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Memory effects are ubiquitous in a wide variety of complex physical phenomena, ranging from glassy dy-

namics and metamaterials to climate models. The Generalised Langevin Equation (GLE) provides a rigorous

way to describe memory effects via the so-called memory kernel in an integro-differential equation. However,

the memory kernel is often unknown, and accurately predicting or measuring it via e.g. a numerical inverse

Laplace transform remains a herculean task. Here we describe a novel method using deep neural networks

(DNNs) to measure memory kernels from dynamical data. As proof-of-principle, we focus on the notoriously

long-lived memory effects of glass-forming systems, which have proved a major challenge to existing methods.

Specifically, we learn the operator mapping dynamics to memory kernels from a training set generated with

the Mode-Coupling Theory (MCT) of hard spheres. Our DNNs are remarkably robust against noise, in con-

trast to conventional techniques. Furthermore, we demonstrate that a network trained on data generated from

analytic theory (hard-sphere MCT) generalises well to data from simulations of a different system (Brownian

Weeks-Chandler-Andersen particles). Finally, we train a network on a set of phenomenological kernels and

demonstrate its effectiveness in generalising to both unseen phenomenological examples as well as supercooled

hard-sphere MCT data. We provide a general pipeline, KernelLearner, for training networks to extract mem-

ory kernels from any non-Markovian system described by a GLE. The success of our DNN method applied to

noisy glassy systems suggests deep learning can play an important role in the study of dynamical systems with

memory.

I. INTRODUCTION

Non-Markovian systems, i.e. those that exhibit memory ef-

fects, pose a number of major challenges to both analytic and

computational analysis. This issue is of particular importance

as such systems occur across many different areas of mod-

ern physics, for example climate models [1], gene interaction

networks [2], quantum-classical simulations [3, 4], and the be-

haviour of supercooled liquids and glasses [5, 6], among many

others.

A common, and very general, framework for describing

non-Markovian dynamics in continuous time is the Gener-

alised Langevin Equation (GLE), where memory effects are

included via a so-called memory kernel. GLEs are a common

occurrence across statistical physics and beyond as they are

produced by the Mori-Zwanzig projection operator formalism

[7–9]. This formalism starts with a memoryless (e.g. Hamil-

tonian) system in a very high dimensional space, and projects

the dynamics onto a lower dimensional space consisting of

degrees of freedom that are of theoretical interest or are ex-

perimentally accessible. The price paid for this dimensional-

ity reduction is the emergence of memory effects in the low

dimensional dynamics. Memory kernels are often unknown

or highly non-trivial and so measuring them from data is an

important step in developing and testing non-Markovian the-

ories. Furthermore, including memory effects can be a highly

computationally efficient method of describing complex dy-

namics [10], hence it is desirable to have quick, accurate tech-

niques for measuring memory kernels.

∗ To whom correspondence should be addressed: m.j.kerr.winter@tue.nl and

l.m.c.janssen@tue.nl

Glasses and supercooled liquids are particularly challeng-

ing non-Markovian systems to study as they experience com-

plex dynamics over a wide range of length and time scales,

with memory effects lasting multiple orders of magnitude in

time. The Mori-Zwanzig method has proved to be very popu-

lar in the field of glassy physics, and in particular forms the ba-

sis of Mode-Coupling Theory (MCT), a first-principles, self-

consistent framework of the glass transition [5, 7, 11–14]. To

date, there is no complete theory of the glass transition, and

MCT is no exception. Although the Mori-Zwanzig method

is exact, it results in an intractable expression for the mem-

ory kernel which must then be approximated in a number of

ways, varying in complexity depending on the flavour of MCT

[12, 15–19]. This fact emphasises the memory kernel as an

object of particular importance to glassy physics, as it is the

point at which an exact theory is abandoned in favour of ap-

proximations.

For both glassy and other non-Markovian systems, a GLE

of some autocorrelation function, y, can be written in the over-

damped limit as

y′(t) + Ωy(t) +

∫ t

−∞

dτK(τ)y′(t− τ) = 0, (1)

whereK is the memory kernel, andΩ, the so-called frequency

term, is a parameter that is in general known, which describes

the memoryless evolution of y. In general GLEs also contain

a random force term, which is removed from Eq. 1 by taking

the correlation of a variable with itself to get the autocorrela-

tion y. In MCT, y is the autocorrelation function of density

fluctuations. Equations with the form of Eq. 1 are also called

memory equations. The question of how to study K given y
at first appears simple. By applying a Laplace transform to

Eq. 1 the kernel can be disentangled from its convolution with

http://arxiv.org/abs/2302.13682v2
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y′, resulting in an explicit expression for K ,

K(t) = L91

[

y(0)− (s+Ω)L[y]
sL[y]− y(0)

]

, (2)

where L[f(t)](s) =
∫∞

0
e−stf(t)dt is the Laplace transform

of a function, f(t). The complexity arises from the fact that

in practice performing an inverse Laplace transform is a major

challenge.

The difficulties of performing a numerical inverse Laplace

transform are well known [20–22], and the extent of this prob-

lem is nicely summarised by Epstein and Schotland: “Our re-

sults give cogent reasons for the general sense of dread most

mathematicians feel about inverting the Laplace transform”

[23]. Laplace inversion is an example of an ill-posed inverse

problem, where information is lost during any numerical im-

plementation of the forward transform, making the inverse

difficult if not impossible. This effect can be demonstrated

by considering the forward Laplace transform of a function

expressed as a Fourier series, L[f(t)] = L[∑i ai sin(ωit) +
∑

j bj cos(ωjt)]. The Laplace transforms of sin and cos are

L[sin(ωt)](τ) = ω/(ω2+τ2), and L[cos(ωt)](τ) = τ/(ω2+
τ2) respectively. As such, the amplitude of high-frequency

components in f(t) are suppressed by the ω2 in the denomi-

nators of the respective Laplace transforms. Above some criti-

cal ω∗, the high-frequency components become indistinguish-

able from noise (either experimental or numerical) and hence

are unrecoverable by the inverse transform. Consequently, nu-

merical inverse Laplace transforms are very sensitive to noise,

with even numerical round-off errors potentially overwhelm-

ing the signal.

Many authors in the soft matter and glassy physics commu-

nities have taken an alternative approach to determining the

memory kernel, whereby an implicit Volterra integral equa-

tion for K is constructed from pair-wise correlation functions

[10, 24–27]. Such correlation functions are constructed by

taking an ensemble average over a large number of trajectories

of particle-based simulations. A variety of different numerical

methods have been used to successfully solve such equations

for the short time memory effects of various systems [28–31].

An alternative to both explicit Laplace inversion, and solv-

ing a Volterra equation, is to use a minimisation approach to

approximate the kernel. The problem of performing the in-

verse Laplace transform in Eq. 2 can be reformulated as find-

ing some K̄ such that |L[K̄]−L[K]| < ǫ, for some ǫ ∈ R that

can be set arbitrarily small [21]. As the high-frequency parts

of K̄ and K are lost in the forward transform, this minimisa-

tion problem does not have a unique solution. Consequently,

it is helpful to include a regularisation functional, R, resulting

in the minimisation problem |L[K̄] − L[K]| + |λR[K̄]| < ǫ,
where λ is a parameter to control the strength of the regu-

larisation. A simple regularisation technique is to penalise

low order derivatives in the solution, i.e. R[K̄] = K̄ ′′, result-

ing in a smooth K̄. In some cases, e.g. astronomical image

restoration, an entropy can be calculated for the image func-

tion, which is then maximised by a regularisation functional

[32]. Recent successes in modelling systems with memory ef-

fects over a wide range of timescales have also been achieved

by moving away from the GLE completely in favour of time-

local non-Markovian methods with attractive computational

properties [33].

Complementary to conventional physical and mathematical

approaches, machine learning techniques are rapidly emerg-

ing as powerful and computationally efficient tools for the

study of glasses [34–43] and complex soft matter systems

more generally [44, 45]. As such, the recent explosion of

interest in deep learning suggests a new route to extracting

memory kernels from GLEs following the minimisation phi-

losophy above. Deep Neural Networks (DNNs) have very

attractive generalisation and expressivity properties [46–48],

and so it is reasonable to ask whether a DNN could learn the

mapping from the function y to the kernel K in Eq. 1. Previ-

ous authors have made significant progress by parameterising

the kernel with manually curated sets of functions [49–51].

Our neural network parameterisation follows a similar philos-

ophy while taking advantage of the very broad approximation

properties of DNNs. Such an approach has shown impressive

results when applied to analytic problems with rapidly decay-

ing memory kernels [52]. By learning a mapping between

function spaces, our approach falls within the rapidly expand-

ing field of deep operator learning, which was popularised by

the publication of DeepONet [53].

In this work we present a novel machine-learning based

method for kernel extraction from GLE data. As a demon-

stration of effectiveness, we train and apply DNNs to

the challenging problem of extracting memory kernels in

glass-forming systems that have very long-lasting memory

effects and significant levels of noise. The networks are

far more robust to noise in the input signal than traditional

methods. Furthermore, we show that a network trained on

data generated from analytic theory (hard-sphere MCT)

generalises well to data from particle-based simulations

of a different system. MCT provides an analytic, though

approximate, memory kernel from which a training set

can be generated, whereas with simulations we study

the true dynamics, but with an unknown kernel. Our

network that has been trained on MCT data is available at

https://zenodo.org/record/7603275#.Y_vAxS8w1pQ.

While we focus on glass-forming materials here to es-

tablish proof of principle, our method is not limited to

glassy systems per se. In fact we hope it will be used to

study the form of kernels across a wide variety of non-

Markovian phenomena, and in particular systems that have

a less well developed body of theory than glassy materials.

Furthermore, memory effects play an important role in

coarse-grained or reduced order models (ROM) of complex

systems [54–56]. As such, being able to measure kernels

from a minimum of high resolution data is important.

Consequently, we have written a pipeline for users to train

networks on their GLE system of choice, which is available at

https://github.com/mkerrwinter/KernelLearner.

https://zenodo.org/record/7603275#.Y_vAxS8w1pQ
https://github.com/mkerrwinter/KernelLearner
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II. PROBLEM DEFINITION AND NUMERICAL SETUP

Our general method can be briefly summarised as follows.

Starting from a set of memory kernels similar to those we wish

to measure, training and testing sets are generated by solv-

ing the GLE using the same method as in [57], subjecting the

solutions to many noise realisations, and using the (solution,

kernel) pairs as input and output respectively. Multiple net-

works are trained over a range of hyperparameters, and an op-

timum network is selected which achieves the minimum test

loss. Finally, a novel memory kernel can be measured from

unseen input data, and validation can be performed by solv-

ing the GLE with this measured kernel to compare with the

input. The “first guess” kernels could be derived from theory,

generated to a low level of accuracy with existing kernel mea-

surement methods, measured from a similar system, or simply

be informed guesswork.

Our goal is to extract a memory kernel, K(t), from the

density autocorrelation function, F (t), of a glassy system de-

scribed by a GLE like Eq. 1. We use F (t) curves generated by

numerically solving MCT, as well as curves measured from

particle-based simulations. The neural networks are trained

on MCT data, and validation is performed on both unseen

MCT data and simulation data. For comparison, we also ex-

tract the kernel by applying conventional (i.e. non-network)

methods.

As the variable of interest, MCT typically employs the au-

tocorrelation function

F (k, t) =
1

N
〈ρ−k(0)ρk(t)〉, (3)

where ρk =
∑

j e
ik·rj(t) is the microscopic density in Fourier

space, k a wavevector, N the number of particles, and 〈·〉 de-

notes an ensemble average. The overdamped MCT GLE has

the form

Ḟ (k, t) +
D0k

2

S(k)
F (k, t)+

∫ t

0

dτKMCT(k, τ)Ḟ (k, t− τ) = 0, (4)

where k = |k| is the wavenumber, D0 is the self-diffusion

coefficient,S(k) = F (k, 0) is called the static structure factor,

and KMCT is the kernel. The MCT kernel is given by

KMCT(k, t) =
ρD0

16π3

∫

dqV 2
q,k−qF (q, t)F (|k − q|, t), (5)

where ρ is the average number density, the vertex term

Vq,k−q = k−1[k · qc(q) + k · (k − q)c(|k − q|)], and c(k) =
ρ−1[1 − 1/S(k)] (for more details see e.g. [5]). In general,

F (t) is a function of the wavenumber, and the MCT kernel

couples different wavenumbers together. Equation 4 is sub-

ject to the initial condition S(k) = F (k, 0).
To numerically solve the MCT equation we use the Percus-

Yevick closure for a system of hard spheres [58, 59]. This is

an analytic approximation for the static two-point correlation

function S(k) of a system of hard spheres at a given density.

For simplicity, we test our method on the F (k, t) behaviour

at wavenumber k = k∗, corresponding to the main peak of

S(k). From here on we will omit the explicit k dependence

and use F (t) = F (k∗, t) for brevity. Note that by restricting

ourselves to the peak wavenumber we only achieve accurate

network predictions at k∗, however the training set can easily

be extended to include more wavenumbers.

The simulation data we use is from a system of particles in-

teracting via the Weeks-Chandler-Andersen (WCA) potential

[60]. Details of the simulations are given in Appendix B. Note

that the type of particle in the simulation data (soft spheres) is

different from the MCT data used to train the networks (hard

spheres).

A. Dataset, network and training process

Both the training dataset and MCT testing dataset are pro-

duced in the same way. First, Eq. 4 is solved numerically

at volume fractions φ ∈ {0.45, 0.451, 0.452..., 0.58}, that are

symmetric about the MCT glass transition φg ≈ 0.516 [11], to

produce a set of analytic curves denoted FA(t). Each curve is

then subjected to 1000 different realisations of Gaussian noise

like

F (t) = FA(t) + µ(max(FA)− min(FA))ξ(t), (6)

where ξ(t) is Gaussian noise with unit variance and zero

mean, and 〈ξ(t)ξ(t′)〉 = δ(t − t′). The parameter µ controls

the strength of the noise. By adding noise to the training set

the DNN learns the mapping from noisy dynamics to a clean

memory kernel, and hence is able to handle real data measured

from simulations or experiments. The dimension of the set of

noisy curves, {F (t)}, is then reduced with Principal Compo-

nent Analysis (PCA) where only the first 15 PCA components

are retained [61]. Note that PCA is a generic and automated

method for finding a suitable lower-dimensional representa-

tion of data, i.e. it does not rely on any domain specific knowl-

edge about how best to encode the data, and so allows this

pre-processing method to be broadly applicable to many dif-

ferent systems. Concretely, our original dataset consisting of

P examples, each defined on a time grid of 4352 points (with

the grid spacing doubling as in [19]), is transformed to P ex-

amples in a 15-D space which serves as our DNN-input. The

explained variance per principal component is shown in Fig.

1(b), which levels off at the 15th component. As well as the

PCA components, we include the frequency term, Ω = D0k
2

S(k) ,

and the value of the autocorrelation function at the final time-

point, F (tmax), in order to clearly distinguish between liquids

(F (tmax) = 0) and glasses (F (tmax) > 0). The dimensionally

reduced set of noisy curves, Ω, and F (tmax) form the input of

the network, of dimension 17. The target is the KMCT used to

produce a given F (t), discretised on a logarithmically spaced

time grid of 100 points. Consequently, the output of the neural

network is also defined on this time grid. Both the testing and

the training set consist of P = 65500 such examples.

We use a fully connected feed-forward network with L+ 1
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FIG. 1. (a) A schematic of the network structure. The input consists

of the first 15 PCA components of a pairwise correlation function

F (t), the frequency term Ω, and the final correlation value F (tmax).
The output is an approximation of the memory kernel used to gener-

ate F (t) via Eq. 4 [62]. (b) The explained variance of consecutive

PCA components of the training set, which display a kink between

components 12 and 15. (c) Minimum test loss values for a subset of

networks in the hyperparameter search. These networks have a width

factor ω = 8, and were trained with a batch size of 2500. The plot

shows the variability between networks with different regularisation

λ, and different initial conditions.

layers, with input x, and output given by

fα(x,Θ) = aL+1
α , (7)

aiβ =
∑

α

W i
αβσ(a

i−1
α )−Bi

β , 2 ≤ i ≤ L+ 1

(8)

a1β =
∑

α

W 1
αβxα − B1

β. (9)

Greek letters index the matrices of weights between each

layer, whereas Latin letters index the layers themselves, hence

W i
αβ are the elements of the matrix of weights between layer

i − 1 and i. The biases are given by Bi
α. The variable Θ

is a vector containing all weights and biases. For the acti-

vation functions we choose the popular Rectified Linear Unit

(ReLU), σ(z) = max(0, z). We use the dropout method to

reduce overfitting [63], so that at each training step nodes

are temporarily dropped from the network with probability

p = 0.5. The network structure consists of L = 6 hid-

den layers that gradually increase in width. The hidden layer

widths are [50ω, 100ω, 150ω, 200ω, 250ω, 300ω], where the

width factor ω is an integer hyperparameter controlling the

width of the network. We have borrowed this triangular net-

work structure from the authors of [52], who address a similar

problem. We chose a fully connected network (as opposed to

e.g. a convolutional neural network) as it is the most general

feed forward architecture, and is determined by a relatively

small set of hyperparameters. The structure of the network,

input, and output data is shown schematically in Fig. 1(a).
We use a weighted mean square error loss function between

network output at neuron j, fj , and the true kernel in adimen-

sional form K̃(tj), with L2 regularisation on the network pa-

rameters, Θk, to prevent overfitting [64],

L =
1

P

P
∑

i=1

1

jmax

jmax
∑

j=1

αj(fj − K̃(tj))
2 + λ

M
∑

k=1

Θ2
k, (10)

where the first sum is over examples in the training set, and

the second is over the time points tj at which K̃ is discretised.

The training set is produced using natural units. Space is mea-

sured in terms of the particle diameter, d, and time is measured

in d2/D, where D is the diffusion constant. The units are cho-

sen such that d = D = 1, and K̃ = Kd2/D. The weights

increase linearly with the time grid, αj = j/jmax, so that long-

time behaviour is given more importance. This is because the

kernel at long times affects the dynamics to a greater extent

than at short times. The parameter λ controls the strength of

L2 regularisation over the M network parameters. Its effect

on the test loss is demonstrated in Appendix C. Training is

performed using the Adam method, a popular stochastic gra-

dient descent algorithm [65]. We use early stopping to avoid

overfitting, i.e. we select the optimum network state that gives

the minimum test loss, as demonstrated in Appendix C.

B. Non-network methods

For comparison with the above network-based method, we

also implement two traditional kernel extraction methods. The

first applies an inverse Laplace transform to Eq. 2. We use

the De Hoog algorithm to evaluate L−1 using a Fourier series

with accelerated convergence [66, 67]. This method outper-

formed other common inversion algorithms (Talbot [68] and

Stehfest [69]) on our data. To mitigate the effect of noise we

first smooth the F (t) curves with a Savitzky-Golay filter [70]

before applying the De Hoog inverter. The second method is

to construct and solve a Volterra integral equation for K , the

details of which are given in Appendix G.

III. RESULTS

A. Hyperparameter search

We first search for optimum network hyperparameters. As

there are a large number of hyperparameters that can be op-

timised a full grid search is unfeasible. Instead, we choose
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the L2 regularisation strength λ, the batch size of the Adam

method, and the width factor ω as the most important hyper-

parameters, and perform a search over reasonable intervals for

each. This process is shown for λ in Fig. 1(c), where multiple

initial conditions have been included for each λ. As well as

demonstrating the effect of λ on the test loss, this figure illus-

trates the significant randomness introduced by using different

initial conditions for Θ, and hence the importance of training

multiple networks with different initial conditions. We select

the network with the lowest test loss across the whole hyper-

parameter search.

B. Performance on MCT Percus-Yevick hard spheres

We apply our optimum network to the task of extracting

memory kernels from unseen F (t) curves generated by hard

sphere MCT and subjected to noise according to Eq. 6. For

comparison, we use the De Hoog algorithm to extract the ker-

nel by means of Eq. 2 applied to noisy F (t) curves. It is

reasonable to ask whether a simple smoothing procedure to

mitigate the effect of noise would be sufficient to achieve rea-

sonable performance without resorting to deep learning. To

investigate this, we also use the De Hoog algorithm on F (t)
curves that have been smoothed by a Savitzky-Golay filter.

The left-hand panels of Fig. 2 show both the noisy and

smoothed F (t). The two right-hand panels show the ker-

nel measured by our neural network, Laplace inversion of

Eq. 2, and Laplace inversion of Eq. 2 using the smoothed

F (t). We measure kernels in both the liquid (volume frac-

tion φ = 0.475) and glass (φ = 0.52) regimes, subjected to

both high (µ = 10−2) and low (µ = 10−5) levels of noise.

In all cases the network reproduces the true MCT kernel from

F (t) to a very high degree of accuracy. In contrast, Laplace

inversion fails to produce an accurate (or indeed even vaguely

reasonable) kernel across all times. Although the smoothing

process on F (t) in the left-hand panel of Fig. 2(a) and (c)
looks very effective by eye, it does not significantly improve

the accuracy of the measured kernel. As can be seen in the

low noise plots, Fig. 2(b) and (d), the noise on F (t) must

be reduced to the point where it is no longer visible by eye

before conventional Laplace inversion can measure a reason-

able kernel over multiple decades. Even then, this approach

fails at short times. Interestingly, when noise is this low the

smoothing process actually decreases performance.

In Fig. 3 we demonstrate that the DNN hugely outperforms

De Hoog Laplace inversion once again, this time in the super-

cooled regime, very close to the glass transition point. This is

a particularly challenging region of parameter space as F (t)
becomes very sensitive to small changes in the initial condi-

tions. Fig. 8 in Appendix D shows how the network extrapo-

lates well to regions of phase space not included in the training

set. The ability to generalise is crucial for the usefulness of the

DNN method. The caveat to this extrapolation is that deep in

the glass phase, at volume fractions higher than those in the

training set, the dynamics become only weakly dependent on

the kernel and the performance of the network decreases.

The results in Fig. 2 demonstrate the extreme susceptibility
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FIG. 2. Examples of kernel extraction from a density autocorrelation

function using a trained network and the De Hoog algorithm. (a)
The liquid phase of Percus-Yevick Hard Sphere MCT with volume

fraction φ = 0.475. The left-hand panel shows the noisy F (t) curve,

with µ = 10−2 as defined in Eq. 6, as well as the smoothed curve

produced by the Savitzky-Golay filter. The middle panel contains

the memory kernel as measured by a network and the true MCT ker-

nel. The right-hand panel contains the kernel measured by the De

Hoog algorithm from the smoothed F (t) (‘SG De Hoog’), the kernel

measured from the raw noisy curve (‘De Hoog’), and the true MCT

kernel. (b) The same curves measured from F (t) at φ = 0.475 with

µ = 10−5. (c) and (d) are the same measurements again but in the

glass phase with φ = 0.52.

of Laplace inversion to noise, as well as the huge improve-

ment achieved by deep learning. Furthermore, as shown in

Fig. 3 and Appendix D, our network method is highly effec-

tive in difficult regions of parameter space, and in regions not

included in the training set. Finally, the trained DNN is hun-

dreds of times faster than the De Hoog algorithm. Our deep

learning method comprehensively outperforms conventional

Laplace inversion for measuring the memory kernel of hard

sphere MCT.
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FIG. 3. Left panel: density correlation function F (t) in the super-

cooled regime as predicted by MCT for hard spheres at volume frac-

tion φ = 0.515, which is very close to the MCT glass transition

0.515 < φg < 0.516. Middle panel: the corresponding MCT mem-

ory kernel and the kernel predicted by DNN. Right panel: the cor-

responding memory kernel as obtained by the De Hoog algorithm,

applied to both noisy and smoothed F (t) data.

C. Performance on simulated soft spheres

To test the limits of the network’s performance, we apply it

to data from a different system than the one it was trained on.

We run Brownian dynamics simulations of WCA monodis-

perse spheres (see Appendix B), and measure F (t) both from

single trajectories, and an ensemble average of several hun-

dred trajectories. These simulations are in the liquid regime, at

temperatures just above the solid-liquid binodal below which

the system crystallises. We measure kernels by two methods,

namely from our neural network, and by constructing an im-

plicit Volterra integral equation for K (see Appendix G). The

neural network has not been retrained, i.e. it has only seen the

MCT hard sphere training set of the previous section. This

is in order to study the ability of the network to generalise to

an unseen system. For validation, we solve Eq. 4 using the

kernels measured by the network or Volterra method in place

of KMCT, resulting in a new F (t) curve which we can com-

pare with F (t) from the simulations. In Fig. 4(a) the noisy

F (t) of a single simulation trajectory (left-hand panel) is used

as input. The network is able to reproduce dynamics that are

very close to the true dynamics of the system calculated by

averaging many trajectories (right-hand panel). In contrast,

the Volterra method, which is at first more accurate than the

DNN, begins to oscillate wildly and soon diverges. The same

measurements are repeated at a lower temperature (but still in

the normal liquid regime) in Fig. 4(c). Similar to the hard-

sphere case, the DNN method hugely outperforms traditional

methods in the presence of noise. In Fig. 4(b) and (d) the in-

put data is the ensemble-averaged F (t). The right-hand pan-

els compare the dynamics using the network kernel, and the

Volterra kernel, to the true dynamics from the left-hand panel.

In this low-noise context the Volterra method performs very

well. At high T the network is able to produce dynamics that

are very similar to the ground truth, whereas at low T the net-

work is less accurate, but not catastrophically so. This dis-

crepancy is due to the greater role Markovian dynamics (con-

trolled by the frequency term, Ω) play at high temperatures.

An explicit comparison between the simulated dynamics, net-

work prediction, and MCT is given in Appendix E. Impor-

tantly, the network-predicted dynamics exhibit an incorrect

non-zero plateau at long times. The long-time behaviour of
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FIG. 4. Reproducing F (t) from WCA simulations. In the left-hand

panels of (a) and (c), F (t) is calculated from a single simulation tra-

jectory and hence exhibits significant levels of noise. In the left-hand

panels of (b) and (d) and in the right-hand panels clean F (t) curves

are produced by averaging over many trajectories (‘〈Sim〉’). Ker-

nels are measured from F (t) with the network (‘DNN’) and Volterra

(‘Volterra’) methods, which are then used to solve Eq. 4. The result-

ing F (t) curves are plotted in the right-hand panels. A perfect kernel

measurement would result in exactly the same curve as ‘〈Sim〉’. In

the low-noise plots the Volterra line is almost indistinguishable from

the data. Temperatures are in Lennard-Jones units, defined in Ap-

pendix B.

F (t) is very sensitive to the long-time behaviour of K , hence

small non-zero values in the tail of K (a likely outcome of any

minimisation routine) can result in a non-zero tail in F (t).

Let us now discuss the computational efficiency of the DNN

approach as compared to that of the Volterra method. Af-

ter generating the HS-MCT training set (which took approx-
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imately 35 minutes on a 2020 Macbook Pro), the DNN was

trained to its minimum test loss state on a single Xeon E5

(2019) CPU core in 24 hours. Measuring a kernel with the

trained network subsequently takes less than a second. The

dynamics shown in Fig. 4(b) and 4(d) (Volterra curves) each

required approximately 100 hours of computing time, again

on a single Xeon E5 core. As such, the DNN method is signif-

icantly faster in this instance. However, a note of caution is re-

quired. Many factors can dramatically effect the efficiency of

the DNN method, both slowing it down (performing hyperpa-

rameter searches, using more data, using larger networks) and

speeding it up (using a learning rate schedule, using GPUs,

transfer learning), and it is important to note that minimising

computing time was not a priority in this work. Similarly for

the Volterra method, simulating different systems, of differ-

ent sizes, and for different amounts of time, will have a large

impact on the efficiency.

As well as demonstrating that the DNN can accurately mea-

sure kernels in a system that differs from the training set, Fig.

4 is also an example of how kernel extraction can be used in

reduced order modelling. The ‘DNN’ curves are generated by

the relatively cheap process of training a network on HS-MCT

theory, measuring the kernel from a single simulation trajec-

tory, then solving a GLE with this kernel. The resulting dy-

namics closely approximate the much more expensive ‘〈Sim〉’
curves, which were generated by running many repeats of the

full particle resolved simulations.

It is important to recall that the DNN has not been retrained

on the soft sphere simulations. The input data in Fig. 4 dif-

fers from the training set in how it was generated (simulation

vs theory), the nature of the noise on F (t), and in the sys-

tem itself (WCA vs hard spheres). Despite these multiple dif-

ferences, our results demonstrate how well our DNN method

generalises to new systems. Furthermore, the network can re-

produce ensemble-averaged dynamics from noisy data, unlike

conventional methods, allowing a clean measurement to be

made from a single simulation trajectory.

D. A phenomenological training set

In many situations there is no established theory from

which to construct a training set of GLE solutions and mem-

ory kernels. In such a case it is instead possible to use physical

intuition and educated guesswork to generate training data. As

a proof of principle, we demonstrate this process on a train-

ing set of phenomenological kernels that exhibit liquid-like,

supercooled liquid-like, and glass-like behaviour, i.e. simple

fast relaxation, two step relaxation, and persistent memory ef-

fects respectively.

Our phenomenological memory kernels are parameterised

as

K(t) =
a

(1 + btc)d
+ fe−( t

10g
)h , (11)

where the parameters a, b, etc. are chosen manually to mimic

the behaviour of the three regimes (specific values are given in

Appendix F). The form of Eq. 11 was chosen to capture both

fast and slow relaxation regimes. Furthermore, it is known

that the approach to the supercooled plateau is a power law,

and the long time relaxation can be well fitted to a stretched

exponential [5, 7, 71]. The first and second terms of K are

chosen to reflect this. Next, we solve the GLE using these

memory kernels to obtain corresponding F (t) curves, add

noise using the procedure in Eq. 6 with µ = 10−2, and con-

struct a training set of (solution, kernel) pairs. The perfor-

mance of the network on unseen, noisy F (t) curves gener-

ated from kernels parameterised by Eq. 11 is shown in Fig. 5

for liquid-like, supercooled liquid-like and glass-like kernels.

The network predictions in all three regimes are accurate, and

hence demonstrate the ability of the network to learn a training

set of kernels with the complex parameterisation of Eq. 11.
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FIG. 5. Kernel predictions made by the DNN trained on phenomeno-

logical kernels when applied to unseen, noisy F (t) in the liquid-like,

supercooled liquid-like and glass-like regimes.

Having trained the DNN on this phenomenological dataset,

we then apply it to a noisy F (t) of hard sphere MCT in the

supercooled regime, where the dynamics exhibit a typical two

step relaxation. The result is shown in Fig. 6, where the DNN

makes a very accurate prediction of the true MCT kernel de-

spite never having seen MCT data. Fig. 6 demonstrates the

ability of our deep learning approach to generalise beyond

phenomenological training data to physically realistic unseen

examples.
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FIG. 6. The performance of a network trained on phenomenological

data, applied to hard sphere MCT in the supercooled regime. Left

panel: the input noisy F (t) calculated from hard sphere MCT. Note

this curve exhibits the two step relaxation that is typical of super-

cooled liquids. Right panel: the true memory kernel (‘MCT’) and

the kernel predicted by the network (‘DNN’).
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IV. CONCLUSION

In this work we develop a novel deep learning method for

measuring the memory kernel of GLEs. Our method is gener-

ally applicable to any GLE system where a training set can be

constructed. We demonstrate its effectiveness on MCT hard

sphere data, and show that the DNN measures highly accurate

kernels on unseen inputs, with particular robustness to noise.

This is in stark contrast with existing Laplace inversion meth-

ods that are highly sensitive to noise. Furthermore, the DNN

method generalises well to a system different from that used

for training, and can even be used to make accurate predic-

tions without training data generated from rigorous theory.

Our DNN method has several attractive features. It is com-

putationally efficient as the time to generate a training set and

train the network can be significantly less than the correspond-

ing simulation time required by conventional methods, and

making predictions with a trained network requires negligible

computational resources. It also makes no distinction between

short or long memory effects. This is in contrast to existing it-

erative techniques where errors accumulate over long times,

posing a particular problem with long-lived glassy kernels.

The ability of the DNN to map noisy single trajectory inputs

to clean, ensemble averaged outputs is particularly powerful,

allowing it to be used in situations where it is difficult to mea-

sure multiple trajectories for averaging, e.g. costly simulations

or experiments.

As is the case with any machine learning technique, the

network performs less well when presented with data that

is dissimilar to that used during training, as seen with the

low-temperature WCA data with low noise in Fig. 4(d).
However, this shortcoming can be addressed by including

more diverse examples in the training set. As such, we

present our code as a pipeline for training networks on data

of the user’s choosing, as well as our own trained network

for the case of hard spheres. Giving users the tools to train

networks on their specific problem will result in significantly

smaller, yet better performing, networks than attempting to

train a general-purpose GLE kernel extractor. The success

with which neural networks can learn the highly non-trivial

mapping between F (t) and K suggests that deep learning

techniques should be considered for a diverse range of inverse

problems where a training set can be generated by solving the

simpler forward problem.
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Appendix A: Hyperparameter search

A hyperparameter search was performed over the L2

regularisation parameter, λ, the batch size, B, and width

factor, ω. For each combination of parameters, 5 networks

with different initial conditions were trained. The initial

condition was set by drawing weights and biases from a

random uniform distribution U(−
√
k,
√
k), where 1/k is the

number of input features to the layer. The hyperparameter

values in the search were

• λ: 0.1, 0.05, 0.01, 0.001, 0

• B: 300, 2500, 10000

• ω: 2, 4, 8,

resulting in a total of 5 × 3 × 3 × 5 = 225 networks. The

depth of the network (6 hidden layers) is somewhat arbitrary,

and was chosen by balancing the greater expressivity of deep

networks with the increase in training time as the network gets

larger. The Adam optimizer parameters, referred to as β1 and

β2 in [65], were kept as their default values of 0.9 and 0.999

respectively. The learning rate, µLR, was set to 10−3. It would

have been preferable to include the hyperparameters β1, β2,

and µLR in our grid search, however this was computationally

infeasible.

Appendix B: Simulation details

Simulations were performed of a set of N = 2000 Brow-

nian particles in 3D, with periodic boundary conditions and a

number density ρ = 0.95. The position of particle i, ri, obeys

the overdamped Langevin equation,

ṙi = ζ−1
Fi + ξi(t), (B1)

where ζ = 1 is a friction coefficient, Fi is a force acting on

particle i due to the inter-particle potential, and ξi is a ran-

dom noise term obeying 〈ξi(t)〉 = 0, and 〈ξi(t) · ξj(t′)〉 =
6D0δijδ(t − t′), where D0 = kBT/ζ is the diffusion con-

stant, kB the Boltzmann constant, and T the temperature. The

interaction force comes from the Weeks-Chandler-Andersen

potential,

U(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

+ ǫ, (B2)

where r is the inter-particle distance. We use Lennard-Jones

units such that σ = 1 is the particle diameter, and ǫ = 1
a parameter determining the strength of the interaction. A

dimensionless temperature can be defined as T ∗ = kBT/ǫ.
U(r) is truncated such that the potential is purely repulsive.

The simulations were performed with the LAMMPS molec-

ular dynamics software [72] with timestep ∆t = 10−5. The

system is left to evolve for 107 timesteps to equilibrate, then

measurements are taken over a further 107 timesteps.
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Appendix C: Avoiding overfitting

Overfitting is a common problem in deep learning, partic-

ularly when the size of the network is much larger than the

size of the dataset, as is the case in this work. Several meth-

ods have been suggested for avoiding overfitting, including

but not limited to regularisation, early stopping, and the use

of dropout layers. We use all three, and also perform a pa-

rameter search over the regularisation parameter λ to find the

optimum level of regularisation. In Fig. 7(a) we demonstrate

our use of early stopping, where we use the state of the net-

work when it achieves the minimum test loss, not at the end

of training. In Fig. 7 (b) we show the effect of varying λ.

Due to limited computational resources we did not perform a

parameter search over the dropout probability, instead setting

it to 0.5 for all networks.
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FIG. 7. (a) The test loss of the DNN during training. Beyond a cer-

tain time point the system begins to overfit and the test loss increases.

Consequently, we use the state of the network at the minimum test

loss, as indicated by the red arrow. Note that the x axis is in time

steps, not epochs. 1 epoch = P/B timesteps. (b) The minimum

test loss achieved by networks with varying λ (and ω = 8, batch

size=2500). We select the λ that results in the minimum test loss, as

indicated by the red arrow.

Appendix D: Exploring unseen phase space

The network is trained on a set of F (t) curves generated at

volume fractions φ ∈ {0.45, 0.451, 0.452..., 0.58}, and sub-

jected to multiple noise realisations. How does the network

perform on volume fractions that are not in the training set?

This question is addressed in Fig. 8. Fig. 8(a) shows the per-

formance of the network at a volume fraction below the range

of the training set. The left-hand panel is the input noisy F (t),
and the right-hand panel shows the measured K , which agrees

with the true MCT kernel to a high degree of accuracy, with a

small discrepancy at very short times. Fig. 8(b) is at a volume

fraction that is not in the training set, but is within the range of

training φ values. In this case the network measures a highly

accurate kernel, as it does at φ values in the training set. Fig.

8(c) and (d) are at volume fractions above the upper end of

the training set. Here the measured kernel is inaccurate. The

reason for this can be seen in the F (t) curves in the left-hand

panels. At φ = 0.59 and φ = 0.62 we are deep in the glass

phase, and the system decorrelates very little (i.e. the asymp-

tote of F (t) at long times is greater than 0.99 in both cases).

As such, the dynamics become less and less sensitive to the

exact form of the memory kernel. These plots demonstrate

that the network can generalise well to regions of phase space

beyond the training set, however care must be taken. For some

parameter values (e.g. φ deep in the glass phase) the network

is insufficiently sensitive to the weak relationship between K
and F (t).
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FIG. 8. F (t) curves and the corresponding kernels, ground truth

given by MCT and approximated by the network, at volume fractions

not in the training set. (a) Below the lowest φ in the training set. (b)
Between values in the training set. (c) and (d) Above the highest

value in the training set.

Appendix E: Performance on soft spheres

Here we look in more detail at the performance of the DNN

that has been trained on Percus-Yevick hard sphere MCT, and

then applied to data from simulations of Weeks-Chandler-
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Andersen spheres. In Fig. 9 we plot the dynamics predicted by

the DNN, along with the ensemble averaged dynamics of the

simulations, the prediction of the Volterra method, and the dy-

namics as predicted by both HS and WCA MCT. In 9(a), the

comparison is done at high temperature. In this plot, the DNN

significantly outperforms HS MCT, despite being trained on

this theory. This is because the network also uses as input

the frequency term, Ω, calculated from the simulation static

structure factor. It is to be expected that at high temperature

the Markovian dynamics (determined by Ω) play a large role.

In Fig. 9(b) the comparison is made at a lower temperature,

hence the performance of the DNN is worse, though still bet-

ter than HS MCT. In this example the WCA MCT predic-

tion is also inaccurate, highlighting the approximate nature of

the theory. These plots demonstrate the importance of know-

ing the limitations of the training set when applying machine

learning methods. Better performance would be achieved by

using a training set of either theoretical or phenomenological

kernels that more accurately describe the low temperature be-

haviour of WCA particles.
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FIG. 9. A comparison of the dynamics from averaging many simula-

tion trajectories (〈Sim〉), solving the GLE with the kernel measured

by the DNN method from a single simulation trajectory (‘DNN’),

the Volterra kernel (‘Volterra’), the Weeks-Chandler-Andersen MCT

kernel, and the Percus-Yevick Hard Sphere MCT kernel. All meth-

ods are presented at T = 3 in (a), and T=1 in (b).

Appendix F: Generating a phenomenological dataset

The phenomenological kernels are parameterised according

to

K(t) =
a

(1 + btc)d
+ fe−( t

10g
)h . (F1)

The training set was generated by combining three regions of

parameter space: liquid, supercooled liquid, and glass. The

liquid kernels used all combinations of parameter values in

the following table:

a {240, 275, 305}
b {15, 12, 10}
c {0.65, 0.6, 0.55}
d {1.86, 1.73, 1.6}
f {200, 240, 280}
g {−3.5,−3.25,−3.1}
h {0.85, 0.83, 0.8}

The supercooled kernels were from all combinations of the

following parameters:

a {660, 710, 760}
b {12000, 30000, 100000}
c {1.16, 1.26, 1.36}
d {0.45, 0.35, 0.28}
f {105, 90, 80}
g {0.02, 1.0, 3.1}
h {0.43, 0.49, 0.52}
And finally the glass kernels were from all combinations

of the following parameters:

a {780, 795, 810}
b {2800, 9000, 15000}
c {0.98, 1.08, 1.16}
d {0.5, 0.45, 0.4}
f {5800, 2000, 140}
g {−300,−140,−8}
h {0.002,−0.06,−0.114}
These values were selected by first fitting the form of K to

the hard sphere MCT kernel at φ = 0.45, 0.515 and 0.52 (in

the liquid, supercooled, and glass regimes respectively) then

varying the parameters about their fitted values. Each kernel

was used to solve the GLE, and the resulting F (t) was sub-

jected to four realisations of Gaussian noise. The (solution,

kernel) pairs were then randomly shuffled and split 50:50 into

training and testing sets.

Appendix G: Volterra Method

Our goal is to find an expression for the irreducible mem-

ory kernel K(k, t) = 1
Nk2D0

〈

R∗
ke

Ω†Q′QtRk

〉

. Here, Rk =

QΩ†ρk is the fluctuating force, Ω† is the conjugate of the

Smoluchowski operator, and Q = 1 − P is the projector on

the space orthogonal to that spanned by the density modes,

given by P = ρk〉 〈ρ∗kρk〉−1 〈ρ∗k . Additionally, we have de-

fined a second projection P ′ = ρk〉
〈

ρ∗kΩ
†ρk

〉−1 〈
ρ∗kΩ

† , and

its complement Q′ = 1 − P ′ (for more details see [73] and

[74]).

Since the evolution operator eΩ
†Q′Qt is hard to deal with,

we apply the Dyson decomposition identity,

eΩ
†Q′Qt = eΩ

†t −
∫ t

0

dτeΩ
†Q′Q(t−τ)Ω†(1 −Q′Q)eΩ

†t,

(G1)

which yields a Volterra equation for the memory kernel

K(k, t) = KΩ†(k, t) +

∫ t

0

dτK(k, t− τ)W (k, τ). (G2)

Here we have introduced the function

KΩ†(k, t) = (Nk2D)−1
〈

R∗
ke

Ω†tRk

〉

, (G3)
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and the correlation

W (k, t) = (Nk2D)−1
〈

ρ∗kΩ
†eΩ

†tRk

〉

, (G4)

which both evolve with standard Brownian dynamics.

In order to solve the integral equation (G2), we first com-

pute KΩ†(k, t) and W (k, t) at k = 7.0 from the simulation

trajectories. This we do by evaluating their definitions (G3)

and (G4), averaging over 50 independently initialised simula-

tion trajectories, a small number of time origins, and all al-

lowed wave vectors in the range k ∈ (7.0± 0.1). We refer to

averaging over both independent simulation trajectories and

time origins as an ensemble average. For Fig. 4(a) and (c),
we omit the ensemble and time-origin average, in order to in-

troduce more noise.

Either the single trajectory or ensemble-averagedKΩ†(k, t)
and W (k, t) are inserted in a discretised version of integral

equation (G2). The memory kernel is subsequently found by

solving the resulting system of equations [75].
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