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Interacting fermionic ladders are versatile platforms to study quantum phases of matter, such
as different types of Mott insulators. In particular, there are D-Mott and S-Mott states that hold
preformed fermion pairs and become paired-fermion liquids upon doping (d wave and s wave, re-
spectively).

We show that the D-Mott and S-Mott phases are in fact two facets of the same topological phase
and that the transition between them is terminable. These results provide a quantum analog of the
well-known terminable liquid-to-gas transition. However, the phenomenology we uncover is even
richer, as the order of the transition may alternate between continuous and first-order, depending
on the interaction details. Most importantly, the terminable transition is robust in the sense that
it is guaranteed to appear for weak, but arbitrary couplings.

We discuss a minimal model where some analytical insights can be obtained, a generic model where
the effect still persists; and a model-independent field-theoretical study demonstrating the general
phenomenon. The role of symmetry and the edge states is briefly discussed. The numerical results
are obtained using the variational uniform matrix-product state formalism for infinite systems, as
well as the density-matrix renormalization group algorithm for finite systems.

A ladder geometry can be thought of as a narrow strip
of a two-dimensional lattice, or as a chain endowed with
additional local degrees of freedom (the “rungs” of the
ladder). Ladders that host interacting fermions are ver-
satile flagship platforms for studying quantum phases
and their transitions in one dimension [1–6], such as
repulsion-induced pairing [7–14]; or serve as realizations
of symmetry-protected topological phases [15–21]. Lad-
der models also appear for two-orbital chains [22, 23] and
effectively for more general quasi-one-dimensional sys-
tems, such as nanoribbons [24] and nanotubes [3, 25–28].

A particularly interesting aspect is that fermionic lad-
ders realize Anderson’s mechanism for superconductiv-
ity from repulsive interactions, which was originally pro-
posed for cuprates [11, 29]: An effective exchange in-
teraction at half filling causes fermions to pair up as
spin singlets in an insulating Mott phase; these pre-
formed pairs become mobile upon doping. While the
physics of cuprates has turned out to be more com-
plicated, the finite extension of the rungs of a ladder
strongly favors such a pairing with a particularly strong
binding energy [11]. Two pairing patterns can occur
on a rung (see Fig. 1): If local repulsion dominates, it
avoids double occupancy and promotes singlets across
the rung. If local attraction dominates, it favors dou-
ble occupancy and promotes on-site singlets. Upon dop-
ing, these patterns yield superconducting states that have
been dubbed “d wave” and “s wave”, respectively, in
analogy to the 2D case [1, 6]. The half-filled insulat-
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FIG. 1. Top: Illustration of our minimal ladder model,
Eq. (1). Bottom: The idealized wave functions of the D-Mott
(S-Mott) phase are given by product states of rung singlets
(on-site singlets) in the limit of strong local repulsion U > 0
(strong local attraction U < 0). For open boundary condi-
tions that cut the singlets open (dotted line), edge states are
produced that have spin (charge) degrees of freedom. The
S-Mott state can be equally achieved by a strong intrarung
repulsion V⊥ > 0.

ing states are correspondingly called “D-Mott” and “S-
Mott” [4, 6]. It is known that the rung-singlet wave func-
tion (D-Mott) is a realization of the topological Haldane
phase [15, 18, 19, 22].

In this work, we study the competition between the
two singlet types in more detail and find that a phase
transition emerges between the two Mott states, but the
transition line is terminable. Therefore, D-Mott and S-
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FIG. 2. (a), (b) Terminable transitions (schematic) of the
fermionic ladder. The D-Mott and S-Mott (cf. Fig. 1) can be
adiabatically connected via a path that avoids the transition
line. The transition can be tuned to be partially first order for
the generic model. (c) Paradigm of a terminable transition: a
ferromagnet with a B field at finite temperature T . Below the
Curie point, there is a first-order transition when tuning B
across zero, but no transition above it. The phases are char-
acterized by (a), (b) density difference of D-type and S-type
singlets [Eq. (5)]; (c) density difference of ↑ and ↓ spins, i.e.,
magnetic moments. (d) Quantitative phase diagram for the
model Eq. (1) for the minimal model, computed by VUMPS
(CDW: charge density wave). For small interactions, it is
unclear if there is a direct transition between D-Mott and
CDW marked by “?”. The continuous transition terminates
at U = V⊥ ≈ 3.4, after which the gapped exact rung-bisinglet
(see text) is the ground state (magenta line). Different sce-
narios of the transition for the generic model are shown in
Fig. 4.

Mott are adiabatically connected, and one should think
of them as two facets of one and the same topological
phase. This physics also provides a quantum analog of
the prototypical, classical liquid-to-gas transition, which
is terminable and of first order (another example is the
ferromagnet, cf. Fig. 2). However, we show that the ter-
minable transition in our system is robust in the sense
that it is guaranteed to appear at weak, but arbitrary in-
teractions. Furthermore, its order can change from first
order to second, depending on the interaction details.
This is schematically summarized in Fig. 2. As the effec-
tive theory of liquid-to-gas transitions [30] was integral
to understanding the physics of a wide range of very dif-
ferent systems [31–37], understanding the robustness and

change of order of the transition line might take a simi-
larly pronounced role.
Hamiltonian.— As a minimal model to observe the

phenomenon, we consider the following Hamiltonian of
fermions on a ladder (pictorially shown in Fig. 1):

Hmin = H0 +HHub +Hext (1)

with

H0 =− t∥
∑
j,l,σ

c†j+1,l,σcj,l,σ − t⊥
∑
j,σ

c†j,A,σcj,B,σ + h.c.

HHub =
U

2

∑
j,l

∆nj,l∆nj,l; Hext = V⊥
∑
j

∆nj,A∆nj,B,

(2)

where cj,l,σ (c†j,l,σ) annihilates (creates) a fermion with
spin σ at the site j of the leg l = A,B of the ladder;
∆nj,l = nj,l − 1 =

∑
σ c

†
j,l,σcj,l,σ − 1 is the density devi-

ation from half filling.
The parameters are as follows: t∥ (t⊥) is the hopping

amplitude along the legs (rungs) of the ladder; similarly
V⊥ is the nearest-neighbor Coulomb interaction along
the rungs; U is the local Coulomb interaction. We set
t⊥ = t∥ = 1 and look at a repulsive U > 0. While local
pairing in the S-Mott phase is commonly discussed in the
attractive case U < 0, it can also be achieved by setting
V⊥ > 0 [6] (see Fig. 1). Doing so allows us to study the
competition between the two pairing patterns in the U–
V⊥ phase diagram without switching off the interaction.
The minimal model allows us to understand the physics

most clearly. For ultracold atoms in optical lattices, it
is similar to the periodic Anderson model and we believe
that both can be realized with equal effort [38]. On the
other hand, longer-ranged Coulomb interactions [26] and
Hund’s rule spin exchange J⊥ < 0 [39, 40] are relevant in
materials. To this end, we also study a generic Hamilto-
nian given by

Hgen = H0 +HHub +Hext +H ′
ext, (3)

with

H ′
ext =V∥

∑
j,l

∆nj,l∆nj+1,l + V ′
⊥

∑
j

(∆nj,A∆nj+1,B +H.c.)

+V ′
∥

∑
j,l

∆nj,l∆nj+2,l + J⊥
∑
l

Sj,A · Sj,B, (4)

where Sj,l is the vector of spin operators. For carbon nan-
otubes, the parameters V∥ ≈ V⊥, t∥ ≈ t⊥ are expected to
be only slightly anisotropic [3, 28]. For chemical ladders
and two-band systems, they constitute different overlaps
and may show stronger anisotropy [2, 39–44]. Orbital
nematicity may also contribute to anisotropy [45].

To solve the model, we employ the variational uni-
form matrix product state (VUMPS) formalism [46–50],
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FIG. 3. Extrapolated correlation lengths (left scale) and
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parameter: CCDW = 1/2
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∣∣. For the definition

of ⟨Oj⟩, see Eq. (5).

which variationally determines the ground state within
the class of matrix-product states in the thermodynamic
limit. The central control parameter is the “bond dimen-
sion” χ, which reflects the number of variational parame-
ters. This method is able to find ground states of gapped
1D systems to very high accuracy. We exploit the spin-
SU(2) and charge-U(1) symmetry of the underlying prob-
lem [51], which allows us to reach bond dimensions of up
to χ ∼ 104 in difficult small-gap regions. To look at edge
states, we employ the related density-matrix renormal-
ization group (DMRG) algorithm for finite systems [52].

Various aspects of this model family have been studied
in different parameter regimes. For V⊥ = 0, the main fo-
cus has been on the d-wave pairing [7–10, 12, 14, 53–56],
but also on the excitations [57, 58] and the topological
properties [15–18]. For V⊥ ̸= 0 and V∥ ̸= 0, the onset
of charge order was studied [59, 60]. With analytical
methods, phase diagrams have been proposed for various
parameter ranges [3–6, 61, 62]. However, the termina-
tion of the D-Mott/S-Mott transition and the physics
surrounding it have not been revealed in these works.

Microscopic characterization of S-Mott and D-Mott—
To characterize S-Mott and D-Mott, we introduce a mi-
croscopic order parameter, namely, the “singlet density
difference” ⟨Oj⟩:

Oj = nDj − nSj = ∆†
Dj∆Dj −∆†

Sj∆Sj ,

∆Dj = (cj,A,↑cj,B,↓ + cj,B,↑cj,A,↓)/
√
2,

∆Sj = (cj,A,↑cj,A,↓ + cj,B,↑cj,B,↓)/
√
2. (5)

This is motivated by the picture that D-Mott and S-Mott
phases host immobile preformed d- and s-wave pairs [4],
which are characterized by cross-rung pairing (D) and

on-site pairing (S) [1] (cf. Fig. 1). The corresponding
pair annihilation operators are ∆Dj and ∆Sj . In the
strongly coupled limit of independent rungs, the proto-
type states can be constructed as |D⟩ =

∏
j ∆

†
Dj |Ω⟩ and

|S⟩ =
∏

j ∆
†
Sj |Ω⟩ [6], where |Ω⟩ is the vacuum state (see

Fig. 1). Therefore, ⟨Oj⟩ > 0 (< 0) measures that there
are more rung (local) singlets in the admixture of the
wave function and we expect a sign change across the
phase transition.
Results for the minimal model Eq. (1).— The full

phase diagram obtained numerically is shown in Fig. 2.
We find a phase transition line between D-Mott and S-
Mott along U = V⊥, which remarkably terminates at
U = V⊥ ≈ 3.4. The continuous transition is detected
[Fig. 3 (a)] via a divergence of the correlation length ξ
in the thermodynamic limit, extrapolated using VUMPS
data [63, 64]. (A direct computation of the gap for finite
systems yields consistent results [64]). The region with
the charge density wave (CDW) is irrelevant to our dis-
cussion. Our data show no gap closing and no obvious
discontinuity for large U (cf. U = 4 in Fig. 3 b), implying
that there is an adiabatic path connecting the two Mott
phases.
The minimal model has an artifact, namely the acci-

dental conservation of particle number in the subband
basis for U = V⊥. This enables us to analytically lo-
cate the transition exactly along the U = V⊥ line and
track its termination. We will later show that the ex-
istence of a continuous transition is robust without the
need of an accidental symmetry. Introducing the trans-
verse subband basis cj,ky,σ as cj,0,σ = (cj,A,σ+cj,B,σ)/

√
2

and cj,π,σ = (cj,A,σ − cj,B,σ)/
√
2, where ky = 0, π is the

transverse momentum, we can rewrite the Hamiltonian
Eq. (1) in this basis:

Hmin =− t∥
∑

j,ky,σ

(c†j,ky,σ
cj+1,ky,σ +H.c.)− t⊥

∑
j

(nj,π − nj,0)

+ U/2
∑
j

(∆nj,π +∆nj,0)
2 − (U − V⊥)Hres,

(6)

where nj,ky =
∑

σ c
†
j,ky,σ

cj,ky,σ. The residual term

∝ Hres vanishes for U = V⊥, so that Nπ =
∑

j nj,π
and N0 =

∑
j nj,0 become conserved. The Lieb-Schultz-

Mattis theorem [65, 66] states that for a fractional filling
factor, the system must be gapless as long as there is
no spontaneous breaking of translational symmetry. Our
numerics show that the filling ratios ⟨nj,π⟩ and ⟨nj,0⟩ are
fractional along U = V⊥ below the termination point.
Above the termination point, the fillings are integer with
⟨nj,π⟩ = 0 and ⟨nj,0⟩ = 2, supporting the termination
of the phase transition line. The data are given in the
Supplemental Material [64]. Moreover, we find numeri-
cally that the ground state above the termination point
is given by a product state of equal-weight superpositions
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FIG. 4. Ground-state expectation ⟨Oj⟩ (right scale) and
extrapolated correlation lengths (left scale) for the generic
model Eq. (3) and the following datasets: (1) t⊥ = 1.1,
V⊥ = 2.88, V∥ = 2.4, V ′

⊥ = 1.92, V ′
∥ = 1.28, J⊥ = 0

(Uc ≈ 4.426) (2) t⊥ = 1.1, V⊥ = 0.8, V∥ = 0.7, V ′
⊥ = 0.4,

V ′
∥ = 0, J⊥ = −0.6 (Uc ≈ 1.52) (3) t⊥ = 1.1, V⊥ = 2.45,

V∥ = 0.5, V ′
⊥ = 0.4, V ′

∥ = 0.3, J⊥ = 0 (Uc ≈ 2.5), exempli-
fying a first-order transition, no transition and a continuous
transition, respectively.

of the two singlet types:
∏

j 1/
√
2(∆†

Sj +∆†
Dj)|Ω⟩, which

we dub “rung bisinglet” (cf. Fig. 2). It straightforward
to show analytically that this is an exact eigenstate of
the minimal model for U = V⊥. The rung bisinglet can
be taken as a simple reference wave function for both
the S-Mott and the D-Mott, similar to how the Affleck-
Kennedy-Lieb-Tasaki (AKLT) state [67] is taken as a sim-
ple reference wave function for the Haldane phase of the
S = 1 spin chain.

Results for the generic model Eq. (3).— The above
accidental symmetry is lifted for generic interactions.
The parameter space now becomes quite large and com-
petition from other phases increases. Nevertheless, in
Fig. 4, we show exemplary cases that illustrate different
scenarios: The transition now may become first-order,
exhibiting a jump in ⟨Oj⟩, but remains continuous for
other parameters. We also find instances without a tran-
sition. Thus, numerical evidence indicates that the ter-
minable transition is generic, both for nearly-isotropic
and anisotropic interactions.

General effective field theory.— We present an effec-
tive theory of the S-D Mott transition, which demon-
strates (1) that the continuous transition line is robust
beyond the accidental symmetry of the minimal model;
(2) its potential instability to first order for strong inter-
action; and (3) its termination.

We use the bosonization approach and ensure that
the exact accidental subband symmetry is generi-
cally absent. The bosonization of continuum oper-
ators corresponding to those of Eq. (6) are given

by cky,σ(xj) =
κky,σ√

2π

∑
η=−1,1 e

i[θky,σ+η(ϕky,σ+kF,kyσxj)],

where θky,σ(xj) and ϕky,σ(xj) are dual to each other sat-
isfying [θky,σ(x, t), ϕk′

y,σ
′(x′, t)] = iπδky,k′

y
δσ,σ′Θ(x− x′);

{κky,σ, κk′
y,σ

′} = 2δky,k′
y
δσ,σ′ . The kF,ky,σ is the base

wave vector of the low-energy excitation of cj,ky,σ. The
half-filling condition fixes kF,0,σ + kF,π,σ = π, where
kF,ky,σ is influenced by interaction besides t∥ and t⊥.
Two-band bosonization requires partially-filled subbands
(kF,ky,σ ̸= 0,±π). Introducing a transformed basis for

the effective fields: ϕ̃c,± = 1
2 [(ϕ0,↑+ϕ0,↓)± (ϕπ,↑+ϕπ,↓)]

and ϕ̃s,± = 1
2 [(ϕ0,↑ − ϕ0,↓) ± (ϕπ,↑ − ϕπ,↓)], S-Mott and

D-Mott have been defined [4, 6] as ϕ̃c,+, ϕ̃s,+, ϕ̃s,− all

locked at 0, and θ̃c,− locked at 0 and π/2 mod π respec-
tively.
We now show the transition line is Gaussian-critical

where Oj has quasi-long-range order and its scaling di-
mension indicates the instability of Gaussian criticality
to a first-order transition when removing the accidental
symmetry. When the sectors other than (c,−) are kept
locked, we can approximate the locked fields as constant
and obtain

Oj ∝ − cos[2θ̃c,−(xj)], (7)

whose expectation values flip sign when the locking value
θ̃c,− = 0 changes to π/2. The discreteness of locking val-
ues is related to time-reversal symmetry, as terms like
cos[2θ̃c,−(xj) + α] with continuous varying α are forbid-
den by it [64]. Near the Gaussian criticality, the effective
Hamiltonian density, neglecting higher harmonics, is

Hc,− =
vc,−
2π

[
K(∂xθ̃c,−)

2 +
1

K
(∂xϕ̃c,−)

2

]
+ g cos(2θ̃c,−),

(8)

where K is the Luttinger parameter and g ∝ (V⊥ − U)
for the minimal model (in the generic case the relation is
not known exactly). Equations (7) and (8) can be used
to predict the correlator ⟨OjOj+d⟩ ∝ 1/|d|2/K at the crit-
icality (g = 0). The scaling dimension of Oj is thus 1/K.
Observing nonuniversal exponents numerically confirms
Gaussian criticality. For example, our minimal-model
data [64] suggest that 1/K goes down from ∼ 0.96 to
∼ 0.46 when increasing U = V⊥ from 2 to 3.2. As the 0-
loop renormalization group relevance criterion is to have
a scaling dimension < 2, the measured 1/K is consistent
with this as long as g ̸= 0 and θ̃c,− gets locked.
The stability of the Gaussian transition is controlled by

higher harmonic terms like cos(4θ̃c,−) (∼ O2); it gener-
ically exists in the “bare” Hamiltonian, contributing to
Eq. (8) and does not generically vanish simultaneously
with cos(2θ̃c,−) unless there is an exact subband U(1)
symmetry. Stable Gaussian criticality requires that those
terms are irrelevant, the criterion for which is 1/K > 1/2.
This condition is always satisfied near the weak coupling
limit where 1/K → 1, far from the marginal value, so the
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FIG. 5. Ground-state degeneracy and edge modes of open
ladders under diagonal cuts. Parameters: number of sites
L = 100 (i.e., 50 rungs), V⊥ = 5 in the minimal model Eq. (1).
The index r = 2j + l (l = 0, 1) consecutively labels the L
sites. E0(N,S) is the lowest energy with N particles and
total spin S. The insets show that the edge modes carry spin
and charge quantum numbers, respectively. Upper left inset:
Particle density 1/2 ⟨∆nr⟩ = 1/2

(∑
σ

〈
c†r,σcr,σ

〉
− 1

)
in the

N = L − 2, S = 0 sector. Lower right inset: spin density
⟨Sz

r ⟩ = 1/2 (⟨nr,↑⟩ − ⟨nr,↓⟩) in the N = L, S = 1 sector.

continuous transition is robust. Depending on model de-
tails, a perturbing interaction may induce an instability.
For example, we could add some longer-ranged interac-
tion terms as in Eq. (3), and reach 1/K that is small
enough to induce a first-order transition described by a
Landau-Ginzburg theory with powers of O, which can
describe the transition termination.

Edge modes.— With a diagonally cut edge (cf.
Fig. 1), the repulsive Hubbard ladder (U > 0, all V -
terms equal zero) is known to host spin-1/2 edge modes
protected by particle-hole symmetry [15, 18, 19]. We
find that for our extended model, edge modes can carry
either spin or charge quantum numbers, transforming dif-
ferently under time-reversal symmetry. Intuitively, if on-
site singlets (S-Mott) are cut, empty or doubly occupied
sites with particle number N = ±2 remain (see Fig. 5).
A change of edge quantum numbers is induced when
varying the interaction parameters U and V⊥. From
the model wave function, one might naively assume that
the edge quantum number is directly related to the bulk
being D-Mott or S-Mott (i.e., to the sign of ⟨Oj⟩), but
this is not the case: We find that spinful edge states are
strongly preferred, except for very small U . For example,
for V⊥ = 5, a change in quantum numbers already occurs
at U ≈ 0.14 (see Fig. 5), far away from the bulk crossover
U = V⊥. Thus, our system provides an example where
an edge transition has no bulk indication [68]; though
further details are beyond the scope of this study.

Discussion.- We have shown that D-Mott and S-
Mott are two facets of the same topological phase. An
intuitive explanation is that true d-wave symmetry can
only be found on the full 2D square lattice [69]. A robust
terminable transition nevertheless exists without fine-
tuning and can be understood with the help of the con-
cept of singlet-density difference and an effective theory.
Continuous transitions can be revealed experimentally by
thermal conductivity peak with charge and spin trans-
port less influenced. The existence of a robust transition
itself is assisted by time-reversal symmetry, which sheds
light on the study of robust terminable transitions [68].
We propose that our effective theory may be useful in
discovering very different systems with similar unconven-
tional transition behavior.
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FIG. S1. Gap extrapolation for U = V⊥ = 4 (minimal
model) for systems of length L (with L/2 rungs). Energies
are obtained using DMRG for finite ladders with a trivial cut
(unlike Fig.5).

SUPPLEMENTAL MATERIAL

Extrapolating correlation lengths and gaps

To find the phase transition line where an ex-
citation gap closes, we can compute the gap di-
rectly on finite systems of length L and extrapolate
to the infinite limit in L−1. This can be resolved
by quantum number: ∆spin = E0 (S = 1, N = L) −
E0 (S = 0, N = L) defines the spin gap, ∆charge =
E0 (S = 1/2, N = L+ 1)−E0 (S = 0, N = L) defines the
charge gap, while ∆neutral = E1 (S = 0, N = L) −
E0 (S = 0, N = L) defines the neutral gap, whereby we
label E0 (E1) the lowest (second lowest) eigenenergy in
a given sector.

The result of this process is shown in Fig. S1 above the
termination point, clearly showing that all gaps remain
finite.

Another possibility is to compute the inverse correla-
tion length ξ−1 for the infinite system, which also goes to
zero at the gap closure. The correlation length is in this
case obtained from the dominant eigenvalue of the trans-
fer matrix at a fixed bond dimension χ [47, 50, 63] and
can also be resolved by the same quantum numbers as
above. (Note that the main text shows the neutral cor-
relation length measured in sites rather than unit cells).
One can use different extrapolation parameters δ that
measure the closeness to the exact ground state (e.g. the
inverse bond dimension χ−1). Here, we follow Ref. 63,
where a parameter was found with which ξ−1 (δ) gener-
ally becomes linear.

Figure S2 shows this procedure below the termination
point. We find that the neutral correlation length van-
ishes, while charge and spin gaps remain open.

0.000 0.002 0.004 0.006 0.008 0.010

extrapolation parameter δ

0.00
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ξ−
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FIG. S2. Extrapolation of the inverse correlation length ξ−1

(measured in sites and using the trivial cut) for U = V⊥ =
2 (minimal model), resolved by the quantum number. The
results were obtained using VUMPS for the infinite system.
The extrapolation parameter δ is defined as in Ref. 63.

Microscopic analysis for the role of the operator Oj

In this section, we derive an understanding of the sin-
glet density operator Oj in terms of the subband picture
of the ladder.
We repeat the Hamiltonian of the minimal model in

the subband basis introduced in the main text:

H =− t∥
∑

j,ky,σ

(c†j,ky,σ
cj+1,ky,σ + h.c.)− t⊥

∑
j

[nj,π − nj,0]

+ U/2
∑
j

[∆nj,π +∆nj,0]
2 − (U − V⊥)Hres. (S1)

Rewriting Oj in the same basis, we obtain:

Oj = −c†j,0,↑c
†
j,0,↓cj,π,↑cj,π,↓ +H.c. (S2)

We see that Oj describes the hopping of fermion pairs
between the two subbands and can be used to charac-
terize the strength of virtual scattering that violates the
subband U(1) symmetry. Since the particle numbers in
the subbands are conserved for U = V⊥, the hopping
between them must also vanish along this line: ⟨Oj⟩ = 0.

To understand that ⟨Oj⟩ and U − V⊥ have the same
sign, we note that the residual term is given by Hres =∑

j Oj/2 + ..., where the subband U(1) preserving terms
have been neglected. Therefore, −(U − V⊥)⟨Oj⟩ < 0 is
expected to minimize the energy.

Similar to the above energy minimization argument
for ⟨Oj⟩, we can argue that if there are subband U(1)
violating terms breaking time-reversal symmetry (TRS)

∝
∑

j e
iαc†j,0,↑c

†
j,0,↓cj,π,↑cj,π,↓ + H.c., the subband U(1)

point can be avoided along a path connecting D-Mott
to S-Mott by tuning α from 0 to π. This indicates that
TRS plays an important role for the existence of a transi-
tion. This analysis is closely related to the bosonization
analysis of discreetness of locking values in the main text.
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As shown in the main text, the ground state ⟨nj,π⟩ = 0
and ⟨nj,0⟩ = 2 for U = V⊥ ≳ 3.4 can be written as

rung bisinglet
∏

j 1/
√
2(∆†

Sj +∆†
Dj)|Ω⟩. Recall from the

main text that the model wave function of D- and S-Mott
(|D⟩ =

∏
j ∆

†
Dj |Ω⟩ and |S⟩ =

∏
j ∆

†
Sj |Ω⟩) consists rungs

of two eigenstates of O operators. Consider O as an Ising
field, the tendency to form rung bisinglet can be induced
by transverse field, which is the counter part of the tem-
perature in the quantum-classical analogy. This is one
way to draw an analogy to the magnet picture of ter-
minable first-order transition. However, with accidental
symmetry or weak interaction, the analogues of magnetic
ordering terms can vanish simultaneously (see the scal-
ing dimension analysis in the main text) such that the
transition is not first order as the magnetic picture.

Effective band structure

In this section, we offer a perspective on the termina-
tion of the phase transition for the minimal model from
the effective band structure.

The criticality at U = V⊥ and its termination is related
to the subband occupation ratio ⟨nj,π⟩ / ⟨nj,0⟩ (which is
not dependent on j in the homogeneous case). When
this filling ratio is fractional, according to Lieb-Schultz-
Mattis theorem [65, 66], the system must be gapless, un-
less there is a spontaneous breaking of translational sym-
metry resulting in a degenerate ground state.

Introducing the single-particle retarded Green’s func-
tion

Gll′
(
t,
∣∣j − j′

∣∣) =− iθ (t)
[∑

σ

〈
0
∣∣eiHtc†jlσe

−iHtcj′l′σ
∣∣0〉

+
∑
σ

〈
0
∣∣e−iHtcjlσe

iHtc†j′l′σ
∣∣0〉]

(S3)

and its Fourier transform

Gll′ (ω, k) =
∑
d

eikd
∫ ∞

−∞
dt eiωtGll′(t, d), (S4)

we can define the equivalent of the bandstructure in pres-
ence of interactions by the spectral function

S (ω, k) = − 1

π

∑
l=A,B

Im Gll(ω, k). (S5)

This spectral function is displayed in Fig. S3. It re-
veals the two-subband structure of the ladder, whereby
the lower subband has ky = 0 and the upper sub-
band has ky = π. The parts of the subbands that
lie below the Fermi edge ω = 0 reflect ⟨nj,π⟩ and
⟨nj,0⟩ when integrated. In the noninteracting limit we
have ⟨nj,π⟩ / ⟨nj,0⟩ = 1/2. Our calculations show that
⟨nj,π⟩ / ⟨nj,0⟩ can change continuously along the line

0 π
4

π
2

3π
4

π

k

−5.0

−2.5

0.0

2.5
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ω

U = V⊥ = 3

0 π
4

π
2

3π
4

π

k

U = V⊥ = 4

0 1 2 3 4 5 6

FIG. S3. The spectral function Eq. (S5). Red dashed line:
band structure of the noninteracting model; white dashed line:
reference for ω = 0. The results are obtained by a real-time
evolution of Eq. (S3) to tmax = 20 using infinite boundary
conditions [48, 49].

U = V⊥. The effect of interactions is to increase the
splitting of the subbands, so that for U = V⊥ ≳ 3.4, only
the lower band is below the Fermi energy. This implies
an integer filling ⟨nj,π⟩ = 0 and ⟨nj,0⟩ = 2 and the state
effectively becomes a band insulator, where the two-band
bosonization is no longer valid. This is why within the
two-band bosonization, it is not clear that the two Mott
regions can be adiabatically connected.

The bosonization of Oj

Here, we discuss the two-band bosonization of Oj . Re-
call that the definition is

Oj = −c†j,0,↑c
†
j,0,↓cj,π,↑cj,π,↓ +H.c. (S6)

In addition to the terms presented in the main text, we
include oscillatory terms and discuss higher harmonics.
Recall that the bosonization of fermion operators to the
lowest harmonics is

cky,σ(xj) =
κky,σ√
2π

∑
η=−1,1

ei[θky,σ+η(ϕky,σ+kF,ky,σxj)].

(S7)

We insert Eq. (S7) into Eq. (S6) to obtain the lowest
harmonics of the bosonization of Oj

Oj ∝ cos(2θ̃c,−)[cos(2ϕ̃s,−) + cos(2ϕ̃s,+)+

cos(2ϕ̃c,+ +
∑
σ,ky

kF,ky,σxj)+

cos(2ϕ̃c,− +
∑
σ

(kF,π,σ − kF,0,σ)xj)+

cos(ϕ̃c,+ + ϕ̃c,− + ϕ̃s,+ − ϕ̃s,− +
∑
σ

kF,0,σxj)+

cos(ϕ̃c,+ − ϕ̃c,− + ϕ̃s,+ + ϕ̃s,− +
∑
σ

kF,π,σxj) + ...,

(S8)



10

100 101 102

distance d

10−5

10−4

10−3

10−2

〈O
j
O
j
+
d
〉 fit a · db

V⊥ = 2, b = 1.95

V⊥ = 2.4, b = 1.62

V⊥ = 2.6, b = 1.46

V⊥ = 2.8, b = 1.31

V⊥ = 3, b = 1.14

V⊥ = 3.1, b = 1.04

V⊥ = 3.2, b = 0.92

FIG. S4. Correlation function ⟨OjOj+d⟩ for U = V⊥ for the
minimal model obtained in the infinite system. The straight
solid lines are references for the fitted slope of the data with
the same color.

where the higher harmonics are neglected. The coeffi-
cients of each term are neglected for simplicity. At half
filling,

∑
σ,ky

kF,ky,σ = 2π, which can be set to be 0, as
xj are integer. For the Mott states, as well as the D-
Mott/S-Mott transition (shown to be of Gaussian type,
see below), ϕ̃c,+, ϕ̃s,−,ϕ̃s,+ are kept locked and can be
set to zero for discussing expectation values or correla-
tion function. So in this special case, we have

Oj ∝ cos(2θ̃c,−) + cos(2θ̃c,−)[cos(2ϕ̃c,− + 2∆kFxj)+

cos(ϕ̃c,− + 2kF,0,σxj) + cos(ϕ̃c,− + 2kF,π,σxj)],
(S9)

where ∆kF = kF,0,σ − kF,π,σ; for our model, kF,ky,↑ =
kF,ky,↓. The coefficient of each term is neglected for sim-

plicity. These are only two values θ̃c,− can be locked
at if there is no explicit or spontaneous TRS break-
ing; this can be seen by evaluating TRS odd term
i(c†j,0,↑c

†
j,0,↓cj,π,↑cj,π,↓−h.c) ∝ sin(2θ̃c,−). In fact, θ̃c,− →

−θ̃c,− for time-reversal symmetry, thus cos(2θ̃c,− + α)
with generic α is forbidden to appear in a time-reversal
symmetric Hamiltonian. The locking values are 0 and
π/2 Thus, with TRS, the expected continuous transition
within the 2-band effective theory is that θ̃c,− becomes
unlocked, indicating a Gaussian criticality. This is con-
sistent with the microscopic argument of the TRS’s role
for the existence of the transition.

Correlations ⟨OjOj+d⟩ and Gaussian criticality

For the minimal model and U = V⊥ ≲ 3.4, as pointed
out in the main text, the field θ̃c,−. and its dual field ϕ̃c,−
is gapless and characterized by a Luttinger parameter K
(Eq. (8)). Here we compute ⟨OjOj+d⟩ using Eq. (S9) of

which each term gives an algebraic decay component.

⟨OjOj+d⟩ =
1

|d|2/K
+

cos(2kF,0,σd)

|d|2/K+K/2
+

cos(2kF,π,σd)

|d|2/K+K/2
+

cos(2∆kFd)

|d|2/K+2K
(S10)

The coefficient of each term is neglected for simplicity.
We see that the leading term is non-oscillatory while sub-
leading terms can be oscillatory.

The data of ⟨OjOj+d⟩ for various U = V⊥ are plot-
ted in Fig. S4. We fit the exponent 2/K of the leading
term using log-log scale data. The fitted result for 2/K
decreases from ∼ 0.96 to ∼ 0.46 as U = V⊥ is increased
from 2 to 3.2. From Fig. S4, we also observe subleading
oscillations. In our predictions Eq. (S4), these sublead-
ing exponents are at least larger than the leading expo-
nent by addition of K/2. Using the fitting result of 2/K,
this indicates that the exponent difference K/2 ranges
from ∼ 1.04 to ∼ 2.17. Observing nonuniversal expo-
nents numerically, we conclude that the transition line is
of Gaussian type.

Corrected bosonization of ∆D and ∆S

The two-band bosonization previously reported in the
literature has missed the possibility of a terminated tran-
sition. In this section, we present a corrected way of do-
ing two-band bosonization of ∆D and ∆S. Recall from
Eq. (5),

∆Dj = (cj,A,↑cj,B,↓ + cj,B,↑cj,A,↓)/
√
2,

∆Sj = (cj,A,↑cj,A,↓ + cj,B,↑cj,B,↓)/
√
2. (S11)

We note that ∆D and ∆S do not transform with different
parity under any symmetry of the Hamiltonian. We aim
to reconcile this fact with the fact that using bosoniza-
tion, these two order parameters appear to give separate
quasi-long-range orders in d- and s- paired liquids re-
spectively. (The d-wave and s-wave states are the doped
D-Mott and S-Mott respectively.) With the correction,
bosonization also concludes that their existence is not
mutually exclusive. We will discuss the microscopic def-
inition of s- and d- paired liquids.

We introduce the symbols

ψky,η,σ =
κky,σ√
2π

ei(θky,σ+ηϕky,σ) (S12)

for convenience. Then we can write Eq. (S7) as

cky,σ(xj) =
∑

η=−1,1

eikF,kyσxjψky,η,σ + ..., (S13)
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where ... represents neglected higher harmonics.

∆S =
∑

η,η′=±1

[ψ0,η,↑ψ0,η′,↓ + ψπ,η,↑ψπ,η′,↓] + ...,

∆D =
∑

η,η′=±1

[ψ0,η,↑ψ0,η′,↓ − ψπ,η,↑ψπ,η′,↓] + ..., (S14)

where higher harmonic terms have been neglected. Using
Eq. (S12), we obtain∑
η,η′=±1

ψ0,η,↑ψ0,η′,↓

= C0e
i
∑

σ θ0,σ cos(ϕ0,↑ − ϕ0,↓) + ...

= C0e
i
∑

σ θ0,σ [cos(ϕ̃+,s) cos(ϕ̃−,s)− sin(ϕ̃+,s) sin(ϕ̃−,s)] + ...∑
η,η′=±1

ψπ,η,↑ψπ,η′,↓

= Cπe
i
∑

σ θπ,σ cos(ϕπ,↑ − ϕπ,↓) + ...

= Cπe
i
∑

σ θπ,σ [cos(ϕ̃+,s) cos(ϕ̃−,s) + sin(ϕ̃+,s) sin(ϕ̃−,s)] + ...
(S15)

where oscillatory terms and higher harmonics have been
neglected; we explicitly write out the coefficients C0 and
Cπ, which depend on parameters of Hamiltonian. The
subtle issue is that with interaction, one cannot correctly
obtain the values of C0 and Cπ by a naive multiplication
of vertex operators’ coefficients. Unlike the noninteract-
ing limit where C0 = Cπ because there is no exchange
symmetry of π and 0 bands, we expect C0 ̸= Cπ for gen-
eral interacting cases. Using the convention that ϕ̃−,s

and ϕ̃−,s are locked at 0 for d- and s- wave paring and
for the purpose of evaluating their quasi-long-range or-
ders, Eq. (S11) can be written as

∆S ∝ eiθ̃+,c [C0 cos(θ̃−,c) + (Cπ − C0)e
iθ̃−,c ] + ...

∆D ∝ eiθ̃+,c [C0 sin(θ̃−,c)− (Cπ − C0)e
iθ̃−,c ] + ..., (S16)

In the convention, θ̃−,c is locked at 0 and π/2 for s- and d-
pairing states respectively. Thus if C0 = Cπ, only quasi-
long-range order of ∆S exists for s-wave states; the same
applies to d-wave. Given that C0 ̸= Cπ in general, we
have both quasi-long-range orders in either s- and d-wave
states; in other words, ⟨∆Sj∆

†
S,j+d⟩ and ⟨∆Dj∆

†
D,j+d⟩ de-

cay algebraically in |d| with the same exponent. However,
we can still have a microscopic definition of s-wave and
d-wave states. If the leading algebraic decay prefactor
of ⟨∆Sj∆

†
S,j+d⟩ is larger, we call the state s-wave, other-

wise d-wave. This is equivalent to the definition from the
relative sign of the coefficient of the leading algebraic de-
cay components of ⟨∆0,j∆

†
0,j+d⟩ and ⟨∆π,j∆

†
π,j+d⟩, where

∆ky,j = cj,ky,↑cj,ky,↓ A positive relative sign is defined as
s-wave states and a negative relative sign is defined as
d-wave states. Such a definition no longer necessitates a
transition between s- and d-states. A definition via the
sign is closely related to our definition of S- and D-Mott
using the sign of ⟨Oj⟩.

Analytical solution for a single rung

In this section, we discuss the analytical solution of a
single rung at half filling (which amounts to analyzing a
4×4 matrix) and discuss what one can learn from it for
the full model.
The Hamiltonian of the minimal model on a single rung

can be written as:

Hrung = −t⊥
∑
σ

(
c†AσcBσ + h.c.

)
+ U (nA↑nA↓ + nB↑nB↓)

+ V⊥
∑
σσ′

nAσnBσ′ + V⊥ − V⊥
∑
σ

(nAσ + nBσ) .

(S17)

At half filling we can replace
∑

σ (nAσ + nBσ) = 2 and

use the basis states c†A↑c
†
B↓

∣∣Ω〉 =
∣∣ ↑, ↓ 〉

, c†A↓c
†
B↑

∣∣Ω〉 =
∣∣ ↓

, ↑
〉
, c†A↑c

†
A↓

∣∣Ω〉 =
∣∣ ↑↓, 0〉, c†B↓c

†
B↑

∣∣Ω〉 =
∣∣0, ↑↓ 〉

, whereby∣∣Ω〉 is the vacuum. In this basis, the Hamiltonian matrix
reads:

H =


0 0 −t⊥ −t⊥
0 0 +t⊥ +t⊥

−t⊥ +t⊥ U − V⊥ 0
−t⊥ +t⊥ 0 U − V⊥

 . (S18)

This is a two-site Hubbard problem, extended by V⊥.
We see that for a single rung, its effect is to simply shift
U → U − V⊥ (which is not generally true for the full
ladder). The eigenstates can be characterized by the spin
and pseudospin quantum numbers (which we call “S” and
“T”, respectively), whereby the pseudospin operators for
a bipartite lattice are in general defined as:

T−
i = (−1)ici↓ci↑,

T+
i = (−1)ic†i↑c

†
i↓,

T z
i =

1

2
(ni − 1) ,

(S19)

and fulfill SU(2) algebra relations
[
T z
i , T

±
j

]
= ±δijT±

i ,[
T+
i , T

−
j

]
= 2δijT

z
i . For a single rung the indices are

i, j = A,B.
Two of the four eigenstates are the spin-triplet and the

pseudospin-triplet:

• spin-triplet:∣∣S = 1,MS = 0
〉
= 1√

2

(∣∣ ↑, ↓ 〉
+
∣∣ ↓, ↑ 〉)

E = 0

• pseudospin-triplet:∣∣T = 1,MT = 0
〉
= 1√

2

(∣∣0, ↑↓ 〉
−
∣∣ ↑↓, 0〉)

E = U − V⊥

The corresponding singlets are:

• spin-singlet:∣∣S = 0
〉
= 1√

2

(∣∣ ↑, ↓ 〉
−

∣∣ ↓, ↑ 〉)
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• pseudospin-singlet:∣∣T = 0
〉
= 1√

2

(∣∣0, ↑↓ 〉
+
∣∣ ↑↓, 0〉)

However, they are not by themselves eigenstates. In-
stead, one needs to form a “bonding” and and an “anti-
bonding” superposition:

• bonding singlet superposition:∣∣S = T = 0,−
〉
= α−

∣∣S = 0
〉
+ β−

∣∣T = 0
〉

E− = U−V⊥
2 −

√(
U−V⊥

2

)2
+ 4t2⊥

• antibonding singlet superposition:∣∣S = T = 0,+
〉
= α+

∣∣S = 0
〉
+ β+

∣∣T = 0
〉

E+ = U−V⊥
2 +

√(
U−V⊥

2

)2
+ 4t2⊥

The mixing coefficients are given by:

α± =
1√

1 + E2
±/(4t

2
⊥)
,

β± = −E±

2t⊥

1√
1 + E2

±/(4t
2
⊥)
.

(S20)

The bonding singlet superposition is always the ground
state. It contains more spin-singlets in the admixture for

U > V⊥ (which becomes the D-Mott phase on the lad-
der), more “pseudo-singlets” (on-site singlets) for U <
V⊥ (which becomes the S-Mott phase); and an equal su-
perposition 1√

2

(∣∣S = 0
〉
+

∣∣T = 0
〉)

for U = V⊥, which

we call a “rung bisinglet” in the main text.

In the strong-coupling limit
∣∣U − V⊥

∣∣ ≫ t⊥ and for

U > V⊥, we have E− ≈ −4
t2⊥

U−V⊥
= J , and the two low-

lying states become the spin-singlet and spin-triplet, split
in energy by J , indicating an effective Heisenberg model.

On the other hand, if V⊥ < U , we obtain E− ≈
U − V⊥ + J and the two low-lying states become the
pseudospin singlet and pseudospin triplet, again split in
energy by J . We see that even though the density-density
interaction of the original model is of Ising type and only
couples the z-components of the pseudospin, the strong-
coupling limit favors entangled singlet states. This is
because we have restricted ourselves to half filling for the
rung, where V⊥ acts exactly as an attractive U < 0.

For the full ladder, both V⊥ > 0 and U < 0 favor
an S-Mott phase, but the effect of V⊥ cannot be simply
captured by substituting U → U−V⊥. Doing so neglects
charge fluctuations on the rungs and will not reveal the
terminated transition.
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