should be).

Remark 4.4. Let us note that any homomorphism constructed according to the proof of
Theorem 4.2 uses only the vertices in the image of ℎ above, i.e., the tuples of the form

(true, . . . , true, false, . . . , false),

where true appears at least once and false does not need to appear at all. This is quite
easy to see: T(C8) maps to T(C 9 ) for all 8 < 9 via a homomorphism preserving the roots,
hence, for any D in the image, we get that if DC 9 = true then DC8 = true for all 8 < 9 .

We could force similar implications in the definition of the dual by requiring that
DC ⇒ DB whenever there is a homomorphism T(B) → T(C) preserving roots. We did not
include this condition in the definition because our goal is to get a simple construction
and not necessarily that the construction results in the smallest graph possible. Never-
theless, this raises a question: Would it be possible by enforcing such implications on
our general construction to produce a dual that would be a core (i.e., a structure that is
not homomorphically equivalent to any of its proper substructures)?

Finally, we note that our construction of the dual of a tree can be naturally extended
to any (finite) tree duality, i.e., given a finite set of finite trees F = {T1, . . . ,T=}, we
can construct their dual D that will satisfy that, for any structure A, A → D if and
only if for all 8 = 1, . . . , =, T8 6→ A. This D is constructed as in Definition 4.1 with the
following changes: Assume that a term C8 represents T8 rooted in an edge for each 8

(we are assuming that none of T8 ’s consists of a single vertex). Let T be the set of all
subterms of any of the C8 ’s. We use notationT+ andT' (where ' is a relational symbol)
for the + -terms and (-terms, respectively, that belong to this set. Finally, replace the
condition (D2) with
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(D2’) &C8 (4) = false for all 8 = 1, . . . , = (naturally, this only applies if C8 is an '-term).

We denote a structure constructed this way by D(C1, . . . , C=).

Theorem 4.5. Let @1, . . . , @= be terms for each 8 ∈ {1, . . . , =}, and assume that @8 is an

'8 -term, where '8 is a relational symbol. For each structure A, we have that either there

exists 8 such that T(@8) → A or A → D(@1, . . . , @=).

Proof. The proof is essentially identical to the proof of Theorem 4.2. First, the implica-
tion ‘T(@8 ) 6→ A for all 8 ∈ {1, . . . , =} implies A → D(@1, . . . , @=)’ is proven by the same
argument as before. In particular, we define 5 : A → D(@1, . . . , @=) by 5 (D)C = true if
T(C) → A for each C ∈ T+ andD ∈ �, and 5 (D)C = false otherwise. The rest of the proof
is identical except that instead of arguing that &C ( 5

' (4)) satisfies (D2) using Q 6→ A,
we argue that &C ( 5

' (4)) satisfies (D2’) for some 8 using that T(@8) 6→ A.
For the other implication, it is enough to argue that T(@8) 6→ D(@1, . . . , @=) for each

8, since then T(@8) does not map homomorphically to any A that maps to D(@1, . . . , @=).
Observe that Claim 4.3 and its proof is valid in this case. Consequently, if ℎ : T(@8) →
D(@1, . . . , @=) for some 8, then&@8 (ℎ

'8 (A@8 )) = true by the claim, whichwould contradict
(D2’). �

5. ADJOINTS TO FUNCTORS NOT CHANGING THE DOMAIN

In this section, we describe the simpler of the cases of our construction of an adjoint.
We consider (f, g)-Pultr templates where P = V1 (i.e., a vertex) and, for each g-symbol
', Q' is a f-tree. The homomorphisms n8,' : P → Q' are given by picking elements
G1, . . . , Gar' ∈ &' that are the images of the unique vertex of P under n8,' for the respec-
tive 8’s. Note that some of the G8 ’s might coincide, and Q' can also have other vertices.
Naturally, the elements G1, . . . , Gar' depend on the symbol ' which will be always clear
from the context. This means that the structure Γ(A) can be equivalently described in
the following way: the universe of Γ(A) coincides with the universe ofA, and for every
g-symbol ', we have

(1) 'Γ (A)
= {(A (G1), . . . , A (Gar')) | A : Q' → A}.

Finally, in this case we have that every homomorphism ℎ : A → B is also a homomor-
phism ℎ : Γ(A) → Γ(B).

We will construct the right adjoint Ω in two steps: First, we define the set of vertices
of a structure Ω(B), and second, we define the edges on these vertices. Before defining
edges, we introduce new notation.

Throughout these definitions, we fix the following setting: Fix a (f, g)-Pultr template
with P being a singleton structure with empty relations and with Q' being a f-tree for
each g-symbol '. First, for each ', we pick a term C' representing Q' , and define T to
be the set of all subterms of any of the C'’s. We use notation T+ and T( (where ( is a
f-symbol) for the + -terms and (-terms, respectively, that belong to this set.

Definition 5.1 (Vertices of Ω(B)). Let B be a g-structure. We define Ω(�) to be the set
of all tuples

* ∈
∏

C∈T+

P (hom(Γ(T(C)),B))

such that *vertex is a singleton set, i.e., vertices of Ω(B) are tuples * indexed by + -
terms in T , where the C-th entry is a set of homomorphisms from Γ(T(C)) to B such
that*vertex contains exactly one homomorphism.

Let us remark on the above definition. Observe that the domain of T(vertex) is
{Avertex}, hence *vertex = {Avertex ↦→ D} for some D ∈ �, i.e., *vertex selects an element D
of �. Also note that the relations in Γ(T(C)) will be empty whenever none of the trees
Q' map to T(C), in which case *C is a set of functions from ) (C) to �.
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Intuitively, elements of Ω(�) are elements D of � together with some extra informa-
tion. The additional information stores data about mappings from the subtrees of each
Q' to � and how they interact.

To define edges, we need to introduce some notation. Let ( be a relational symbol of
arity : , C1, . . . , C: ∈ T+ , and* 1, . . . ,* : ∈ Ω(�). Consider the term C = edge( (C1, . . . , C: )
and the tree T(C). Since its domain) (C) is the disjoint union of) (C1), . . . ,) (C:), we may
associate to every tuple ( 51, . . . , 5:) ∈ * 1

C1
× · · · × * :

C:
a unique mapping 5 : ) (C) → �

defined as 5 = 51 ∪ · · · ∪ 5: . We define
>

C (*
1, . . . ,* : ) as the set of all such mappings,

i.e., we let ?
C
(* 1, . . . ,* : ) = {51 ∪ · · · ∪ 5: | 51 ∈ * 1

C1
, . . . , 5: ∈ * :

C:
}.

Note that
>

C (*
1, . . . ,* : ) is bijective to * 1

C1
× · · · × * :

C:
. Often, we will write simply>

C (�) instead of
>

C (*
1, . . . ,* : ) if � = (* 1, . . . , * :).

Definition 5.2 (Edges of Ω(B)). Let B be a g-structure, we define a f-structure Ω(B)

with universe Ω(�). For each f-symbol ( of arity : , let (Ω (B) consist of all tuples
(* 1, . . . , * : ) ∈ Ω(�): that satisfy:

(A1) For all C ∈ T( and 8 ∈ {1, . . . , :} such that pr8 (C) ∈ T+ , we have?
C
(* 1, . . . ,* : ) ⊆ * 8

pr8 (C )
.

(A2) For all C ∈ T( , ?
C
(* 1, . . . , * : ) ⊆ hom(Γ(T(C)),B).

Let us comment on the definition. In (A1), the trees represented by C and pr8 (C)
coincide, and hence both sets in the condition consist of mappings with the same do-
main. Item (A2) requires that the mappings that we defined by taking union of ho-
momorphisms T(C8 ) → * 8 , where C = edge' (C1, . . . , C: ), are actually homomorphisms.
Consequently, given that � is an edge in (Ω (B) , we may thus define a tuple

�∗ ∈
∏

C∈T(

P (hom(Γ(T(C)), B))

with �∗
C =

>
C (�). The intuition behind requiring condition (A2) is that the union of

homomorphisms is a homomorphism as long as the root edge of C is mapped to an edge.
Observe that condition (A2) does not need to be checked if pr8 (C) ∈ T+ for some 8 since
then it follows from (A1). Nevertheless, it will be useful to talk about it separately.

We claim that this construction Ω yields a right adjoint to the considered cases of
central Pultr functors Γ.

Theorem 5.3. Assume a (f, g)-Pultr template with P being the f-structure with a single

vertex and empty relations, and Q' being a f-tree for all g-symbols '. Further, assume Γ

is the central Pultr functor defined by this template, and Ω is defined as in Definition 5.2.

For every f-structure A and g-structure B, there is a homomorphism Γ(A) → B if and

only if there is a homomorphism A → Ω(B).

We now proceed to prove the above theorem in several steps. The following lemma
proves one of the implications and gives further insights to why * ’s and

>
C (�)’s are

defined as above.

Lemma 5.4. If there is a homomorphism 5 : Γ(A) → B, then there is a homomorphism

6 : A → Ω(B).

Proof. We define a mapping 6 : � → Ω(�) by

6(D)C = {5 ◦ ℎ | ℎ : T(C) → A, ℎ(AC ) = D}.

We claim that this mapping is a homomorphism. First, we show that 6(D) is well-
defined, i.e., that 6(D)vertex is a singleton set, and the elements of 6(D)C are homomor-
phisms from Γ(T(C)) to B. For the former, observe that 6(D)vertex = {Avertex ↦→ 5 (D)},
since there is a single homomorphism ℎ : T(vertex) → A which maps the root (and the
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only vertex) Avertex to D. For the latter, assume C is a + -term. Since ℎ : T(C) → A is also
a homomorphism Γ(T(C)) → Γ(A), and 5 is a homomorphism Γ(A) → B, we get that
5 ◦ ℎ : Γ(T(C)) → B is homomorphism by composition.

To prove that 6 preserves the relations, assume that 4 = (D1, . . . , D: ) ∈ (A is an edge.
We first show that

?
C
(6( (4)) = {5 ◦ ℎ | ℎ : T(C) → A, ℎ( (AC ) = 4}

for each C ∈ T( , C = edge( (C1, . . . , C: ). This is true because, for any homomorphism
ℎ : T(C) → A that maps the root edge to 4 = (D1, . . . , D: ), its restriction ℎ8 : T(C8) → A

maps the roots to the respective D8 for all 8, and, for any tuple of homomorphisms
ℎ8 : T(C8) → A which maps the roots to the respective D8 ’s, their union is a homomor-
phism T(C) → A.

To prove property (A1), we need to check that
>

C (6
( (4)) ⊆ 6(D8 )pr8 (C ) . This is easy

to see, since any homomorphism ℎ : T(C) → A that maps AC to 4 maps Apr8 (C ) , which
is the 8-th component of AC , to D8 . Finally, the property (A2), that each mapping in>

C (6
( (4)) is a homomorphism, is proved in the same way as the analogous statement

for 6(D), i.e., it follows from the above claim. �

The above lemma concludes one of the implications that we need for the adjunction.
We turn to the other implication which we prove in two steps, each provided by one of
the following two lemmas. The first lemma proves the adjunction in the special case
when A = T(C) for some C ∈ T . This will be used in the proof of the general case.

Lemma 5.5. Let C ∈ T and letℎ : T(C) → Ω(B) be a homomorphism. Then the mapping

3 : ) (C) → �, defined so that 3 (E) = 5 (Avertex) where 5 is the unique element of ℎ(E)vertex,
is a homomorphism Γ(T(C)) → B.

Proof. We prove by induction on C that 3 ∈ ℎ(AC )C if C is a + -term, and 3 ∈
>

C (ℎ
( (AC ))

if C is an (-term.

Case C = vertex: This is a trivial case.
Case C = edge( (C1, . . . , C: ): Note that restrictions of ℎ to subtrees T(C8 ) are homo-

morphisms, so we know that, for all 8, ℎ(AC8 )C8 contains the restrictions of 3 by
the inductive assumption. The claim then immediately follows from the defini-
tion of

>
C (ℎ

( (AC )).
Case C = pr8 (C

′): Since ℎ is a homomorphism from T(C) = T(C ′) to B, we know
that 3 ∈

>
C ′ (ℎ

( (AC ′ )), and the claim subsequently follows by (A1).

The lemma then immediately follows either by the definition, if C is a + -term, or by
(A2), otherwise. �

Note that the induction in the above proof alternates between+ -terms and (-terms.
We use the above lemma to prove the general case.

Lemma 5.6. If 6 : A → Ω(B) is a homomorphism, then there is a homomorphism

5 : Γ(A) → B.

Proof. Recall that, for each g-symbol ', C' is a fixed term representing Q' , and hence
T(C') and Q' are isomorphic. We further assume (without loss of generality) thatQ' =

T(C'). We define 5 by setting 5 (D) to be the unique value attained by the single map
in 6(D)vertex. This is a well-defined mapping on the vertices of Γ(A). We need to show
that it preserves the relations of Γ(A). To this end, assume that ' is a g-symbol of arity
: and (D1, . . . , D: ) ∈ 'Γ (A) . This means that there is a homomorphism ℎ : Q' → A, s.t.,
ℎ(G8 ) = D8 for all 8 ∈ [:]. Observe that 6 ◦ ℎ : T(C') → Ω(B) is a homomorphism since
it is obtained as a composition of two homomorphisms, so Lemma 5.5 applies to 6 ◦ ℎ
in place of ℎ and 5 ◦ ℎ in place of 3 (since 5 ℎ(E) is the unique value attained by the
single map in 6ℎ(E)vertex). Consequently, 5 ◦ℎ is a homomorphism from Γ(T(C')) to B,
and therefore

( 5 (D1), . . . , 5 (D:)) = ( 5 ℎ(G1), . . . , 5 ℎ(G: )) ∈ 'B,
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sinceℎ(G8 ) = D8 and (G1, . . . , G: ) ∈ 'Γ (T(C' ) ) , where the latter follows from the definition
of 'Γ (T(C' ) ) as phrased in (1) by letting A be the identity homomorphism on T(C'). �

Lemmas 5.4 and 5.6 together yield Theorem 5.3.

Remark 5.7. Let us briefly compare our general construction to that of Foniok and
Tardif [FT15, Theorem 7.1] assuming that both signatures are digraphs and P = V1

(denoted by ®%0 in [FT15]). An analogous comparison also applies for the construction
presented in the next section. Also, examples below compare the two constructions in
several concrete cases of central Pultr functors.

First, both the domain of our right adjoint Ω and Foniok-Tardif right adjoint ΩFT

consist of some tuples indexed by some rooted subtrees of Q� . The first difference is
in how we choose the subtrees. Foniok and Tardif choose a vertex of Q� called middle

vertex which disconnects the two copies of P inQ� , and define the set of subtrees using
this vertex. This is similar to choosing a term representing Q� rooted in the middle
vertex, although not every subtree used by Foniok and Tardif needs to be represented
by a subterm. Furthermore, note that the requirement that the middle vertex separates
the two copies of P creates an obstacle to generalising Foniok and Tardif’s construction
to relational structures with higher arity.

Second, the elements of tuples comprising the universe of ΩFT are subsets of vertices
ofBwhile elements of our tuples are sets ofmappings to�. Themain reason that Foniok
and Tardif are able to do this is that the middle vertex separates the two copies of P, and
hence they only need to track the value of the mappings on one distinguished vertex.
Again, since our aim is to provide adjoints in a more general setting, we cannot afford
to do that.

5.1. Example: An oriented path

In this example, we compare our construction to the construction introduced in
[FT15, Definition 4.1]. Our goal is to construct the adjoint to the digraph Pultr functor
Γ defined by the Pultr template where Q� is the following digraph:

G1 G2

The maps n1,� and n2,� map the singleton P to G1 and G2, respectively.
Let us start by fixing a term C� representing Q� . Namely, we let

C� = edge� (pr1 (edge� (vertex, vertex)), pr1 (edge� (vertex, vertex)))

which represents Q� rooted in the middle edge. It has two + -subterms and two �-
subterms (including itself) that represent the following trees:

B0 = vertex C1 = edge� (B0, B0)

B1 = pr1 (C1) C� = edge� (B1, B1)

For a directed graph H, the definition of Ω(H) is spelled out as follows. The vertices of
Ω(H) are pairs * = (*B0,*B1), where *B0 is the set containing the map that sends the
unique vertex of T(vertex) to some D0 ∈ � and *B1 ⊆ �) (B1 ) ; this is because Γ(T(B1))
has no edges since Q� 6→ T(B1). There is an edge from* = (*B0, *B1) to+ = (+B0,+B1 ) if

(1)
>

C1 (*,+ ) ⊆ *B1 , and
(2)

>
C� (*,+ ) ⊆ hom(Γ(Q�),H)

(the remaining condition (A2) for C = C1 is trivial). Let us simplify this definition. First,
we will write homomorphisms from the above paths as tuples, writing the values of
such homomorphisms from left to right as the vertices appear on the picture above. In
this way, we have *B0 ⊆ � , *B1 ⊆ � × � for each * . Since C1 = edge4 (B0, B0), we get a
bijection

>
C1 ≃ *B0 ×+B0 . Furthermore, using the above ordering, we may simply say

that
>

C1 = *B0 × +B0 . Similarly,
>

C� (*,+ ) ≃ *B1 × +B1 , since C� = edge� (B1, B1), more
precisely

?
C�
(*,+ ) = {(D1, D0, E0, E1) | (D0, D1) ∈ *B1 and (E0, E1) ∈ +B1 }.
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The two conditions are then rephrased as follows:

(1) *B0 ×+B0 ⊆ *B1 , and
(2) (D1, E1) ∈ �H for every (D0, D1) ∈ *B1 and (E0, E1) ∈ +B1 .

We claim that this construction results (on the same input) in a digraph that is ho-
momorphically equivalent to the one obtained by [FT15, Definition 4.1]. Namely, the
adjoint constructed there, let us call it Ω′, is as follows: The vertices of Ω′ (H) are pairs
(0, �), where 0 ∈ � and � ⊆ � , and there is an edge from (0,�) to (1, �) if 1 ∈ � and
� × � ⊆ �H.

We show that, for every graph H, there is a homomorphism U : Ω′ (H) → Ω(H)
defined by U ((0,�)) = * where*B0 = {0} and*B1 = {0} ×�. To show that U preserves
edges, assume that (0,�) and (1, �) are connected by an edge in Ω

′ (H), i.e., 1 ∈ � and
� × � ⊆ �H, and * = U ((0,�)),+ = U ((1, �)). We have that

?
C1
(*,+ ) = {(0, 1)}

?
C�
(*,+ ) = � × {(0, 1)} × �,

and claim that: (1)
>

C1 (*,+ ) ⊆ *B1 ; which is true because 1 ∈ �. (2)
>

C� (*,+ ) ⊆
hom(Γ(Q�),H); which is true, since the only edge of Γ(Q�) is (G1, G2) and the projection
of

>
C� (*,+ ) to G1, G2 (the first and the last coordinate) is � × � ⊆ �H.

A homomorphism V : Ω(H) → Ω
′(H) is given by V (* ) = (0,�) where 0 is the

unique element of *B0 , and

� = {0′ | (0, 0′) ∈ *B1}.

To show that it is a homomorphism, assume (*,+ ) ∈ �Ω (H) , and let V (* ) = (0,�)
and V (+ ) = (1, �). Since

>
C1 (*,+ ) = *B0 × +B0 = {(0, 1)} and

>
C1 (*,+ ) ⊆ *B1 , we

have (0,1) ∈ *B1 , which implies that 1 ∈ �. Also since
>

C� (*,+ ) ⊆ hom(Γ(Q�),H),
0 ×� ⊆ *B1 , 1 × � ⊆ +B1 , and C� = edge� (B1, B1), we have that

� × {(0, 1)} × � ⊆
?

C�
(*,+ ) ⊆ hom(Γ(Q�),H),

where the first inclusion follows from the definition of
>

C� (*,+ ), and the second in-
cludion follows from (A2). In particular, the inclusion above implies that � × � ⊆ �H.
This concludes the proof of the homomorphic equivalence of Ω(H) and Ω

′(H).
We note that our Ω(H) can be reduced to a smaller homomorphically equivalent

structure by requiring that vertices* ∈ Ω(H) satisfy

(A3) for all B, B′ ∈ T+ and homomorphisms ℎ : T(B) → T(B′) with ℎ(AB ) = AB′ , we
have

{5 ◦ ℎ | 5 ∈ *B′ } ⊆ *B .

Note that the elements constructed in the proof of Lemma 5.4 satisfy this property. In
this particular example, this requirement would force that*B1 = 0 ×� for some � ⊆ �

and 0 ∈ *B0 , since B0 is embedded to B1 as the root. This would then make the two
homomorphisms defined above isomorphisms.

5.2. Example: A 4-ary relation defined by an oriented path

Our definition works also for Pultr templates that are not just digraph templates. As
an example for comparison, let us consider a Pultr template that is similar to the previ-
ous example, but in this case maps digraphs to structures over a signature containing
one 4-ary relational symbol '.

Specifically, P is still a singleton with no edges, and Q' is the same digraph as Q�

above, but we now have 4 homomorphisms n8,' : P → Q' for 8 = 0, 1, 2, 3 which map
the vertex of P to 0, 1, 2, or 3 respectively. Pictorially, the digraph Q' together with its
distinguished vertices G0, . . . , G3 is as follows.

G0 G1 G2 G3
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We let C' = C� where C� is as above, and we use the same notation as in the previous
example.

For a structure B with a 4-ary relation 'B, vertices of Ω(B) are defined in a similar
way as above, i.e., they are pairs (*B0,*B1) where *B0 = {1} for some 1 ∈ � and *B1 ⊆
� × �. Two such vertices (*,+ ) are connected by an edge if

(1)
>

C' (*,+ ) ⊆ 'B, and
(2)

>
C1 (*,+ ) ⊆ *B1 ;

where C' = edge� (B1, B1) and C1 = edge� (B0, B0). More precisely, the first condition can
be written as

{(D1, D0, E0, E1) | (D0, D1) ∈ *B1, (E0, E1) ∈ +B1 } ⊆ 'B,

and the second condition can be written as *B0 ×+B0 ⊆ *B1 .
The only real difference from the previous example is that

>
C' (*,+ ) ⊆ 'B instead

of requiring that the projection of
>

C� (*,+ ) on the first and the last coordinates is a
subset of �H. As above, we could create a homomorphically equivalent Ω′(B) whose
vertices would be pairs (D,* ) where D ∈ � and * ⊆ �. Two such vertices (D,* ) and
(E,+ ) would be then connected by an edge if E ∈ * and * × {(D, E)} ×+ ⊆ 'B.

5.3. Duals from adjoints

In [FT15], the authors claim that, for digraph Pultr templates with the edge relation
defined by Q� , the image of the digraph with a single vertex and no edges under the
right Pultr functor is a dual toQ� . We may be slightly more precise when talking about
our constructions, namely, we claim the following.

Proposition 5.8. Let g contain a single symbol ', and fix a (f, g)-Pultr template defined

by P = V1 and Q' = T(C') for some term C' such that Q' 6→ T(C) for any C < C' (i.e.,

C' is a minimal term among those representing a structure homomorphically equivalent
to Q'). Let Ω be the right adjoint to Γ as defined in Definition 5.2. Then the image of the

g-structure V1 under Ω is isomorphic to D(C').

Proof. Observe that there is only one function from any set) to+1 = {1}. Hence, there
is only one candidate function 5 for a homomorphism Γ(T(C)) → V1 for any term
C . It is not hard to observe that 5 is a homomorphism if and only if Γ(T(C)) has no
edges. In particular, 5 is a homomorphism for all C < CA , since Q' 6→ T(C) in that case.
Consequently, each of the components of an element* ∈ Ω(+1) is either the empty set
or a singleton set. Furthermore, we have that hom(Γ(T(C')),V1) = ∅, since Γ(T(C'))
has an edge (witnessed by the identity homomorphism).

The rest of the proof is based on the idea of treating ∅ as false and any singleton set
as true. With this interpretation, we get that - ⇒ . is equivalent to - ⊆ . and - ∧ .

is equivalent to - ×. whenever -,. are sets with at most one element. Note that this
draws an immediate parallel between the definitions of &C and

>
C , (D1) and (A1), and

also (D2) and (A2) if we take into account that hom(Γ(T(C')),V1) = ∅.
We may now define an isomorphism Ω(V1) ≃ D(C') by assigning to D ∈ D(C') an

element * ∈ Ω(V1) where, for each C ∈ T+ , DC = false if *C = ∅, and DC = true if
*C = {G ↦→ 1}. The observations in the first paragraph of this proof show that this
assignment is bijective.

To show that it preserves edges, observe that, for each C ∈ T' , &C (D
1, . . . , D: ) = false

if and only if
>

C (*
1, . . . , * : ) = ∅, since the former is defined as &C (D1, . . . , D: ) =

D1C1 ∧ · · · ∧ D:C: and the latter satisfies
>

C (*1, . . . ,*:) ≃ * 1
C1
× · · · × * :

C:
. Furthermore,

(A1) is equivalent to (D1) since, for all C ∈ T' with pr8 (C) ∈ T+ , &C (D
1, . . . , D: ) ⇒

D8
pr8 (C )

is equivalent to
>

C (*
1, . . . ,* : ) ⊆ * 8

pr8 (C )
. Finally, (A2) &C& (D

1, . . . , D: ) = false

is equivalent to

(D2) for all C ∈ T' ,
?

C
(* 1, . . . ,* : ) ⊆ hom(Γ(T(C)), B).

This is because hom(Γ(T(C)), B)) = ∅ if and only if C = C& , hence (D2) is trivially
satisfied unless C = C& , in which case it says

>
C& (*

1, . . . ,* : ) = ∅. �
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6. ADJOINTS TO FUNCTORS WITH DOMAINS DEFINED BY A RELATION

In this section, we construct a right adjoint to the central Pultr functor defined by
a (f, g)-Pultr template for which P = Š1, for some choice of f-symbol (̌ , i.e., P is an (̌-
edge. Again, for each:-ary g-symbol ', we have a f-treeQ' with a :-tuple n1,' , . . . , n:,'
of homomorphisms P → Q' . Each of these homomorphisms selects an (̌-edge of Q' ,

we denote these edges by G1, . . . , G: , respectively, i.e., G8 = n(̌8,' (4) for each 8 = 1, . . . , :

where 4 ∈ (̌P is the unique (̌-edge of P. Naturally, the edges G1, . . . , Gar' depend on the
symbol ' which will be always clear from the context. Let us repeat the definition of
Γ(A) for a f-structure A using this notation: The domain of Γ(A) is (̌A, and for each
g-symbol ' of arity : , the corresponding relation of Γ(A) is defined as

'Γ (A)
= {(ℎ(̌ (G1), . . . , ℎ

(̌ (G: )) | ℎ : Q' → A}.

We also note that, for each homomorphism ℎ : A → B between two f-structures A and

B, ℎ(̌ : Γ(A) → Γ(B) is a homomorphism.
The construction ofΩ in this case is almost identical to the construction in Section 5.3

(Definitions 5.1 and 5.2), and we present it in a similar way.
We fix the following setting: Fix a (f, g)-Pultr template with P = Š1 for some f-

symbol (̌ , and assume Q' is a f-tree for each g-symbol '. For each g-symbol ', we pick
a term C' representing Q' , and we let T be the set of all subterms of any of the C'’s.
We use notation T+ and T( for the + -terms and (-terms, where ( is a f-symbol, that
belong to this set.

Definition 6.1 (Vertices of Ω(B)). Let B be a g-structure. We define Ω(�) to be the set
of all tuples

* ∈
∏

C∈T+

P (hom(Γ(T(C)),B))

such that*vertex is a singleton set, i.e., *vertex = {∅}.

As before, vertices of Ω(B) are tuples * indexed by + -terms in T , where the C-th
entry is a set of homomorphisms from Γ(T(C)) to B such that *vertex contains exactly
one homomorphism. A difference here is that this homomorphism is the map ∅ → �,
since Γ(T(vertex)) has no vertices as P 6→ T(vertex). Thus*vertex does not contain any
information; it serves a similar purpose as Dvertex = true in Definition 4.1.

To define edges, we use similar notation
>

C as before. Let C1, . . . , C: ∈ T+ , ( a
relational symbol of arity : , and * 1, . . . ,* : ∈ Ω(�). Again, we consider the term
C = edge( (C1, . . . , C: ) and the tree T(C). Unlike in Section 5, the domain of Γ(T(C)) is
now (̌T(C ) and not ) (C). This means we have to distinguish two cases:
Case 1: ( = (̌ . In this case, the domain of Γ(T(C)) is

(̌T(C ) = (̌T(C1 ) ∪ · · · ∪ (̌T(C: ) ∪ {AC }.

Hence, in order to define a mapping 5 : (̌T(C ) → �, we need to specify its value on AC
in addition to its restrictions to (T()8 ) ’s. In detail, a :-tuple of mappings 51 ∈ * 1

C1
, . . . ,

5: ∈ * :
C:
together with an element 4• ∈ � uniquely defines a mapping 5 : (̌T(C ) → � by

5 = 51 ∪ · · · ∪ 5: ∪ {AC ↦→ 4•}.

Therefore, for each 4• ∈ �, we denote by
>

C (*
1, . . . ,*: ; 4•) the set of all suchmappings.

Again, we have that, for each 4•,
>

C (*
1, . . . ,*: ; 4•) is bijective to *

1 × · · · × * : . We
will simply write

>
C (�; 4•) for

>
C (*

1, . . . ,* : ; 4•) if � = (* 1, . . . , * : ).
Case 2: ( ≠ (̌ . In this case, we have (̌T(C ) = (̌T(C1 ) ∪ · · · ∪ (̌T(C: ) . Thus the domain of
Γ(T(C)) is the disjoint union of domains of Γ(T(C8)), and we define

>
C (*

1, . . . , * : ) the
same way as before, i.e., as the set of all unions 51 ∪ · · · ∪ 5: where 58 ∈ * 8

C8
for each 8.

If ( ≠ (̌ , (-edges are defined analogously to Definition 5.2. To define (̌-edges, we
have to take into account the new element 4•.
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Definition 6.2 (Edges of Ω(B)). Let B be a g-structure, we define a f-structure Ω(B)
with universe Ω(�).

We first define (̌-edges. Let: be the arity of (̌ . (̌Ω (B) consists of all tuples (* 1, . . . ,* : ) ∈
Ω(�): for which there exists 4• ∈ � such that

(B1) For all C ∈ T( and 8 ∈ {1, . . . , :} such that pr8 (C) ∈ T+ , we have
?

C
(* 1, . . . ,* : ; 4•) ⊆ * 8

pr8 (C )
.

(B2) For all C ∈ T( ,
?

C
(* 1, . . . , * : ; 4•) ⊆ hom(Γ(T(C)),B).

If ( ≠ (̌ , the relation (Ω (B) is defined in the same way as in Definition 5.2 except we
use the meaning of

>
C defined in this section.

Given an edge � ∈ (̌Ω (B) , we call the element 4•, which satisfies the conditions (B1)
and (B2), a witness of this edge. Note that this witness is the only significant difference
between Definitions 5.2 and 6.2.

We claim that this definition indeed constructs a right adjoint to Γ.

Theorem 6.3. Assume a (f, g)-Pultr template with P being the f-tree with ar (̌ vertices

connected by an (̌-edge for some f-symbol (̌ , and Q' being a f-tree for all g-symbols '.

Further, assume Γ is the central Pultr functor defined by this template, and Ω is defined as

in Definition 6.2.

For every f-structure A and g-structure B, there is a homomorphism Γ(A) → B if and

only if there is a homomorphism A → Ω(B).

The proof is analogous to the proof of Theorem 5.3 with the following changes: we

use ℎ(̌ in place of ℎ whenever ℎ : A → B was used as a homomorphism Γ(A) → Γ(B).
Furthermore, we use a witness 4• in place of the unique value of the homomorphism
5 ∈ *vertex throughout the proof. In particular, if 5 : A → Ω(B), we define 6 : Γ(A) →

B by letting 6(4) be the witness of the edge 5 (̌ (4). With these substitutions all the
arguments of the previous section apply in the case of Theorem 6.3. For completeness
and reference, we include the proof in full detail in the last subsection of this section.

6.1. Example: The arc graph construction

Recall the arc-graph construction from Example 2.9, which can be expressed as the
central Pultr functor whose template consists of structures P = ({0, 1}; {(0, 1)}) and
Q� = ({0, 1, 2}; {(0, 1), (1, 2)}) with n1 (0) = 0 and n1 (1) = 1, and n2 (0) = 1 and n2 (1) = 2.

The right adjoint Ω according to our definition above would be constructed in the
following way: First, we choose a term C� representing Q� . We can pick C2 as in Sec-
tion 4.1.

C2 = edge� (pr2 (edge� (vertex, vertex)), vertex)

We also name all its subterms as in Section 4.1, i.e.,

B0 = vertex C1 = edge� (B0, B0)

B1 = pr2 (C1)

The vertices of Ω(B) are defined as pairs (*B0, *B1) such that *B0 = {∅} and *B1 ⊆
hom(Γ(T(B1)),B). Two such vertices *,+ are connected by an edge if there is 4• ∈ �

such that

(1)
>

C1 (*,+ ; 4•) ⊆ +B1 — this is condition (B1) for C = C1;
(2)

>
C8 (*,+ ; 4•) ⊆ hom(Γ(T(C8)),B) for 8 = 1, 2 — this is condition (B2).
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These conditions can be considerably simplified. First, since *B0 = +B0 = {∅}, we
have ?

C1
(*,+ ; 4•) = {AC1 ↦→ 4•}

?
C2
(*,+ ; 4•) = {5 ∪ (AC2 ↦→ 4•) | 5 ∈ *B1}.

Further, since Γ(T(B1)) = Γ(T(C1)) is the graph with a single vertex and no edges, we
can identify*B1 and

>
C1 (*,+ ; 4•) with subsets of �. Connecting this observation with

the comment about *B0 , we can identify * with its coordinate *B1 ⊆ �. Finally, if 4•
is a witness, the elements of

>
C2 (*,+ ; 4•) are homomorphisms from a directed edge

to B which correspond to the edges of B. Using this correspondence, we can identify>
C2 (*,+ ; 4•) with a subset of �B. Taking all of these into account the conditions above

simplify to

(1)
>

C1 (*,+ ; 4•) = {4•} ⊆ + , and
(2)

>
C2 (*,+ ; 4•) = * × {4•} ⊆ �B.

So, we can say that a vertex of Ω(B) is a subset* of �, and (*,+ ) is an edge of Ω(B) if

∃4• ∈ + such that* × {4•} ⊆ �B.

We compare this construction with the functor X' described in [FT15, Definition
3.1] as a right adjoint to X . For a digraph B, the vertices of the digraph X' (B) are the
complete bipartite subgraphs of B, i.e., pairs (* −,* +) of subsets of vertices of B such
that* − ×* + ⊆ �B. There is an edge from (* −,* +) to (+ −,+ +) if* + ∩+ −

≠ ∅. Below,
we show that X' (B) and Ω(B) are homomorphically equivalent.

We start by constructing a homomorphism ℎ : X' (B) → Ω(B). We let

ℎ(* −,* +) = * − .

To show that it preserves edges, assume * + ∩ + −
≠ ∅, i.e., there exists 4• ∈ * + ∩ + −.

We claim that this 4• witnesses that * − and + − is an edge in Ω(B). Clearly, 4• ∈ + −.
Also, we have

* − × {4•} ⊆ * − ×* + ⊆ �B.

A homomorphism 6 : Ω(B) → X' (B) is a bit harder to construct. Guided by the
above, it is natural to choose the first component of 6(* ) to be 6(* )− = * . We need to
define the second component 6(* )+. We let 6(* )+ be the largest set such that 6(* )− ×
6(* )+ ⊆ �B, i.e.,

6(* )+ = {E ∈ � | ∀D ∈ *, (D, E) ∈ �B}.

Now, assume that * and + are connected by an edge in Ω(B) witnessed by 4•. We
claim that 4• ∈ 6(* )+ ∩ 6(+ )− . By definition of Ω(B), we have 4• ∈ + = 6(+ )− , and
* × {4•} ⊆ �B, which implies that 4• ∈ 6(* )+. Altogether, 4• ∈ 6(* )+ ∩ 6(+ )−, and
hence (6(* ), 6(+ )) ∈ �X' (B) . This completes the proof.

This example shows how *vertex can be eliminated from the definition of Ω(B). Let
us repeat again, that the only purpose of *vertex is to avoid case distinction between
some �-terms, e.g., between edge� (C, B) and edge� (C, vertex) for B ≠ vertex. We may
ignore it in this example, since we expanded every single case when it is used.

6.2. Example: Arc structure

In this subsection, we consider a certain variant of the arc graph construction, which
we will call an arc structure and which encodes more information than the arc graph:
The domain of the arc structure coincides with the domain of the arc graph, i.e., the
set of all edges of the input graph, and we extend the signature with two more binary
symbols that will relate those pairs of edges that are incident in a different sense. The
goal of this example is two-fold: first, to show how the construction of right adjoints
works in a more general signature, and second, to show how the right adjoint changes
if we change the central Pultr functor in such a way that it encodes more information
about the input structure. Note, for example, that any tree can be recovered from its
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Figure 2. A digraph, its arc graph and its arc structure. The $ and �

relations of m(G) are symmetric, and $ and � loops on all vertices of
m(G) are omitted for readability.

image under the arc structure construction, but there are trees (e.g., the one presented
in Fig. 2) that cannot be recovered from their arc graph.

We fix q to be a signature with three binary relations � , � , and $ , and we let W be
the signature of digraphs. We define a central Pultr functor m using the (W, q)-Pultr
template defined as follows: The digraph defining vertices is the digraph with a single
directed edge, i.e., P = E1, and the digraphs Q� , Q� , Q$ are the following where the
images of n8 ’s are highlighted and labelled by G8 .

G1 G2 G1 G2 G1 G2

Q� Q� Q$

Note that the digraph Q� with the two distinguished edges defines the arc-graph func-
tor. This means that for each digraph G, the reduct (�,�A) where A = m(G) is the
arc-graph of G (if � is interpreted as �), see Figure 2.

Now, to construct the right adjoint to m, which we denote bylm , we fix the following
terms representing the graphs Q� , Q� , and Q$ .

C� = edge� (B2, vertex) C� = edge� (vertex, B2) C$ = edge� (B1, vertex)

where B8 = pr8 (edge� (vertex, vertex)) for 8 = 1, 2. We name all remaining subterms
as follows, B0 = vertex, C� = edge� (vertex, vertex). The set of terms defining lm is
T = {B0, B1, B2, C�, C� , C� , C$ }. Of which, the + -terms are T+ = {B0, B1, B2}. Which means
that the vertices oflm (B) are triples (*B0,*B1,*B2) where*B0 = {∅}, and*B1, *B2 are sets
of functions from a 1-element set to �. We identify such a triple with a pair (* +,* −)
where * + ⊆ � is the set of images of function in *B1 and * − ⊆ � the set of images
of functions in *B2 . Using a similar simplification of the definition of edges as in the
previous example, we get that two such pairs (* +,* −) and (+ +,+ −) are connected by
an edge if there exists 4• ∈ �, so that the sets

?
C�
(*,+ ; 4•) = {4•}

?
C�
(*,+ ; 4•) = * − × {4•}

?
C�
(*,+ ; 4•) = {4•} ×+ −

?
C$
(*,+ ; 4•) = * + × {4•}

satisfy (B1)
>

C� (*,+ ; 4•) ⊆ * +∩+ − and (B2)
>

C' (*,+ ; 4•) ⊆ 'B for each' ∈ {�, �,$}.
This means that (* +,* −) and (+ +,+ −) are connected by an edge if there exists 4• ∈
* + ∩+ − such that

* − × {4•} ⊆ �B, {4•} ×+ − ⊆ �B,* + × {4•} ⊆ $B.

This completes the definition, although we can further refine it by requiring that for
each vertex, the sets * + and* − satisfy additional properties that would automatically
imply the conditions above. Namely, we require

* − ×* + ⊆ �B,* − ×* − ⊆ �B, * + ×* + ⊆ $B.

To sum up the refined definition, we let lm (B) be the digraph with vertex set

{(* +,* −) | * − ×* + ⊆ �B,* − ×* − ⊆ �B,* + ×* + ⊆ $B}
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where (* +,* −) and (+ +,+ −) form an edge if* + ∩+ −
≠ ∅. It is not hard to check that

even after the refinements, we still get the right adjoint to m, i.e., that indeed there is a
homomorphism A → lm (B) if and only if there is a homomorphism m(A) → B for any
digraph A and q-structure B. Note how this compares to the right adjoint X' of the arc
digraph functor as defined in the previous subsection.

6.3. Proof of Theorem 6.3

As noted above, the proof closely follows the proof of Theorem 5.3, and we present
it with the same structure starting with the easier of the two implications.

The following lemma is an analogue to Lemma 5.4. The statement is identical, al-
though the meaning of Γ and Ω has changed. In the proof, ℎ is no longer a homomor-
phism from Γ(T(C)) → Γ(A), hence we replace every instance of ℎ being used as such

a homomorphism with ℎ(̌ . Furthermore, to show that 6 preserves an edge 4 ∈ (̌A, we
need to provide a witness, which isF• = 5 (4).

Lemma 6.4. If there is a homomorphism 5 : Γ(A) → B, then there is a homomorphism

6 : A → Ω(B).

Proof. Assuming 5 : Γ(A) → B, we define a mapping 6 : � → Ω(�) by setting, for all
D ∈ � and all C ∈ T+ ,

6(D)C = {5 ◦ ℎ(̌ | ℎ : T(C) → A, ℎ(AC ) = D},

and claim that it is a homomorphism from A to Ω(B). We need to check that 6(D) is

well-defined, i.e., that 5 ◦ ℎ(̌ is a homomorphism from Γ(T(C)) to B for all C ∈ T+ and

that 6(D)vertex = {∅}. Indeed, 5 ◦ℎ(̌ is a homomorphism since it is a composition of ho-

momorphisms ℎ(̌ : Γ(T(C)) → Γ(A) and 5 : Γ(A) → B. And, 6(D)vertex = {∅} because
T(vertex) has no (̌-edges, which implies that the unique mapping ℎ : ) (vertex) → �

such that ℎ(Avertex) = D is a homomorphism, and, moreover, this ℎ satisfies ℎ(̌ = ∅.

Consequently, 5 ◦ ℎ(̌ = ∅, as we wanted to show.
To show that 6 is a homomorphism, assume first that ( ≠ (̌ is a f-symbol of arity : ,

and 4 = (D1, . . . , D: ) ∈ (A. We claim that, for each C ∈ T( ,?
C
(6(4)) = {5 ◦ ℎ(̌ | ℎ : T(C) → A, ℎ( (AC ) = 4}.

Let C = edge( (C1, . . . , C: ), and observe that homomorphisms ℎ : T(C) → A such that
ℎ( (AC ) = 4 are in 1-to-1 correspondence with :-tuples of homomorphisms ℎ1, . . . , ℎ: ,
such that ℎ8 : T(C8) → A and ℎ8 (AC8 ) = D8 for all 8 ∈ [:], obtained as their restrictions to

the respective subtrees. If ℎ is the union of ℎ8 ’s then also ℎ(̌ is the union of ℎ(̌8 ’s. The
claim then easily follows. For (A1), we want to check that

>
C (6(4)) ⊆ 6(D8 )B where

B = pr8 (C). Observe that if ℎ : T(C) → A and ℎ( (AC ) = 4, then ℎ(AB ) = D8 , since the 8-th
component of AC is AB . The condition then follows from the claim. Finally, (A2) follows
directly from the claim by the same argument as 6(D)C ⊆ hom(T(C),B).

Second, for the case ( = (̌ and 4 = (D1, . . . , D: ) ∈ (̌A, we need to pick an element

F• ∈ � witnessing that 6(̌ (4) ∈ (̌Ω (B) — we pick F• = 5 (4). We claim that, for each
C ∈ T(̌ , ?

C
(6(̌ (4); 5 (4)) = {5 ◦ ℎ(̌ | ℎ : T(C) → A, ℎ(̌ (AC ) = 4}.

The inclusion ‘⊇’ is clear, since the restriction ofℎ to) (C8) is a homomorphismℎ8 : T(C8) →
A such that ℎ8 (AC8 ) = D8 . The other inclusion also follows, since, given homomorphisms
ℎ8 : T(C8) → A with ℎ8 (AC8 ) = D8 , their union is a homomorphism ℎ : T(C) → A with

ℎ(̌ (AC ) = 4. Moreover,

ℎ(̌ = ℎ(̌1 ∪ · · · ∪ ℎ(̌: ∪ (AC ↦→ 4),

and hence

5 ◦ ℎ(̌ = ( 5 ◦ ℎ(̌1 ) ∪ · · · ∪ ( 5 ◦ ℎ(̌: ) ∪ (AC ↦→ 5 (4)).

The conditions (B1) and (B2) then follow from the claim similarly as above. �
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The other implication is proved in the following two lemmas. As in the case of
Lemma 5.5, the first lemma provides the adjunction in the special case A = T(C) for
C ∈ T , and we derive the general case, which is covered by the second lemma, using
the special case.

The statement of Lemma 5.5 is changed to account for differences in the definitions.

The mapping 3 is now defined to map B to a witness of the edge ℎ(̌ (B) instead of the
unique image of the element of ℎ(E). The proof is analogous, by induction on the term
C , although now we have to distinguish four cases.

Lemma 6.5. Let C ∈ T , ℎ : T(C) → Ω(B), and 3 : (̌T(C ) → � be a map such that, for all

B ∈ (̌T(C ) , 3 (B) is a witness for the edge ℎ(̌ (B). Then 3 is a homomorphism Γ(T(C)) → B.

Proof. The proof is similar to the proof of Lemma 5.5. We first show by induction on

the term C that either 3 ∈ ℎ(AC )C if C is a + -term, or 3 ∈
>

C (ℎ
(̌ (AC );3 (AC )) if C is an

(̌-term, or 3 ∈
>

C (ℎ
( (AC )) if C is an (-term for a symbol ( ≠ (̌ .

Case C = vertex: Since (̌T(vertex) = ∅, the only map 3 : (̌T(vertex) → � is the empty
map, which is in ℎ(Avertex)vertex by definition.

Case C = edge(̌ (C1, . . . , C: ): Note that restrictions of ℎ to subtrees T(C8 )’s are ho-
momorphisms, hence, for all 8 ∈ {1, . . . , :}, ℎ(AC8 )C8 contains the corresponding
restrictions of 3 by the inductive assumption. The claim then follows from the

definition of
>

C (ℎ
(̌ (AC );3 (AC )).

Case C = edge( (C1, . . . , C: ) where ( ≠ (̌ : This is proved in the same way as the
above case, with the exception that we use the definition of

>
C (ℎ

( (AC )) instead

of
>

C (ℎ
(̌ (AC );3 (AC )).

Case C = pr8 (B): Since ℎ is a homomorphism from T(C) = T(B) to B, we know that

either
>

B (ℎ
( (AB )), if B is an (-term for ( ≠ (̌ , or

>
B (ℎ

(̌ (AB );3 (AB )), if B is an
(̌-term, contains 3 by the inductive assumption. The claim then follows from
either (A1), or (B1).

The lemma then immediately follows by the definition if C is a+ -term, by (B2) if C is an
(̌-term, or by (A2) otherwise. �

Finally, in the proof of Lemma 5.6, we define 5 to map 4 ∈ (̌A to a witness of the
edge 6(4) ∈ (̌Ω (B) instead of letting 5 (D) be the unique value attained by the map in
6(D)vertex. The rest of the proof is then a straightforward application of the above, i.e.,
completely analogous to the proof of Lemma 5.6 using Lemma 5.5.

Lemma 6.6. If there is a homomorphism 6 : A → Ω(B), then there is a homomorphism

5 : Γ(A) → B.

Proof. As before, we assume that, for each g-symbol ', Q' and T(C') are equal and not
just isomorphic. We define a mapping 5 : Γ(�) → � by setting, for all B ∈ (̌A, 5 (B) = 4•

for some witness 4• of the edge6(̌ (B) ∈ (̌Ω (B) , and claim that this 5 is a homomorphism
from Γ(A) to B.

We need to show that 5 preserves each relation '. Assume that (D1, . . . , D: ) ∈ 'Γ (A) ,
i.e., there is a homomorphism ℎ : Q' → A such that

(ℎ(̌ (G1), . . . , ℎ
(̌ (G: )) = (D1, . . . , D: ).

The previous lemma applied to the homomorphism 6 ◦ ℎ : T(C') → Ω(B) in place of ℎ

and the map 5 ◦ ℎ(̌ in place of 3 implies that 5 ◦ ℎ(̌ : Γ(Q') → B is a homomorphism,
which in turn implies

( 5 (D1), . . . , 5 (D: )) = ( 5 ℎ(̌ (G1), . . . , 5 ℎ
(̌ (G: )) ∈ 'B

since (G1, . . . , G: ) ∈ 'Γ (Q' ) , as we wanted to show. �

This concludes the proof of Theorem 6.3.



Functors which admit both le� and right adjoints 23

7. COMPOSITION OF ADJOINTS

In this section, we give an example of what can be achieved by composing functors
defined in Sections 5 and 6. The power of composing two adjoints to obtain more com-
plicated constructions was observed in [FT15, Section 5], where the authors considered
composition of digraph functors with adjoints. This section gives several examples that
show that we can obtain adjoints to more digraph functors by composing functors that
go outside of the scope of digraphs into general relational structures. Naturally, our
constructions also give more adjoints between general relational structures.

We start with a few general observations. The key fact that makes composition of
adjoints useful is the following well-known category-theoretical observation.

Lemma 7.1. Assume that Λ1, Γ1 and Λ2, Γ2 are two pairs of (thin) adjoint functors, then

Λ1 ◦ Λ2 is a left adjoint to Γ2 ◦ Γ1.

Proof. The proof is straightforward. We get the following string of equivalences from
the two adjoints: Λ1Λ2 (A) → B if and only if Λ2(A) → Γ1 (B) if and only if A →
Γ2Γ1 (B) for any two structures A and B of the right signatures. �

We note that a composition of Pultr functors gives a Pultr functor [Pul70]. We in-
clude a sketch of a proof of a slightly weaker statement.

Lemma 7.2. Let Λ1, Γ1 and Λ2, Γ2 be two pairs of left and central Pultr functors such
that Λ1 ◦ Λ2 and Γ2 ◦ Γ1 are well-defined. Then there is a pair of Pultr functors Λ and Γ

such that Λ(A) and Λ1 ◦ Λ2(A) are isomorphic for all A, and Γ(B) and Γ2 ◦ Γ1 (B) are
homomorphically equivalent for all B.

Proof sketch. The template of the composition can be obtained as the Λ1-image of the
Pultr template defining Λ2 and Γ2, i.e., if the template of Λ2 and Γ2 is composed of
structures P and Q' , and homomorphisms n8,' , then the template of the composition
consists of structures Λ1(P) and Λ1 (Q'), and homomorphisms nΛ1

8,'
: Λ1 (P) → Λ1 (Q')

that are induced by Λ1 from n8,' : P → Q' .
The composition Λ1 ◦ Λ2 is, by defininion, a two-step process: In the first step (ap-

plying Λ2), we replace each vertex with a copy of P, and in the second step (applying
Λ1), each of these copies is replaced with a copy of Λ1 (P). Analogously, an '-edge is
replaced with a copy of Λ1 (Q'). It is also not hard to observe that the identification
corresponds to the maps nΛ1

8,'
, which concludes that, for all A, Λ1 ◦Λ2 (A) is isomorphic

to Λ(A). We get that Γ2 ◦ Γ1 (B) and Γ(B) are homomorphically equivalent for all B,
since both functors are right adjoints to Λ. �

The following theorem is obtained by composing adjoints constructed in Sections 5
and 6. Although it is not an exhaustive list of adjunctions that can be constructed
by such compositions, it provides more adjoints to digraph functors on top of those
provided in [FT15]. The theorem concerns a relatively general case of Pultr templates
where P is an arbitrary tree. We only require that copies of P in the respective Q'’s
intersect in at most one vertex. We also note that this theorem covers the cases of
central Pultr functors whose adjoints are provided by Theorems 5.3 and 6.3.

Theorem 7.3. Assume a (f, g)-Pultr template with P and all Q'’s being f-trees such

that, for each g-symbol ',

(1) n8,' is injective for all 8 ∈ {1, . . . , ar'}, and
(2) for each 8 ≠ 9 , 8, 9 ∈ {1, . . . , ar'}, the images of P under n8,' and n 9,' intersect in

at most one vertex.

Then the corresponding central Pultr functor Γ has a right adjoint.

Proof. Assume that % = {1, . . . , ?}. The goal is to decompose the functor Γ into two
Pultr functors Γ1 and Γ2. The intermediate step is to construct a structure of a new
signature. This new signature h is obtained from f by adding a new relational symbol
( of arity ? (the size of the domain of P) while retaining all symbols in f .



Víctor Dalmau, Andrei Krokhin, and Jakub Opršal 24

We define the first functor, Γ1 that maps f-structures toh-structures. Essentially, this
functor simply adds a new relation ( that is defined by P, i.e., Γ1 (B) is the h-structure
with domain �, where the relations are defined as

'Γ1 (B) = 'B for each f-symbol ', and

(Γ1 (B) = {(ℎ(1), . . . , ℎ(?)) | ℎ : P → B}.

It is clear that this functor is defined by a (f,h)-Pultr template that satisfies the assump-
tions of Theorem 5.3.

The second functor, Γ2 is defined by altering the original Pultr template for Γ. The
new template consists of P′ and Q′

'’s defined as follows. First, P′ = S1. For each g-
symbol ', we obtainQ′

' fromQ' by the following procedure: For each 8 ∈ {1, . . . , ar'},
remove from Q' all edges in the image of n8,' , and add the edge (n8,' (1), . . . , n8,' (?)) ∈
(Q

′
' . Finally, we let n′8,' = n8,' , for all 8 and ', which is a homomorphism P′ → Q′

' since
we added the corresponding (-edge intoQ′

' . Observe that, since n8,'’s are injective, the
above procedure does not introduce reflexive tuples (i.e., tuples with repeated entries),
and, since the images of n8,' and n 9,' intersect in at most one vertex for 8 ≠ 9 , this
does not introduce cycles into Q′

' using (-edges, and, since all other edges have been
removed in the image, it does not introduce any other cycles. Hence, Q′

' is still a tree
for each g-symbol ', and therefore Theorem 6.3 applies.

The above two paragraphs show that Γ1 and Γ2 have adjoints Ω1 and Ω2. And it is
straightforward to check that Γ = Γ2 ◦ Γ1. This concludes that Ω1 ◦Ω2 is a right adjoint
to Γ by Lemma 7.1. �

8. CONCLUSION

We have studied the problem of characterising central Pultr functors for arbitrary
relational structures that admit a right adjoint, and, for those that do, giving an explicit
construction for such an adjoint. There is a necessary condition for the existence of
such an adjoint (cf. Theorem 2.10 and comments after it). We gave a sufficient condition
in Theorem 7.3. These two conditions do not match, there is a gap between them, and
it is not quite clear what the necessary and sufficient condition should be (even in the
case of digraphs). Apart from the requirement that P and all Q'’s are trees, Theorem
7.3 has two additional assumptions. We believe that the second assumption (about
intersection of images of P in Q') is a technicality that can be removed with some
extra work. How essential is the first assumption (about injectivity of homomorphisms
n8,')? For example, is it true that, for every central Pultr functor Γ that has a right
adjoint, there is another central Pultr functor Γ′ such that (a) for every structure A of
appropriate signature, Γ(A) and Γ

′ (A) are homomorphically equivalent, and (b) the
Pultr template corresponding to Γ

′ has all homomorphisms n8,' injective?
Finally, let us discuss possible applications of our results in the complexity of (promise)

CSPs. Left and central Pultr functors can alternatively be described as “gadget replace-
ments” and “pp-constructions”, respectively. These two constructions are central to
the algebraic theory of complexity of (promise) CSPs where gadget replacements are
used as log-space reductions between (promise) CSPs whose templates are related via
pp-constructions; see, e.g., [BBKO21] or [KOWŽ23, Section 4.1]. The opposite type of
reductions, where gadgets are replaced by individual constraints, is less common, but
has already been shown to be important; see, e.g., [KOWŽ23, BK22]. It was discov-
ered recently, that the right adjoints to some functor can be used to characterise when
the functor is a valid reduction between two (promise) CSPs [KOWŽ23, Theorem 4.6].
Moreover, recent developments in the theory of promise CSPs have called for charac-
terisation of reductions which include central Pultr functors [BK22, KO22, DO23]. Our
results provide a characterisation of when a reduction from a general class is a valid
reduction between two promise CSPs. Although we are not aware of a specific inter-
esting case of a promise CSP whose hardness is proven by providing a right adjoint to
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a central Pultr functor, apart from the use of the arc graph construction in [WŽ20], our
general results can be used as a foundation for further investigation of these reductions.
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