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The Lévy flight foraging hypothesis asserts that biological organisms have evolved to employ
(truncated) Lévy flight searches due to such strategies being more efficient than those based on
Brownian motion. However, we provide here a concrete two-dimensional counterexample in which
Brownian search is more efficient. In fact, we show that the efficiency of Lévy searches worsens the
farther the Lévy flight tail index deviates from the Brownian limit. Our counterexample is based
on the framework of the classic narrow capture problem in which a random search is performed
for a small target within a confined search domain. Our results are obtained via three avenues:
Monte Carlo simulations of the discrete search processes, finite difference solutions and a matched
asymptotic analysis of the elliptic (pseudo)-differential equations of the corresponding continuum
limits. Asymptotic analysis of the Lévy search yields an expression for the average search time
accurate to O(1), providing insights into how the latter is impacted by various features of the target
and search domain.

I. INTRODUCTION

It is a widely held belief that random search algorithms
using Lévy flights can find a target faster than using
Brownian motion [1–4], with [4] finding evidence for the
intrinsic (i.e., arising from endogenous neurophysiologi-
cal processes [4–10]) generation of Lévy-like movement
patterns in certain organisms. In [11], a neural coding
scheme is used to explore a possible explanation for such
search trajectories.
This so called “Lévy flight foraging hypothesis” forms

the basis of many biological models (e.g., [12, 13]) as well
as numerical search algorithms [2, 14–17]. It has also led
the seeking of optimal Lévy tail indices (e.g., [2, 18]) for
maximizing the amount of sparsely spaced targets being
captured relative to the distance traversed [2], resulting
in the 2020-21 dialogue that took place on Phys. Rev.
Lett. [18–20].
In contrast to these existing works, we present an al-

ternative means of quantifying efficiency via measuring
the expected search time of a small, stationary target in a
finite domain and provide an example in two-dimensions
for which the Brownian search strategy is more efficient
than strategies based a Lévy flight of any tail index α.
In fact, we demonstrate that in our setting, a certain
power-law dependence of the expected search time on α
that worsens the farther α deviates from its Brownian
limit.
The framework we employ for this comparison is con-

sistent with that of first passage time problems for Brow-
nian search (e.g., [21–24]) in a geometry motivated by the
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narrow capture problem used to model biological and eco-
logical processes (e.g., [25–32]). We emphasize here that,
as is typical of narrow capture (and narrow escape) prob-
lems, we assume the search target is small and stationary.
From a modeling perspective, the latter assumption of
stationary targets means that, for example, in the mod-
eling of animal foraging, we must assume that the search
objective either does not move or moves very slowly in
comparison to the searcher. The former scenario may
arise when animals forage for patches of food (such as
grass) or water sources. The latter scenario may be per-
tinent if the foraging predator diffuses on a much faster
time scale than does the prey (see, e.g., [31]) so that
the target may be approximated as stationary. Brown-
ian search times of mobile targets are considered in, e.g.,
[33–37].

We develop three different approaches to arrive at
our result. First, we devise and implement a Monte
Carlo simulation to calculate the expected search time of
searches based on Lévy flight. Second, we implement a
numerical method for solving (pseudo)-differential equa-
tions which yields detailed information about the ex-
pected search time as a function of initial position. We
use this numerical solution to gain insight into the po-
tential mechanism behind why Brownian searches appear
to take less time than Lévy flights. Third, in §VB, we
develop a matched asymptotic analysis to derive leading
order analytic predictions for the expected search times.
We remark that the comprehensive set of results from
these three different approaches provide more quantita-
tive and qualitative insight than the analytic asymptotic
estimate for the search time discussed recently in [38].

A schematic of the narrow capture framework for the
geometry we consider is shown in Fig. 1. The search
domain is the unit torus T2 of unit side length with peri-
odic boundary conditions and bottom left vertex at the
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origin. Two instances are shown of paths traced out by
a Brownian (green) and Lévy (blue) search for a station-
ary target of disk of radius ε centered at x0 = (1/2, 1/2)
(red). The pink dots mark the locations x from where
the respective searches begin. The search ends when the
search first lands either on the boundary or inside the
target disk.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FIG. 1: Illustration of Lévy flight (blue) and Brownian
walk (green) searches for a target of disk of radius

ε = 0.25 (red circle indicates its boundary) centered at
the point (0.5, 0.5) on the flat torus T2. The pink

markers indicate the starting locations of each search.
Each search continues until it first reaches the target.
Closeups of both paths are shown in insets. The Lévy
search path (tail index α = 0.5) exhibits series of small
jumps separated by occasional long jumps while the
Brownian path lacks the latter. Note that ε is set

relatively large for illustrative purposes; we consider a
smaller range of ε in this article.

The qualitative differences in the two paths are due
to the probability distributions of their respective jump
lengths. For the Brownian search, jump lengths are nor-
mally distributed with zero mean and variance of ∆t suffi-
ciently small, leading to the linear-in-time mean squared
displacement 〈|∆x|2〉 ∝ ∆t. In the Lévy search with
tail index 0 < α < 1, jump lengths |y| are given by
|y| = (∆t)1/(2α)|k|, where k is distributed according to a
power-law distribution with tail ∼ |k|−(2+2α) (see, e.g.,
[22, 39–42] and references therein). This leads to an
unbounded mean squared displacement, and the super-
linear scaling 〈|∆x|2δ〉1/δ ∝ (∆t)1/α for δ < α.
In the next section, we present our main findings and

give possible reasons for the inferiority of Lévy search
strategies within the narrow escape framework.

II. MAIN RESULTS AND INTERPRETATION

For a random search on T
2, let us denote uε(x) (vε(x))

the average search time (i.e., mean first passage time,
or MFPT) of a Lévy (Brownian) search starting from
location x, and Bε(x0) the circular target of radius ε

centered at x0. Then the global mean first passage
time (GMFPT) [24] is the expected search time aver-
aged uniformly over all starting points x ∈ T

2 \ Bε(x0).
That is, the GMFTP, ūε, of the Lévy search is given by
ūε =

∫

T2\Bε(x0)
uε(x) dx, and similarly for the GMFPT,

v̄ε, of the Brownian search.
We show in Fig. 2 our primary result demonstrat-

ing that Brownian search is on average faster than Lévy
search. Moreover, the Lévy flight search time increases
the more its tail index α deviates from its Brownian limit
of 1. In the figure, we plot the Lévy search GMFPT ūε for
three different tail indices and for a range of target sizes ε
on a log-log scale. The blue x’s are obtained from Monte
Carlo simulations (see Fig. 1), which we discuss below.
The black o’s are obtained from finite difference solu-
tions of the elliptic pseudo-differential equation for uε(x)
given by (8a) corresponding to the continuum limit of the
Monte Carlo process. Both confirm the leading order an-
alytic result (shown in red) derived via a matched asymp-
totic analysis of §VB, stating that in the limit ε → 0+

with 0 < α < 1,

ūε ∼ Aαε
2α−2 −Rα(x0;x0) + O(1) ;

Aα :=
Γ(1− α)(1 − α)

4αΓ(α) sin((1− α)π)
.

(1)

In (1), Rα(x0;x0) is the regular part of a certain Green’s
function satisfying (35) evaluated at the location of the
singularity, and is given by (36).
We make several remarks on the result (1). Firstly,

Aα in (1) is a function of the geometry of the target
(in our instance, a disk of radius ε) and the size of the
search domain (in our instance, unity). Both of these
dependencies are made explicitly clear in our derivation
of (1) in §VB. Secondly, the fact that target geometry
effects enter at the leading order of ū is in direct contrast
to the Brownian motion result, where target geometry
effects enter at O(1), which is the second order. Lastly,
the leading order term in (1) contains no information on
global geometric properties of the search domain other
than its size. These global effects are encoded only in
the O(1) correction term, Rα(x0;x0).
The error of the approximation (1) grows as α nears

its Brownian limit of 1, accounting for the worsening dis-
crepancies between the blue x/black o and the (red) ana-
lytic prediction as α gets closer to 1. We also plot v̄ε, the
GMFPT of the Brownian search, obtained from numeri-
cally solving (9a) (black o’s). The red dashed curve plots
the functional form −(2π)−1 log(ε)+ c for some constant
c, confirming the well-known the leading order O(| log ε|)
scaling of Brownian search times (see, e.g., [25–30]).
We give a possible explanation for the longer average

duration of Lévy searches. In Figs. 3, we plot the finite
difference solution for uε(x) when α = 1/2 and ε = 0.03,
and compare a cross section of this solution to that of
vε(x). In Fig. 3b, we first observe that both solutions
are identically 0 for x ∈ Bε(x0) (i.e., searches beginning
in and on the target cost zero time). Near the target
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FIG. 2: (a) For Lévy flight tail index α = 0.25, α = 0.5,
α = 0.75, and Brownian motion, with target of radius ε
centered at (1/2, 1/2), we plot the GMFPT versus ε.
The results indicate that Brownian search is faster on
average than the three Lévy searches considered, and

that average search times increase further the tail index
α is from its Brownian limit of 1. The quantities
plotted in blue x’s and black o’s are obtained from

Monte Carlo simulations and numerical solutions of the
corresponding elliptic (pseudo)-differential equations,
respectively. The solid red lines indicate the leading
order power-law scaling of (1), while the dashed red
curve plots the functional form −(2π)−1 log(ε) + c for

some constant c.

boundary, we observe a much sharper rise in uε than
for vε, while far from the target, uε is flatter than vε.
This behavior of uε suggests that proximity to the target
of starting location has little impact on the Lévy search
time. This owes to there being a greater likelihood of
taking a long jump in the “wrong” direction, especially
when the target is small.

Thus, a Lévy search that has reached the vicinity of
the target may take a long jump away from it, effec-
tively forcing it to restart its search from a farther lo-
cation. Repeated approaches to the target followed by
long jumps away from it can lead to anomalously long
search times, which we show in Fig. 4a. Obtained from
Monte Carlo simulations of search processes beginning at
(0, 0), the probability density distributions of Lévy search
times differ greatly from that of Brownian search times.
In particular, the comparatively slow decay of the tail for
longer search times is apparent, especially for α = 1/4.
The greater variance of Lévy search times is confirmed
in Fig. 4b, where we show finite difference computations
of the search time variance averaged over all starting lo-
cations. We note the near-linear behavior of Lévy flight
variances, suggesting that they, along with the GMFPT
ūε, follow a power-law scaling.

In the following sections, we provide an overview of
our methodology, beginning with a brief outline of our
Monte Carlo algorithm . We then give the elliptic pseudo-
differential equations which characterize the continuum
limit of the Lévy search process. Mathematical details

(a) uε(p)
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(b) horizontal cross-section of uε, vε

FIG. 3: For α = 1/2 with target of radius ε = 0.03
centered at (1/2, 1/2), we show in (a) the numerical
solution for uε of (8a). The red line indicates the

contour plotted in red and (b), where, in blue, we also
plot the corresponding contour of the numerical

solution vε of (9a). Note that uε (vε) is plotted on the
left (right) vertical axis. The spatial average of uε is
approximately 8.57 while that of vε is approximately
0.357, indicating that an average search conducted via
the Lévy process with α = 1/2 for a small target will be

significantly longer in comparison.

are presented in §V. We close by discussing some open
problems.

III. MONTE CARLO SIMULATION OF LÉVY
FLIGHT SEARCH ON T

2

We describe here the Monte Carlo algorithm that we
used to generate the simulated Lévy flight search times of
the previous section. The algorithm is motivated by the
description of Lévy flights on R

n given by Valdinoci [40].
We remark that the purpose of [40] is to describe the
derivation of the (continuous) fractional heat equation
from a discrete Lévy flight framework. It is this discrete
framework that we invoke in §VA to derive the pseudo-
differential equation that we subject to analysis in §VB,
resulting in the main result (1). We base the simula-
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(b) average variance

FIG. 4: (a) Starting from the point (0, 0), the figure
shows the full probability density function of search
times for a target of radius ε = 0.04 centered at

p0 = (1/2, 1/2). Results for the Brownian search are
obtained from numerically solving the time-dependent
diffusion PDE while those for the Lévy searches are
obtained from Monte Carlo simulations. Observe the

increasingly heavy tail of the distributions as α
decreases. This indicates the increasing likelihood of
long search times, contributing to the longer average

search times of Lévy flights relative to Brownian walks.
(b) Finite difference computation of search time

variance averaged over all starting locations, obtained
from the second moments of MFPT in (8c) and (9b).

tions on this discrete framework. Other algorithms for
simulating stable Lévy process are given in, e.g., [43–45].

We describe the process on R
2 from which we can de-

rive the process on T
2 simply by identifying (n+ r,m+

s) ≡ (r, s) for n,m ∈ Z and r, s ∈ (0, 1). For the
(j+1)−th step starting from xj ∈ T

2 with j = 0, 1, 2, . . .,
the j-th displacement of the Lévy flight with tail in-
dex 0 < α < 1 is given by hk, where h is a suffi-
ciently small parameter (in particular, sufficiently smaller
than the size of the target) and k ∈ Z

2 is a random
variable drawn from a power-law distribution with tail
∼ |k|−2−2α (see §III A). Since 〈|k|2δ〉 is bounded for
0 < δ < α < 1, we have the scaling of the expected dis-
placement 〈|∆x|2δ〉 ∝ hδ, or 〈|∆x|2δ〉1/δ ∝ h. We then let

∆t = Dαh
2α so that 〈|∆x|2δ〉2/δ ∝ (∆t)1/α as required.

Here, Dα is a constant chosen so that the process is con-
sistent with Brownian motion in the limit α → 1− (see
(26) of §VA). As mentioned above, from this jump pro-
cess on R

2 one can deduce the process on T
n simply by

modding out Z2.
In §III A, we describe our process for sampling from

a discrete power law distribution. We then describe, in
§III B, the Monte carlo simulation of the search process
from which we generate the Monte Carlo estimates for
search times in Fig. 2.

A. Rejection sampling algorithm for Kα

We describe here the rejection sampling algorithm that
we use to draw samples k ∈ Z

2 from the discrete power
law distribution

Kα(k) =

{

0 k = 0

Cα|k|−2−2α k 6= 0
, (2a)

where Cα is the normalizing constant given by

Cα =
1

∑

k∈Z2 ,k 6=0

|k|−2−2α
, (2b)

where k ∈ Z
2.

First observe that

Kα(k) ≤
Cα

C̃α

K̃α(k) , (3)

where K̃α(k) = C̃α|k|−2−2α
∞ for k ∈ Z

2 \ {0}, C̃α is the
normalization constant (given below), and | · |∞ is the

ℓ∞ norm on R
2. The distribution K̃α serves as a good

proposal distribution for rejection sampling because the
process of sampling from it is relatively simple, which we
describe now.
The distribution K̃α(k) depends purely on the ℓ∞ norm

of the random variable k ∈ Z
2. As such we observe for

each fixed k̂ ∈ Z
2, a random variable k ∈ Z

2 satisfies

P(k = k̂) = P(|k|∞ = |k̂|∞)P(k = k̂ | |k|∞ = |k̂|∞) ,

where P(k = k̂ | |k|∞ = |k̂|∞) is uniformly distributed

amongst the 8|k̂|∞ points having ℓ∞ norm |k̂|∞.

For each n ∈ N, using the explicit form of K̃α and the
fact there are 8n points on Z

2 having ℓ∞ norm n, we see
that

P(|k| = n) = C̃α8n/n
2+2α = C̃α8/n

1+2α , (4)

where C̃α is given by

C̃α =
1

∞
∑

n=1
8n−1−2α

. (5)

This distribution can be sampled from using inversion
sampling for discrete distributions.
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Remark 1 We observe that in the special case when

α = 1/2 we can derive explicit analytic expressions for

P(|k| = n). Indeed, we can sum over n in (4) to yield the

condition

1 = 8C̃1/2

∞
∑

n=1

1

n2
=

4π2

3
C̃1/2.

That is, C̃1/2 = 3
4π2 . Inserting this back to (4) we get,

for each fixed n ∈ N,

P(|k| = n) =
6

π2

1

n2
, (6)

for α = 1/2.

The rejection sampling algorithm for the discrete
power law distribution Kα is thus as follows:

1. sample n ∈ {1, . . . , 10000} from (4) using inversion
sampling;

2. for this n ∈ N sample k ∈ Z
2 uniformly from the

8n points on Z
2 have ℓ∞ norm n;

3. for this k ∈ Z
2, sample r ∈

(

0, Cα

C̃α

K̃α(k)
)

uni-

formly. If r ≤ Kα(k), accept this k ∈ Z
2. If not,

reject and repeat.

Numerical experiments show that this rejection sampling
algorithm accepts approximately 69% of the time.

B. Monte Carlo algorithm

We describe here the Monte Carlo algorithm used to
simulate Lévy flight searches.Let T

2 be the flat torus
[0, 1] × [0, 1] with periodic boundary conditions, and
udisc
ǫ (x) be the expected discrete Lévy flight search

time (obtained via simulation of a discrete process)
of a circular target Bǫ(0) of radius ǫ > 0 centered
at (1/2, 1/2) starting from x ∈ T

2. Then for a Lévy
flight tail index α ∈ (0, 1) and h > 0 sufficiently small,
we perform the following Monte Carlo procedure to
compute an approximation of udisc

ǫ (x):

Set T = 0 and x = (x1, x2).

Repeat the following until x ∈ Bǫ(0):

1. sample k ∈ Z
2 from Kα using the above rejection

sampling algorithm;

2. set y := (y1, y2) = x+ hk;

3. set x = (y1 mod ⌊y1⌋, y2 mod ⌊y2⌋), which ac-
counts for the periodic boundary conditions of T2;

4. set T = T + ∆t, where ∆t = Dαh
2α, with Dα is

given in (26) of §VA.

The j-th run of the above generates a stopping time Tj.
After executing M runs and generating stopping times
T1, T2, . . . , TM we calculate

udisc
ǫ (x) ≈ T1 + T2 + · · ·+ TM

K
, (7)

for large M ∈ N. Repeating this process over a grid of
points x ∈ T

2 and then averaging, we are able to obtain
an approximation of the global mean first passage time
(GMFPT); i.e., the spatial average of udisc

ǫ (x) over T2.

IV. THE ELLIPTIC (PSEUDO)-DIFFERENTIAL
EQUATIONS

In this section, we briefly discuss the elliptic pseudo-
differential equation satisfied by uε(x), the MFPT of the
Lévy search starting from point x ∈ T

2 in the continuous
limit. Adopting the electrostatics approach of [21] for
Brownian searches, we show in §VA that uε(x) satisfies
the exterior problem

Aαuε = −1 on T
2 \Bε(x0), uε = 0 on Bε(x0) , (8a)

where Aα for 0 < α < 1 is the fractional Laplacian of
order α on T

2 given by

Aαf(x) :=
4αΓ(1 + α)

π|Γ(−α)| ×
∫

[0,1]×[0,1]

∑

m∈Z2

f(y) − f(x)

|x− (y +m)|2+2α
dy , (8b)

where we have identified T
2 isomorphically with [0, 1)×

[0, 1) so that the expression |x− (y+m)| is well-defined.
We remark that the eigenvalues of Aα converge to that

of the usual (local) Laplacian on T
2 as α → 1−. Further-

more, for a Lévy flight on R
2, the operator Aα would

simply become the standard fractional Laplacian of or-
der α given in (8b) of §VA. The lattice sum kernel of
(8a) sums the probabilities of all the possible paths from
y to x on T

2. By analogy with [21, 31], we have that the
second moment of the MFPT (SMFPT), wε(x), satisfies

Aαwε = −2uε(x) on T
2 \Bε(x0), wε = 0 on Bε(x0) .

(8c)
The boundary value problems for the Brownian search
time (vε(x)) and SMFPT (τε(x)) are well-known ([21]):

∆vε = −1 on T
2 \Bε(x0), vε = 0 on ∂Bε(x0) , (9a)

∆τε = −2vε on T
2 \Bε(x0), τε = 0 on ∂Bε(x0) . (9b)

The variance of the MFPT (VMFPT) is then given by
VMFPT = SMFPT−MFPT2, plotted in Fig. 4b. Finite
difference solutions of (8a)-(9b) are straightforward, al-
though discretizing the operator Aα is computationally
expensive. As such, asymptotic methods for equations of
the forms (8a) and (8c), such as that provided in §VB,
may be helpful in reducing computation requirements.
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V. ASYMPTOTIC SOLUTION OF uε(x)

In §VA, we provide a derivation of the pseudo-
differential equation (8a) for uε(x) starting from a ran-
dom walk formalism. In §VB, we provide an two-term
asymptotic solution for uε leading to the main result (1)
using a matched asymptotic analysis. Through this anal-
ysis, we highlight how effects of target and search domain
geometry enter into the expression for the GMFPT. In
§VC, we discuss how this analysis extends to the flat 3-D
torus as well as closed 2-D manifolds.

A. Derivation of elliptic (pseudo)-differential
equations for average Brownian and Lévy search

times

We begin with the derivation of (8), the pseudo-
differential equation for the average search time via Lévy
flight of a circular target of radius ε starting from some
point x = (x1, x2). The derivation is based on a con-
tinuum limit of a discrete process, and is given in [21]
for a Brownian search, which we reproduce first for the
purpose of completeness.

Consider a Brownian particle on an N × N grid with
spacing h = 1/(N − 1). At regular intervals of ∆t, the
particle hops from its current location (x1, x2) to one
of its four neighboring points, (x1 + h, x2), (x1 − h, x2),
(x1, x2+h), and (x1, x2−h) with equal probability. Here
the addition by ±h are understood to be carried out
mod 1. Let vε(x) be the expected search time start-
ing from (x1, x2). Then vε(x) must be the average of
the expected search time starting from one of its four
neighboring points, plus the ∆t traversal time. That is,

vε(x1, x2) =
1

4
[vε(x1 + h, x2) + vε(x1 − h, x2)+

vε(x1, x2 + h) + vε(x1, x2 − h)] + ∆t . (10)

Dividing (10) by ∆t and rearranging, we have

1

4∆t
[vε(x1 + h, x2) + vε(x1 − h, x2) + vε(x1, x2 + h)

+vε(x1, x2 − h)− 4vε(x1, x2)] + 1 = 0 . (11)

Taking the limit h → 0 and ∆t → 0 in (11) while main-
taining h2/(4∆t) = 1, we obtain

∆vε + 1 = 0 , x ∈ T
2 ; vε = 0 , x ∈ ∂Bε(x0) ,

(12)
where the boundary condition of (12) is the statement
that the search time starting from the boundary of the

target is zero. For the unit torus T2, vε(x) would satisfy
periodic conditions on the boundary.
Following the idea of [40], we now generalize this

derivation to Lévy flights characterized by a jump length
distribution whose tail decays according to the power law
∼ |k|−2−2α for 0 < α < 1. For the flat torus T

2 with
x ∈ [0, 1) × [0, 1), we have the same N × N grid with
spacing h = 1/(N−1). Instead of (10) which allows only
for nearest-neighbor jumps, we have

uε(hi) =

N−1
∑

j1=0

N−1
∑

j2=0

w(hi, hj)uε(hj) + ∆t . (13)

In (13), i = (i1, i2) ∈ [0, N − 1]× [0, N − 1], j = (j1, j2),
and w(hi, hj) is a sum of the probabilities of all possible
paths from hi to hj on T

2, taking into account that there
are an infinite number of ways to travel from one point to
another via a straight line owing to the periodic nature
of T2. From [40], a jump of hk has the probability given
by Kα(k), where the discrete probability mass function
Kα(k) on Z

2 is given by (2) of §III A.
The probability of reaching hi from hj on T

2 must then
be given by the lattice sum

w(hi, hj) =
∑

m∈Z2

Cα|i− (j+m(N − 1))|−2−2α , (14)

where m = (m1,m2) ∈ Z
2, and we have tiled R

2 with the
unit square, and j+m(N− 1) is the point corresponding
to j ∈ T

2 in the square with bottom left vertex at m(N−
1). In (14), Cα is the normalization constant of (2b).
Since

N−1
∑

j1=0

N−1
∑

j2=0

w(hi, hj) =
∑

k∈Z2

Cα|i− k|−2−2α = 1 , (15)

(13) can be rewritten

N−1
∑

j1=0

N−1
∑

j2=0

w(hi, hj)(k) [uε(hj)− uε(hi)] + ∆t = 0 . (16)

Using the formal scaling law of [40],

∆t = Dαh
2α , (17)

for some constant Dα to be determined, we divide both
sides of (16) by ∆t to obtain

1

Dα
h2

N−1
∑

j1=0

N−1
∑

j2=0

w(hi, hj)

[

uε(hj)− uε(hi)

h2α+2

]

+ 1 = 0 .

(18)
Using (14) in (18), we obtain
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Cα

Dα
h2

N−1
∑

j1=0

N−1
∑

j2=0

∑

m∈Z2

|i− (j+m(N − 1))|−2−2α

[

uε(hj)− uε(hi)

h2α+2

]

+ 1 = 0 . (19)

Letting x ≡ hi and y ≡ hj, and recalling that h = 1/(N−
1), (19) becomes

Cα

Dα
h2

N−1
∑

j1=0

N−1
∑

j2=0

∑

m∈Z2

[

uε(y) − uε(x)

|x− (y +m)|2+2α

]

+1 = 0 . (20)

In the limit h → 0+, (20) is the Riemann sum approxi-
mation to the pseudo-differential equation

Dα

Cα

∫

[0,1]×[0,1]

[uε(y) − uε(x)]

×
∑

m∈Z2

1

|x− (y +m)|2+2α
dy + 1 = 0 , (21)

which is the desired form given in (8b).
To motivate the selection of Dα, we rewrite (21) in

terms of the fractional Laplacian defined on R
2 by con-

sidering the periodic extension of uε(x) : T
2 → R, which

we denote Uε(x) : R
2 → R defined by Uε(x1, x2) =

uε((x1 mod 1, x2 mod 1)). The equation (21) can now
be written

Dα

Cα

∫

R2

Uε(y)− Uε(x)

|x− y|2+2α
dy + 1 = 0 , (22)

It is shown in [40] that the integral term in (22) is well
defined as a principal value integral when x is near y:

∫

R2

Uε(y) − Uε(x)

|x− y|2+2α
dy = lim

δ→0+

∫

R2\Bδ(y)

Uε(y)− Uε(x)

|x− y|2+2α
dy ,

(23)
where Bδ(y) is the ball of radius δ centered at y. With
the fractional Laplacian in R

2 given by

−(−∆)αf(x) =
4αΓ(1 + α)

π|Γ(−α)|

∫

R2

f(y) − f(x)

|x− y|2+2α
dy , (24)

(22) becomes

−Dα

Cα

π|Γ(−α)|
4αΓ(1 + α)

(−∆)αUε(x) + 1 = 0 . (25)

Then setting

Dα = Cα
4αΓ(1 + α)

π|Γ(−α)| , (26)

so that the coefficient in front of (−∆)αUε(x) is equal to
one, we finally arrive at

−(−∆)αUε(x) + 1 = 0 . (27)

Returning to T
2, we recover (8).

In (26), Cα is the normalization constant of (2b). Note
that the fractional Laplacian −(−∆)α for 0 < α < 1 can
be defined in terms of the Fourier transform F(·)[ξ] by
F((−∆)αf(x))[ξ] = −|ξ|2αF(f(x))[ξ]. Thus, as α → 1−,
the Fourier multiplier of −(−∆)α approach those of the
usual Laplacian operator on R

n

Note that the Fourier multiplier definition of the frac-
tional Laplacian on R

n also allows us to deduce that the
operator in (21) is also the fractional Laplacian on T

2 as
defined via a spectral decomposition. Indeed, it is well
known that eik·x are eigenfunctions for the Laplacian on
T
2 for k ∈ Z

2. To compute the action of the opera-
tor in (21) on eik·x, we extend it periodically as smooth
functions on R

2 and apply the operator in (22) to the
extension. Observing that it has a Fourier multiplier rep-
resentation, we see that eik·x gets mapped to −|k|2αeik·x
via standard Fourier transform calculations. Therefore,
the operator in (21) has the same eigenfunctions as the
Laplacian on T

2 and the corresponding eigenvalues are
the eigenvalues of the Laplacian raised to the power of
α ∈ (0, 1).

B. Asymptotic derivation of leading order Lévy
flight search time

In this section, we provide an asymptotic derivation of
the leading order behavior of ūε in (1); i.e., the spatial
average of uε(x) as ε → 0+. We begin with the elliptic
pseudo-differential equation (8) for uε(x), where Bε(x0)
denotes the ball of radius ε centered at x0.
To simplify notation, we choose a coordinate system

which identifies T
2 with [0, 1) × [0, 1) so that x0 =

(1/2, 1/2), without loss of generality. This will en-
sure that the distance dT2(·, ·) function on T

2 satisfies
dT2(x,x0) = |x− x0| for all x ∈ T

2 ∼= [0, 1)× [0, 1).
In the inner region, we let

z = (x− x0)/ε , uε(x0 + εz) ∼ U(z) .

In the inner variable z, we now show that Aα ∼
−ε−2α(−∆z)

α as ε → 0+, where −ε−2α(−∆z)
α is the

fractional Laplacian on R
2 with respect to the z vari-

able. To see this, we apply Aα to f(ε−1(x− x0)), which
results in

Aαf(ε
−1(x− x0)) =

4αΓ(1 + α)

π|Γ(−α)|

×
∫

[0,1]×[0,1]

∑

m∈Z2

f(ε−1(y − x0))− f(ε−1(x− x0))

|x− (y +m)|2+2α
dy .

(28)
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To obtain an expression in the form of the fractional Laplacian (24) from (28), we manipulate the denomina-
tor in the sum to obtain

Aαf(ε
−1(x− x0)) =

1

ε2+2α

4αΓ(1 + α)

π|Γ(−α)|

∫

[0,1]×[0,1]

∑

m∈Z2

f(ε−1(y − x0))− f(ε−1(x− x0))

|ε−1(x− x0)− (ε−1(y − x0) + ε−1m)|2+2α
dy . (29)

Substituting ε−1(y − x0) → Y and ε−1(x − x0) → X,
(29) becomes

Aαf(X) =
1

ε2α
4αΓ(1 + α)

π|Γ(−α)|

×
∫

R 1
ε

(x0)

∑

m∈Z2

f(Y)− f(X)

|X− (Y + ε−1m)|2+2α
dy , (30)

where the region of integration R 1
ε

(x0) is the square of

side length ε−1 centered at x0. Now in the limit ε → 0+,
only the m = 0 term in the sum of (30) contributes at a
nonzero term, while the region of integration approaches
R

2, yielding

Aαf(X) ∼ 1

ε2α
4αΓ(1 + α)

π|Γ(−α)|

∫

R2

f(Y)− f(X)

|X−Y|2+2α
dY . (31)

Comparing to (24), we find that the right-hand side of
(31) is simply the fractional Laplacian with respect to the
rescaled X = ε−1(x− x0)) variable, scaled by a factor of
ε−2α. That is, Aα ∼ −ε−2α(−∆X)α, as required.
We now expand U ∼ ε2α−2U0 + ε2αU1, an expansion

which we motivate below, so that the leading order term
of the inner solution U0 satisfies the radially symmetric
exterior problem on R

2:

−(−∆z)
αU0 = 0 on R

2 \B1(0) , U0 = 0 on B1(0) ;
(32a)

U0 ∼ Sα

(

− 1

|z|2−2α
+ χα

)

as |z| → ∞ , (32b)

where Sα is an O(1) constant to be found, χα is a con-
stant that depends on α and, in general, the geometry

of the target. We show below that (32) may be reformu-
lated as an integral equation on B1(0) (i.e., the domain
obtained by rescaling the target by ε−1 to O(1) size).
For the special case here where B1(0) is the unit ball, we
then refer to [46] for an explicit solution of this integral
equation, which in turn yields an explicit expression for
χα.

In the limit ε → 0+ where the target size shrinks
to zero, the exterior problem for uε in (8a) becomes
the pseudo-differential equation in the punctured domain
T
2 \ {x0},

Aαuε = −1 , x ∈ T
2 \ {x0} , (33a)

with a prescribed local behavior near x0, which is given
by the far-field behavior of U ∼ ε2α−2U0 in (32b),

uε ∼ ε2α−2Sα

(

− ε2−2α

|x− x0|2−2α
+ χα

)

as x → x0

(33b)
where dT2(·, ·) is the distance on T

2 with respect to the
flat metric. We remark that, with Sα ∼ O(1), (33b)
indicates that uε ∼ O(1) in the outer region, which must
be the case given that (33a) is independent of ε. This
requirement is what motivated the expansion for U in
the inner region.

Note also that (33b) prescribes the singular structure
of uε near x0 as well as its regular part at x0. Along with
(33a), (33b) suggests that uε in the limit ε → 0 may be
expressed in terms of the source-neutral Green’s function
Gα(x;x0),

uε(x) ∼ Gα(x;x0) + ūε , (34)

where ūε is the spatial average of uε, while Gα(x;x0)
satisfies

AαGα = −1 + δ(|x− x0|) , x ∈ T
2 \ {x0} ;

∫

T2

Gα(x;x0) dx = 0 ; (35a)

Gα(x;x0) ∼ − cα
|x− x0|2−2α

+Rα(x0;x0) +O(|x − x0|) as x → x0 ; cα ≡ Γ(1− α)

4απΓ(α)
. (35b)

We remark that the pseudo-differential equation of (35a) is consistent, since the right-hand side integrates to zero
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over T
2. The integral condition of (35a) is required to

uniquely specify Gα since the constant function lies in the
nullspace of Aα. In (35b), the coefficient cα is obtained
simply by replacing α by −α in (24). In particular, the
leading order singular term of Gα in (35b) is identical
to the free space Green’s function of (42) below. The
regular part of the Green’s function, denoted Rα(x0;x0)
in (35b), is given by

Rα(x0;x0) = lim
x→x0

Gα(x;x0) +
cα

|x− x0|2−2α
. (36)

In fact, if we set ρ, ρ̃ ∈ C∞
c (R) satisfying ρ(t) = 1 for

t ∈ (−1/8, 1/8) and supp(ρ) ⊂ (−1/4, 1/4) and ρ̃(t) = 1
for t ∈ (−1/4, 1/4) and supp(ρ̃) ⊂ (−1/2, 1/2), we can
write
(

Aα
cαρ(·,x0)

| · −x0|2−2α

)

= ρ̃(·,x0)

(

Aα
cαρ(·,x0)

| · −x0|2−2α

)

+ (1− ρ̃(·,x0))

(

Aα
cαρ(·,x0)

| · −x0|2−2α

)

,

where ρ(x,x0) = ρ(|x−x0|2) and same for ρ̃(x,x0). Ob-
serve that since (1− ρ̃(·,x0)) and ρ(·,x0) has disjoint
support, the second term is infinitely smooth by the fact
that Aα is given by an integral kernel which is smooth
away from the diagonal. For the first term, we can di-
rectly compute using normal coordinates centered at x0

to obtain

−
(

Aα
cαρ(·,x0)

| · −x0|2−2α

)

(x) = δ(|x0 − x|) + C∞(T2).

We may then write Gα(x;x0) = − cαρ(x,x0)
|x−x0|2−2α +Rα(x;x0)

where Rα(·;x0) : T
2 → R satisfies AαRα(·;x0) = −1 +

C∞(T2). It can then be shown (see Ch. 10 of [47]) that
Rα(x;x0) is infinitely smooth on T

2.
To determine S and ūε, we perform a leading order

matching of the local behavior of uε in (34) to the re-
quired singularity structure of (33b). That is, from (34)
and (35b), we have that as x → x0,

− cα
|x− x0|2−2α

+Rα(x0;x0) + ūε =

ε2α−2Sα

(

− ε2−2α

|x− x0|2−2α
+ χα

)

. (37)

MatchingO(|x−x0|2α−2) andO(1), we arrive at Sα = cα,
and the GMFPT of uε,

ūε = ε2α−2Γ(1− α)

4απΓ(α)
χα −Rα(x0;x0) . (38)

We note that the leading order term (38) depends on
the geometry of target through the constant χα to be
computed below. This is in contrast to the 2-D nar-
row capture problem with Brownian motion, where tar-
get geometry effects enter only at the O(1) correction
term. Global geometric properties of the search domain

are contained in the O(1) correction term of (38) through
the regular part of the Green’s function (36). We remark
also that the dependence of search time on the starting
location x enters only at O(1) through Gα(x;x0) in (34),
which is subdominant to the O(ε2α−2) constant term ūε.
Thus, in the ε → 0+ limit considered here, the better
search strategy will always be the one for which α is closer
to the Brownian limit of 1, regardless of from where the
search begins.
To determine χα, we require the solution to (32). Let-

ting U0(z) = Sαu(z) in (32), we have for u(z),

−(−∆)αu = 0 on R
2 \B1(0) , u = 0 on B1(0) .

(39a)

u ∼ − 1

|z|2−2α
+ χα as |z| → ∞ , (39b)

where −(−∆)α is with respect to the z variable. Note
that we have normalized the coefficient of |z|2α−2 in the
far-field behavior (39b), which leaves χα as the parameter
to be determined.
We next let

v(z) = u(z)− χα ,

so that v satisfies

−(−∆)αv = 0 on R
2 \B1(0) , v = −χα on B1(0) ;

(40a)

v ∼ − 1

|z|2−2α
as |z| → ∞ , (40b)

The exterior problem (40) for v(z) may be reformulated
as the following problem over all of R2 without boundary,

−(−∆)αv =
1

cα
f(z) on R

2 ; f(z) ≡ 0 on R
2 \B1(0) ;

(41a)

v ≡ −χα on B1(0) ; v ∼ − 1

|z|2−2α
as |z| → ∞ ,

(41b)
where cα is the constant given in (35b), and f(z) is an
unknown function to be found by imposing the first con-
dition in (41b). We now derive this integral equation for
f(z).
First, the free space Green’s function Gf (z;0) with

source centered at the origin satisfying

−(−∆)αGf = δ(z) on R
2 ; (42a)

Gf (z;0) → 0 as |z| → ∞ , (42b)

is given by

Gf (z;0) = −cα
1

|z|2−2α
, (43)
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where cα is given in (35b). Then the solution v(z) of (41)
may be written as a convolution of the right-hand side of
(41) with Gf (z;0) of (43), which yields

v(z) = −
∫

B1(0)

f(y)

|z− y|2−2α
dy , (44)

where the region of integration in (44) is only over B1(0)
because f(z) is compactly supported in B1(0) (see (41a)).
To impose the normalizing condition on v given in the far-
field condition(41b), we expand the kernel as |z| → ∞ in
(44) as |z − y|2α−2 ∼ |z|2α−2 + O(|z|2α−3), noting that
|y| ≤ 1 by virtue of the region of integration. Substitut-
ing this leading order expansion into (44) and comparing
to the required far-field behavior of v(z) in (41b), we ob-
tain the normalizing condition for f(z),

∫

B1(0)

f(z) dz = 1 . (45a)

Next, we require that v(z) ≡ −χα for z ∈ B1(0), yielding

∫

B1(0)

f(y)

|z− y|2−2α
dy = χα , z ∈ B1(0) . (45b)

The integral equation (45b) together with the normal-
izing condition (45a) are to be solved simultaneously for
f(z) and χα. To determine an explicit solution to (45),
we appeal to the result of [46] (see Theorem 3.1, and, in
particular, (3.37)), which states that for 0 < β < 1 and
any z such that |z| ≤ 1,

∫

B1(0)

1

|z− y|2β
1

(1− |y|2)1−β
dy =

π2

sin(βπ)
. (46a)

Identifying β in (46a) with 1− α, and noting that

∫

B1(0)

1

(1 − |y|2)1−β
dy =

π

β
, (46b)

we find from (46) that

∫

B1(0)

1

|z− y|2−2α

(1− α)/π

(1− |y|2)α dy =

1− α

π

π2

sin((1 − α)π)
. (47)

Comparing (46a) with (45), we find that the solution to
(45) is given by

f(z) =
1− α

π(1− |z|2)α , χα =
π(1− α)

sin((1 − α)π)
. (48)

Substituting χα from (48) into the expression for the
GMFPT ūε in (38), with 0 < α < 1, we arrive at ūε

as given in (1).

For the GMFPT ū
(L)
ε on the flat 2-D torus of side

length L with a circular target of radius ε, a simple rescal-

ing shows that ū
(L)
ε = L2ūε where ūε is the GMFPT

on the flat torus of unit side length given in (1). This
scaling was obtained empirically through particle sim-
ulations in [48]. In contrast, our systematic approach
via a asymptotic analysis resulting in (1) yields not only
the α-dependent prefactor in the leading order O(ε2α−2)
term, but also the geometry-dependent O(1) correction
term. Neither of these terms are given in [48], which fo-
cuses on much broader class of random walks, including
Lévy walks where particle velocity is fixed in contrast to
the possibility of unbounded velocities allowed by Lévy
flights (see also [49]). In the next section, we outline the
matched asymptotic method for the flat 3-D torus as well
as closed 2-D manifolds.

C. Matched asymptotic method for the (flat) 3-D
torus and 2-D manifolds

We now give a brief description of how the analy-
sis of §VB can be extended to the flat 3-D torus as
well as 2-D closed manifolds. For the unit 3-D torus
T
3 = [0, 1)3 with a spherical target of radius ε centered

at x0 = (1/2, 1/2, 1/2), we have the elliptic problem for
the MFPT uε(x) (in analogy with (8a)),

Aαuε = −1 on T
3 \Bε(x0), uε = 0 on Bε(x0) , (49a)

where Aα for 0 < α < 1 is the fractional Laplacian of
order α on T

3 given by

Aαf(x) :=
4αΓ(3/2 + α)

π3/2|Γ(−α)| ×
∫

T3

∑

m∈Z3

f(y)− f(x)

|x− (y +m)|3+2α
dy .

(49b)
This fact can be seen by running the same argument as
that at the end of §VA for the fractional Laplacian on
the flat 2-D torus.
To analyze uε(x) near x0, we change variables to x =

x0 + εz and consider the inner problem on R
3,

−(−∆z)
αU0 = 0 on R

3 \B1(0) , U0 = 0 on B1(0) ;
(50a)

U0 ∼ Sα

(

− 1

|z|3−2α
+ χα

)

as |z| → ∞ , (50b)

where −(−∆z)
α in (50a) is the 3-D fractional Laplacian

given by

−(−∆z)
αf(x) =

1

ε2α
4αΓ(3/2 + α)

π3/2|Γ(−α)|

∫

R2

f(y)− f(x)

|x− y|3+2α
dy .

(51)
Following the same analysis that resulted in (38), we ob-
tain that the GMFPT of a search of a small circular tar-
get of radius ε in T

3 is given by

ūε = ε2α−3 Γ(3/2− α)

4απ3/2Γ(α)
χα −Rα(x0;x0) , (52)

where Rα(x0;x0) is the regular part of the Green’s func-
tion satisfying
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AαGα = −1 + δ(|x− x0|) , x ∈ T
3 \ {x0} ;

∫

T3

Gα(x;x0) dx = 0 ; (53a)

Gα(x;x0) ∼ − cα
|x− x0|3−2α

+Rα(x0;x0) +O(|x − x0|) as x → x0 ; cα ≡ Γ(3/2− α)

4απ3/2Γ(α)
. (53b)

To compute χα, we follow the analysis leading to (45)
to recast (50) as an integral equation inside the 3-D unit
ball B1(0),

∫

B1(0)

f(y)

|z− y|3−2α
dy = χα , z ∈ B1(0) . (54a)

subject to the normalization condition

∫

B1(0)

f(z) dz = 1 . (54b)

The solution to (54a), as given by [50], is

f(y) =
sin((1− α)π

π5/2

Γ(3/2− α)

Γ(1− β)
χαI

1

(1− |y|2)α ; (55a)

I ≡ −αB(1/2,−α)

2(1/2− α)
, (55b)

where the beta function in (55b) is defined by B(z1, z2) ≡
Γ(z1)Γ(z2)/Γ(z1+ z2) is the beta function. Imposing the
integral condition (54b) on f(y) in (55) yields χα, given
by

χα =
2
√
π(3/2− α)(1/2− α)Γ(1/2− α)

α|Γ(−α)| sin((1− α)π)
. (56)

We note that the quantity (1/2 − α)Γ(1/2 − α) > 0 for
α ∈ (0, 1), so χα > 0. Together with (52), the global
MFPT is given to O(1) by

ūε = ε2α−3 2

4απα

[(1/2− α)Γ(1/2− α)]
2

Γ(α)|Γ(−α)| sin((1 − α)π)
−Rα(x0;x0) .

(57)
Since α ∈ (0, 1), the leading order scaling of ūε in (57)
is asymptotically larger than the O(ε−1) search time of
a Brownian particle in a confined 3-D volume [51].
The analysis on a closed compact 2-D manifold M of

unit area and which is independent of the target size ǫ can
proceed in a manner similar to the matched asymptotic
method of §VB, with the operator Aα replaced by that
given in the Introduction section of [52] (with the param-
eter a = 0, signifying pure Lévy flight). This operator
(denoted A in [52]) assumes that a jump from a point
p ∈ M occurs along any one of the geodesics emanat-
ing from p, and that the length of this jump is measured
along that geodesic curve. A circular target Bε(p0) of
radius 0 < ε ≪ 1 centered about p0 ∈ M is then taken

to be the set of all points on M whose distance from p0
is less than or equal to ε.

In the O(ε) region centered about p0 and in the appro-
priate Riemannian normal coordinates (see [53] for a sim-
ilar matched asymptotic analysis involving the Laplace-
Beltrami operator), it can be shown that A to leading
order in ε reduces to the (flat) fractional Laplacian on
R

2. In these coordinates, the analysis of uε in the in-
ner region proceeds exactly as for the 2-D torus in §VB.
Analysis of uε in the outer region away from p0 also re-
mains largely unchanged with the main exception being
that the Green’s function would involve the operator A

of [52] instead of Aα in §IV.

As a result, we predict that the global MFPT on a
closed 2-D manifold of unit area will possess the same
leading order behavior (1). However, depending on α and
the curvature of M at the center of the target, weaker al-
gebraic and/or logarithmic singularities in ε may follow
the leading O(ε2α−2) term. Moreover, computation of
the regular part of the Green’s function for the O(1) cor-
rection term may be challenging for general manifolds
due to the difficulty of computing the operator A it-
self. Further complications (and interesting behavior of
uε) may arise if M contains points connected to p0 by a
family of geodesics that can be parameterized by a con-
tinuous parameter (such pairs of points are absent on the
flat torus).

VI. DISCUSSION

Through Monte Carlo simulations, direct numerical so-
lutions and asymptotic analysis of the limiting nonlocal
exterior problem (8), we have shown that the average
search time of a Lévy flight with tail index 0 < α < 1
on the flat torus T2 with a small circular target of radius
0 < ε ≪ 1 scales as O(ε2α−2). In addition, our asymp-
totic analysis has yielded the O(1) correction term to
search time, along with insights into how target geome-
try and search domain geometry and size impact search
times.

By comparing to average search times of the Brow-
nian walk on the same domain, which obey the well-
known O(| log ε|) scaling, we have provided a concrete
counterexample to the Lévy flight foraging hypothesis.
We emphasize that our comparison is limited only to the
narrow escape framework, and is not a general statement
on the superiority of Brownian over Lévy search strate-
gies. One possible avenue may be to assess whether a
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search strategy based on a combination of Brownian mo-
tion and Lévy flight (e.g., [54]) can be optimized to be
faster than pure Brownian search in the narrow escape
framework. For this, the result of [52] may be useful,
where an infinitesimal generator is obtained that governs
the continuous limit of a Lévy process in which Brownian
motion is “interlaced” with long jumps.
While we presented results only for small target sizes

ε, we note that Lévy search times exceeded Brownian
search times for all ε < 0.5. Within this first-passage
time framework, it may be insightful to seek possible sce-
narios in which the Lévy search strategy is superior.
We now discuss some avenues for future work, several

of which are projects currently in progress. While a sin-
gle target T2 is a very simple domain on which to perform
this comparison, it would be interesting to consider more
complex domains. For example, a finite domain with
reflecting boundaries containing perhaps small reflecting
obstacles may present challenges from both a modeling
and analytic perspective. From a particle simulations
perspective, reflective domains and obstacles would re-
quire computing trajectories of flights that undergo re-
flections. From the pseudo-differential equation perspec-
tive, one must formulate an analog to the Aα operator
of (8b); this new operator must account for all possible
paths between all pairs of points, including those that
reflect off boundaries and obstacles.
A domain featuring non-constant curvature would also

present computational challenges - geodesics would need
to be computed for both the Monte Carlo algorithm as
well as the finite difference method for discretizing the
corresponding infinitesimal generator (see [38]). This
would add to the already significant computational cost.
The sphere, on the other hand, has simple geodesics and
may be a good candidate for a follow-up study, espe-
cially considering the interesting predictions made in [38]
regarding the possible optimality of starting the search
from the point antipodal to the center of the target (see
Theorem 1.1 part (iii)).
Another domain feature that we have not considered

is the inclusion of more than one target, one or more
of which may be of non-circular shape. The multiple-
target problem has been considered at length for Brow-
nian motion on flat 2- and 3-dimensional geometries
using hybrid asymptotic-numerical methods see (e.g.,
[26, 30, 32, 35, 51, 55–57] and the references therein).
Several numerical optimization studies have been done
to find optimal target arrangements that minimize the
spatial average of the stopping time (e.g., [58–61]). The
inclusion of more than one target also gives rise to the
question of splitting probabilities (see e.g., [31, 62, 63])
and shielding effects [31], and how they compare to their

Brownian counterparts.
One useful aspect of such a hybrid methods is their

ability to capture the higher order correction terms
of the GMFPT, which encode effects of target loca-
tions/configurations. This can be accomplished by per-
forming a higher order matching in the asymptotic solu-
tion for uε(x) in Section B, and computing the regular
part of the Green’s function Gα in (35). The greater
ease of solving this ε-independent problem without sin-
gular features has made possible the computational opti-
mization studies referenced above. An analogous hybrid
analytic-numerical theory for the fractional Laplacian on
T
2 or the more general operator on Riemannian mani-

folds would open various avenues of research. A simi-
lar method was recently developed for the Laplacian on
Riemannian 2-manifolds using techniques in microlocal
analysis [53, 64], which allowed for predictions of local-
ized spot dynamics in reaction-diffusion systems on man-
ifolds.
Numerical results suggest that the variance of the stop-

ping time may have a larger scaling with O(1/ε) than the
mean. The large variance suggests that the mean of the
stopping time may not be particularly informative of the
probability distribution of stopping times. Asymptotic
computation of the variance of the MFPT for the narrow
escape problem has been done in, e.g., [31, 65] for Brow-
nian motion. To capture all moments of the probability
distribution, however, would require analysis of the dif-
fusion equation. In [29, 65], a Laplace transform in the
time variable was employed to transform the problem to
an elliptic boundary value problem, on which the hybrid
asymptotic-numerical tools of [66] could be applied be-
fore transforming back. A analogous approach may be
possible to characterize the full distribution of stopping
times of a Lévy flight on Riemannian manifolds.
Finally, for Brownian motion, the problem of finding

target configurations that optimize GMFPT is closely
related to the problem of finding stable equilibrium
configurations of localized spots in the Schnakenberg
reaction-diffusion system (cf. [67] and [61]). Further-
more, the question of whether a mobile target leads to
lower GMFPT has been found to be closely related to
a certain instability of the aforementioned localized spot
equilibria [33, 34, 68]. It would be interesting to explore
whether these relationships still hold when Brownian mo-
tion is replaced by Lévy flights.

ACKNOWLEDGMENTS

JCT was supported by Australian Research Council
Discovery Project DP220101808.

[1] M. F. Shlesinger and J. Klafter, Lévy walks versus Lévy
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Lévy flight chimp optimization, Knowledge-Based Sys-
tems 235, 107625 (2022).

[15] X.-S. Yang and S. Deb, Eagle strategy using Lévy walk
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and L. Tzou, Geodesic Lévy flights and expected
stopping time for random searches, arXiv preprint
arXiv:2211.13973 (2022).

[39] R. Metzler and J. Klafter, The random walk’s guide to
anomalous diffusion: a fractional dynamics approach,
Physics Reports 339, 1 (2000).

[40] E. Valdinoci, From the long jump random walk to the
fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA 49,
33 (2009).

[41] S. Dipierro, G. Giacomin, and E. Valdinoci, Efficiency
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