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Abstract

A set D of vertices of a simple graph G = (V,E) is a strong dominating set,
if for every vertex x ∈ D = V \ D there is a vertex y ∈ D with xy ∈ E(G)
and deg(x) ≤ deg(y). The strong domination number γst(G) is defined as the
minimum cardinality of a strong dominating set. The strong domatic number of G
is the maximum number of strong dominating sets into which the vertex set of G
can be partitioned. We initiate the study of the strong domatic number, and we
present different sharp bounds on dst(G). In addition, we determine this parameter
for some classes of graphs, such as cubic graphs of order at most 10.
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1 Introduction

The various different domination concepts are well-studied now, however new concepts
are introduced frequently and the interest is growing rapidly. We recommend three
fundamental books [9, 10] and some surveys [8, 11] about domination in general. A
set D ⊆ V is a strong dominating set of a simple graph G = (V,E), if for every vertex
x ∈ D = V \ D there is a vertex y ∈ D with xy ∈ E(G) and deg(x) ≤ deg(y). The
strong domination number γst(G) is defined as the minimum cardinality of a strong
dominating set. A γst-set of G is a strong dominating set of G of minimum cardinality
γst(G). If D is a strong dominating set in a graph G, then we say that a vertex u ∈ D

is strong dominated by a vertex v ∈ D if uv ∈ E(G), and deg(u) ≤ deg(v).
In 1996, Sampathkumar and Pushpa Latha [13] introduced strong domination num-

ber and some upper bounds on this parameter presented in [12, 13]. Similar to strong
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domination number, a set D ⊂ V is a weak dominating set of G, if every vertex v ∈ V \S
is adjacent to a vertex u ∈ D such that deg(v) ≥ deg(u) (see [5]). The minimum cardi-
nality of a weak dominating set of G is denoted by γw(G). Boutrig and Chellali proved
that for any graph G of order n ≥ 3, γw(G) + 3

∆+1
γst(G) ≤ n. Alikhani, Ghanbari and

Zaherifard [2] examined the effects on γst(G), when G is modified by the edge deletion,
the edge subdivision and the edge contraction. Also they studied the strong domination
number of k-subdivision of G. Motivated by enumerating of the number of dominating
sets of a graph and domination polynomial (see e.g. [1]), the enumeration of the strong
dominating sets for certain graphs has studied in [14]. Study of the strong domination
number of graph operations are natural and interesting subject and for join and corona
products have studied in [14]. A domatic partition is a partition of the vertex set into
dominating sets, in other words, a partition π = {V1, V2, ..., Vk} of V (G) such that every
set Vi is a dominating set in G. Cockayne and Hedetniemi [6] introduced the domatic
number of a graph d(G) as the maximum order k of a vertex partition. For more details
on the domatic number refer to e.g., [15, 16, 17].

Aram, Sheikholeslami and Volkmann in [4] have shown that the total domatic num-
ber of a random r-regular graph is almost surely at most r − 1, and that for 3-regular
random graphs, the total domatic number is almost surely equal to 2. They also have
given a lower bound on the total domatic number of a graph in terms of order, minimum
degree and maximum degree.

Motivated by the definition of the domatic number and total domatic number, we
focus on studying strong domatic number of a graph.

A partition of V (G), all of whose classes are strong dominating sets in G, is called
a strong domatic partition of G. The maximum number of classes of a strong domatic
partition of G is called the strong domatic number of G and is denoted by dst(G).

In Section 2, we compute and study the strong domatic number for certain graphs
and we present different sharp bounds on dst(G). In Section 3, we determine this
parameter for all cubic graphs of order at most 10.

2 Results for certain graphs

In this section, we study the strong domatic number for certain graphs. First we state
and prove the following theorem for graphs G with δ(G) = 1.

Theorem 2.1 If a graph G has a pendant vertex, then dst(G) = 1 or dst(G) = 2.

Proof. Suppose that u is a pendant vertex u, N(u) = {v} and P is a strong domatic
partition of G. We claim than |P | ≤ 2. Since deg(u) = 1, so in any strong dominating
set of G, say D, we should have either u ∈ D or v ∈ D or {u, v} ⊆ D. If {u, v} ⊆ D,
then by the definition of the strong dominating set and the strong domatic partition,
we should have D = V (G), and P = {D}. Because if we have D′ ∈ P such that
D′ 6= D, then no vertex strong dominate u which is a contradiction. The other case is
u ∈ D or v ∈ D and not both, which in the best case gives us two strong dominating
sets. Therefore we have the result. �
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Figure 1: Friendship graphs F3, F4 and Fn, respectively.

The following result gives bounds for the strong domatic number based on the
number of vertices with maximum degree.

Theorem 2.2 Let G be a graph with maximum degree ∆ and m be the number of
vertices with degree ∆. Then 1 ≤ dst(G) ≤ m.

Proof. Since any vertex with degree ∆ should be in a strong dominating set or strong
dominated by another vertex with degree ∆, so the maximum number of sets which
are strong dominating sets and a partition of V (G) is m, and we are done. �

Remark 2.3 Bounds in Theorem 2.2 are tight. For the lower bound, it suffices to
consider the star graph K1,n. Since we only have one vertex with maximum degree,
then all of vertices should be in strong dominating set, and we have dst(K1,n) = 1. For
the upper bound, it suffices to consider complete graph Kn. Since a single vertex is a
strong dominating set, so we have dst(Kn) = n, and we are done.

We need the following result to obtain more results:

Theorem 2.4 [6] For any graph G, d(G) ≤ δ+1, where δ is the minimum degree, and
d(G) is the domatic number of G.

Since in every regular graph, all vertices have the same degree, so each dominating
set of a graph is a strong dominating set, too. Therefore, by Theorem 2.4 we have the
following result.

Corollary 2.5 For any k-regular graph G, d(G) = dst(G) and dst(G) ≤ k + 1.

The following result gives the strong domatic number of certain graphs:

Proposition 2.6 The following holds:

(i) For the path graph Pn, n ≥ 4, we have dst(Pn) = 2.

(ii) For the cycle graph Cn,

dst(Cn) =







3 if n = 3k,

2 otherwise.
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Figure 2: Book graph B3, B4 and Bn, respectively

b b bb b b b bv1 v2 v3 vnvn−1

Figure 3: The path graph with V (Pn) = {v1, v2, . . . , vn}.

(iii) For the complete bipartite graph Kn,m,

dst(Kn,m) =







1 if n < m,

n if n = m.

(iv) For the friendship graph Fn (see Figure 1), dst(Fn) = 1.

(v) For the book graph Bn (see Figure 2), dst(Bn) = 2.

Proof.

(i) Suppose that V (Pn) = {v1, v2, . . . , vn}, and vertices are as in Figure 3. One
can easily check that the set of vertices with even indices is a strong dominating
set, and the set of vertices with odd indices is another strong dominating set.
Therefore, by Theorem 2.1, we have dst(Pn) = 2.

(ii) Suppose that V (Cn) = {v1, v2, . . . , vn}, and vertices are in a natural order. We
consider the following cases:

(a) n = 3k. Let

P =
{

{v1, v4, . . . , v3k−2}, {v2, v5, . . . , v3k−1}, {v3, v6, . . . , v3k}
}

.

Clearly P is a strong domatic partition of C3k. By Corollary 2.5, dst(Cn) ≤ 3,
and therefore we are done.

(b) n = 3k + 1. Since γst(Cn) = γ(Cn) = ⌊n+2
3

⌋, then γst(C3k+1) = k + 1. So a
strong dominating set of C3k+1 has at least k+1 vertices, which means that
we can not have a strong domatic partition of C3k+1 of size 3.

(c) n = 3k + 2. By a similar argument as part (b), we have the result.

(iii) Suppose that V (Kn,m) = {v1, v2, . . . , vn, u1, u2, . . . , um}, and for i = 1, 2, . . . , n,
N(vi) = {u1, u2, . . . , um}. We consider the following cases:
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Figure 4: Pn ◦K1.

(a) n < m. We should have all vertices in the strong dominating set to have
a partition of V (Kn,m), because no vertex can strong dominate vi for any
1 ≤ i ≤ n. So dst(Kn,m) = 1.

(b) n = m. Let

P =
{

{u1, v1}, {u2, v2}, . . . , {un, vn}
}

.

Then P is a strong domatic partition of Kn,n. Since set of a single vertex is
not a strong dominating set of Kn,n, so we are not able to create a strong
domatic partition of a bigger size. Hence dst(Kn,n) = n, and we are done.

(iv) It is an immediate consequence of Theorem 2.2.

(v) Suppose that u and v are the vertices with maximum degree. Let D1 = {u}∪N(v)
and D2 = {v} ∪ N(u). Clearly, P = {D1,D2} is a strong domatic partition of
Bn, and by Theorem 2.2, we have the result. �

The corona product of two graphs F and H, denoted by F ◦H, is defined as the
graph obtained by taking one copy of F and |V (F )| copies of H and joining the i-th
vertex of F to every vertex in the i-th copy of H. The following theorem gives the
strong domatic number of corona of path and cycle graph with K1.

Theorem 2.7 The following holds:

(i) For any n ≥ 2, dst(Pn ◦K1) = 2.

(ii) For any n ≥ 3, dst(Cn ◦K1) = 2.

Proof.

(i) Consider graph Pn ◦K1, as we see in Figure 4. Let

P =
{

{v1, u2, v3, u4, . . . , v2t+1, u2t+2, . . .}, {u1, v2, u3, v4, . . . , u2t+1, v2t+2, . . .}
}

.

It is easy that P is a strong domatic partition of Pn ◦K1. Therefore by Theorem
2.1, we have the result.

(ii) By a similar argument as Part (i), we have the result. �

The following theorem gives bounds for the strong domatic number of corona of
two graphs.
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Theorem 2.8 Let G and H be two graphs. We have

1 ≤ dst(G ◦H) ≤ dst(G).

Proof. Note that the set of a set including all vertices is a strong domatic partition
of G ◦ H, and we have nothing to prove for the lower bound. Now, we consider the
upper bound and prove it. Suppose that V (G) = {v1, v2, . . . , vn}, and for the copy of H
related to vertex vi, for i = 1, 2, . . . , n, V (Hvi) = {ui1 , ui2 , . . . , uim}. By the definition
of G◦H it is clear that deg(uij ) < deg(vi), for all j = 1, 2, . . . ,m. So, there is no vertex
in V (Hvi) such that strong dominate vi, for i = 1, 2, . . . , n. Therefore, in the best case,
we can find dst(G) sets to have a strong domatic partition of G ◦H, and we are done.
�

Remark 2.9 Bounds in Theorem 2.8 are tight. For the lower bound, it suffices to
consider G = Kn and H = Km. Then G ◦H is the union of n star graphs K1,m. As
shown in Remark 2.3, we have dst(G ◦H) = 1. For the upper bound let G = H = Kn.
As shown in Remark 2.3, dst(G) = n. Now, we present a strong domatic partition of
G ◦ H of size n. Suppose that V (G) = {v1, v2, . . . , vn}, and for the copy of H = Kn

related to vertex vi, for i = 1, 2, . . . , n, V (Hvi) = {ui1 , ui2 , . . . , uin}. Let

Ai = {vi, u1i , u2i , u3i , . . . , uni
},

for i = 1, 2, . . . , n. Then,
P = {A1, A2, A3, . . . , An}

is a strong domatic partition of G ◦H = Kn ◦Kn, and we have the result.

3 Computing dst(G) for cubic graphs of order at most 10

The class of cubic graphs is especially interesting for mathematical applications, because
for various important open problems in graph theory, cubic graphs are the smallest or
simplest possible potential counterexamples, and so this creates motivation to study
strong domatic number for the cubic graphs of order at most 10.

Alikhani and Peng have studied the domination polynomials (which is the generat-
ing function for the number of dominating sets of a graph) of cubic graphs of order 10 in
[3]. As a consequence, they have shown that the Petersen graph is determined uniquely
by its domination polynomial. Ghanbari has studied the Sombor characteristic polyno-
mial and Sombor energy of these graphs in [7], and has shown that the Petersen graph
is not determined uniquely by its Sombor energy, but it has the maximum Sombor
energy among others.

First, we determine the strong domatic number of the cubic graphs of order 6. There
are exactly two cubic graphs of order 6 which are denoted by G1 and G2 in Figure 5.

Theorem 3.1 The strong domatic number of the cubic graphs G1 and G2 (Figure 5)
of order 6 is 3.
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Figure 6: Cubic graphs of order 8.

Proof. It is clear that a single vertex cannot strong dominate all other vertices. So,
we need at least two vertices in any strong dominating sets of G1 and G2. We see that

P =
{

{1, 4}, {2, 3}, {5, 6}
}

is a strong domatic partition of G1 and also G2. Therefore we have the result. �

Now, we compute the strong domatic number of cubic graphs of order 8. There are
exactly 6 cubic graphs of order 8 which is denoted by G1, G2, ..., G6 in Figure 6. The
following theorem gives the strong domatic numbers of cubic graphs of order 8:

Theorem 3.2 For the cubic graphs G1, G2, ..., G6 of order 8 (Figure 6) we have:

(i) dst(G1) = dst(G5) = dst(G6) = 4.

(ii) dst(G2) = dst(G3) = 2.
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(iii) dst(G4) = 3

Proof.

(i) By Theorem 2.2, for a cubic graph G of order 8 we have dst(G) ≤ 4. Now we
present the strong domatic partition of size 4 for G1, G5 and G6. Consider the
following sets:

P1 =
{

{1, 5}, {2, 6}, {3, 7}, {4, 8}
}

, P5 =
{

{1, 4}, {2, 7}, {3, 6}, {5, 8}
}

,

P6 =
{

{1, 5}, {2, 6}, {3, 7}, {4, 8}
}

.

Observe that Pi is a strong domatic partition of Gi, for i = 1, 5, 6 and so we have
the result.

(ii) Suppose that D is a strong dominating set of G2. We show that |D| ≥ 3. If we
have two adjacent vertices in D, then at least one vertex is not strong dominate
by them. So we consider other cases. If 1 ∈ D, then it strong dominate 2, 5, 7,
and we need at least two vertices among 3, 4, 6, 8 to be in D. If 2 ∈ D, then it
strong dominate 1, 3, 8, and we need at least two vertices among 4, 5, 6, 7 to be
in D. If 3 ∈ D, then it strong dominate 2, 4, 8, and we need at least two vertices
among 1, 5, 6, 7 to be in D. If 4 ∈ D, then it strong dominate 3, 5, 6, and we need
at least two vertices among 1, 2, 7, 8 to be in D. If 5 ∈ D, then it strong dominate
1, 4, 6, and we need at least two vertices among 2, 3, 7, 8 to be in D. If 6 ∈ D,
then it strong dominate 4, 5, 7, and we need at least two vertices among 1, 2, 3, 8
to be in D. If 7 ∈ D, then it strong dominate 2, 6, 8, and we need at least two
vertices among 1, 3, 4, 5 to be in D. And finally if 8 ∈ D, then it strong dominate
1, 3, 7, and we need at least two vertices among 2, 4, 5, 6 to be in D. So |D| ≥ 3.
Suppose that P is a strong domatic partition of G2 of the biggest size. By our
argument |P | cannot be 3 or 4, because then we need a strong dominating set of
size 2. So |P | ≤ 2. It is clear that

P2 =
{

{1, 3, 5, 7}, {2, 4, 6, 8}
}

is a strong domatic partition of G2, and we are done. By a similar argument we
have dst(G3) = 2.

(iii) For G3 it is possible to have strong dominating sets of size 2 which are {2, 6} and
{4, 8}. Now suppose that D is a strong dominating set of G5 and 1 ∈ D. By a
similar argument as part (ii) we conclude that |D| ≥ 3. Now suppose that P is a
strong domatic partition of G5 of the biggest size. By our argument |P | cannot
be 4, because then we need that all of strong dominating sets be of size 2. So
|P | ≤ 3. It is clear that

P5 =
{

{2, 6}, {4, 8}, {1, 3, 5, 7}
}

is a strong domatic partition of G2, and we are done. �
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One of the famous cubic graphs is the Petersen graph which is a symmetric non-
planar 3-regular graph of order 10. There are exactly twenty one 3-regular graphs of
order 10 [3]. Now, we study the strong domatic number of cubic graphs of order 10.

First we state and prove the following theorem for the Petersen graph.

Theorem 3.3 For the Petersen graph, dst(P ) = 2.

Proof. Suppose that S is a strong dominating set of P . Since each vertex in S

strong dominate at most 3 other vertices, we need to have |S| ≥ 3. Consider Figure 7.
Note that no subset of size three of A = {1, 2, 3, 4, 5} or B = {6, 7, 8, 9, 10} is a strong
dominating set of P . So, we need at least one element of A, and at least one element
of B. Now, we claim that if we have a strong dominating set of size 3, then it is not
possible to have a strong domatic partition of P of size 3. We consider vertex 1 ∈ A.
One can easily check that the only possible strong dominating sets of P of size three,
which contain 1, are the following:

S1 = {1, 3, 7}, S2 = {1, 4, 10}, S3 = {1, 8, 9}.

Since all of the elements of S1 strong dominate 2 and N(2) = S1, so clearly it is not
possible to have a strong domatic partition of P of size 3. By the same reason, since
N(5) = S2 and N(6) = S3, so it is not possible to have a strong domatic partition of
P of size 3 including 1. So we need to have 1 in a strong dominating set of bigger size.
Since Petersen graph is a symmetric graph, this argument holds for all vertices. So,
if we have a strong dominating set of size 3, then it is not possible to have a strong
domatic partition of P of size 3, as we claimed. Since we have only 10 vertices, it is
not possible to have a strong domatic partition of P of size three and it has at least
four elements. So dst(P ) ≤ 2. Clearly, P = {A,B} is a strong domatic partition of P ,
and therefore we have the result. �

In the following, we consider cubic graphs of order 10, as we see in Figure 8. Note
that G17 = P .
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Figure 8: Cubic graphs of order 10.

Theorem 3.4 If G is a cubic graph of order 10 which is not the Petersen graph, then
dst(G) = 3.

Proof. Consider Figure 8. Suppose that D is a strong dominating set of a cubic graph
of order 10. Since each vertex in D strong dominate at most 3 other vertices, we need
to have |D| ≥ 3. Now, consider the following sets:
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P1 =
{

{1, 3, 9}, {2, 6, 8}, {4, 5, 7, 10}
}

, P2 =
{

{1, 3, 8}, {2, 5, 7, 10}, {4, 6, 9}
}

,

P3 =
{

{1, 3, 6}, {2, 5, 9}, {4, 7, 8, 10}
}

, P4 =
{

{1, 6, 7}, {2, 4, 9}, {3, 5, 8, 10}
}

,

P5 =
{

{1, 4, 9}, {2, 6, 7}, {3, 5, 8, 10}
}

, P6 =
{

{1, 4, 7}, {2, 5, 8}, {3, 6, 9, 10}
}

,

P7 =
{

{1, 3, 6, 9}, {2, 5, 8}, {4, 7, 10}
}

, P8 =
{

{1, 4, 8}, {2, 5, 7, 10}, {3, 6, 9}
}

,

P9 =
{

{1, 4, 8, 10}, {2, 5, 7}, {3, 6, 9}
}

, P10 =
{

{1, 8, 9}, {2, 5, 7, 10}, {3, 4, 6}
}

,

P11 =
{

{1, 4, 8}, {2, 5, 7, 10}, {3, 6, 9}
}

, P12 =
{

{1, 3, 9}, {2, 5, 7, 10}, {4, 6, 8}
}

,

P13 =
{

{1, 4, 8}, {2, 5, 7, 10}, {3, 6, 9}
}

, P14 =
{

{1, 4, 8, 10}, {2, 5, 7}, {3, 6, 9}
}

,

P15 =
{

{1, 4, 8}, {2, 5, 7, 10}, {3, 6, 9}
}

, P16 =
{

{1, 4, 8}, {2, 5, 7, 10}, {3, 6, 9}
}

,

P18 =
{

{1, 4, 7, 10}, {2, 5, 8}, {3, 6, 9}
}

, P19 =
{

{1, 4, 8}, {2, 5, 7, 10}, {3, 6, 9}
}

,

P20 =
{

{1, 3, 7}, {2, 4, 8}, {5, 6, 9, 10}
}

, P21 =
{

{1, 4, 7}, {2, 5, 8}, {3, 6, 9, 10}
}

.

One can easily check that Pi is a strong domatic partition of Gi, for 1 ≤ i ≤ 21 and
i 6= 17. So, we found a strong domatic partition of size 3 for each. Therefore we have
the result. �

As an immediate result of Corollary 2.5, and Theorems 3.3 and 3.4, we have the
following:

Corollary 3.5 Domatic number and strong domatic number of the Petersen graph are
unique among the cubic graphs of order 10.
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