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In equilibrium, the Mermin-Wagner theorem prohibits the continuous symmetry breaking for
all dimensions d ≤ 2. In this work, we discuss that this limitation can be circumvented in non-
equilibrium systems driven by the spatio-temporally long-range anticorrelated noise. We first com-
pute the lower and upper critical dimensions of the O(n) model driven by the spatio-temporally
correlated noise by means of the dimensional analysis. Next, we consider the spherical model, which
corresponds to the large n limit of the O(n) model and allows us to compute the critical dimen-
sions and critical exponents, analytically. Both results suggest that the critical dimensions increase
when the noise is positively correlated in space and time, and decrease when anticorrelated. We
also report that the spherical model with the correlated noise shows the hyperuniformity and giant
number fluctuation even well above the critical point.

I. INTRODUCTION

The minimum dimension required for a phase transi-
tion to occur is known as the lower critical dimension
dl [1]. For systems with quenched randomness, Imry and
Ma predicted that the lower critical dimension is dl = 2
for a discrete order parameter and dl = 4 for a contin-
uous order parameter [2]. Recent studies have reported
that dl can be reduced by introducing anticorrelation to
the quenched randomness. For example, in Ref. [3], the
authors studied the random field Ising model with the
anticorrelated random field and showed that the ordered
phase arises on the ground state even in d = 2. Ref. [4]
reported a first-order transition of the Potts model on a
random Voronoi lattice in d = 2. The authors in Ref. [5]
argued that this is a consequence of the strong anticorre-
lation in the coordination number of the random Voronoi
lattices, which reduces the lower critical dimension. Sim-
ilar anticorrelation also appears in the Ising model in the
aperiodic field, which stabilizes the ferromagnetic ground
state even in d = 1 [6, 7].

For equilibrium systems without quenched random-
ness, the Mermin-Wagner theorem claims that the lower-
critical dimension of the continuous symmetry break-
ing is dl = 2 [8]. However, for out-of-equilibrium
systems, the continuous symmetry breaking can occur
even d ≤ 2; some examples include the XY model
driven by anisotropic noise [9, 10], O(n) model driven by
shear [11, 12], Vicsek model [13, 14], and so on [15, 16].
A recent numerical study suggests that so-called hyper-
uniform states of matter [17] may potentially be added
to the list above [18]. The hyperuniform states of matter
are characterized by the anomalous suppression of the
density fluctuation on a large scale, which leads to the
vanishing of the static structure factor S(q) in the limit of
the small wave number limq→ S(q) = 0 [17]. This prop-
erty is referred to as the hyperuniformity (HU), which
was first introduced for density fluctuation, but later has
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been extended to fluctuations of more general quantities,
such as spin variables and vector fields [17]. In Ref. [18],
Galliano et al. proposed and numerically demonstrated
that the suppression of the density fluctuation also re-
duces dl, leading to the perfect crystalline phase even in
d = 2.

The HU is widely observed in various systems such
as Vycor glass [19], periodically driven emulsions [20],
chiral active matter [21, 22], and so on [17]. While no
unified theory has been found that can comprehensively
explain the HU observed in all these systems, if it exists,
Hexner and Levine proposed that the HU can univer-
sally appear for systems having certain symmetries [23].
In Ref. [23], they derived a Langevin equation for a sys-
tem conserving the total number of particles and center
of mass. The effective noise of the resultant Langevin
equation has spatial anticorrelation, which leads to the
HU [23, 24]. Other examples showing the HU are chiral
active matter [21, 22], where the periodic nature of the
driving force leads to the temporal anticorrelation of the
effective noise, which results in the HU [25, 26]. These
results suggest that spatial or temporal anticorrelation of
the noise leads to HU, which may reduce dl.

Based on the above observations, it is tempting to con-
jecture that the anticorrelation of the noise or quenched
randomness generally reduces the lower critical dimen-
sion. Our first goal is to test this conjecture. The second
goal is to investigate the effects of the long-range tempo-
ral correlation of the noise on critical phenomena. The
effects of the temporally correlated noise on a single par-
ticle have been investigated significantly in the context
of anomalous diffusion [27, 28]. However, its effects on
many-body systems, in particular near the critical point,
have not been investigated sufficiently before. For those
goals, here we investigate the effects of the spatiotem-
porally correlated noise on the second-order phase tran-
sition by using the O(n) and spherical models. As dis-
cussed in the following paragraph, the noise encompasses
the time-independent random field and equilibrium white
noise in certain limits.

For concreteness, we consider model-A and B dynam-
ics [1, 29] with the correlated noise ξ(x, t) of zero mean
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and variance

⟨ξ(x, t)ξ(x′, t′)⟩ = 2TD(x− x′, t− t′), (1)

where D(x, t) represents the spatiotemporal correlation
of the noise. The Fourier transform of D(x, t) w.r.t. x
and t is given by

D(q, ω) = |q|−2ρ |ω|−2θ
, (2)

where q denotes the wave vector, and ω denotes the fre-
quency. The same correlation function has been consid-
ered in previous works to investigate the effects of the
long-range spatio-temporal correlation on the Kardar-
Parisi-Zhang (KPZ) equation [30–33]. When ρ = θ = 0,
the noise can be identified with the white noise in equi-
librium. The positive values of ρ and θ represent the pos-
itive power-law correlation in the real space: D(x, t) ∼
|x|2ρ−d |t|2θ−1

, where d denotes the spatial dimension.
In the limit θ → 1/2, the noise correlation does not de-
cay with time, and thus the noise can be identified with
the quenched random field. The negative values of ρ
and θ imply the existence of the anticorrelation because
D(q = 0, ω = 0) =

∫
dx
∫
dtD(x, t) = 0. Therefore, the

model can smoothly connect the white noise (ρ = θ = 0),
quenched randomness (θ → 1/2), positively correlated
noise (θ > 0, ρ > 0), and anticorrelated noise (θ < 0,
ρ < 0) by changing ρ and θ. In this work, we show
that the positive correlation increases the lower and up-
per critical dimensions dl and du, and the anticorrelation
reduces dl and du.
The structure of the paper is as follows. In Sec. II,

we investigate the O(n) model driven by the model-A
dynamics with the correlated noise by means of the di-
mensional analysis. Sec. III, we investigate the spherical
model, which corresponds to the n → ∞ limit of the O(n)
model and allows us to calculate the critical dimensions
analytically [1]. We also discuss that the positive corre-
lation of the noise induces the giant number fluctuation
(GNF), i.e., the anomalous enhancement of the fluctua-
tion even far above the critical point. On the contrary,
the anticorrelation of the noise suppresses the fluctuation
and induces the HU. In Sec. IV, we discuss the behavior
of the conserved order parameter driven by the model-B
dynamics with the correlated noise. In Sec. V, we sum-
marize the work.

II. DIMENSIONAL ANALYSIS

Here we derive the upper and lower critical dimensions
of the O(n) model driven by the model-A dynamics with
the correlated noise.

A. Model

Let ϕ⃗ = {ϕ1, · · · , ϕn} be a non-conserved n-component
order parameter. We assume that the time evolution of

ϕa(x, t) follows the model-A dynamics [29]:

∂ϕa(x, t)

∂t
= −Γ

δF [ϕ⃗]

δϕa(x, t)
+ ξa(x, t), (3)

where Γ denotes the damping coefficient, and ξa denotes

the noise. F [ϕ⃗] denotes the free energy of the O(n)
model [1]:

F [ϕ⃗] =

∫
dx

[∑n
a=1 ∇ϕa · ∇ϕa

2
+

ε|ϕ⃗|2

2
+

g|ϕ⃗|4

4

]
, (4)

where |ϕ⃗|2 =
∑n

a=1 ϕ
2
a, ε denotes the linear distance to

the transition point, and g denotes the strength of the
non-linear term. The mean and variance of the noise
ξa(x, t) are

⟨ξa(x, t)⟩ = 0,

⟨ξa(x, t)ξb(x′, t′)⟩ = 2TδabΓD(x− x′, t− t′), (5)

where D(x, t) represents the correlation of the noise. We
assume that the correlation in the Fourier space is written
as [30–33]

D(q, ω) = |q|−2ρ |ω|−2θ
. (6)

To ensure the existence of the Fourier transform of
D(q, ω), the values of ρ and θ are constrained to ρ <
d/2 and θ < 1/2, and one should introduce the high-
frequency cutt-off for θ ≤ −1/2. The noise can be gen-
erated, for instance, by integrating uncorrelated white
noise ηa(x, t) with a proper kernel K(x, t):

ξa(x, t) =

∫ ∞

−∞
dt

∫
dxK(x− x′, t− t′)ηa(x

′, t′), (7)

where K(x, t) satisfies K(x, t) = 0 for t < 0 and

|K(q, ω)| ∼ |q|−ρ |ω|−θ
in the Fourier space [30]. Another

way to generate the correlated noise would be to perturb
periodic patterns, which naturally leads to the anticor-
relation (ρ < 0 and θ < 0) [34], see also Sec. VD for a
related discussion. The model satisfies the fluctuation-
dissipation theorem only when ρ = θ = 0 [35]. For ρ ̸= 0
or θ ̸= 0, on the contrary, the model violates the de-
tailed balance, and thus the steady-state distribution is
not given by the Maxwell-Boltzmann distribution [36].

B. Critical dimensions

From Eqs. (3) and (4), we get

ϕ̇a = −Γ(−∇2ϕa + εϕa + gϕa|ϕ⃗|2) + ξa (8)

Now we consider the following scaling transformations:
x → bx, t → bztt, ϕa → bzϕϕa, g → bzgg [1]. To calcu-
late the scaling dimension of the noise, we observe the
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fluctuation induced by the noise in a (d+1)-dimensional
Euclidean space [0, l]d × [0, t] [17]:

σ(l, t)2 ≡

〈(∫
x′∈[0,l]d

dx′
∫ t

0

dt′ξa(x
′, t′)

)2〉
. (9)

The asymptotic behavior for l ≫ 1 and t ≫ 1 is

σ(l, t)2 ∼ (c1t
1+2θ + c2t

0)
(
c3l

d+2ρ + c4l
d−1
)
, (10)

where ci denotes a constant, and c2t
0, c4l

d−1 account
for the surface contributions [17, 37]. Eq. (10) implies

ξ(x, t) → bzt(2θ
′−1)/2b(2ρ

′−d)/2ξ(x, t), where

ρ′ = max[ρ,−1/2], θ′ = max[θ,−1/2]. (11)

Assuming the scaling invariance of the dynamics Eq. (8),
we get [1, 38]

zt = 2,

zg = −2zϕ − zt,

zϕ = 1 +
2ρ′ − d

2
+ 2θ′. (12)

The simplest way to calculate the lower critical dimension
dl is to observe the fluctuation of the order parameter:〈

δϕ2
a

〉
∼ b2zϕ . (13)

To ensure the stability of the ordered phase, zϕ must be
negative; otherwise, the fluctuation of the order param-
eter diverges in the thermodynamic limit b → ∞, which
destroys the long-range order. Therefore, the lower-
critical dimension can be determined by setting zϕ = 0,
leading to

dl = 2 + 2ρ′ + 4θ′. (14)

Eq. (12) implies that the coupling of the non-linear term
g scales as g′ = b−zgg under the scaling transformation
x′ = b−1x [1, 38]. When zg > 0, the non-linear term is
irrelevant, and vice versa. Therefore, the upper critical
dimension is obtained by setting zg = 0, leading to

du = 4 + 2ρ′ + 4θ′. (15)

When ρ = θ = 0, we get dl = 2 and du = 4, which
are consistent with the standard O(n) model in equilib-
rium [1]. When ρ ̸= 0 or θ ̸= 0 on the contrary, the
system reaches the non-equilibrium steady state because
the noise does not satisfy the detailed balance. In this
case, the positive correlation of the noise (ρ > 0, θ > 0)
increases the critical dimensions, dl and du, and the an-
ticorrelation reduces dl and du.

C. Correlated random Field

In the limit θ → 1/2, the noise correlation does not
decay with time D(x, t) ∼ t2θ−1 → t0, and thus the

noise can be identified with the correlated random field.
In this case, we get

dRF
l = 4 + 2ρ′. (16)

It would be instructive to compare the above result with
the standard Imry-Ma argument for the lower critical
dimension [2, 3, 37]. In a domain of linear size l, the typ-
ical fluctuation induced by the correlated random field

is σ2 ≡
〈(∫

x∈[0,l]d
dxh

)2〉
∼ c1l

d+2ρ + c2l
d−1 [3, 37].

The domain wall energy is γ ∼ ld−1 for a discrete order
parameter, and γ ∼ ld−2 for a continuous order parame-
ter [2]. When σ ≫ γ, the fluctuation of the random field
destroys the ordered phase, and vice versa. Therefore,
on the lower critical dimension dl, σ ∼ γ, leading to [3]

dI.M.
l =

{
2 + 2ρ′ (discrete),

4 + 2ρ′ (continuous).
(17)

The result for a continuous order parameter is consistent
with that of the dimensional analysis Eq. (16).

III. SPHERICAL MODEL

Due to the non-linear term in the free-energy Eq. (4),
the O(n) model can not be solved analytically. Here we
instead consider a solvable model: the spherical model,
which corresponds to the n → ∞ limit of the O(n)
model [1, 39].

A. Model

The effective free energy of the model is

F [ϕ] =

∫
dx

[
(∇ϕ)2

2
+

µϕ2

2

]
, (18)

where µ denotes the Lagrange multiplier to impose the
spherical constraint [40]:∫

dx
〈
ϕ(x)2

〉
= N. (19)

We impose the spherical constraint for the mean value.
One can, in principle, consider a rigid constraint∫
dxϕ(x)2 = N , instead of Eq. (19). The dynamics with

the rigid constraint has some non-linear terms that make
the model difficult to solve analytically. This paper only
consider the constraint for the mean-value Eq. (19).
For ρ = θ = 0, the steady-state distribution is given

by the Boltzmann distribution, and thus one does not
need to solve the dynamical equation. In this case, the
two-point correlation of the spherical model with the con-
straint Eq. (19) agrees with that of the rigid constraint
above the critical temperature Tc, but is inconsistent be-
low Tc [41]. So hereafter, we only focus on the behavior
above Tc.
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B. Steady-state solution

By substituting Eq. (18) into Eq. (3) we get a linear
differential equation:

ϕ̇ = −Γ(−∇2ϕ+ µϕ) + ξ. (20)

This can be easily solved in the Fourier space:

ϕ(q, ω) =
ξ(q, ω)

iω + Γ(q2 + µ)
, (21)

where

O(q, ω) =

∫
dt

∫
dxe−iq·x−iωtO(x, t). (22)

The two-point correlation is calculated as

⟨ϕ(q, ω)ϕ(q′, ω′)⟩ = (2π)d+1δ(q + q′)δ(ω + ω′)S(q, ω),
(23)

where

S(q, ω) ≡
∫

dt

∫
dxeiq·x+iωt ⟨ϕ(x, t)ϕ(0, 0)⟩

=
2TΓD(q, ω)

ω2 + Γ2(kq2 + µ)2
. (24)

C. Correlation length and relaxation time

Since we are interested in the critical behaviors in large
spatiotemporal scales, here we analyze the scaling behav-
ior of the correlation function for |q| ≪ 1 and ω ≪ 1.
After some manipulations, we get

S(q, ω) = Tµ−2−ρ−2θS(µ−1/2q, µ−1ω), (25)

where

S(x, y) = 2Γx−2ρy−2θ

y2 + Γ2(x2 + 1)2
. (26)

The scaling Eq. (25) implies that the correlation length
ξ and relaxation time τ behave as

ξ ∼ µ−1/2, τ ∼ ξz, (27)

with the dynamic critical exponent

z = 2. (28)

The correlation length and relaxation time diverge in the
limit µ → 0, meaning that µ = 0 defines the critical
point.

D. Static structure factor

The static structure factor S(q) is calculated as

S(q) =
1

2π

∫ ∞

−∞
dωS(q, ω) =

ATq−2ρ

(q2 + µ)1+2θ
(29)

where

A =
1

π

∫ ∞

−∞

|x|−2θ
dx

x2 + 1
= sec(πθ). (30)

Note that this integral diverges when θ ≥ 1/2 or θ ≤
−1/2. So hereafter, we only discuss the behaviors for
−1/2 < θ < 1/2 so that A remains finite. S(q) shows the
power low behavior for q ≪ µ1/2 ≈ ξ−1:

S(q) ∼ q−2ρ. (31)

For ρ > 0, S(q) → ∞ for small q, leading to the power-
low correlation

G(x) = ⟨ϕ(x)ϕ(0)⟩ ∼ |x|2ρ−d
. (32)

As a consequence, the fluctuation of the order parameter
in the d-dimensional square box [0, l]d behaves as [17]

σ(l)2 ≡

〈(∫
x∈[0,l]d

dxϕ(x)

)2〉
∼ ld+2ρ, (33)

which is much larger than the naive expectation from the
central limit theorem σ2 ∼ ld. This anomalous enhance-
ment of the fluctuation is the signature of the GNF [42].
For ρ < 0, S(q) → 0 in the limit q → 0. In this case,
the fluctuation of the order parameter Eq. (33) is highly
suppressed, i.e., the model exhibits the HU [17]. To vi-
sualize these results, we show typical behaviors of S(q)
in Fig. 1.

E. Lagrange multiplier

The remaining task is to determine the Lagrange mul-
tiplier µ by the spherical constraint:

N =

∫
dx
〈
ϕ(x, t)2

〉
=

V

(2π)d

∫
dqS(q), (34)

where V =
∫
dx denotes the volume of the system. Sub-

stituting Eq. (29) into Eq. (34), we get

1 = TA′
∫ qD

0

dq
qd−1−2ρ

(q2 + µ)1+2θ
, (35)

where qD denotes the cut-off and

A′ =
ΩdA

(2π)d
V

N
. (36)
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FIG. 1. Typical behaviors of S(q) of spherical model for
model-A: (a) S(q) for positive spatial correlation (ρ = 0.2, θ =
0). S(q) diverges in the limit of small q even far from the
transition point, i.e., the GNF appears. (b) S(q) for negative
spatial correlation (ρ = −0.2, θ = 0). S(q) vanishes in the
limit of small q, i.e., the HU appears. (c) S(q) for positive
temporal correlation (ρ = 0, θ = 0.2). (d) S(q) for negative
temporal correlation (ρ = 0, θ = −0.2). The temporal corre-
lation alone can not induce the GNF or HU. For simplicity,
here we set A = T = 1.

Here Ωd denotes the d dimensional solid angle. Substi-
tuting µ = 0 into Eq. (35), one can calculate the critical
temperature Tc as follows:

Tc =

{
0 d ≤ dl
(d− dl)/A

′qd−dl

D d > dl
, (37)

where we have defined the lower critical dimension as

dl = 2 + 2ρ+ 4θ, (−1/2 < θ < 1/2). (38)

This is consistent with the result of the dimensional anal-
ysis Eq. (14) for ρ > −1/2. On the contrary, the results
are inconsistent for ρ < −1/2. Further studies would be
beneficial to elucidate this point, but anyway, the qual-
itative result remains the same: the positive correlation
increases dl, and the anticorrelation reduces dl.

The detailed analysis of Eq. (35) near Tc leads to (see
Appendix. A)

µ ∼ (T − Tc)
γ (39)

with

γ =

{
2

d−dl
dl < d < du

1 d > du,
, (40)

where the upper critical dimension du is

du = 4 + 2ρ+ 4θ, (−1/2 < θ < 1/2). (41)

Again the result is consistent with the dimensional anal-
ysis for ρ > −1/2. Substituting this result into Eq. (27),
we can determine the critical exponent:

ξ ∼ (T − Tc)
−ν (42)

with

ν =

{
1/(d− dl) dl < d < du
1/2 d > du

. (43)

The critical exponent differs from the equilibrium value
if 2ρ + 4θ ̸= 0 since dl ̸= deql = 2. In other words,
the long-range spatio-temporal correlation of the noise
changes the universality class.

IV. CONSERVED ORDER PARAMETER

Let ϕ⃗ = {ϕ1, · · · , ϕn} be a conserved n-component or-
der parameter. We assume that the time evolution of
ϕa(x, t) is described by the model-B dynamics [29]:

∂ϕa(x, t)

∂t
= Γ∇2 δF [ϕ⃗]

δϕa(x, t)
+∇ · ξa(x, t), (44)

where Γ denotes the damping coefficient,
ξa = {ξa,µ}µ=1,...,d denotes the noise, and d denotes the
spatial dimension. The mean and variance of the noise
ξa,µ(x, t) are given by

⟨ξa,µ(x, t)⟩ = 0,

⟨ξa,µ(x, t)ξb,ν(x′, t′)⟩ = 2TδabδµνΓD(x− x′, t− t′),
(45)

where the Fourier transform ofD(x, t) is given by Eq. (6).

A. Dimensional analysis for O(n) model

Substituting the free energy Eq. (4) into Eq. (44), we
get

ϕ̇a = Γ∇2(−∇2ϕa + εϕa + gϕa|ϕ⃗|2) +∇ · ξa. (46)

As before, we consider the scaling transformations: x →
bx, t → bztt, ϕa → bzϕϕa, g → bzgg [1]. Assuming the
scaling invariance of the dynamic equation Eq. (46), we
get

zt = 4,

zg = 2− 2zϕ − zt,

zϕ = 1 +
2ρ′ − d

2
+ 4θ′, (47)
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where ρ′ = max[ρ,−1/2] and θ′ = max[θ,−1/2], as de-
fined in Eq. (11). As before, the lower critical dimension
is calculated by setting zϕ = 0, leading to

dl = 2 + 2ρ′ + 8θ′. (48)

The upper critical dimension is obtained by setting zg =
0, leading to

du = 4 + 2ρ′ + 8θ′. (49)

When θ = 0, the results are consistent with those of the
model-A, see Sec. II, while when θ ̸= 0, we get different
results. Aside from such a difference, the qualitative con-
clusion remains the same: the positive correlation of the
noise (ρ > 0 and θ > 0) increases the critical dimensions
dl and du, while the anticorrelation (ρ < 0 and θ < 0)
reduces dl and du.

B. Spherical model

The spherical model for the model-B dynamics is

ϕ̇ = Γ∇2(−∇2ϕ+ µϕ) +∇ · ξ. (50)

This model neglects the non-linear term of the O(n)
model and instead impose the spherical constraint∫
dx
〈
ϕ2
〉
= N . One can solve it easily since this is a

linear equation. For instance, the static structure factor
S(q) in the steady-state is calculated as

S(q) =
BTq−2ρ−4θ

(q2 + µ)1+2θ
(51)

where B denotes a constant.

B =
1

Γ2θπ

∫ ∞

−∞

|x|−2θ
dx

x2 + 1
=

sec(πθ)

Γ2θ
. (52)

As before, we restrict θ to −1/2 < θ < 1/2 to keep B
finite. S(q) shows the power low behavior for q ≪ µ1/2 ≈
ξ−1:

S(q) ∼ q−2ρ−4θ. (53)

For 2ρ + 4θ > 0, S(q) → ∞ for small q, leading to the
GNF [42]. On the contrary, for 2ρ+4θ < 0, S(q) → 0 for
small q, leading to the HU [17]. Interestingly, the GNF
and HU appear even without the spatial correlation of
the noise ρ = 0. To visualize the above results, we show
typical behaviors of S(q) in Fig. 2.
The Lagrange multiplier µ is to be determined by the

spherical constraint
∫
dx
〈
ϕ2
〉
= N . As before, the de-

tailed analysis of this equation allows us to calculate the
lower and upper critical dimensions for −1/2 < θ < 1/2
(see Appendix. A):

dl = 2 + 2ρ+ 8θ,

du = 4 + 2ρ+ 8θ. (54)
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FIG. 2. Typical behaviors of S(q) of spherical model for
model-B: (a) S(q) for positive spatial correlation (ρ = 0.2, θ =
0). (b) S(q) for negative spatial correlation (ρ = −0.2, θ = 0).
(c) S(q) for positive temporal correlation (ρ = 0, θ = 0.2). (d)
S(q) for negative temporal correlation (ρ = 0, θ = −0.2). For
positive spatial or temporal correlation, S(q) diverges in the
limit of small q even far from the transition point, i.e., the
GNF appears. For negative spatial or temporal correlation,
on the contrary, S(q) vanishes in the limit of small q, i.e., the
HU appears. For simplicity, here we set B = T = 1.

For ρ > −1/2, the results are consistent with the di-
mensional analysis in the previous subsection. On the
contrary, for ρ < −1/2, we get inconsistent results. Fur-
ther studies would be beneficial to elucidate the origin
of this discrepancy. Aside from such a minor difference,
both O(n) and spherical models predict that the positive
correlation of the noise (ρ > 0 and θ > 0) increases the
critical dimensions, dl and du, while the anticorrelation
reduces dl and du.
For dl < d < du near Tc, the scaling behaviors of the

Lagrange multiplier µ, correlation length ξ, and relax-
ation time τ are (see Appendix. A)

µ ∼ (T − Tc)
γ , ξ ∼ (T − Tc)

ν , τ ∼ ξz, (55)

where

γ =
2

d− dl
, ν =

1

d− dl
, z = 4. (56)

Note that the static critical exponent ν differs from
the equilibrium values if 2ρ + 8θ ̸= 0 because dl ̸=
deql ≡ 2 [1, 40]. This implies that the long-range spatio-
temporal correlation of the noise leads to a new univer-
sality class. Further theoretical and numerical studies
would be beneficial to elucidate this point.
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C. Center of mass conserving dynamics

An interesting application is for the systems driven by
the center of mass conserving (COMC) dynamics, which
was introduced to explain the HU [23, 24]. The ori-
gin of the HU may depend on the detail of the system,
but Hexner and Levine claimed that there is a universal
mechanism to yield HU for systems conserving the center
of mass [23]. Below we briefly summarize their argument
for the model-B dynamics. Let ρ(x, t) be the density
following the equation of continuity:

∂ρ(x, t)

∂t
= −∇ · J(x, t), (57)

where J denotes the flux. In the case of the standard
model-B, J is written as [43]

J = −Γ∇µ+ ξ, (58)

where µ = δF/δρ(x, t) denotes the chemical potential
and ξ denotes the noise. The conservation of the center
of mass requires [23]

d ⟨xa⟩
dt

=

∫
dxxa

∂ρ(x, t)

∂t

= −
∫

dxxa∇ · J(x, t)

=

∫
dxJa(x, t)

=

∫
dxξa = 0. (59)

To satisfy the last equality, ξa should be written in the
form of a divergence of other vector:

ξa(x, t) = ∇ · σa(x, t) =
∑
b

∂σab(x, t)

∂xb
. (60)

The simplest choice of σab(x, t) is an isotropic white
noise:

⟨σab(x, t)σcd(x
′, t′)⟩ ∝ δacδbdδ(x− x′)δ(t− t′). (61)

Then we get

⟨ξa(x, t)ξb(x′, t′)⟩ ∝ δab∇2δ(x− x′)δ(t− t′), (62)

which is tantamount to set D(q, ω) ∝ q2 in our model-
B dynamics, i.e., ρ = −1 and θ = 0, see Eq. (45). In
this case, the static structure factor Eq. (53) behaves
as S(q) ∼ q2 for a small waver number q. Therefore,
the model exhibits the HU, as discussed in previous
work [23]. Also, the dimensional analysis of the O(n)
model and spherical model both predict that the lower
critical dimension becomes lower than the equilibrium
value, dl < deql = 2. This implies that the continuous
symmetric breaking can occur even in d = 2 or lower
dimension in contrast with the equilibrium systems for

FIG. 3. Phase behaviors for the model-A (a) and model-B
(b).

which the Mermin-Wagner theorem prohibits the long-
range order. This appears to be consistent with a recent
numerical simulation of a two-dimensional system driven
by the COMC dynamics, where the authors reported the
emergence of the perfect crystal phase even in d = 2 [18].
But strictly speaking, our model is for the second-order
phase transition, and thus it can not be directly applied
to the first-order phase transition such as the crystailliza-
tion. Further numerical and theoretical studies would be
beneficial.

V. SUMMARY AND DISCUSSIONS

Model-A dl du
O(n) model 2 + 2ρ′ + 4θ′ 4 + 2ρ′ + 4θ′

Spherical model (−1/2 < θ < 1/2) 2 + 2ρ+ 4θ 4 + 2ρ+ 4θ
Model-B dl du

O(n) model 2 + 2ρ′ + 8θ′ 4 + 2ρ′ + 8θ′

Spherical model (−1/2 < θ < 1/2) 2 + 2ρ+ 8θ 4 + 2ρ+ 8θ

TABLE I. Critical dimensions. Here we used abbreviations
ρ′ = max[−1/2, ρ] and θ′ = max[−1/2, θ].

A. Summary

In this work, we calculated the lower and upper critical
dimensions, dl and du, of the O(n) and spherical models
driven by the model A and B dynamics with the cor-
related noise ξ(x, t), see Table. I for a summary. The
correlation of the noise is written in the Fourier space

as D(q, ω) = |q|−2ρ |ω|−2θ
. Our results imply that the

positive correlation of the noise (ρ > 0 and θ > 0) in-
creases the critical dimensions, dl and du, while the an-
ticorrelation (ρ < 0 and θ < 0) reduces dl and du. We
also found that the static structure factor S(q) in the
paramagnetic phase exhibits the power-low behavior for
small wave number S(q) ∼ qα with α = −2ρ for the non-
conserved order parameter (model-A) and α = −2ρ− 4θ
for the conserved order parameter (model-B), leading to
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the GNF for α < 0, and HU for α > 0. We summarize
those results in Fig. 3.

B. Hyperuniformity, gian number fluctuation, and
lower critical dimension

Our first expectation was that the HU would decrease
dl from the equilibrium value deql = 2, and the GNF
would increase dl. This expectation is correct for the
spatiotemporally positive correlated noise (ρ > 0, θ >
0) and anticorrelated noise (ρ < 0, θ < 0), see Fig. 3.
However, for the intermediate cases, ρ < 0, θ > 0 and
ρ > 0, θ < 0, the HU or GNF does not always guaranty
dl < 2 or dl > 2, see Fig. 3. Further studies would be
beneficial to elucidate the relation between the HU, GNF,
and dl.

C. Perspective on temporally correlated noise

The temporally correlated noise for −1/2 < θ < 1/2
has been studied extensively in the context of the anoma-
lous diffusion in crowded environments, because a free
particle driven by the noise ẋ = ξ exhibits the sub-
diffusion

〈
x(t)2

〉
∼ t1+2θ for −1/2 < θ < 0 and super-

diffusion for 0 < θ < 1/2, see Refs. [27, 44] for reviews.
However, relatively few studies have been done on the ef-
fects of the temporal correlation on critical phenomena.
For example, in Refs. [38, 45, 46], the authors studied the
effect of exponentially correlated noise on the φ4 model
and found the same universality as the equilibrium Ising
model. In Ref. [47], the authors studied the O(n) model
with the power-low correlated noise, but the noise was
introduced in a way that preserves the detailed balance.
Thus, the critical dimensions and the static critical expo-
nents are unchanged from those in equilibrium. On the
contrary, non-equilibrium noises, such as the 1/f noises,
often show the power-low frequency dependence of the
power spectrum, naturally leading to the long-range tem-
poral correlation [28, 48–51]. Our research has demon-
strated the emergence of novel phenomena, such as the
GNF, HU, and new universality classes in systems driven
by such long-range temporally correlated noise. We hope
that our findings will motivate further investigation into
the fascinating properties of these systems.

D. Systems driven by imperfect periodic or
quasiperiodic forces

Tissues are often driven by periodic deformation of
cells [52]. In chiral active matter, constituent particles
spontaneously rotate due to asymmetry of the driving
forces [25, 53]. The driving force of those systems would
be approximated by temporally periodic functions. In
previous work, we investigated a model driven by tem-
porally periodic but spatially uncorrelated driving forces

and found that the model exhibits the HU and smaller
value of the lower critical dimension than that in equi-
librium dl < 2 [26]. However, the completely periodic
function does not exist in reality due to friction or other
uncontrollable effects. The effects of the imperfection of
periodic patterns have been investigated extensively in
the context of the HU, and it is known that the Fourier
spectrum often exhibits the power-low with a positive ex-
ponent in these cases [34, 54]. For the simplest example,
we consider an imperfect periodic pulse [34]:

ξ(t) = lim
T→∞

T∑
n=1

δ(t− na− ηn), (63)

where ηn represents a perturbation to a periodic pulse.
For simplicity, let us assume that ηn is an i.i.d Gaussian
random variable of zero mean and variance σ. Then, the
power spectrum of ξ(t) can be calculated as follows [34]

D(ω) = lim
T→∞

1

T

∣∣∣∣∣
T∑

n=1

eiω(na+ηn)

∣∣∣∣∣
2

= 1 + e−σω2

(D0(ω)− 1), (64)

where the overline denotes the average for ηn, and D0(ω)
represents the spectrum of the periodic pulse:

D0(ω) = lim
T→∞

1

T

∣∣∣∣∣
T∑

n=1

eiωna

∣∣∣∣∣
2

. (65)

D0(ω) is nothing but the static structure factor of a one-
dimensional lattice, and in particular D0(ω) = 0 for suf-
ficiently small ω [34]. For ω ≪ 1, we get

D(ω) ∼ 1− e−σω2

∼ σω−2θ (66)

with θ = −1. This simple example demonstrated that
the power-law spectrum with negative θ can naturally
arise due to the imperfection of the periodic pattern.
More systematic studies for various types of imperfec-
tions have been investigated in Ref. [34]. The similar
power law of the Fourier spectrum has been also reported
for one-dimensional quasi-periodic sequences [54, 55]. Do
systems driven by imperfect periodic or quasi-periodic
forces exhibit the HU and symmetry breaking transition
in d ≤ 2, as predicted by our theory? Further theoretical
and numerical studies would be beneficial to elucidate
this point.

ACKNOWLEDGMENTS

We thank K. Miyazaki and A. Ikeda for useful discus-
sions. This project has received JSPS KAKENHI Grant
Numbers 21K20355 and 23K13031.



9

Appendix A: Scaling of µ

To determine µ, one should solve the following self-
consistent equation:

1 = TG(µ) ≡ TA

∫ qD

0

dq
qd−1+m

(q2 + µ)n
, (A1)

where A, n, and m are constants. We want to derive the
scaling behavior of µ near the critical point:

Tc =

[
A

∫ qD

0

dqqd−1+m−2n

]−1

. (A2)

For d+m−2n > 0, the denominator of Eq. (A2) diverges,
and thus the model does not have the critical point at
finite T . This implies that the lower critical dimension is

dl = 2n−m. (A3)

When d > 2n−m+ 2, G(µ) can be expanded as

1

T
= G(0) + µG′(0) + · · ·

=
1

Tc
+ µG′(0) + · · · , (A4)

leading to

µ ∼ (T − Tc)
1. (A5)

On the contrary, if d ∈ (2n −m, 2n −m + 2), G′(µ) for
small µ behaves as

G′(µ) ∼ µ
d+m−(2n+2)

2 , (A6)

implying

G(µ)−G(0) =

∫ µ

0

dµ′G′(µ′) ∼ µ
d+m−2n

2 , (A7)

leading to

1

T
= G(µ) =

1

Tc
−Bµ

d+m−2n
2 , (A8)

where B is a constant. Therefore, the scaling of µ for
µ ≪ 1 is

µ ∼ (T − Tc)
2

d+m−2n ∼ (T − Tc)
2

d−dl . (A9)

The above results imply that the upper critical dimension
is

du = 2n−m+ 2 = dl + 2. (A10)

[1] H. Nishimori and G. Ortiz, Elements of phase transitions
and critical phenomena (Oup Oxford, 2010).

[2] Y. Imry and S.-k. Ma, Phys. Rev. Lett. 35, 1399 (1975).
[3] M. Schwartz, J. Villain, Y. Shapir, and T. Nattermann,

Phys. Rev. B 48, 3095 (1993).
[4] W. Janke and R. Villanova, Physics Letters A 209, 179

(1995).
[5] H. Barghathi and T. Vojta, Phys. Rev. Lett. 113, 120602

(2014).
[6] J. Luck, Journal of Physics A: Mathematical and General

20, 1259 (1987).
[7] C. Sire, International Journal of Modern Physics B 7,

1551 (1993).
[8] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133

(1966).
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[13] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and
O. Shochet, Phys. Rev. Lett. 75, 1226 (1995).

[14] J. Toner and Y. Tu, Phys. Rev. Lett. 75, 4326 (1995).
[15] S. A. Loos, S. H. Klapp, and T. Martynec, arXiv preprint

arXiv:2206.10519 (2022).
[16] L. P. Dadhichi, J. Kethapelli, R. Chajwa, S. Ramaswamy,

and A. Maitra, Phys. Rev. E 101, 052601 (2020).

[17] S. Torquato, Physics Reports 745, 1 (2018).
[18] L. Galliano, M. E. Cates, and L. Berthier, arXiv preprint

arXiv:2302.11514 (2023).
[19] P. A. Crossley, L. M. Schwartz, and J. R. Banavar, Ap-

plied physics letters 59, 3553 (1991).
[20] J. H. Weijs, R. Jeanneret, R. Dreyfus, and D. Bartolo,

Physical review letters 115, 108301 (2015).
[21] M. Huang, W. Hu, S. Yang, Q.-X. Liu, and H. Zhang,

Proceedings of the National Academy of Sciences 118,
e2100493118 (2021).

[22] B. Zhang and A. Snezhko, Phys. Rev. Lett. 128, 218002
(2022).

[23] D. Hexner and D. Levine, Physical review letters 118,
020601 (2017).

[24] Q.-L. Lei and R. Ni, Proceedings of the National
Academy of Sciences 116, 22983 (2019).

[25] Y. Kuroda and K. Miyazaki, arXiv preprint
arXiv:2305.06298 (2023).

[26] H. Ikeda and Y. Kuroda, arXiv preprint
arXiv:2304.14235 (2023).

[27] J.-P. Bouchaud and A. Georges, Physics reports 195, 127
(1990).

[28] I. Eliazar and J. Klafter, Proceedings of the National
Academy of Sciences 106, 12251 (2009).

[29] P. M. Chaikin, T. C. Lubensky, and T. A. Witten, Prin-
ciples of condensed matter physics, Vol. 10 (Cambridge
university press Cambridge, 1995).

[30] E. Medina, T. Hwa, M. Kardar, and Y.-C. Zhang, Phys.
Rev. A 39, 3053 (1989).

http://dx.doi.org/10.1103/PhysRevLett.35.1399
http://dx.doi.org/ 10.1103/PhysRevB.48.3095
http://dx.doi.org/10.1103/PhysRevLett.113.120602
http://dx.doi.org/10.1103/PhysRevLett.113.120602
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevE.52.R9
http://dx.doi.org/10.1103/PhysRevE.82.040102
http://dx.doi.org/10.1103/PhysRevE.82.040102
http://dx.doi.org/10.1103/PhysRevE.65.046136
http://dx.doi.org/10.1103/PhysRevE.65.046136
http://dx.doi.org/10.1103/PhysRevLett.126.160604
http://dx.doi.org/10.1103/PhysRevLett.126.160604
http://dx.doi.org/ 10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1103/PhysRevLett.75.4326
http://dx.doi.org/10.1103/PhysRevE.101.052601
http://dx.doi.org/10.1103/PhysRevLett.128.218002
http://dx.doi.org/10.1103/PhysRevLett.128.218002
http://dx.doi.org/ 10.1103/PhysRevA.39.3053
http://dx.doi.org/ 10.1103/PhysRevA.39.3053


10
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[45] J. Garćıa-Ojalvo and J. M. Sancho, Phys. Rev. E 49,
2769 (1994).

[46] J. Sancho, J. Garcia-Ojalvo, and H. Guo, Physica D:
Nonlinear Phenomena 113, 331 (1998).

[47] J. Bonart, L. F. Cugliandolo, and A. Gambassi, Journal
of Statistical Mechanics: Theory and Experiment 2012,
P01014 (2012).

[48] R. F. Voss and J. Clarke, Phys. Rev. B 13, 556 (1976).
[49] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett.

59, 381 (1987).
[50] P. Dutta and P. M. Horn, Rev. Mod. Phys. 53, 497

(1981).
[51] E. Milotti, arXiv preprint physics/0204033 (2002).
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