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The exact solution of the Ising model on the complete graph (CG) provides an important, though
mean-field, insight for the theory of continuous phase transitions. Besides the original spin, the Ising
model can be formulated in the Fortuin-Kasteleyn random-cluster and the loop representation, in
which many geometric quantities have no correspondence in the spin representations. Using a
lifted-worm irreversible algorithm, we study the CG-Ising model in the loop representation, and,
based on theoretical and numerical analyses, obtain a number of exact results including volume
fractal dimensions and scaling forms. Moreover, by combining with the Loop-Cluster algorithm,
we demonstrate how the loop representation can provide an intuitive understanding to the recently
observed rich geometric phenomena in the random-cluster representation, including the emergence
of two configuration sectors, two length scales and two scaling windows.

I. INTRODUCTION

The Ising model [1] is one of the most prototypical
models in statistical physics and plays an important role
in the study of phase transitions and critical phenomena.
It has wide applications in many fields, including material
science, neuroscience and biology, etc. Given a graph (or
lattice) G = (V, E) with the vertex set V and edge set
E , the Hamiltonian of the zero-field ferromagnetic Ising
model reads

H(s) = −J
∑
ij∈E

sisj , (1)

where J > 0 is the interaction strength. The probability
of a spin configuration s ∈ {−1, 1}V is given by the Gibbs
measure π(s) ∝ e−βH(s), where β is the inverse temper-
ature. Let K := βJ be the reduced coupling strength,
and one can set J = 1 for convenience. On lattices Zd, it
has been rigorously established that the Ising model goes
through a continuous phase transition for d ≥ 2 [2–4].

In addition to its spin representation in Eq. (1), the
Ising model can be formulated in two other geometric
representations, the loop representation and the Fortuin-
Kasteleyn (FK) bond representation. Here, we provide
a brief overview of these two representations for clarity.
In 1941, Van der Waerden proposed a high-temperature
expansion trick [5] for the Ising model, where the sta-
tistical weight for each interaction term is rewritten as
exp(Ksisj) = coshK(1 + sisj tanhK). Further, an aux-
illiary variable fij = 0, 1 is introduced such that the sec-
ond term, sisj tanhK, is geometrically represented by an
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occupied bond fij = 1, and the first term corresponds to
an empty bond fij = 0. Then, the spin degrees of free-
dom can be integrated out by calculating the partition
function Zspin =

∑
s e
−βH(s), leading to the summation

of geometric configurations of bond variables f . Due to
the Z2 symmetry of the Ising spins, non-zero contribu-
tions to the partition function come only from those con-
figurations F , in which any vertex is incident to an even
number of occupied bonds. Such a configuration is com-
posed of loops (also called currents or flows). In graph
theory, such a loop configuration is referred to an Eu-
lerian graph or an even graph. Let even(G) be the set
of loop configurations on G. Then loop Ising model is
defined by giving any F the probability measure

π(F) ∝ w|F|δF∈even(G) , (2)

where |F| represents the total number of occupied bonds,
the bond weight is w = tanhK and δF∈even(G) is an in-
dicator function that ensures that any graph F descried
by the flow variables is an even graph. Apart from the
Eulerian requirement, the probability measure (2) would
describe the standard bond percolation, and, thus, the
loop representation of the Ising model can be regarded
as the Eulerian bond percolation model. Other names for
this representation include the random-current model[6],
random even graph[7] or the flow representation of the
Ising model.

The Q-state Potts model [8], in which the value of
spins can take σ ∈ {0, 1, · · · , Q − 1}, is a generalization
of the Ising model and has the latter as a special case of
Q = 2. In 1969, Fortuin and Kasteleyn established an
exact mapping between the Potts model and a geomet-
ric model, called the random-cluster (RC) model [9, 10].
Similar to loop configuration, for each edge ij, a binary
variable bij ∈ {0, 1} is defined to represent whether the
edge is occupied by a bond (bij = 1) or empty (bij = 0),
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FIG. 1. Three representations of the Ising model. The
random-cluster representation is depicted with lines of dif-
ferent colors indicating different clusters. The Edwards-Sokal
joint model couples the spin and random-cluster representa-
tions, while the Loop-Cluster joint model couples the loop
and random-cluster representations.

but no Eulerian constraint is required in the FK config-
urations. The Q-state RC model is defined by choosing
a spanning subgraph A ⊆ G with the probability

π(A) ∝ Qk(A)p|A|(1− p)|E|−|A|, (3)

where p is the bond occupation probability and k(A) is
the number of connected components (or clusters) on A.
The case Q = 2 with p = 1 − e−2K corresponds to the
Ising model, or known as the FK Ising model, where K
is the reduced coupling strength mentioned before.

These three representations are illustrated in Fig. 1. In
comparison to the spin representation, geometric repre-
sentations enable the definition of a broader range of geo-
metric observables, many of which have no corresponding
analogs in the spin representation, leading to a wealth of
phenomena. For example, while the upper critical di-
mension of the spin Ising model has been known to be
dc = 4 since the 1970s, recent studies argued that the
FK-Ising model simultaneously has two upper critical di-
mensions, namely dc = 4 and dp = 6 [11, 12], where
the dimension dp = 6 cannot be observed in the spin
representation. Moreover, the geometric representations
also serve as a versatile platform for conformal field the-
ory [13] and stochastic Loewner evolution [14, 15], lead-
ing to many exact results in two dimensions. In math-
ematical physics, the geometric representations play a
crucial role in the rigorous study of phase transitions for
the Ising model in dimensions d ≥ 3 [3, 4] and the trivi-
ality of criticality for d = 4 [16].

Advanced Monte Carlo methods have also benefited
from the geometric representations. A notable exam-
ple is the highly efficient Swendsen-Wang cluster al-
gorithm [17], passing back and forth between the FK
and the spin configurations. The Edwards-Sokal joint
model [18], in which the spin and FK-bond variables are
coupled together, establishes a connection between the

FK and the spin representations and offers a concise un-
derstanding to the Swendsen-Wang algorithm.

Another example is the Loop-Cluster (LC) algorithm,
which passes back and forth between the FK and loop
representations via the LC joint model [19]. A config-
uration of the LC joint model can be interpreted as a
superposition of a FK and a loop configuration, where
each edge is associated with both a FK bond and a flow
variable. For the Ising model (Q = 2), the probability
measure of an LC joint configuration is defined as follows,

π(A,F) ∝
(p

2

)|F| (p
2

)|A|−|F|
(1− p)|E|−|A|δF∈even(G).

(4)
More specifically, there are four edge states in the LC
joint model:

L1 : bij = 0, fij = 0;

L2 : bij = 1, fij = 0;

L3 : bij = 1, fij = 1;

L4 : bij = 0, fij = 1. (5)

The edge state L4, i.e, with an empty FK bond and an
occupied loop bond, is forbidden. From Eq. (4) the prob-
abilities of other edge states read:

P (L1) = 1− p; P (L2) =
p

2
; P (L3) =

p

2
. (6)

From a given loop configuration {f}, the LC algorithm
generates a stochastic FK bond configuration {b} by a lo-
cal bond-placing process. To be specific, for each nonzero
flow fij = 1, one sets bij = 1; for each empty flow fij = 0,
one independently sets bij = 1 with probability

w′ =
p
2

p
2 + (1− p)

= tanhK, (7)

which equals to w, or bij = 0, otherwise. In other words,
the process from the loop to the FK representation is ba-
sically to add occupied bonds to those edges of empty
flow via a process of standard bond percolation with
probability w.

In statistical mechanics, it is of particular interest to
study models on the complete graph (CG) because it is
usually more tractable and provides important insights
to understand critical behaviors on high-dimensional tori.
On the CG, each vertex is connected to all others, and
thus in order to obtain an extensive system, the cou-
pling strength K must be rescaled by its volume V . For
the FK-Ising model on the CG, it was proven that [20],
within a scaling window of width O(V −1/2) around the
critical point pc = 1− e−2/V , the sizes of the largest and
second-largest clusters scale asymptotically as C1 ∼ V 3/4

and C2 ∼
√
V lnV , respectively. Namely, unlike the com-

mon self-similarity observed in many other critical sys-
tems, here C1 dominates over C2, which indicates the
system has two length (size) scales [21]. Furthermore,
the authors also proved that C1, C2 ∼ V 2/3 in a wider
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scaling window of width δp ≡ pc − p = O(V −1/3) in the
sub-critical side (δp < 0), sharing the same scaling be-
havior as the CG-percolation model. Thus, the FK-Ising
model on the CG has two scaling windows. Additionally,
the authors in Ref. [22] numerically studied the FK-Ising
model on the CG and observed more interesting critical
phenomena. At criticality, the cluster-number density of
the FK-Ising clusters, excluding the largest one, obeys
the same scaling form as that for the bond percolation
on the CG. Moreover, a percolation sector was observed
in the whole configuration space, which asymptotically
vanishes with the rate of V −1/12. Conditioned on be-
ing in the percolation sector, all clusters, including the
largest one, have the same scaling behavior as those for
the critical percolation on the CG.

In this paper, we study the CG-Ising model in the loop
representation by a lifted worm update algorithm [23].
The motivation is two-fold. Firstly, we aim to examine
the critical scaling behaviors of the geometric clusters in
the loop representation. Secondly, given that the pro-
cess in the LC algorithm from the loop to the FK bond
configurations is much like the conventional percolation
process, we hope to gain a vivid understanding of the ob-
served rich geometric properties for the CG-Ising model
in the FK representation.

At criticality, we first study the number of occupied
loop bonds (i.e., nonzero flows) B. Based on the exact
solution of the spin Ising model on the CG, we derive

the mean scales as B := 〈B〉 �
√

3Γ(3/4)
Γ(1/4)

√
V [24], and the

probability density function of XB ≡ B/
√
V is,

fXB
(x) � 3−1/4

2
Γ−1(5/4)x−1/2 exp

(
−1

3
x2

)
, (8)

which is also verified by our numerics. It means that, in
contrast to the FK-Ising model, the number of bonds in
the loop Ising model is not extensive and has a power-law
distribution till O(

√
V ). Meanwhile, through the results

of our simulations, we conjecture that the total number
of flow clusters increases logarithmically as 1

4 lnV , and
each flow cluster is basically unicyclic. In other words, a
typical loop configuration consists of an extremely dilute
soup of cycles. The cluster-number density n(s, V ) of
flow clusters, including the largest one, obeys the scaling
form as

n(s, V ) � 1

2V
s−1ñ(s/

√
V ) with ñ(x→ 0) = 1. (9)

The sizes of the largest and second-largest flow clusters
both scale as F1, F2 ∼

√
V , and, accordingly, we conjec-

ture that the volume fractal dimension [25] df1 = df2 =
1/2 holds exactly true. Unlike in the FK representation,
the size distribution of the largest flow cluster displays a
power-law behavior until the cut-off size O(

√
V ), and its

scaling form in the rescaled variable X1 ≡ F1/
√
V reads

fX1
(x) � 1

2
x−1/2f̃(x), (10)

where function f̃(x→ 0) = 1 and f̃ drops quickly for x�
1. Near the criticality with δp, B can be demonstrated
to follow the conventional finite size scaling (FSS) ansatz

as B =
√
V B̃(δp

√
V ) with B̃(·) the scaling function, and

only a single scaling window of width O(1/
√
V ) appears.

Therefore, in the loop representation, no apparent
symptoms are observed for the appearance of the two
length scales, of two configuration sectors, and of two
scaling windows, which occur in the FK representation
of the CG-Ising model. However, the loop representa-
tion provides a starting point for us to understand these
rich phenomena with the LC algorithm. The density
of bonds B/V scales as 1/

√
V , which suggests that the

loop configurations are very dilute and become vacant
as V → ∞. Further, in the LC process, the probabil-
ity of adding bonds to the loop configuration on the CG
is wc = tanh(1/V ) ≈ 1/V , which is equal to that for
the bond percolation process at criticality. Overall, the
LC process can be roughly viewed as the critical bond
percolation process on the CG.

More specifically, using the LC algorithm, we numeri-
cally find that the fraction of the loop bonds in the largest
FK cluster tends to 1, which means all the loop bonds
belong to the largest FK cluster in the thermodynamic
limit. In other words, all the other FK clusters are indeed
generated by the critical percolation process in the LC al-
gorithm. As a consequence, the emergence of two length
scales in the critical FK configurations can be understood
straightforwardly. Almost all loops are merged together
by the newly added FK bonds, leading to a giant clus-
ter with the volume fractal dimension Df1 = 3/4. The
remaining clusters are effectively generated by adding
bonds on the vacant space, and thus, they behave like
those percolation clusters on the CGs.

It can be calculated from Eq. (8) that the probability of
the vacant configuration in the loop representation scales
as V −1/4, it follows that there must exist a percolation
sector decaying slowly as or more slowly than the order
V −1/4 in the FK representation. Since the volume fractal
dimension of the cycle (bridge-free) in the CG percola-
tion model is 1/3 [26] at the critical point, we conjecture
that if the size of the largest loop cluster F1 is no bigger
than O(V 1/3), the corresponding FK configurations be-
long to the percolation sector SP. We derive that P (SP)
decays as V −1/12, providing an explanation to the previ-
ous numerical observation [22] in the FK representation.
We then measure the scaling of the largest FK cluster
CP′

1 conditioned on the original loop configuration with

F1 ≤ O(V 1/3). Our data show that CP′

1 scales as V 2/3,
which is the same as the CG-percolation. Moreover, from
the scaling behavior of B near the critical point, we find
out that if δp = O(V −1/3) then B scales the same as the
number of bridge-free bonds in the percolation model.
Thus, it explains the two-scaling-window behavior of the
FK representation.

Recall that the rich phenomena observed in Ref. [22]
shows that there are strong percolation effects in the FK
Ising model on the CG. These percolation effects now can
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be well understood from the perspective of the LC joint
model. It further reveals that configurations of the FK-
Ising model excluding the largest cluster are effectively
equivalent to the ones of percolation at the critical point
on the CG. Meanwhile, the emergence of the percolation
scaling windows in the FK representation suggests that
when the temperature become higher, even the scaling
behavior of the largest cluster is also described by perco-
lation.

The remainder of this paper is organized as follows.
Section II summarizes the simulation details and the sam-
pled quantities. Section III presents our theoretical anal-
ysis. Section IV contains our main numerical results. A
discussion is given in Sec. V.

II. SIMULATION & OBSERVABLE

A. Algorithm

The worm algorithm [27] is used to simulate the Ising
model in the loop representation. The main idea of the
worm algorithm is to enlarge the configuration space from
close loop space to the space of the graph allowing two
open ends by introducing two defects, i.e., vertices with
odd degree. Configurations are updated as defects do
random walks. If a defect proposes to move through a
flow/loop bond, then with probability 1 the proposal is
accepted and the bond is erased. If a defect is crossing an
empty edge, then with probability w the move is accepted
and the empty edge is occupied by a bond. When two
defects meet, a new loop configuration is obtained.

In Ref. [23], the authors presented an irreversible ver-
sion of the worm algorithm by using the lifting technique,
which leads to a critical speeding-up for observables in
the simulation on the CG, with a negative dynamic ex-
ponent z = −1/2. In other words, between two subse-
quent effectively independent samplings in the Markov
chain, the number of elementary updating steps is of or-
der O(

√
V ) in the lifted worm algorithm. This is van-

ishingly small in comparison with a sweep of updates,
O(V ), which is a standard unit in studying the efficiency
of Monte Carlo methods. The existence of this criti-
cal speeding-up, which makes the lifted worm algorithm
thus far most efficient for the CG-Ising, is understandable
since the number of loop bonds is also O(

√
V ). There-

fore, we use the irreversible worm algorithm to update
loop configuration here. Specifically, a lifted parame-
ter λ ∈ {+,−} is introduced to double the configuration
space of worm update, as λ = +(−) stands for the choice
to add (delete) a bond in each step of random walk of
the defect. It indicates that every time the defect moves
to the next vertex, λ determine whether the movement
leads to an increase or decrease of bond on the graph,
as well as the choice of the next vertex. Then we accept
the update with a certain probability depending on λ and
the number of occupied bonds incident to the two defects,
which is presented in Ref. [23] in details. Whenever the

update is rejected, the lifted parameter λ changes.
In addition, we implement a transformation from the

loop representation to the RC representation via the LC
algorithm [19] after we generate a loop configuration.
The main idea of the transformation is performing a
conditional probability distribution of the joint model
(4). Recall that edge state L4 in Eq. (5) is forbidden,
so a loop bond must also be an FK bond in the joint
model. Therefore, the basic step is that: for each edge,
if it has not been occupied by a bond in the loop rep-
resentation, we place a bond on it with a probability
w = tanh (K/V ) ≈ K/V ; If it has been occupied, keep it
occupied. We carry out this adding bond process by an
efficient cumulative method [28].

B. Sample quantities

We sample the following observables in our simula-
tions:

(a) The sizes of the largest and the second-largest loop
clusters denoted as F1, F2;

(b) The total number of vertices in the loop clusters
Nv =

∑
i:Fi>1 Fi;

(c) The number of bonds B in loop clusters;

(d) The number of loop clusters N (s) with size s, de-
fined as the number of loop clusters with size in
[s, s + ∆s] with an appropriately chosen interval
size ∆s;

(e) The total number of loop clusters Nk;

(f) The indicators Pv,P(α). We set Pv = 1 to record
the event that the configuration is empty with
bonds, P(α) = 1 to record if F1 ≤ αV

1
3 with α

is a tunable constant. Here we set α = 1, 2.

From these observables, we take the ensemble average:

(a) The probability of vacant configuration P v = 〈Pv〉;

(b) The average sizes of the first- and second-largest
loop cluster F1 = 〈F1〉, F2 = 〈F2〉 and their distri-
bution;

(c) The average number of bonds B = 〈B〉 and its dis-
tribution;

(d) The average number of clusters Nk = 〈Nk〉 and the
average number of vertices Nv = 〈Nv〉;

(e) The cluster-number density n(s, V ) = 1
V∆s 〈N (s)〉,

which is also called the cluster-size distribution;

(f) The probability of the bond configuration in the
region where the largest loop-cluster F1 ≤ αV 1/3:
P (F1 ≤ αV

1
3 ) = 〈P(α)〉.
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Moreover, we measure the following quantities in the FK
representation:

(a) The sizes of the first- and second-largest FK clus-
ters C1, C2 and their average C1 = 〈C1〉, C2 = 〈C2〉
the average size of the largest FK cluster con-
ditioned on the origin loop configuration where
F1 ≤ 2V 1/3, denote as CP′

1 ;

(b) The total size of loop clusters in the first- and
second-largest FK clusters: SC1

=
∑
Fi⊂C1 Fi,

SC2
=
∑
Fi⊂C2 Fi, and the average of them di-

vided by the total loop cluster size Nv as nf,1 =
〈SC1

〉
〈Nv〉 , nf,2 =

〈SC2
〉

〈Nv〉 .

III. THEORETICAL ANALYSIS

The CG Ising model can be exactly solved in its spin
representation [29]. Hereby, we derive the exact solu-
tion of some properties, especially the average number of
bond B, in the loop representation from the spin repre-
sentation.

The total energy of the CG-Ising model gives

E = − 1

2V

∑
i 6=j

sjsj = −1

2
(V m2 − 1). (11)

where m = (
∑V
i=1 si)/V is the magnetization in the spin

representation. The probability density function of the
magnetization at the critical point is [29]

f(m) =
exp(− 1

12V m
4)∫∞

−∞ exp(− 1
12V z

4)dz
, (12)

from which we can derive the critical average magnetic
density 〈m2〉 as

〈m2〉 = 2
√

3
Γ(3/4)

Γ(1/4)

1√
V
−12

5

[
Γ(3/4)

Γ(1/4)

]2

V −1+O(V −3/2),

(13)
where Γ(·) refers to the Gamma function. Thus, the en-
ergy at criticality behaves as

〈E〉 = −
√

3
Γ(3/4)

Γ(1/4)

√
V +

6

5

[
Γ(3/4)

Γ(1/4)

]2

+
1

2
+O(V −1/2) .

(14)
For the loop representation, the partition function can
be written as

Z = 2V cosh|E|
(
K

V

) ∑
F∈even(G)

tanh|F|
(
K

V

)
. (15)

Here, |F| ≡ B(F) is the number of bonds on the loop con-
figuration F . Then the average energy can be calculated
as

〈E〉 = − 1

Z
∂Z
∂K

= −
tanh

(
K
V

)
V

[
|E|+ 〈B〉 sinh−2

(
K

V

)]
. (16)

At the critical point K = 1, since
tanh(1/V ), sinh(1/V ) ≈ 1/V , it follows that
〈E〉 = −(〈B〉 + 1

2 −
1

2V ). Combining with Eq. (16), we
can obtain the leading term of the average value of bond
number,

〈B〉 =
√

3
Γ(3/4)

Γ(1/4)

√
V +O(1), (17)

where the amplitude
√

3Γ(3/4)
Γ(1/4) = 0.585414 · · · .

From Eq. (11) and Eq. (12), we can also obtain the
distribution of the energy on the CG-Ising model as

f(E) = AEV
− 1

4 exp

[
− (1− 2E)2

12V

]√
1

(1− 2E)
, (18)

with the normalized factor AE = 3−1/4
√

2
Γ−1( 5

4 ). Here, we

assume that the probability distribution of bond number
is also equivalent to the one of the total energy, which
is similar to the relation of the average. By replacing E
with −(B+1/2) in Eq. (18) we conjecture the distribution
of bond number is

f(B) = ABV
− 1

4 exp

(
−B

2

3V

)√
1

B
, (19)

where the normalized factor AB = AE/
√

2 =
0.419149 · · · .

101

102

103

103 104 105 106

V

B
Nv

slope 1/2

0.585

FIG. 2. The log-log plot of the bond number B and total num-
ber of vertices in the loop clusters Nv versus the system vol-
ume V . The inset displays the rescaled terms Nv/

√
V ,B/

√
V

versus V .

IV. NUMERICAL RESULTS

A. Scaling behaviors of geometric quantities

In this section, we study the scaling behaviors of some
geometric quantities such as the number of bonds B and
the number of clusters Nk, and the sizes of the first- and
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O yO a0 b1 y1 χ2/DF Vmin

0.499 9(2) 0.586(2) -0.68(7) -0.49(2) 7.1/9 210

0.499 8(3) 0.587(2) -0.65(12) -0.48(3) 7.0/8 211

0.500 1(3) 0.584(2) -1.1(4) -0.55(6) 4.7/7 212

B 0.499 98(6) 0.585 6(5) -0.725(8) -1/2 7.5/10 210

0.499 96(8) 0.585 7(6) -0.728(13) -1/2 7.4/9 211

1/2 0.585 3(1) -0.73(4) -0.501(7) 7.6/10 210

1/2 0.585 4(1) -0.74(6) -0.503(11) 7.4/9 211

0.499 8(2) 0.457(1) 0.44(9) -0.54(4) 7.2/9 210

0.499 8(2) 0.457(2) 0.5(2) -0.55(6) 7.1/8 211

F1 0.500 2(4) 0.455(3) 0.2(1) -0.4(1) 5.4/7 212

0.500 09(7) 0.455 5(3) 0.361(7) -1/2 8.4/10 210

0.500 06(8) 0.455 7(4) 0.356(10) -1/2 7.9/9 211

0.499 6(2) 0.092 5(2) 1.13(7) -0.68(1) 9.1/9 210

0.499 6(2) 0.092 6(3) 1.12(13) -0.68(2) 9.1/8 211

F2 0.499 8(3) 0.092 3(4) 0.9(2) -0.66(3) 8.5/7 212

0.499 81(9) 0.092 3(1) 1.023(8) -2/3 9.7/9 211

0.499 7(1) 0.092 4(1) 1.01(3) -2/3 8.6/8 212

TABLE I. The fitting results of the bond number B, the first-
and second-largest clusters F1, F2. We conjecture all of them
have the same scaling behavior F1, F2, B ∼

√
V , which sug-

gests there is no two-length scaling behavior in the loop rep-
resentation.

second-largest clusters F1, F2 in the loop representation.
We perform least-square fits to our data. As a precau-
tion against correction-to-scaling terms that we missed
including in the fitting ansatz, we impose a lower cut-
off V ≥ Vmin on the data points admitted in the fit and
systematically study the effect on the residuals χ2 value
by increasing Vmin. In general, the preferred fit for any
given ansatz corresponds to the smallest Vmin for which
the goodness of the fit is reasonable and for which sub-
sequent increases in Vmin do not cause the χ2 value to
drop by vastly more than one unit per degree of freedom.
In practice, by “reasonable” we mean that χ2/DF ≈ 1,
where DF is the number of degrees of freedom. The sys-
tematic error is estimated by comparing estimates from
various sensible fitting ansatz.

We first consider the number of bonds B. In Fig. 2,
we plot B versus the system volume V in log-log scale,
and the dashed line with slope 1/2 suggests B ∼

√
V .

Meanwhile, the inset plots B/
√
V showing that its am-

plitude tends to 0.585. These results are consistent with
our theoretical analysis in Eq. (17).

To extract the scaling behaviors of B, we perform the
least-square fits via the general ansatz:

O = V yO (a0 + b1V
y1 + b2V

y2) + c, (20)

where O corresponds to the quantities measured, such
as B, and yO corresponds to the dominant scaling expo-
nent as yb for B. For B, we first leave all parameters free,
which gives unstable results. We then fix b2 = c = 0 and
leave yb, a0, b1 and y1 free, and it gives reasonable esti-
mate yb = 0.499 8(3) and y1 = −0.48(3) for Vmin = 211.
We then try to fit by fixing y1 = −1/2, as predicted
in Eq. (17), and the fitting gives a reasonable estimate

O a b1 y1 c χ2/DF Vmin

0.249 8(4) 1.1(2) -0.49(4) -0.587(6) 4.7/9 210

Nc 0.249 6(4) 1.4(6) -0.53(8) -0.584(7) 4.4/8 211

0.249 7(1) 1.17(3) -1/2 -0.586(2) 4.8/10 210

0.249 8(2) 1.19(4) -1/2 -0.587(2) 4.6/9 211

TABLE II. The fitting result of the cluster number Nk, which
scales as Nk ∼ lnV with the coefficient consistent with 1/4.

yb = 0.499 96(8). More trials have been tried, like fix-
ing b1 = b2 = 0 and leaving yb, a0 and c free, which
gives consistent results. Including the systematic errors
by comparing various reasonable results, we finally ob-
tain the estimates yb = 0.500 0(8) and a0 = 0.585(6),
both of which are consistent with Eq. (17). The fitting
details are summarized in Table I.

1.0

 1.5

2.0

 2.5

3.0

103 104 105 106

V

Nk
slope 1/4

FIG. 3. The semi-log plot of the cluster number Nk versus V ,
which suggests it scales as Nk ∼ 1

4
lnV .

For a given loop configuration, a loop cluster is defined
as a set of vertices which are connected together by loop
bonds. We next study the geometric properties of these
loop clusters. In the graph theory, we have the Euler
formula Nv−B = Nc−Nk with the number of cycles Nc
and the number of clusters Nk. It inspires us to observe
whether the Eulerian clusters in the loop representation
are uni-cyclic or multi-cyclic by evaluating Nv, since for
the uni-cyclic graph, Nc equals to Nk. Figure 2 presents
the FSS behavior of Nv and Nv/

√
V in the inset. It

suggests that the value of Nv is numerically consistent
with B as V is large enough. Therefore, we can argue
that Nc = Nk in thermodynamic limit, which means that
all the loop clusters are asymptotically uni-cyclic in the
thermodynamic limit.

Besides, we also study the scaling behavior of the num-
ber of loop clusters. As shown in Fig. 3, our data of Nk

collapse onto the dashed line with slope 1/4 in semi-log
scale, indicating that Nk ∼ 1

4 lnV . We can fit the data
of Nk to the ansatz,

NO = a lnV + b1V
y1 + b2V

y2 + c. (21)

We first leave all parameters free, but there is no stable
fit. Then by fixing b2 = 0, we obtain stable fits, with
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details shown in Table II. We estimate a = 0.249 7(5)
which leads to a conjecture Nk � 1

4 lnV .
We then consider the sizes of the largest cluster F1 and

second-largest cluster F2. As Fig. 4 shows, we plot F1 and
F2 in the log-log plot, and the slope 1/2 indicates both

of them have the same scaling behavior F1, F2 ∼
√
V .

In other words, no two-length scaling behavior has been
observed, which is different from the observation of two
largest clusters in the FK Ising model on the CG [20, 22].

We also perform the least-square fit via (20) for F1, F2

as yO corresponds to the volume fractal dimensions df1

and df2, respectively. The fitting results through different
trails are reported in Table I. We obtain the estimates
df1 = 0.500 0(9) and a0 = 0.456(6) for F1 while df2 =
0.499 7(6) and a0 = 0.092 4(8) for F2. We found both df1

and df2 are consistent with 1/2, and the amplitude a0 of
F2 is much smaller than that of F1.

100

101

102

103

103 104 105 106

V

F1
F2

slope 1/2

0.092

0.456

FIG. 4. The log-log plot of the size of the largest cluster
F1, the second-largest cluster F2 versus the system volume
V . Our data suggest F1, F2 ∼

√
V . The inset displays the

rescaled terms F1/
√
V , F2/

√
V versus V .

B. Probability distribution of geometric quantities

Firstly, we investigate the probability distribution of
the number of bonds B. Denote f(B, V ) the probability
density function (PDF) of B sampled in our simulations.

Since B ∼
√
V , we define XB = B/

√
V and fXB

(x) the
PDF of XB . Then it follows that

f(B, V )dB = fXB
(x)dx, (22)

where
√
V dx = dB, and thus fXB

(x) =√
V f(B, V ). From Eq. (19), one obtains

fXB
(x) = AB exp(−x2/3)x−1/2 with AB = 3−1/4

2 Γ−1( 5
4 ).

Figure 5 presents the distribution of XB , and the dashed
curve displays fXB

(x). It is obvious that our numerical
result is consistent with the theoretical analysis. Besides,
we found out the probability of the vacant graph (no
occupied bond) P v obeys a power-law decay as V −1/4,
as suggested by the log-log plot of P v versus V in the

inset of Fig. 5 and Eq. (19). We perform a least-square
fit to the ansatz Eq. (20) and estimate the power-law
exponent of P v as yO = −0.249(1) and the coefficient
a = 1.56(3).

10-7

10-5

10-3

10-1

101

10-2 10-1 100

fXB
(x)

f X
B
(x

)

x

212

214

216

218

220

222

 

V

Pv

slope -1/4

FIG. 5. Log-log plot of probability distribution of the num-
ber of bonds B on the CG in the loop representation. Here
fXB (x) is the probability density function of XB = B/

√
V .

The solid black line referring to f0(x) = AB exp(−x2/3)x−1/2

verifies that the numerical result is consistent to the theoreti-
cal analysis based on the spin representation. The inset shows
the probability of vacant graph P v versus V with log-log plot,
which implies P v exhibits a power-law decay as V −1/4.

Then we study fF1
(s, V ), the PDF of F1. Since its

mean scales as
√
V , we first study the distribution of

X1 := F1/
√
V . Figure 6 presents the PDF of fX1

(x)
versus x in the log-log scale. The excellent data collapse
suggest that fX1

(x) follows a power-law distribution

fX1
(x) � x−1/2f̃(x) , (23)

with f̃(x → 0) ≈ 1/2 when x is small and f̃(x) decays
quickly to zero when x is large, as indicated from the
inset of Figure 6.

10-7

10-5

10-3

10-1

101

10-3 10-2 10-1 100

slope -1/2

f X
1(x

)

x

212

214

216

218

220

222

1/2

x1
/2
f X

1(x
)

x

FIG. 6. Log-log plot of probability distribution of the largest
cluster F1 on the CG in loop representation, where fX1(x)

is the probability density function of X1 = F1/
√
V . The

inset shows the log-log plot of fX1(x)x1/2 versus the rescaled
variable x.
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Meanwhile, we also study the cluster-number density
of the loop representation n(s, V ). Our results of n(s, V )
on the CG, shown in Fig. 7, indicate that it follows the
form n(s, V ) ∼ s−τ ñ(s/V dF ) with a modified Fisher ex-
ponent τ = 1. More specifically, we can conjecture that
the distribution obeys

n(s, V ) � n0s
−τV −hñ(s/V dF ) , (24)

where h ≥ 0 is the scaling exponent, ñ(x) is scaling func-
tion which is approximately 1 when x is small. This leads
to the number of loop clusters as the integral of n(s, V )
from 1 to the largest loop cluster

Nk = V

∫ F1

1

n(s, V )ds. (25)

Our previous results suggest F1 ∼ a0

√
V , so it follows

that

Nk �
{ n0

2 V
1−h(lnV + ln a0) if τ = 1,

n0

1−τ a
1−τ
0 V 1+ 1

2 (1−τ)−h if τ 6= 1.
(26)

10-15

10-11

10-7

10-3

101 102 103 104

slope -1n(
s,
V

)

s

212

214

216

218

220

222

1/2

nV
s

s/V1/2

FIG. 7. Cluster-number density of the loop representation in
the log-log scale. The inset shows the plot of n(s, V )V s versus

s/
√
V , which implies that the scaling function is consistent

with 1/2 when s/
√
V � 1.

In the previous section, we know Nk � lnV
4 . Therefore,

we obtain n0 = 1
2 , h = 1, τ = 1. The inset of Fig. 7

confirms our conjecture, including n0 = 1
2 .

Therefore, in contrast to the FK representation, the
scaling behaviors of fF1

(s, V ) and n(s, V ) both show that
there is only one scaling sector and one length scale in
the loop representation.

C. Insights for the anomalous FSS behaviors in the
random-cluster representation

As discovered in above sections, the loop bond density
B
V ∼

1√
V

, so the loop configuration is vacant in the ther-

modynamic limit. Moreover, the probability of adding
bonds through the LC algorithm is asymptotically the

0.90

 0.95

1.00

103 104 105 106

(a)

V

nf,1 

103 104 105 106
10-3 

10-2 

10-1 (b)

V

nf,2 
1-nf,1 

FIG. 8. Panel (a) plots the relative loop vertices in the largest
FK cluster nf,1 versus V . Panel (b) shows the log-log plot of
the relative loop vertices in the second-largest FK cluster nf,2

and the one out of the largest FK cluster 1 − nf,1 versus V .
It implies that all the loop clusters belong to the largest FK
cluster as V →∞.

same as the critical percolation threshold 1/V , such that
the transformation from the loop representation to the
FK representation is almost the process of critical perco-
lation. In this section, we will demonstrate how LC algo-
rithm can provide an intuitive understanding to the rich
critical phenomenon in the FK representation [11, 12].

Firstly, in the FK representation, the largest and
second-largest clusters exhibit distinct scaling behaviors:
C1 ∼ V 3/4 and C2 ∼

√
V log V . However, as Fig. 4

shows, the first- and second-largest clusters in the loop
representation both scale as

√
V . One would wonder

what happens in the percolation process of the LC al-
gorithm. We record the relative mass of the loop clus-
ters belonging to the first- and second-largest FK clus-
ters after the representation transformation denoted as
nf,1, nf,2. As shown in Fig. 8(a), the relative loop ver-
tices in C1 increases to 1 as the system volume becomes
larger. In contrast, Fig. 8(b) shows that the relative loop
vertices in C2 and out of C1 exhibit a power-law decay
to zero as V increases. Furthermore, we perform a least-
square fit to Eq. (20) for 1− nf,1, and we obtain the de-
caying exponent yd = 0.225(6). These evidences suggest
that in the thermodynamic limit, all loop clusters belong
to the largest FK cluster C1 after the percolation process
while cycles in other FK clusters are newly generated in
the process of percolation.

Secondly, two sectors are observed in the configuration
space of the FK representation: the percolation sector
SP with its size of the largest cluster C1 ≤ O(V 2/3) and
the Ising sector SI for otherwise. The percolation sector
vanishes with the rate V −1/12 and the largest cluster in
this sector scales as CP

1 ∼ V 2/3. We are trying to find
out what the percolation sector corresponds to in the
loop configuration space.

In graph theory, a bridge is a bond whose deletion
would break a cluster into two. The configuration with
all bridges deleted is called bridge-free configuration. The
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P
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P(F1 ≤ V1/3)
P(F1 ≤ 2V1/3)

slope -1/12

FIG. 9. Log-log plot of the probability that the loop config-
uration in the conjectured percolation sector P (F1 ≤ αV 1/3)
with α = 1 or 2. The straight dashed black lines with slope
−1/12 are to guide the eye.

clusters in the loop representation are all bridge-free clus-
ters. From Ref. [26], we know that the volume fractal di-
mension of the bridge-free cluster in the CG-percolation
model is dB = 1

3 , so we conjecture that the correspond-

ing percolation sector in the loop representation SP
l con-

sists of the configurations whose F1 ≤ αV
1
3 with some

constant α. The probability of SP
l can be derived from

the probability distribution of the largest loop cluster
fF1

(s, V )(23) :

P (SP
l ) = P (F1 ≤ αV 1/3) ≈ 2α

1
2 f̃(0)V −

1
12 , (27)

which is perfectly consistent with the probability of the
percolation sector in the FK representation as P (SP) ∼
V −1/12. The numerical result of P (F1 ≤ αV 1/3) with
α = 1, 2 versus V is shown in Fig. 9. We perform a
least-square fit to Eq. (20) with our P (SP

l ) data and ob-
tain yO = −0.081(2) for α = 1, which is consistent with
− 1

12 . By fixing yO = − 1
12 , we estimate the coefficient

2α
1
2 f̃(0) = 0.986(4) for α = 1 and 2α

1
2 f̃(0) = 1.388(4)

for α = 2. It then follows that f̃(0) = 0.48(2) which is
consistent with our conjecture 1/2. To further verify our
conjecture, we observe the scaling behavior of the largest
FK cluster generated by performing the percolation pro-
cess to the loop configurations where F1 ≤ 2V 1/3, de-
noted as CP′

1 . We show the data of CP′

1 and the largest
cluster size of the FK Ising model C1 in Fig. 10; the for-
mer scales as V 2/3 and the latter scales V 3/4. This con-
firms our conjecture that the percolation sector in the
FK Ising model corresponds to the loop configurations
with the largest loop size of order V 1/3.

Thirdly, we consider the case away from the criti-
cal point and define t = (Kc − K)/Kc. When the
critical point is approached from high-temperature side
(t > 0), the magnetic susceptibility χ(t, V ) = V 〈m2〉 =
V 2yh−1χ̃(tV yt) with renormalization-group exponents
(yt = 1/2, yh = 3/4). Based on the FSS assump-
tion, as x → ∞, the scaling function χ̃(x) ∼ x−γ with
γ = (2yh−1)/yt = 1, which recovers the thermodynamic

102

103

104

103 104 105 106

V

C1
CP′

1
slope 2/3
slope 3/4

FIG. 10. Log-log plot of the largest cluster size of the FK-Ising
model C1 and the largest cluster size of the configurations
generated from the loop configurations where F1 ≤ 2V 1/3,

denoted as CP′
1 , versus V . The red dashed line with slope 2/3

and the blue dashed line with slope 3/4 imply the difference
between their volume fractal dimensions.

scaling behavior χ(t) ∼ t−γ .
Recall in Sec. III, the bond number B = 1

2V 〈m
2〉 +

O(1) = 1
2χ+O(1). Thus, one would expect

B =
√
V B̃(t

√
V ), (28)

where the scaling function B̃(x) ∼ x−1 as x → ∞.
Then, if one takes t = O(V −1/3), one would obtain

B ∼
√
V · (V −1/3+1/2)−1 = V 1/3, which is the same

as the scaling of the bridge-free bond number for the
CG-percolation model [26]. At this temperature, the FK
clusters obtained by adding bonds via the LC algorithm
are expected to behave the same as CG-percolation clus-
ters, which explains the existence of percolation scaling
window in the FK Ising model and the width is of order
O(V −1/3). While the temperature is decreased from Kc,
the bond number increases and no percolation scaling
window is observed.

V. DISCUSSION

In this work, we study the geometric properties of the
complete-graph (CG) Ising model in the loop representa-
tion. Theoretically, we derive that the density of bonds
decays as V −1/2, which means the loop configurations are
basically vacant in the thermodynamic limit. We numer-
ically find that the volume fractal dimension for the first-
and second-largest loop clusters is 1/2, and the number
of clusters scales as 1

4 lnV . We also observe that the bond
number is numerically consistent with the number of ver-
tices in loop clusters, and this means these loops are uni-
cyclic, which is similar to the bridge-free configurations
of the CG-percolation model. Based on our numerical
results, we conjecture the exact form of the probability
distribution of the largest loop cluster and the cluster-
number density n(s, V ). In Ref. [30], the authors used
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the rate equation approach to study and derive the cycle-
length number density of the critical percolation on the
CG, which scales as (2sV )−1 with a cutoff at O(V 1/3).
Thus, it has the same behavior as our n(s, V ) except the
different cutoff.

The abundant critical behaviors in the Fortuin-
Kasteleyn (FK) representation, i.e., the emergence of two
length scales, two configuration sectors, and two scaling
windows, are not found in the loop representation. But,
via the loop-cluster (LC) joint model, results in the loop
representation does provide a vivid and intuitive under-
standing to these critical behaviors in the FK represen-
tation. Under the LC joint model, the FK representation
can be regarded as playing a percolation game on top of
loop configurations. During the percolation process, al-
most all loops are connected together and end up with
forming the largest FK cluster. Other FK clusters are
basically these newly generated percolation clusters.

It is generally believed that the CG is a mean-field ap-
proximation to high-dimensional tori. Recently, the FK
Ising model on lattices above the upper critical dimen-
sion dc = 4 was studied and the similar scaling behav-
iors (two length scales, two sectors and two scaling win-
dows) were again observed [11, 12]. More interestingly,

in addition to the well-known upper critical dimension
dc = 4, these anomalous scaling behaviors uncover a new
upper critical dimension dp = 6, which cannot be ob-
served in the spin representation. Therefore, a number
of questions naturally arise. First, can the LC joint model
provide an understanding to the anomalous behaviors
of the FK representation on high-dimensional lattices?
Second, can the two-upper-critical-dimensional phenom-
ena be observed in the loop representation? Third, can
the loop representation provide a straightforward under-
standing for the existence of two upper critical dimen-
sions? These open questions will be investigated in our
future work.
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