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A NOTION OF TWINS

ZACH HUNTER

Abstract. Given a combinatorial structure, a “twin” is a pair of disjoint substruc-
tures which are isomorphic (or look the same in some sense). In recent years, there
have been many problems about finding large twins in various combinatorial struc-
tures. For example, given a graph G, one can ask what is the largest s such that
there exist disjoint subsets I, J ⊂ V (G) on s vertices, such that the induced sub-
graphs G[I], G[J ] are isomorphic.

We are motivated by two different problems of finding twins in two kinds of ordered
objects (strings and permutations). We introduce a new variant of “twin problem”
which generalizes both of these. By considering this generalization, we are able to im-
prove some bounds obtained by Dudek, Grytczuk, and Ruciński, and give a negative
answer to a conjecture of theirs.

1. Introduction

For positive integer n, we write [n] := {1, . . . , n}. Given a set X and positive integer
s, we write X(s) := {S ⊂ X : |S| = s}.

1.1. Recent work in ordered settings. We start by recalling two problems about
finding “twins” in various ordered objects. A generalization of these shall be the focus
of this note.

Firstly, given a binary string x ∈ {0, 1}n, a string-twin is a pair of disjoint indices
I = {i1 < · · · < iℓ}, J = {j1 < · · · < jℓ} ⊂ [n], such that the subsequences x|I and
x|J are equal (formally, that x(it) = x(jt) for each t = 1, . . . , ℓ). We define f string(x)
to be the maximum ℓ such that there exists a string-twin I, J of x with |I| = ℓ. Since
I, J are disjoint subsets of n of equal length, it is obvious that f string(x) ≤ n/2 always
holds.

In the work of Axenovich, Person, and Puzynina, it was shown that this upper bound
was asymptotically tight (i.e., that every binary string x ∈ {0, 1}n had a twin of length
(1/2 − o(1))n) [1]. This was acheived by establishing a celebrated “regularity lemma
for strings”.
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2 ZACH HUNTER

One can also ask analogous questions about the length of twins in r-ary strings
x ∈ [r]n (here, we say I, J ⊂ [n] are string-twins of x if they are disjoint and x|I =
x|J). Write F string

r (n) to denote the minimum of f string(x) over all x ∈ [r]n. A trivial
consequence of [1] tells us that F string

r (n) ≥ (1/r − o(1))n (this is seen by passing to
the subsequence induced on the two most popular letters of any r-ary string, and then
applying their bound for the binary case). This later was further improved by Bukh
and Zhou, who prove that F string

r (n) = Ω(n/r2/3) [4].

Recently, Dudek, Grytczuk, and Ruciński introduced a similar problem involving
permutations. Given a permutation π ∈ Sn, we define its sign sequence ss(π) ∈
{−1, 1}n−1 so that ss(π)i = 1 if and only if π(i) < π(i+1). We then define a weak-twin
(of π) to be a disjoint pair of indices I = {i1 < · · · < iℓ}, J = {j1 < · · · < jℓ} ⊂ [n],
such that ss(π|I) = ss(π|J) (formally, that π(it) < π(it+1) if and only if π(jt) < π(jt+1)
for t ∈ [ℓ− 1]).

Let fweak(π) denote the largest ℓ such that there exists a weak-twin I, J of π with
|I| = ℓ. And write Fweak(n) to denote the minimum of fweak(π) over all π ∈ Sn.

Dudek et al. proved that every π ∈ Sn has a weak-twin of length ≥ n/12 [5] (i.e.,
that Fweak(n) ≥ n/12). They furthermore conjectured that, like in the binary string
case, every π ∈ Sn should have a weak-twin of length (1/2− o(1))n. We shall improve
upon both their upper and lower bounds for Fweak(n).

1.2. A general twin problem. We write Kn to denote the complete graph on vertex
set [n] (and here, the labels of vertices will be important).

Given positive integers n, r, we write Cn;r to denote the set of r-edge-colorings of Kn

(i.e., the set of c : [n](2) → [r]). We shall also write Cn to denote
⋃∞

r=1 Cn;r the set of
all finite colorings.

Now given c ∈ Cn, a twin of size ℓ (with respect to c) is a pair of subsets I = {i1 <
· · · < iℓ}, J = {j1 < · · · < jℓ} ⊂ [n], such that:

• I, J are disjoint;
• c({it, it+1}) = c({jt, jt+1}) for t = 1, . . . , ℓ− 1.

Given a colored ordered object c ∈ C, we define f(c) to be maximum ℓ where there
exists a twin (wrt c) of size ℓ. For r, n, we define Fr(n) to be the minimum of f(c) over
all c ∈ Cn;r.

While the notions of string-twins and weak-twins are somewhat similar in appear-
ance, there doesn’t seem to be a direct way to encode instances from one setting into
the other (e.g., given a binary string x ∈ {0, 1}n, we don’t know how to create some
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πx ∈ Sn where the string-twins of x and weak-twins of πx are at all related). However,
both settings can be encoded by our notion of twins. Specifically, we will establish the
two following reductions in Section 2.

Proposition 1.1. We have that

F2(n) ≤ Fweak(n).

Proposition 1.2. We have that

Fr(n) + 1 ≤ F string
r (n).

For lower bounds, we prove the following in Section 3.

Theorem 1. We have
Fr(n) ≥ n/(r2 + 1)− Or(1).

By Proposition 1.1, Theorem 1 tells us Fweak(n) ≥ F2(n) ≥ n/5 − O(1), improving
Dudek et al.’s previous bound of n/12 − O(1). But with two colors we can do even
better, in Section 4 we establish the following.

Theorem 2. We have

F2(n) ≥
1

4
n− O(1).

Consequently, Fweak(n) ≥ 1
4
n− O(1).

We also establish some upper bounds.

Theorem 3. We have
Fr(n) = O(n/r).

As previously noted, Bukh and Zhou proved that F string
r = Ω(n/r2/3) which is greater

than Fr(n) for large n (assuming r is big enough).

Furthermore, we can adapt our techniques to establish the following.

Theorem 4. There exists some absolute constant η > 0, so that for all large n we have

(1/2− η)n ≥ Fweak(n) ≥ F2(n).

This contradicts a conjecture of Dudek et al.

1.3. Organization. In Section 2, we briefly deduce Propositions 1.1 and 1.2, which
demonstrate that our twin problem appropriately “encodes” the notions of string-twins
and weak-twins. In Section 3, we prove our general lower bound for Fr(n) (Theorem 1).
In Section 4, we get an improved lower bound for F2(n) (Theorem 2). In Section 5 we
get our two upper bounds (Theorem 3 and Theorem 4).
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2. Reductions

In this section, we quickly establish Propositions 1.1 and 1.2.

Proposition 1.1 is a corollary of our first lemma.

Lemma 2.1. Given π ∈ Sn, and there exists c = cπ ∈ Cn;2 so that I, J ⊂ [n] is a twin
of c if and only if I, J is a weak-twin of π.

Proof. We define c = cπ : [n](2) → {−1, 1}, which we consider an element of Cn;2 (since
nothing really changes upon relabelling our color palette). For e = {i < j} ∈ [n](2), we
set c(e) = 1 if and only if π(i) < π(j). For S = {s1 < · · · < sℓ} ⊂ [n], we have that
c({s1, s2}), . . . , c({sℓ−1, sℓ}) = ss(π|S).

Thus, I, J ⊂ [n] are twins (wrt c) if and only if I, J are disjoint and ss(π|I) = π(π|J)
(which is equivalent to I, J being weak-twins (of π)). �

Proposition 1.2 is a corollary of our second lemma.

Lemma 2.2. Given x ∈ [r]n, there exists c = cx ∈ Cn;r so that I, J is a twin of c if
and only if I \ {max(I)}, J \ {max(J)} is a string-twin of x (and |I| = |J |).

Proof. We define c = cx ∈ Cn;r as follows. For e = {i < j} ∈ [n](2), we take c(e) = x(i).

By construction, it is rather clear that our claim about the twins of c holds. �

3. Lower bound

3.1. Brief outline. We are loosely motivated by the following simple proof that
F string
2 (n) ≥ ⌊n/3⌋. Fix some binary string x ∈ {0, 1}n, and set ℓ = ⌊n/3⌋.

For i = 1, . . . , ℓ, we have the discrete interval Et = {3t − 2, 3t − 1, 3t} ⊂ [n]. By
pigeonhole, we can find distinct it, jt ∈ Et such that x(it) = x(jt).
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Then, we obtain a string-twin of length ℓ by taking I = {i1 < i2 < · · · < iℓ} and J =
{j1 < j2 < · · · < jℓ}. Indeed, it is clear that I, J are disjoint, as it, jt ∈ Et are always
distinct and the intervals Et are disjoint. Meanwhile, since max(Et) < min(Et+1) it
clear that it < it+1 and jt < jt+1 for t = 1, . . . , ℓ− 1 (meaning the order of the indices
is correct). Finally, we have x(it) = x(jt) for all t ∈ [ℓ], whence x|I = x|J as desired.

Unfortunately, in our more generalized setting, such a strategy cannot work. Indeed,
if we pick some i1, j1 ∈ [n] to be the first indices of I and J , then it might be impossible
to find i2 > i1, j2 > j1 such that c({i1, i2}) = c({j1, j2}) (e.g., the coloring could make
c({i1, i2}) always red and c({j1, j2}) always blue). So, instead of building one twin
iteratively, we shall build multiple twins.

3.2. Proof of Theorem 1. Given c ∈ Cn;r, we say a pair of tuples x, y ∈ [n]2 form a
c-matching if c({x1, y1}) = c({x2, y2}).

We say a pair of 2-sets u, v ∈ [n](2) are c-matchable if we can order these 2-sets to
get a pair of tuples which form a c-matching.

The relevance of these definitions is the following.

Lemma 3.1. Consider some coloring c ∈ Cn. Let I, J ⊂ [n] be a twin (wrt c) of length
ℓ > 0.

Set u = {max(I),max(J)} ∈ [n](2). If there exists v ∈ [n](2) where max(u) < min(v)
and u, v are c-matchable, then there is a twin I ′, J ′ of length ℓ+1 with {max(I ′),max(J ′)} =
v.

Proof. By definition of c-matchability, we may write v = {i′, j′} so that c({max(I), i′}) =
c({max(J), j′}).

We simply take I ′ = I ∪ {i′}, J ′ = J ∪ {j′}. It is routine to check that the desired
properties are satisfied. For completeness, this is done below.

Since min(v) > max(u) = max{max(I),max(J)}, we have that v is disjoint from
I ∪ J , whence |I ′| = ℓ + 1 = |J ′|. Furthermore, since v is a 2-set, i′ 6= j′, so it follows
that I ′, J ′ are disjoint (since by definition I, J are disjoint).

Then, write I ′ = {i1 < · · · < iℓ+1}, J ′ = {j1 < · · · < jℓ+1}. By assumption, we have
that

c({iℓ, iℓ+1}) = c({max(I), i′}) = c({max(J), j′}) = c({jℓ, jℓ+1}).
Meanwhile, for t ∈ [ℓ − 1], the fact that I, J is a twin guaruntees that c({it, it+1}) =
c({jt, jt+1}) as desired.
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Hence, I ′, J ′ are twins. Also, as min(v) > max(I ∪ J), it is clear that max(I ′) =
i′,max(J ′) = j′ implying the last property. �

We now establish a matchability result, which will allow us to carry out a modified
version of the argument sketched in Subsection 3.1.

Lemma 3.2. Let r, k ≥ 1. Take Γ = (A,B,E) to be a copy of Kr+1,rk+1, with |A| =
r + 1, |B| = rk + 1. Consider any r-coloring c : E → [r].

Then there exists B′ ⊂ B with |B′| ≥ k+1 such that for u ∈ B′(2), there exists v ∈ A
such that u, v are c-matchable.

Remark 3.3. This sharp in two aspects. First, if |A| ≤ r, then fixing some injection
ι : A→ [r], then taking c(ab) = c(ι(a)) will lack any u ∈ B which are matchable.

Secondly, if |B| < rk + 1, then we can partition B into r parts B1, . . . , Br each of
size at most k. Here if we take c(ab) = i for all b ∈ Bi, we see that if u ∈ B(2) is

matchable, then u ∈ B
(2)
i for some i.

Proof. For b ∈ B and i ∈ [r], we say b is i-popular if there are distinct a, a′ ∈ A with
c(ab) = c(a′b) = i. By pigeonhole, we may define a map φ : B → [r] such that b is
φ(b)-popular for each b ∈ B (this is because |A| > [r]).

Applying pigeonhole again, there must exist some i ∈ [r] such that B′ := φ−1(i) has

|B′| ≥ |B|
r
> k (implying |B′| ≥ k + 1 as the cardinality must be an integer).

Finally, we note that each {b1, b2} ∈ B′(2) is c-matchable. Indeed, since they are
both i-popular, there exist a1 ∈ A and distinct a2, a

′
2 ∈ A such that

c(a1b1) = c(a2b2) = c(a′2b2) = i.

As a2, a
′
2 are distinct, we mayWLOG assume a2 6= a1, whence a1b1, a2b2 is a c-matching.

�

Proof of Theorem 1. Fix any c ∈ Cn;r, and set ℓ = ⌊n/(r2 + 1)⌋. For t = 1, . . . , ℓ, we
have the discrete interval Et = {t(r2 + 1)− r2, t(r2 + 1)− r2 + 1, . . . , t(r2 + 1)}.

We will now proceed by induction to find an (r + 1)-set Ut ∈ E
(r+1)
t such that for

u ∈ U
(2)
t , there exists a twin I, J of length t with {max(I),max(J)} = u.

For t = 1, we may take U1 = [r + 1], as any pair of distinct singletons is a twin.

Then for t = 2, . . . , ℓ, we can invoke Lemma 3.2 with A = Ut−1, B = Et to find

B′ ∈ E
(r+1)
t satisfying the conditions of the lemma. We shall simply take Ut = B′.
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To check Ut satisfies our inductive assumptions, it suffices to consider u ∈ U
(2)
t and

confirm there is some twin I ′, J ′ of length t with {max(I ′),max(J ′)} = u.

By definition of B′, there exists v ∈ U
(2)
t−1 such that u, v are c-matchable. By our as-

sumptions on Ut−1, there must exists a twin I, J of length t−1 with {max(I),max(J)} =
v. Since u, v are c-matchable and min(u) ≥ min(Et) > max(Et−1) ≥ max(v), we
can apply Lemma 3.1 to deduce that there is in fact a twin I ′, J ′ of length t with
{max(I ′),max(J ′)} = u.

So, we see the induction goes through for all t ∈ [ℓ]. Consequently, we see that
f(c) ≥ ℓ = ⌊n/(r2 + 1)⌋ = n/(r2 + 1)− Or(1) as desired. �

4. Doing better with two colors

Here we provide a slightly ad hoc argument that improves our bound for F2(n). The
idea is that the conclusion of Lemma 3.2 (with r = k = 2) should still hold when we
delete an edge from K3,5. Meanwhile in the proof of Theorem 1, we don’t need to take
the sets U1, . . . , Uℓ to be completely disjoint. So, by being a bit more careful, we can
take Et+1 to intersect one index in Ut and still have things work, and now at each step
we only expose 4 rather than 5 new indices.

Proof of Theorem 2. Fix c ∈ Cn;2.

For ease of notation, let Gt be the graph on vertex set [n], with e ∈ [n](2) being an
edge if there exists a twin I, J of length t such that {max(I),max(J)} = e. We shall
use the following corollary of Lemma 3.1.

Proposition 4.1. Let e, e′ ∈ [n](2) be such that:

• e ∈ E(Gt);
• max(e) < min(e′);
• e, e′ are c-matchable.

Then e′ ∈ E(Gt+1).

For t ≤ n/4, we shall find a triple Ut ∈ [4t](3) such that u ∈ E(Gt) for each u ∈ U
(2)
t

(i.e., Ut induces a triangle in E(Gt)).

For t = 1, we can simply take U1 = {1, 2, 3}, as G1 is a clique.
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Now suppose that we have some Ut ∈ [n− 4](3) which induces a triangle in Gt. We
will find Ut+1 ∈ [n](3) with max(Ut+1) ≤ 4+max(Ut), such that Ut+1 induces a triangle
in Gt+1. By induction, it shall follow that F2(n) ≥ ⌊n/4⌋ = n/4−O(1), as desired.

Let {x < y < z} = Ut. Consider the discrete interval Z = {z, z + 1, . . . , z + 4}. We
partition Z into three sets,

A := {l ∈ Z : c({x, l}) = c({y, l}) = 1},
B := {l ∈ Z : c({x, l}) = c({y, l}) = 2}.
S := {l ∈ Z : c({x, l}) 6= c({y, l})}.

By Proposition 4.1, it is clear that Gt+1[A], Gt+1[B] are each cliques.

We will now finish by considering a few cases.

Case 1 (|S| = 0): Here |A ∪ B| = 5, thus we get max{|A|, |B|} ≥ 3 by pigeonhole.
WLOG, assume |A| ≥ 3. Since Gt+1[A] is a clique, taking any Ut+1 ∈ A(3) will induce
a triangle.

Case 2 (|S| ∈ {1, 2}): Here |A ∪ B| ≥ 3, thus max{|A|, |B|} ≥ 2 by pigeonhole.
WLOG, assume |A| ≥ 2, and fix distinct a, a′ ∈ A. Also, fix any s ∈ S (which is
possible as |S| > 0). We shall take Ut+1 = {a, a′, s}.

Indeed, {a, a′} ∈ E(Gt+1) as Gt+1[A] is a clique. Meanwhile, since s ∈ S, there
exists o ∈ {x, y} such that c({o, s}) = 1. Thus taking o∗ = {x, y} \ {o}, we have that
(o, s), (o∗, a) and (o, s), (o∗, a′) are c-matchings, implying {s, a}, {s, a′} ∈ E(Gt+1) by
Proposition 4.1 as desired. Thus, we see Ut+1 induces a triangle.

Case 3 (|S| ≥ 3): It follows that we can pick distinct s, s′ ∈ S \ {z}. Next, pick any
l ∈ Z \ {s, s′, z}. We take Ut+1 = {s, s′, l}.

We shall prove that for any distinct s, l ∈ Z \ {z} with s ∈ S, that {s, l} ∈ E(Gt+1).
This will clearly imply that Ut+1 induces a triangle.

Now, since s ∈ S, there exists o ∈ {x, y} such that c({o, s}) = c({z, l}). Whence,
(o, z), (s, l) is a c-matching. Furthermore, since s, l ∈ Z \{z}, we have that min{s, l} >
z = max{o, z}, allowing us to invoke Proposition 4.1 and deduce that {s, l} ∈ E(Gt+1)
as desired. �

5. Some upper bounds

In this section, we improve the upper bounds for Fr(n) for various r. Our proofs
are reminisicant of the methods in a paper of Bukh and Guruswami [2] (see also their
improved result with H̊astad [3]), where they construct large sets of strings no two
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of which have a “long common subsequence”. Essentially, the idea will be to take a
random string x ∈ [R]m, where R is some large number of colors so that we expect x to
only have very short twins. Then, we will encode x as some edge-coloring cx : [n](2) →
[r], where we use fewer colors but still do not create particularly long twins.

We require the following bounds, which all follow from first moment considerations.

Proposition 5.1. [4, Theorem 4]Let x be a uniformly random r-ary string of length n.
Asymptotically almost surely (as n→ ∞), x lacks any string-twins of length O(n/

√
r)

(for some absolute constant independent of r).

We note that Proposition 5.1 is also a corollary of [1, Theorem 3].

Definition. Given permutations π, π′ ∈ Sr (which we treat as bijections from [r] →
[r]), we define LCS(π, π′) to be the largest ℓ such that there exists A = {a1 < · · · <
aℓ}, B = {b1 < · · · < bℓ} ⊂ [r] (not necessarily disjoint) with π(at) = π′(bt) for
t = 1, . . . , ℓ.

Proposition 5.2. Let π, π′ ∈ Sr be chosen uniformly at random. We have P(LCS(π, π′) >
3
√
r) ≤ r−ω(1).

Proof. We shall write k := ⌈3√r⌉.

For A = {a1 < · · · < aℓ}, B = {b1 < · · · < bℓ} ⊂ [r], let YA,B be the indicator
function of the event that π(at) = π′(bt) for each t = 1, . . . , ℓ. We then let

Y :=
∑

A,B⊂[r]:
|A|=|B|=k

YA,B.

It is clear that P(LCS(π, π′) ≥ k) ≤ E[Y ].

Now for any choice of A,B ∈ [r](k), we have

E[YA,B] =
1

(

r
k

)

k!

(here 1/
(

r
k

)

is the probability π(A) = π(B), and 1/k! is the probability that our event

holds conditioned on this). Meanwhile, there are only
(

r
k

)2
choices of sets A,B ∈ [r](k).

Whence, we see that

E[Y ] = #(A,B ∈ [r](k))
1

(

r
k

)

k!
=

(

r

k

)

1

k!
≤ rk

k!k!
= (1 + o(1))

1

2πk

(

e2r

k2

)k

(applying Stirling’s approximation). By our choice of k, the LHS is at most (e2/9)−
√
r =

exp(−Ω(
√
r)) for large r, meaning P(LCS(π, π′) ≥ k) decays super-polynomially as

desired. �
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Now, we start with the easier of our two upper bounds, which improves things for
sufficiently large r.

Theorem 3. We have that

Fr(n) ≤ O(n/r).

Proof. Assume r is sufficiently large. Let r∗ = ⌊r/2⌋, R = r2. We shall consider
n = mr′.

Pick x ∈ [r∗]m, y ∈ [R]m uniformly at random. Also, pick π1, . . . , πR ∈ Sr∗ uniformly
at random.

By Propositions 5.1 and 5.2, all of the following hold with positive probability (by a
union bound):

• f string(x) = O(m/
√
r);

• f string(y) = O(m/r);
• we have LCS(πi, πj) = O(

√
r) for each distinct i, j ∈ [R].

We condition on such an outcome, and use this to construct our c ∈ Cn;r.

We define the maps Φ : [n] → [m],Ψ : [n] → [r∗] so that Φ(k) = ⌈k/r∗⌉ and
k = (Φ(k)− 1)r∗ +Ψ(k).

Consider k < k′ ∈ [n] = [r∗m]. We take

c({k, k′}) =
{

x(Φ(k)) if Φ(k) < Φ(k′);

r∗ + πy(Φ(k))(Ψ(k)) otherwise.

We call the first case of our definition the ‘global rule’, and our second case the ‘local
rule’.

Obviously, c({k, k′}) always takes some value in [2r∗] ⊂ [r], thus c ∈ Cn;r. We will
prove that

(5.1) f(c) ≤ m+ 2f string(y)r + (2f string(x) + 1)(max
i 6=j

{LCS(πi, πj)}+ 1),

implying that f(c) = O(m) = O(n/r) by our assumptions on x, y, π1, . . . , πR. Hence,
we will be done after establishing Eq. 5.1.

Without further delay, we prove that f(c) is small. Consider any twins I = {i1 <
· · · < iℓ}, J = {j1 < · · · < jℓ} of c. For t ∈ [ℓ], we define φI(t) = Φ(it) and ψI(t) =
Ψ(it). We similarly define φJ , ψJ by replacing ‘it’ by ‘jt’.
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As I, J are twins, we must have that φI(t) = φI(t+1) if and only if φJ(t) = φJ(t+1)
(otherwise one of c({it, it+1}), c({jt, jt+1}) will belong to [r∗] and the other will belong
to r∗ + [r∗]).

It is clear that φI , φJ are non-decreasing, as they are obtained from apply the ceiling
function to increasing sequences.

Next let l = |Φ(I)|. We define E1, . . . , El ⊂ [ℓ] so that t ∈ Eh if and only if φI(t) is
the h-th smallest element of Φ(I). We record that these sets:

• partition [ℓ] (clear);
• are all intervals (as φI is non-decreasing);
• each have size at most r∗ (as Φ is a r∗-to-1 function).

Also, let A := Φ(I) = {a1 < · · · < al}, B := Φ(J) = {b1 < · · · < bl}.

LetH1 := {h ∈ [l] : ah = bh}, H2 := {h ∈ [l]\H1 : y(ah) = y(bh)}, H3 = [l]\(H1∪H2).
We will show that the indices contributed by each of the three parts is appropriately
bounded.

Proposition 5.3. We have |H1| ≤ m and |Eh| ≤ 1 for h ∈ H1.

Proof. Since H1 ⊂ [l] and l = |Φ(I)| we have |H1| ≤ | Im(Φ)| = |[m]| = m.

It remains to show that h ∈ H1 implies that |Eh| ≤ 1.

Supposing otherwise, we’d have φI(t) = φI(t + 1) = a = φJ(t + 1) = φJ(t) for some
t ∈ Eh and a ∈ [m]. Thus our local rule gives

c({it, it+1}) = r∗ + πy(a)(Ψ(it))

while

c({jt, jt+1}) = r∗ + πy(a)(Ψ(jt)).

Since πy(a) is injective, we should have Ψ(it) = Ψ(jt) = b (as I, J are twins), which
implies that it = (a − 1)r∗ + b = jt. But then I, J are not disjoint (and hence not
twins), contradiction. �

Proposition 5.4. We have |H2| ≤ 2f string(y) and |Eh| ≤ r∗ for h ∈ H2.

Proof. As previously noted, the bound |Eh| ≤ r∗ holds for all h ∈ [l], thus the second
part is trivial.

Now, construct a graph G on vertex set [m], with E(G) = {ahbh : h ∈ H2}. Note
that G will not have any loops, since H2 ⊂ [l] \H1 ensures that ah 6= bh for h ∈ H2.
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Next, as a·, b· are increaing sequences, we have that the connected components of G
are all paths. Thus there is is some matching (collection of disjoint edges M ⊂ E(G)
with |M | ≥ e(G)/2 = |H2|/2.

Take HM := {h ∈ H2 : ahbh ∈ M}, which has size |M | ≥ |H2|/2. We finish by
showing that AM := {ah : h ∈ HM}, BM := {bh : h ∈ HM} is a string-twin of y, which
immediately rearranges to give the desired bound |H2| ≤ 2|HM | = 2|AM | ≤ 2f string(y)
(here |HM | = |AM | follows for the fact that h 6= h′ =⇒ ah 6= ah′).

Since M is a matching, we have that AM , BM are disjoint. For t ∈ [|M |], write η∗t
(respectively α∗

t , β
∗
t ) for the t-th smallest element of HM (respectively AM , BM). Since

h < h′ implies ah < ah′ and bh < bh′ , we have that αt = aηt and βt = bηt . Whence, we
have that y(αt) = y(βt) for t = 1, . . . , |M | (as ηt ∈ H2 implies that y(at) = y(bt)).

So, we conclude that AM , BM is a string twin of y, as desired. �

Proposition 5.5. We have that |H3| ≤ 2f string(x)+1 and |Eh| ≤ maxi 6=j{LCS(πi, πj)}+
1 for h ∈ H3.

Proof. We first bound |Eh| assuming h ∈ H3. As h 6∈ H2, we have that y(ah) 6= y(bh).
So the desired bound will follow from showing that |Eh| ≤ LCS(πy(ah), πy(bh))+1 always
holds. Let {i′1 < · · · < i′q} = {it : t ∈ Eh}, {j′1 < · · · < j′q} = {jt : t ∈ Eh}. Also write
τ = πy(ah), σ = πy(bh).

By our local rule, we must have that τ(Ψ(i′t)) = σ(Ψ(j′t)) for each t ∈ [q−1]. Whence,
we see that q − 1 ≤ LCS(τ, σ) (as ψI |Eh

and ψJ |Eh
are both increasing).

It remains to bound |H3|. Due to our global rule, for t ∈ [l − 1], we must have that
x(at) = x(bt). Now we define H ′ = [l−1]\H1. Clearly |H ′| ≤ |H3|+1, as H3 ⊂ [l]\H1.

Finally, by repeating the argument from Proposition 5.4, we can find H ′
M ⊂ H ′ with

|H ′
M | ≥ |H ′|/2 so that {ah : h ∈ H ′

M}, {bh : h ∈ H ′
M} is a string-twin of x. Some minor

rearranging gives that |H3| ≥ 2f sting(x) + 1, completing the proof. �

Finally, it is clear to see that Eq. 5.1 holds by combining Propositions 5.3, 5.4 and
5.5, along with the fact that ℓ =

∑3
k=1

∑

h∈Hk
|Eh|. So we are done. �

We shall now prove the following upper bound, refuting a conjecture of Dudek,
Grytczuk, and Ruzciński.

Theorem 4. There exists some absolute constant ξ > 0 such that

F2(n) ≤ Fweak(n) ≤ (1/2− ξ + o(1))n.

Remark 5.6. We have made no effort to optimize the constant ξ given by our argu-
ment.
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For those curious, one may use ǫ = 1/400000 and δ = 3/10000 in the below argu-

ments, which shows that ξ > 3−210001/400000 is attainable. By using sharper estimates
and being less sloppy, one could probably show ξ > 2−200. However, proving ξ > 2−20

likely requires new ideas.

Proof. We will fix some sufficiently large integer r. For each letter l ∈ [r], we assign
the weight w(l) := 3l.

We shall consider a random r-ary string x of length m. For k = 1, . . . , m, let
Lk =

∑k
t=1 w(xt). Also, set L0 = 0.

Now given x, we form a permutation πx of length Lm. Specifically, for k ∈ [m], we
take

πx|(Lk−1,Lk] = Lk, Lk − 1, . . . , Lk−1 + 1

(in other words, π|x is the “skew-sum” Dw(x1) ⊖Dw(x2) · · · ⊖ Dw(xm) where Dl denote
the decreasing permutation of length l).

For i ∈ [n], let ki be the smallest k such that i ≤ Lk. Also, let Ek := [Lk] \ [Lk−1].

Now, πx corresponds to the 2-coloring c ∈ Cn;2 where for i < j, c({i, j}) = 1 if and
only if ki = kj (recall the construction given in Lemma 2.1).

Now, n ≤ 3rm, thus we wish to prove that for some ǫ > 0, that for all twins I, J of c,
we have |[n]\(I∪J)| ≥ ǫm. Thus, given a pair of twins I, J , letKI,J := {k : I∪J 6⊃ Ek}.
We shall argue that a.a.s., |KI,J | ≥ ǫm.

Given a set S = {s1 < · · · < sℓ}, we define a map φ = φS : [ℓ] → [m] by setting
φ(t) = kst for t = 1, . . . , ℓ.

We make a few remarks. Obviously for any S, we have that φS is increasing (i.e.,
φS(t) ≤ φS(t + 1) for t < |S|). Also, if I, J are twins, then we must have that
φI(t) < φI(t+ 1) if and only if φJ(t) < φJ(t + 1) (by definition of c).

Now given a twin I, J , we define a graph G = GI,J , where we will allow loops but
won’t care about the multiplicity of edges. Specifically, G will have vertex set [m] and
edge set {φI(t)φJ(t) : t ∈ [ℓ]}. We observe that the components of G are all either
singletons, loops, or paths P with some vertex set V = {v1 < · · · < vq} with edge
set {vtvt+1 : t ∈ [q − 1]}. Additionally, we observe that GI,J actually only depends on
ImφI , ImφJ .

Thus, given X, Y ⊂ [m], we write G(X,Y ) to denote the unique graph GI,J where I, J
is a twin (of c) with ImφI = X, ImφJ = Y (or the empty graph if no such I, J exist).
Furthermore, let χ(X, Y ) count the number of connected components G(X,Y ).
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Given subsets X, Y ⊂ [m] let EX,Y be the event that there exists a twin I, J of c such
that ImφI = X, ImφJ = Y where |KI∪J | < ǫm. We will prove two bounds on P(EX,Y ).

Proposition 5.7. Consider any (X, Y ) ∈ U .

We have that
P(EX,Y ) < 2χ(X,Y )r−(χ(X,Y )−ǫm).

Proposition 5.8. Consider any (X, Y ) ∈ U .

Suppose m/3 − χ(X, Y ) = 8(η + ǫ)m for some η > 0, and that r is even. Then we
have that

P(EX,Y ) ≤ exp(−288η3m) < exp(−η3m).

We shall first show how this implies our desired result. We intend to do a union
bound. Let U be the set of pairs (X, Y ) of X, Y ⊂ [m] with |X| = |Y |. Note that if
I, J is a twin, then (ImφI , ImφJ) ∈ U . So, it suffices to prove

∑

(X,Y )∈U
P(EX,Y ) < 1.

Pick δ > 0. We write U = U1 ∪ U2 ∪ U3, where

(X, Y ) ∈











U1 if |X ∪ Y | ≤ (1− ǫ)m

U2 if χ(X, Y ) ≥ (ǫ+ δ)m

U3 otherwise.

It is clear that if ImφI = X, ImφJ = Y , that [m] \ (X ∪ Y ) ⊂ KI,J , whence we see
P(EX,Y ) = 0 for all (X, Y ) ∈ U1.

Meanwhile, as |U2| ≤ |U| ≤ 22m, we can apply Proposition 5.7 to get
∑

(X,Y )∈U2

P(EX,Y ) ≤ 23mr−δm < 1/2

assuming r ≥ 23δ
−1+1.

Finally, for (X, Y ) ∈ U3, we claim that |X ∪ Y | is large. Indeed, for any (X, Y ) ∈ U
we have that

|X|+ |Y | = 2e(G(X,Y )) ≥ 2(|X ∪ Y | − χ(X, Y ))

(and equality holds on the RHS when G(X,Y ) lacks loops). Thus as (X, Y ) 6∈ U1 ∪ U2,
it follows that |X|+ |Y | ≥ (2− 4ǫ− 2δ)m. Take α := 4ǫ+ 2δ.

Whence, we have that

|U3| ≤ m2

(

m

αm

)2
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(since there are at most (t+1)
(

m
t

)

sets Z ⊂ [m] of size at most t which can be the com-
plement of a set having cardinality at least n− t ≥ n/2). By Stirling’s approximation,
we get that

|U3| ≤ O(m3(α−α(1− α)α−1)2m) < (α−α(1− α)−1)2m

for large m. Meanwhile, we have that (X, Y ) ∈ U3 implies that

m/3− χ(X, Y )− 8ǫm ≥ (1− 27ǫ− 3δ)m/3.

Thus, taking η = (1− 27ǫ− 3δ)/24, we have that

P(EX,Y ) < exp(−η3m).

Thus
∑

(X,Y )∈U3

P(EX,Y ) ≤ (α−α(1−α)−1)2m exp(−η3m) = exp

(

m(2α ln
1

α
+ 2 ln

1

1− α
− η3)

)

.

When ǫ, δ ↓ 0, we have that α ↓ 0 and η ↑ 1/24. As this happens, we have 2α ln 1
α
+

2 ln 1
1−α

↓ 0 and η3 ↑ 1/13824 > 0. Thus, for small ǫ, δ > 0 we have that
∑

(X,Y )∈U3
P(EX,Y ) <

1/2 as desired.

It remains to establish our claims. Before doing so, we establish some notation.

Given (X, Y ) ∈ U , we write κ(X,Y ) to be the minimum of |KI,J | over all twins I, J with
GI,J = G(X,Y ). Clearly, EX,Y is the indicator function of the event that κ(X,Y ) < ǫm.

Next, given a graph G, we write C(G) to denote the set of connected components of
G. For any component C ∈ C(G(X,Y )) (which is either a path with e(C) ≥ 0 edges,
or a single looped vertex), we write κC for the minimum of |KI,J ∩ V (C)| over all I, J
with C ∈ C(GI,J).

Inspecting our definitions, we get the following useful facts.

Proposition 5.9. Consider (X, Y ) ∈ U .

We have that

κ(X,Y ) ≥
∑

C∈C(G(X,Y ))

κC .

Furthermore, the set of random variables {κC : C ∈ C(G(X,Y ))} are independent over
the randomness of c = cx.

Proof. To see the first part, we note

κC = min
I,J :GI,J=G(X,Y )

{|KI,J |}
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and for each such I, J we have that

|KI,J | =
∑

C∈C(GI,J )=C(G(X,Y ))

|KI,J ∩ V (C)| ≥
∑

C∈C(G(X,Y ))

κC .

We now establish the second part. For each C, we observe that κC depends only on
x|V (C). Whence, independence immediately follows, as the components C(G(X,Y )) are
all vertex-disjoint. �

Remark 5.10. It is not too hard to see that in fact κ(X,Y ) =
∑

C∈C(G(X,Y ))
κC , since

we can optimize the intersection of I, J with each component without any issues. We
omit the details since we do not need an upper bound for κ(X,Y ).

Without further ado, we prove our claims.

Proof of Proposition 5.7. Let C := C(G(X,Y )), χ := χ(X, Y ) = |C|. We want to upper
bound P(EX,Y ) = P(κ(X,Y ) < ǫm).

By Proposition 5.9, we have that

κ(X,Y ) ≥
∑

C∈C
κC

where the LHS is the sum of χ independent random variables.

We will show that for any component C, that

(5.2) P(κC = 0) ≤ 1/r.

Assuming this, a quick union bound gives our desired result. Indeed,

P(κ(X,Y ) < ǫm) ≤ P(|{C ∈ C : κC = 0}| ≥ χ− ǫm)

≤
∑

Z⊂C:|Z|≥χ−ǫm

P(κC = 0 for all C ∈ Z)

=
∑

Z⊂C:|Z|≥χ−ǫm

r−|Z|

≤ #(Z ⊂ C : |Z| ≥ χ− ǫm)r−(χ−ǫm) ≤ 2χr−(χ−ǫm)

(here the first inequality is because each κC takes non-negative integer values).

It remains to prove that Inequality 5.2 holds.

Fix any component C ∈ C. We consider two cases.
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Case 1 (|V (C)| = 1): Here, we show κC = 1 always holds, which is clearly more than

sufficient. Let V (C) = {k}. Consider any twin I, J with C ∈ C(GI,J). We will argue
that k ∈ KI,J , which implies |KI,J ∩ V (C)| = |V (C)| = 1 as claimed.

Let A = φ−1
I (k), B = φ−1

J (k). Observe A = B must hold (otherwise, GI,J would have
an edge from k to some k′ 6= k, contradicting that C is a component of GI,J). So, it
follows that |I ∩ Ek| = |A| = |B| = |J ∩ Ek|.

Meanwhile, as I, J are twins, they are disjoint, and so |(I ∪J)∩Ek| = |I ∩Ek|+ |J ∩
Ek| = 2|A| is even. Meanwhile, |Ek| is odd, thus Ek ⊂ (I ∪ J) cannot hold, implying
k ∈ KI,J as desired.

Case 2 (|V (C)| > 1): Let V = {v1 < · · · < vq}. As noted before, we have that

E(C) = {vtvt+1 : t ∈ [q − 1]}. We will prove that if x(v1) 6= x(vq), then kC > 0.
Consequently, this means P(kC = 0) ≤ 1/r, as desired.

Consider any twin I, J with C ∈ C(GI,J). Also, suppose x(v1) 6= x(vq).

For t ∈ [q], let at = |φ−1
I (vt)|, bt = |φ−1

J (vt)|, et = |Evt | = 3x(vt). Also, WLOG assume
a1 6= 0. Since E(C) ⊂ E(GI,J), we have that at = bt+1 > 0 for t ∈ [q−1]. Furthermore,
we must have that b1 = aq = 0, so that C ∈ C(GI,J) (otherwise, v1 or vq would have
additional edges).

Now suppose for sake of contradiction that κC = 0. Then, we must have that
at + bt = et for all t ∈ [q].

We shall see inductively that e1 | at yet 3e1 ∤ at for t ∈ [q − 1]. Consequently, since
aq = 0, bq = aq−1, the condition eq = aq + bq will imply e1 | eq, 3eq ∤ eq, which can only
happen if e1 = eq (as they are both powers of 3), contradiction.

It remains to establish the desired divisibility conditions, namely that e1 | at and
3e1 ∤ at for t ∈ [q − 1].

Recalling that we’re assuming et = at + bt for all t, and that b1 = 0, we must have
that a1 = e1. Thus the divisibility condition is satisfied.

Now, suppose we have the divisibility condition for some t ∈ [q−2]. We shall deduce
it also holds for t + 1.

By assumption, we have that at+1 = et+1 − bt+1 = et+1 − at. Also, since C ∈ GI,J we
have that at+1 > 0. In particular, we have that et+1 > at ≥ e1 (here the last inequality
is a consequence of our divisibility conditions and the fact that at ≥ 0). But then, we
have that 3e1 | et+1 (as et+1 is a power of 3). Thus, recalling at+1 = et+1 − at, we see
that at+1 ≡ −at (mod 3e1), which tells us that e1 | at+1 and 3e1 ∤ at+1 as desired. �
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Proof of Proposition 5.8. Let C = C(G(X,Y )), χ = |C|. Suppose m/3 − χ = 8(η + ǫ)m
for some η > 0.

We will show that for any component C, that κC stochastically dominates1 Bin(⌊|V (C)|/3⌋, 1/8).
Whence, it will follow by Proposition 5.9 that

κ(X,Y ) ≥
∑

C∈C
κC

which stochastically dominates

∑

C∈C
Bin(⌊|V (C)|/3⌋, 1/8) = Bin

(

∑

C∈C
⌊|V (C)|/3⌋, 1/8

)

.

Noting

T :=
∑

C∈C
⌊|V (C)|/3⌋ ≥ m/3− |C| = 8(η + ǫ)m,

we have that T ∈ [8(η+ ǫ)m,m] and thus µ := T/8 ≥ (η+ ǫ)m. Thus by the stochastic
domination above and a Chernoff bound, we see that

P(κC < ǫm) ≤ P

(

Bin(T, 1/8) <

(

1− η

η + ǫ

)

µ

)

≤ exp(−(η/(η+ǫ))2µ/2) ≤ exp(−288η3m)

(the last inequality follows from the fact that m/3 − χ = 8(η + ǫ)m for η > 0 implies
that η + ǫ ≤ 1/24).

It remains to prove that κC stochastically dominates Bin(⌊|V (C)|/3⌋, 1/8).

If |V (C)| = 1 then there is nothing to prove, so we may suppose that C is a path.
Let V (C) = {v1 < · · · < vq}.

For t ∈ [q], let Xt = xvt . Let ℓ = ⌊q/3⌋. For t ∈ [ℓ], we define the interval
Ut = {3t − 2, 3t − 1, 3t} ⊂ [q]. It is clear that for distinct t, t′ ∈ [ℓ] that Ut, Ut′ are
disjoint.

For t ∈ [ℓ], let Et = EC,t be the event that X3t−1 > r/2 ≥ max{X3t−2, X3t}. It is not
hard to see that the events {Et : t ∈ [ℓ]} are independent, as they are determined by
disjoint sets of random variables that are all independent of one another. Furthermore,
as we have assumed r is even, it is clear that P(Et) = 1/8 for all t.

Consequently, is |{t ∈ [ℓ] : Et holds}| is distributed identically to Bin(ℓ, 1/8) =
Bin(⌊|V (C)|/3⌋, 1/8). So now it suffices to show

κC ≥ |{t ∈ [ℓ] : Et holds}|.
The above is immediate corollary of the following fact, completeing our proof.

1We write Bin(t, p) to denote the binomial distribution with t trials each with parameter p.
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Claim 5.11. Consider k1 < k2 < k3 ∈ [m]. Suppose that xk2 > max{xk1 , xk3}.

Then for any twin I, J with {k1k2, k2k3} ⊂ E(GI,J), we have k2 ∈ KI,J .

Proof. Consider any such I, J . For t = 1, 2, 3, set at = |Ekt∩I|, bt = |Ekt∩J |, et = |Ekt|.
WLOG, we may assume that a1 = b2, a2 = b3.

Now assuming xk2 > max{xk1 , xk3}, implying

e2 ≥ max{3e1, 3e3}
> e1 + e3

≥ a1 + b3

= b2 + a2.

Consequently, Ek2 \ (I ∪ J) must be non-empty, implying k2 ∈ KI,J as desired. �

�

�

6. Conclusion

There are a number of questions one can ask about this regime. Here are some
problems we believe to be interesting.

Let

ρr := lim inf
n→∞

Fr(n)/n

(presumably, the limit is still well-defined if we replace ‘lim inf’ with ‘lim’, but we don’t
think this matter is especially important). Theorems 1 and 3 proved that

Ω(1/r2) ≤ ρr ≤ O(1/r).

This naturally begs the question:

Question 1. How does ρr grow (as r → ∞)?

We are inclined to believe that our upper bound is closer to the truth. Indeed, it
already seems difficult to create a coloring c ∈ Cn;r without a twin (I, J) where:

• |it − jt| ≤ r2 for all t;
• for every interval E ⊂ [n] of length 10r2, we have |I ∩ E| ≥ r/100.
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(Here the second condition implies that f(c) ≥ n/1000r−Or(1), while the first condi-
tion is just to restrict our attention to “local strategies” for finding twins.)

We remark that it is still open to determine the analogous limit for r-ary strings
(the best lower bound is that there exist string-twins of length Ω(n/r2/3)).

Here are some generalized problems we didn’t know how to answer.

We say that a twin I, J is non-crossing if max I < min J . Define fcross(c) to be the
longest non-crossing twin I, J in c, and Fcross,r(n) := maxc∈Cr,n{fcross(c)}.
Question 2. Is Fcross,r(n) = o(n) for some r?

We believe the answer is yes even for r = 2. Such a result is equivalent to proving that
for every k ≥ 1, ǫ > 0, that when n is sufficiently large, there exists c1, . . . , ck ∈ Cn;2 such
that for i 6= j ∈ [k], we have that for any I = {i1 < · · · < iℓ}, J = {j1 < · · · < jℓ} ⊂ [n]
with |I| = |J | ≥ ǫn, that there is some t where ci({it, it+1}) 6= cj({jt, jt+1}).

Finally, rather than edge-coloring Kn, we could consider edge-colorings of K
(s)
n

(the complete n-vertex hypergraph of uniformity s). Here, one can say a twin is
a pair of disjoint subsets I = {i1 < · · · < iℓ}, J = {j1 < · · · < jℓ} such that

c({it, it+1, . . . , it+s−1}) = c({jt, jt+1, . . . , jt+s−1}) for all t ∈ [ℓ − s + 1]. Define F
(s)
r (n)

in the natural way, and let ρ
(s)
r := lim infn→∞

F
(s)
r (n)
n

.

Our methods can be extended to prove that ρ
(s)
r > 0 for all r, s ≥ 1. We only provide

a sketch, as our bounds seem far from tight (roughly inverse tower-type). The idea
is to generalize Lemma 3.2, by considering r-edge-colorings of a complete s-partite
hypergraph with parts A,B1, . . . , Bs−1 with |A| = r + 1 and taking |A| ≪ |B1| ≪
· · · ≪ |Bs−1| (here x ≪ y means y is sufficiently large with respect to x). We’d say
~b ∈ B1 × · · · ×Bs−1 is i-popular if there exists distinct a, a

′ ∈ A such that c({a} ∪ {bt :
t = 1, . . . , s−1}) = c({a′}∪{bt : t = 1, . . . , s−1}) = i. By pigeonhole, there exists some

color i ∈ [r] such that at least 1/r of the (d−1)-tuples~b ∈ B1×· · ·×Bs−1 are i-popular.
Then, using something like dependent random choice we can ensure that there exists
B′

1 ⊂ B1, . . . , B
′
s−1 ⊂ Bs−1 so that |B′

1| = |A|, |B′
2| = |B1|, . . . , |B′

s−1| = |Bs−2| with
each ~b ∈ B′

1 × · · · × B′
s−1 being i-popular. One should then be able imitate the proof

of Theorem 1 and show that ρ
(s)
r is bounded away from zero.

Already for s = 3, it would be nice to understand how things work.

Question 3. Do we have ρ
(3)
r ≤ exp(−Ω(r))?

Lastly, it could be nice to consider an intermediate problem. Given positive integers
r, s, let Fr;s(n) be the largest ℓ such that for every c ∈ Cn;r, there exists I = {i1 < · · · <
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iℓ}, J = {j1 < · · · < jℓ} where c({it, it+k}) = c({jt, jt+k}) for all k ∈ [s− 1], t ∈ [ℓ− k].

It is clear that F
(s)

r(
s
2)
(n) ≤ Fr;s(n) ≤ Fr(n), and it would be nice to explore whether we

can obtain better bounds in this specialized setting.

Question 4. Do we have lim infn→∞
Fr,3(n)

n
≥ r−Ω(1)?

References

[1] M. Axenovich, Y. Person, and S. Puzynina, A regularity lemma and twins in words, in Journal of

Combinatorial Theory, Series A 120 (4) (2013), p. 733-743.
[2] B. Bukh and V. Guruswami, An improved bound on the fraction of correctable deletions, in SODA

(2016), p. 1893-1901.
[3] B. Bukh, V. Guruswami, and J. H̊astad, An improved bound on the fraction of correctable deletions,

in IEEE Transactions on Information Theory 63 (2017), p. 93-103.
[4] B. Bukh and L. Zhou, Twins in words and long common subsequences in permutations, in Israel

Journal of Mathematics 213 (2016), p. 183-209.
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