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ADDITIVE STRUCTURE IN CONVEX TRANSLATES

GABRIEL CURRIER, JOZSEF SOLYMOSI, AND ETHAN PATRICK WHITE

Abstract. Let P be a set of points in the plane, and S a strictly convex set of points. In
this note, we show that if P contains many translates of S, then these translates must come
from a generalized arithmetic progression of low dimension. We also discuss an application
to the unit distance conjecture.

1. Introduction

Suppose we have a set of n points and n translates of a strictly convex curve. In general,
it is known that such collections of points and curves can have only . n4/3 incidences1 [10].
Most of the convex curves cannot achieve this bound [9], but there are examples where they
can [7, 15, 20].

The standard constructions for these examples proceed as follows: we construct a curve
that has n1/3 incidences with a grid, and then take translates of that curve by the set of
vectors determined by that grid. In this situation, all of our incidences come from n1/3 fixed
points along a curve, and our translates come from a generalized arithmetic progression (in
this case, of dimension 2).

Our main result shows that the first of these conditions implies the second. That is, if our
incidences come from n1/3 fixed points along a curve, then our translates must come from a
generalized arithmetic progression of bounded dimension.

Theorem 1.1. Let P be a set of n points in R
2, S be a strictly convex set of . n1/3 points,

and T be a set of . n vectors in R
2. If S + T intersects P in & n4/3 points, then there is

a subset T ′ ⊂ T of size & n contained in a generalized arithmetic progression of dimension
. 1 and size . n.

Our main application is to the unit distance problem, asked by Erdős in 1946 [3]. The
problem is to estimate the maximum number of pairs from a set of n points in the plane that
are distance one apart. The best known lower bound of n1+c/ log logn is due to Erdős and relies
on finding a number that can be written as a sum of two squares in many ways, followed by
a corresponding scaling of a finite integer grid. On the other hand, the best upper bound of
cn4/3 is due to Spencer, Szemerédi, and Trotter [16]. For an excellent survey of this problem,
see [17]. Part of the difficulty in improving the upper bound is that, as mentioned before,
cn4/3 unit distances can occur under a different strictly convex norm [15, 20].

1Throughout the paper we use the notation A & B to mean there exists a universal constant C > 0 such
that A ≥ CB
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Several authors have studied the maximum number of unit distances with an additional re-
strictive property satisfied by grids. For example, Schwartz, Solymosi, and de Zeeuw showed
that the number of pairs of points that determine a rational slope and are unit distance
apart is n1+6/

√
logn [13]. Schwartz generalized this result with the restriction that the unit

vectors determined belong to a low-rank multiplicative group when embedding in the com-
plex plane [14]. If we instead fix a set of k unit vectors and ask for the maximum number
of times a vector from our chosen set can be determined, the answer is kn−Θ(

√
n), proved

by Brass [2]. The configurations of points achieving the maximum here are also lattices.

We extend Brass’s result to allow unit distances from a set of unit vectors that grows with
the size of the pointset. Our result is a structure theorem, showing that if the number of
unit distances achieved is maximum, then a large portion of the pointset is contained in a
generalized arithmetic progression.

Corollary 1.2. Let P be a set of n points in the plane, and U ⊂ R
2 be a set of unit length

vectors where |U | . n1/3. If #{(x, y) ∈ P : x − y ∈ U} & n4/3 then & n points of P are
contained in a generalized arithmetic progression of dimension . 1 and size . n.

Corollary 1.2 is obtained from Theorem 1.1 by representing the set U of unit vectors as a
set of points on a unit circle, a strictly convex curve.

2. Preliminaries

We will need several standard tools from additive combinatorics and discrete geometry.
The first is a variant of the Szemerédi-Trotter theorem [18] applying to a slightly more general
class of curves (see, e.g. [10]). We say that a collection of simple curves C are pseudo-lines
if any two curves from C intersect in at most one point.

Theorem 2.1 (Szemerédi-Trotter). The number of incidences between n points and m
pesudo-lines is . n2/3m2/3 + n+m.

Next, we will need the following consequence of the triangle removal lemma of Ruzsa and
Szemerédi [12]. The best-known quantitative bound on the triangle removal lemma is due
to Fox [4].

Theorem 2.2. Let G be a graph on n vertices, and suppose G contains & n2 edge-disjoint
triangles. Then G contains & n3 triangles.

The remaining two theorems are frequently used to show structure in subsets of additive
groups. Both are well-known tools in additive combinatorics. A comprehensive treatment of
these results can be found in, e.g. [19].

Theorem 2.3 (Balog-Szemerédi-Gowers [1, 6]). Suppose G is an abelian group, A ⊂ G is
finite, and H is a graph with vertex set A and & |A|2 edges. Then, if |A−H A| . |A| there
must exist A′ ⊂ A such that |A′| & |A| and |A′ − A′| . |A′|

Theorem 2.4 (Freiman-Ruzsa [5, 11]). Suppose G is an abelian group, A ⊂ G is finite, and
|A − A| . |A|. Then, A is contained in a generalized arithmetic progression of size . |A|
and dimension . 1.

2



3. Many copies of a convex pointset

Before beginning a proof of Theorem 1.1 we make a reduction to show that S can be
assumed to lie on a convex curve with the following characteristics. We say a strictly convex
curve F is nice if

(1) Any two translates of F intersect exactly once, unless one is a vertical shift of the other,
in which case they do not intersect at all.

(2) F is x-monotone; every vertical line intersects F exactly once.
(3) For any pair of points in R

2 not on a vertical line there is a unique translate of F that
passes through them both.

Let P, S, and T be as in the hypothesis of Theorem 1.1. We can partition S = ∪3
i=1Si

into three sets such that each Si after an appropriate rotation is contained in a nice curve.
At least one Si + T intersects P in & n4/3 points. It follows that we can assume S lies on a
nice curve F . The benefit of this reduction is that it is easy to obtain the following cutting
theorem about nice curves.

Theorem 3.1. Let F be a set of n translates of a nice curve F . For any choice of parameter
11 ≤ r < n, there exists a decomposition of the plane into at most 20r2 cells, where the
boundary of each cell consists of a union of at most two arcs from F and at most two
vertical line segments, such that at most n/r curves in F intersect the interior of any cell.

We give a proof of Theorem 3.1 in Section 4 by adapting an argument of Matoušek for
the equivalent theorem on lines [8, §4.7].

Proof of Theorem 1.1. Let F = F + T be the family of translates of F .

• A good curve from F contains & n1/3 points from P. We let F ′ ⊂ F be the set of
good curves and T ′ ⊂ T be the corresponding set of translating vectors.

We note that since S+T intersects P in & n4/3 points, we must have that |F ′| & |F| & n.
Throughout our proof we will choose constants Ci, i = 1, 2, 3, 4. We begin by applying
Theorem 3.1 on our set of curves F ′, with the choice r = C1n

1/3. We obtain a cutting of

R
2 into at most 20C2

1n
2/3 cells such that each cell is entered by at most |F ′|

C1n1/3 curves from

F ′. Our cutting is composed of . n2/3 pseudolines, as shown in the proof of Theorem 3.1.
Hence the number of incidences between S + T and P is . n10/9 by Theorem 2.1. For
the rest of the proof, we will ignore points that are contained in the cell-boundaries of our
cutting. Furthermore, from now on when we say a point is “in” a cell, we mean in the interior.

We make the following two definitions to aid with showing the typical behaviour of points
and curves in each cell.

• Let F0 ∈ F ′ be a good curve and S0 be the set of points from S on F0. A good triple
is a set of three points x0, y0, z0 ∈ P ∩ S0 ordered left to right along F0 such that:
i) the points are in the same cell; ii) no other points from P ∩ S0 lie on F0 between
x0 and z0; and iii) if x, y, z ∈ S are the points corresponding to x0, y0, z0 then the
number of points between x and z on F ∩ S is at most C2.

• A good cell has ≥ C3n
2/3 distinct good curves containing at least one good triple,

and ≤ C4n
1/3 points in it. We note that since a good cell clearly has ≥ C3n

2/3 good
triples, and since a pair of points can belong to at most two good triples, a good cell
necessarily also has & n1/3 points.
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Claim 3.2. There are & n4/3 good triples.

Proof. Pick an element F0 ∈ F ′ and let S0 be the points from S on F0. Divide
the points in S0 into consecutive intervals of length C2 from left to right.
Suppose that at least |S0|/(C2 + 1) of these intervals have at most 2 points
from P in them. Then, the total number of incidences of P with S0 is

2|S0|
C2 + 1

+

( |S0|
C2

− |S0|
C2 + 1

)

C2 =
3

C2 + 1
|S0|.

If C2 is chosen to be sufficiently large, then this is a contradiction, since
|S0| = |S| . n1/3 and each good curve has & n1/3 points on it by defini-

tion. Thus, there must be at least
(

1
C2

− 1
C2+1

)

|S0| intervals of length C2

containing at least 3 points. Within each such interval, there is at least one
triple meeting requirements ii) and iii) of the good triple definition. Therefore
there are & n1/3|F ′| good triples before cutting.

Now, by our cell decomposition from Theorem 3.1, we know that we have

≤ 20C2
1n

2/3 cells, and at most |F ′|
C1n1/3 curves from F ′ intersecting each cell.

Thus, there are ≤ |F ′|20C1n
1/3 curve-cellwall incidences, and each can destroy

at most two good triples. Choosing C1 to be sufficiently small shows that there
are & n1/3|F ′|, since |F ′| & n the claim follows.

�

Claim 3.3. There are & n2/3 good cells.

Proof. Let the cells have index set I, and pi be the number of points in cell
i ∈ I from P, and fi the number of curves contributing at least one good triple
to cell i. Each good triple corresponds to a curve-point incidence. Therefore
by Szemerédi-Trotter (Theorem 2.1) and Claim 3.2 we have

∑

i

(

(pifi)
2/3 + pi + fi

)

& n4/3.

Let J ⊂ I be an index set. Since
∑

i pi . n and using Hölder’s inequality
∑

j∈J

(

(pifi)
2/3 + pi + fi

)

. (max
j∈J

fj)
2/3n2/3|J |1/3 + n+ (max

j∈J
fj)|J |. (1)

Let J1 be the indices of cells where fi ≤ C3n
2/3, and J2 be the indices of cells

with more than C4n
1/3 points. For cells in J1 we have maxj∈J1 fj ≤ C3n

2/3,
and so (1) is . C3n

4/3 for J = J1. Furthermore, since we have ≤ n points,
we see |J2| ≤ (1/C4)n

2/3. Since fi . n2/3 for all i ∈ I (by our cutting), (1) is
. 1

C
1/3
4

n2/3 when J = J2. Letting C3 be sufficiently small and C4 be sufficiently

large, we see then

( max
j /∈J1∪J2

fj)
2/3n2/3|I \ (J1 ∪ J2)|1/3 + n + ( max

j /∈J1∪J2
fj)|I \ (J1 ∪ J2)| & n4/3
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From which we immediately conclude |I \ (J1 ∪ J2)| & n2/3. This completes
the claim.

�

For a single cell D, define the graph GD, drawn in the plane as follows. Let the vertices
be the points from P ∩ (S + T ) in D. For each curve F0 ∈ F ′ with least one good triple in
D, choose exactly one such triple {x, y, z}, and let {x, y}, {x, z} and {y, z} be edges in GD,
where the edges are drawn along F0. For any path of length 3 {e1, e2, e3} in GD we say the
path is self-intersecting if the curves corresponding to e1 and e3 intersect in D.

Claim 3.4. In a good cell there are & n4/3 self intersecting P3’s.

Proof. Let D be a good cell, and GD be as above. Note that since D is a
good cell, GD has . n1/3 vertices. From Claim 3.3 we know that GD contains
& n2/3 edge-disjoint triangles, so by Theorem 2.2 GD contains & n triangles.
Consider two triangles T1 = {e1, e2, e3}, T2 = {e′1, e2, e′3} in GD that share an
edge. Let v ∈ T1, v

′ ∈ T2 be the vertices not on the edge e2. If v, v
′ are on the

same side of the curve in F ′ that contains e2, then a self-intersecting P3 will
be formed since curves can intersect at most once. See Figure 1 for illustration.

We can now complete the claim with a convexity argument. For each edge
e in GD, let t(e) be the number of triangles containing e. Then by the above,
the number of intersecting P3’s is at least

∑

e∈E(GD)

(⌈t(e)/2⌉
2

)

&
1

|E(GD)|

(

∑

e∈E(GD)

t(e)

)2

& n4/3.

�

e2

e1

e′1

e3

Figure 1. Self-intersecting P3: e
′
1, e2, e3.

Now we put together the pieces. Define a graph H with vertex set F ′. For two curves
F1, F2 ∈ F ′, we make F1 ∼ F2 an edge if there are edges e1 ∈ F1 and e3 ∈ F2 and a third
edge e2 such that {e1, e2, e3} are all contained in the same cell, and form a self-intersecting
P3. We now count the edges in H. The total number of self-intersecting P3’s is & n2 by
Claim 3.4. Curves in F ′ intersect at most once, and within each cell D we select only 3
arcs from a single curve to become edges of GD. Furthermore, a self-intersecting P3 can be
counted in at most one cell, so at most 9 self-intersecting P3’s correspond to the same edge,
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and so H has & n2 edges.

The edges in each cell graph GD correspond to . n1/3 fixed arcs along our curve F .
Supposing F1 ∼ F2 in H, there exist arcs e1, e2 along F1 and F2 (respectively) and a third
arc e0 such that e1, e0, e2 is a self-intersecting P3 in some good cell. Since the ei each come
from the . n1/3 fixed arcs, and the vector difference between F1 and F2 is determined by
e0, e1, e2, we see |T ′ −H T ′| . n. By Theorem 2.3 we obtain T ′′ ⊂ T ′ of size & n such that
|T ′′ − T ′′| . n. Finally, by Theorem 2.4 we conclude that T ′′ is contained in a generalized
arithmetic progression of dimension . 1 and size . n.

�

4. Cutting theorem for strictly convex curves

In this section we prove Theorem 3.1 by adapting an argument of Matoušek for the anal-
ogous theorem on lines [8, §4.7]. Let n, F, and F be as in the statement of Theorem 3.1. By
applying a small perturbation to F , we may assume that F is in general position: all pairs
of curves will intersect and there will be no points of triple intersection. Our actual cutting
is then given by a limit of these cuttings as the size of the perturbation goes to zero.

We will call the points of intersection between curves in F vertices, and the vertex-free
open arc-segments of curves in F edges. Note that some edges will have finite length, and
others will be unbounded towards the right or left.

The level of a point x ∈ R
2 is the number of curves in F lying strictly below x. Note that

the points on any edge have the same level. For each 0 ≤ k ≤ n, define the level k of F as the
set of edges with level k, along with their endpoints. Denote the set of edges in level k by Ek.

Fix a pair of points x, y ∈ R
2 and let Fx,y denote the arc-segment between x, y of the

unique translate of F containing both x and y. Let the edges in Ek be e0, e1, . . . , et, and note
that e0 and et are unbounded to the left and right, respectively. Choose arbitrary points
pi ∈ ei for 0 ≤ i ≤ t, and fix a parameter q ≥ 2. Define the q-simplification of level k as
union of arcs

Fp0,pq , Fpq,p2q , . . . , Fp⌊(t−1)/q⌋qpt ,

in addition to the part of e0 to the left of p0, and the part of et to the right of pt. Note that
q-simplification of level k is an x-monotone curve, and that it consists of at most t/q + 3
arc-segments.

Lemma 4.1.

(i) The portion Π of the level k between pj and pj+q is intersected by at most q+1 translates
in F .

(ii) The arc Fpj ,pj+q
is intersected by at most q + 1 translates in F .

(iii) The q-simplification of level k is contained in the strip between levels k − ⌈q/2⌉ and
k + ⌈q/2⌉.

Proof. (i) any curve of F intersecting Π must belong to the curves comprising Π, otherwise
the level would change along Π. There are at most q + 1 distinct curves comprising Π. (ii)
The union of Fpj ,pj+q

and Π divides R
2 into a series of bounded cells. If an element of F
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intersects Fpj ,pj+q
, then in order to leave the cell it must intersect Π as well. Since at most

q+1 curves from F intersect Π, we are done. (iii) We consider how high or low the level can
become moving left to right along Fpj ,pj+q

. The level begins and ends at k. Each change of
level must be accompanied by a curve in F intersecting Fpj ,pj+q

. Hence to move from level k
to k± i and back to k, at least 2i curves of F must cross Fpj ,pj+q

. It follows that 2i ≤ q +1.
�

Proof of Theorem 3.1. If r ≥ n/4, then we can form the required cutting by choosing all
curves in F . We will now assume 11 ≤ r < n/4. Set q = ⌊n/3r⌋ − 1. The total number of
edges in F is n2. We may find 0 ≤ i ≤ q − 1 such that the number of edges in ∪jEjq+i is at
most n2/q. Let Pj be the q-simplification of Ejq+i for 0 ≤ j ≤ (n− 1)/q. Let mj denote the
number of edges in Ejq+i. Then the total number of edges among all Pj is at most

∑

0≤j≤(n−1)/q

(mj/q + 3) ≤ n2

q2
+

3n

q
.

Note that no two q-simplifications intersect. If they did, then a vertex from some Pj would
lie above Pj+1, but all vertices of Pj have level jq + i, which contradicts Lemma 4.1 (iii).

The union of the Pj for 0 ≤ j ≤ (n − 1)/q will form our decomposition, along with the
additional vertical line segments. For every vertex in Pj , extend vertical lines up and down
until they reach Pj+1 and Pj−1. Each vertical line segment creates an additional cell and so
we have obtained a partition of the plane into at most 2n2/q2 + 7n/q + 2 < 20r2 cells.

Now we verify that at most n/r curves of F enter any single cell. A typical cell D will
be between a pieces of Pj and Pj+1 for some 0 ≤ j ≤ (n − 1)/q and also bounded by two
vertical segments. By Lemma 4.1 (iii) we know D lies between levels jq + i − ⌈q/2⌉ and
(j+1)q+i+⌈q/2⌉. Hence the vertical line segments bounding the set can be intersected by at
most 2q+1 curves in F . The upper and lower boundaries of D are arcs as in Lemma 4.1 (ii)
and so are intersected by at most q+1 curves in F . Since a curve entering D must intersect
the boundary twice, we conclude that at most 3q + 2 curves of F intersect D. There are
also atypical cells below P0, above P⌊(n−1)/q⌋, or bounded by a single vertical segment, but
such cells are easily verified to have less than 3q curves of F intersecting their interior. Since
3q + 2 < n/r we have proved the result.

�
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