
VIETORIS–RIPS COMPLEXES OF PLATONIC SOLIDS
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Abstract. We determine the homotopy type of the Vietoris–Rips com-
plexes of the (vertex sets of the) platonic solids. The most interesting
case is that the Vietoris–Rips complex of the dodecahedron is a wedge
of nine 3-spheres when the parameter is between combinatorial distance
3 and 4.

The Vietoris–Rips complex VRr(X) with parameter r of a metric space X
provides a topological model for X at scale r. It is used in topological data
analysis at small scales to estimate the topological information pertaining to
a dataset (a point cloud for instance), see for instance [EH10]. At large scales
it is used in geometric group theory to analyse the topological finiteness
properties of a group, see for instance [GdlH90, Chapitre 4] and [Alo94].
Usually one is interested in the rough behavior at some scale but in very
structured situations one may obtain a complete picture, such as in [AA17]
where all Vietoris–Rips complexes of the circle were determined. In this
article we determine the Vietoris–Rips complexes of vertex sets of Platonic
solids:

Theorem. Let P be a platonic solid with vertex set P (0) and let 0 < δ1 <
. . . < δk be the distances between pairs of elements of P (0). The homotopy
type of VRr(P

(0)) is VRr(P
(0)) = ∅ if r ≤ 0, it is VRr(P

(0)) ' ∗ if r > δk
and otherwise is as follows:

(1) If P is a tetrahedron then

VRr(P
(0)) '

{∨3 S0 0 < r ≤ δ1

(2) If P is an octahedron then

VRr(P
(0)) '

{∨5 S0 0 < r ≤ δ1
S2 δ1 < r ≤ δ2

(3) If P is a cube then

VRr(P
(0)) '


∨7 S0 0 < r ≤ δ1∨5 S1 δ1 < r ≤ δ2
S3 δ2 < r ≤ δ3
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(4) If P is an icosahedron then

VRr(P
(0)) '


∨11 S0 0 < r ≤ δ1
S2 δ1 < r ≤ δ2
S5 δ2 < r ≤ δ3

(5) If P is a dodecahedron then

VRr(P
(0)) '



∨19 S0 0 < r ≤ δ1∨11 S1 δ1 < r ≤ δ2
S2 δ2 < r ≤ δ3∨9 S3 δ3 < r ≤ δ4
S9 δ4 < r ≤ δ5

Most of these statements are easy and likely known to experts except for the
case of the dodecahedron in the range (δ3, δ4]. This case will occupy most of
the article.

It is natural to try to extend this result to all regular polytopes. This is
again easy for the simplices, the cross polytopes and the four-dimensional
regular polytopes with the exception of the 120-cell. For higher-dimensional
cubes it does not remain true that the Vietoris–Rips complexes are wedges of
spheres of a single dimension (as can be seen from homology computations),
low dimensions have been studied in [AA22]. The 120-cell has combinato-
rial diameter 15 leaving room for many potentially interesting Vietoris–Rips
complexes. Other conceivable generalizations are to Archimedean solids or
to (vertices of one type in) spherical buildings.

The article is organized as follows. In Section 1 we introduce Vietoris–Rips
complexes and basic combinatorial Morse theory and illustrate a difficulty
pertaining to combinatorial Morse theory in the presence of symmetry. In
Section 2 we prove the easy cases of the theorem: everything except for the
dodecahedron in the range δ3 < r ≤ δ4. In Section 3 we give an alternative
prove of the cube in the range δ2 < r ≤ δ3 which on one hand serves
as a preparation to the interesting case in the following section, but also
generalizes to higher dimensional cubes. Finally, in Section 4 we prove the
main case of the theorem. GAP code for the article is available at [SMW23].

Acknowledgments. We are grateful to Ralf Köhl for making us think about
Vietoris–Rips complexes of spheres and to Henry Adams for suggesting this
problem to us and generously sharing his thoughts.

1. Basics

Vietoris–Rips complexes. Let X be a metric space, for instance a sub-
set of Rn equipped with the standard metric. The Vietoris–Rips complex
VRr(X) with parameter r ≥ 0 is the simplicial complex with vertex set X
where a finite subset F ⊆ X is the vertex set of a simplex if diamF < r. We
will also consider the complex VR≤r(X) where simplices are required to sat-
isfy diamF ≤ r instead. If X is finite VRr and VR≤r determine each other
in an obvious way. While VRr is the complex usually considered, it will be



VIETORIS–RIPS COMPLEXES OF PLATONIC SOLIDS 3

convenient for us to use VR≤r instead. The complexes (VR≤r(X))r≥0 form
an ascending sequence of complexes, leading up to the full simplex on X (in
the limit if X has infinite diameter and reaching it has finite diameter). We
will need to compare the complexes VR≤r(X) and VR≤s(X) for r < s and
use combinatorial Morse theory to do so.

Combinatorial Morse theory. Combinatorial Morse theory was intro-
duced by Forman [For98] but we will refer to Kozlov’s [Koz20] formulation.

Let C be a simplicial complex. If σ, τ ∈ C are simplices we write σ < τ to
express that σ is a face of τ . If σ has codimension one in τ , we say that σ is a
facet of τ , that τ is a cofacet of σ, and we write σ ≺ τ . A (partial) matching
on a simplicial complex C is a relation ↗ on the simplices C subject to the
conditions:

(1) for each pair σ ↗ τ of paired simplices we have σ ≺ τ , and
(2) for each simplex σ there is at most one facet or cofacet (not both!)

τ such that τ ↗ σ or σ ↗ τ .

The simplices σ for which a τ with τ ↗ σ or σ ↗ τ exists, are the ones that
are matched by the matching, the ones that are not are critical. If σ ≺ τ but
not σ ↗ τ , we write τ ↘ σ. In this way a partial matching turns the Hasse
diagram of (the face poset of) C into a directed graph with the edge between
σ ≺ τ pointing up if the pair is matched and down if it is unmatched. The
matching is acyclic if this graph contains no directed cycle. Note that if such
a cycle does exist, proving the matching non-acyclic, it necessarily has to be
of the form

σ1 ↘ τ1 ↗ . . . σk ↘ τk ↗ σ1

and, in particular, be restricted to adjacent dimensions, because there cannot
be two consecutive arrows up by condition (2). The result from combinatorial
Morse theory that we will use is:

Theorem 1.1 ([Koz20, Theorem 10.9]). Let C be a simplicial complex and
let D < C be a subcomplex. If there is an acyclic matching on C such that the
matched simplices are precisely those not in D, then C deformation retracts
onto D. More precisely the deformation retraction successively retracts σ
through τ onto the other facets of τ for each pair σ ↗ τ .

Considering only simplices in adjacent dimensions makes combinatorial Morse
theory very elegant but leads to nuisances in the presence of symmetry. To
explain what we mean by that we consider a 3-simplex with the indicated
rotational symmetry, while ignoring its remaining symmetry:

p
q

r
s
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Polytope combinatorial euclidean spherical

Tetrahedron 1 2
√

2
3 arccos

(
−1

3

)
Cube

1 2
√

1
3 arccos

(
1
3

)
2 2

√
2
3 arccos

(
−1

3

)
3 2 π

Octahedron 1
√

2 π/2
2 2 π

Dodecahedron

1 2
ϕ

√
1
3 arccos

(
2ϕ−1

3

)
2 2

√
1
3 arccos

(
1
3

)
3 2

√
2
3 arccos

(
−1

3

)
4 2ϕ

√
1
3 arccos

(
1−2ϕ

3

)
5 2 π

Icosahedron
1 2

√
3−ϕ
5 arccos

(
1√
5

)
2 2

√
2+ϕ
5 arccos

(
− 1√

5

)
3 2 π

Table 1. Translation between combinatorial, euclidean, and
spherical distance. Euclidean and spherical distance refer to
the polytope inscribed in the unit sphere.

Obviously the simplex can be deformation retracted to the bottom edge
(which has codimension two) in an equivariant way, for instance by a straight-
line retraction that moves r to q and s to p. This collapse from the three-
dimensional simplex to its one-dimensional face can be decomposed into
collapses in adjacent dimensions but these collapses cannot be equivariant.
The best we can do is to do one collapse that destroys symmetry followed
by another that restores symmetry and so on. For instance we can collapse
prs ↗ pqrs destroying symmetry and then rs ↗ qrs restoring symmetry.
Then pr ↗ pqr destroying symmetry and qs ↗ pqs restoring it. Finally,
s↗ ps destroying symmetry and r ↗ qr restoring it.

Platonic solids. We may realize any platonic solid P to have vertex set
P (0) on the unit sphere S2 ⊆ R3. This provides us with three possible dis-
tances on the set of vertices: the distance can be measured in the Euclidean
space R3, on the sphere S2, or combinatorially by counting the number of
edges between them (Table 1). Since these distances depend on each other
monotonously, the same Vietoris–Rips complexes arise just for different pa-
rameters. It will be convenient to work with combinatorial distance, not only
because it takes integer values but also because it allows us to work with the
edge graph of the polytopes.
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Polytope m n v f k
Tetrahdron 3 3 4 4 1
Cube 4 3 8 6 3
Octahedron 3 4 6 8 2
Dodecahedron 5 3 20 12 5
Icosahedron 3 5 12 20 3

Table 2. Basic combinatorics of the platonic solids. The
numbers m and n are the vertices around a facet and the
facets around a vertex, respectively. The numbers v and f are
the numbers of vertices and facets respectively. The number
k is the diameter of the edge graph.

2. Simple cases

Throughout we will consider a platonic solid P and let m,n, v, f, k denote
its fundamental invariants as indicated in Table 2. We want to determine
the homotopy type of the Vietoris–Rips complexes VR≤r(P

(0)) with respect
to combinatorial distance r ∈ [0, . . . , k] where k the combinatorial diameter.

The first case is trivial.

Lemma 2.1. If 0 ≤ r < 1 then VR≤r is the discrete set of v vertices, so it
is
∨v−1 S0. �

Lemma 2.2. If P = −P (so if P is not the regular simplex) and if k− 1 ≤
r < k then VR≤r ∼= Sv/2−1.

Proof. For x ∈ P (0) the unique point at distance k from x is −x. So a
face of the full simplex on P (0) is in VRr unless it contains two opposite
vertices. From this description we see that VRr is (simplicially isomorphic
to) ˚v S

0 and also the boundary of the v-dimensional cross polytope. Either
description shows that VRr is homeomorphic to Sv/2−1. �

The next case is again trivial.

Lemma 2.3. If m = 3, 1 < k and 1 ≤ r < 2 then VR≤r = P (2), the
two-skeleton, so in particular VRr

∼= S2. �

The casem 6= 3 is slightly more interesting. Note that for these two polytopes
the (combinatorial) diameter of a facet is 2.

Lemma 2.4. If m > 3 and 1 ≤ r < 2 then VR≤r = P (1), so in particular
VR≤r ∼=

∨
f−1 S

1. �

Lemma 2.5. For the dodecahedron, if 2 ≤ r < 3 then VR≤r ' S2. More
precisely every triangulation of P (2) without added vertices arises as a strong
deformation retract of VR≤r.

Proof. There are two kinds of maximal simplices in VR≤r: the first kind, call
it σx, consists of a vertex x of P and its m = 3 neighbors, so in particular it
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is a 3-simplex. The second kind, call it τF , consists of the vertices of a facet
F of P , so it is an (m − 1)-simplex. Matching σx r {x} with σx for all x
describes a deformation retraction of VRr onto the subcomplex of simplices
each of which is contained some facet of P .

It remains to see that τF deformation retracts to any triangulation of F .
This is shown in the following lemma. �

When speaking of a triangulation of a polygon F we shall always mean one
whose vertex set is the vertex set of F . From the following lemma we only
need the statement proved in the first paragraph (because we only care for
n-gons with n ≤ 5), but we prove it in general.

Lemma 2.6. Let F ⊆ R2 be a regular polygon, let T be a triangulation of
F , and let ∆ be the full simplex on the vertex set of F . Regarding T as a
subcomplex of ∆ there is a deformation retraction from ∆ to T .

Proof. First consider the special case where T is the triangulation for which
one fixed vertex v is connected by an edge with each of the other vertices.
We define a matching on the simplices of ∆ not in T by pairing a simplex σ
that contains v with the complementary facet σrv. This matching is acyclic
because if σ ↗ τ then τ contains v and σ does not while if τ ↘ σ then both
σ and τ contain v. So a cycle would have to but cannot involve a simplex
that does not contain v. Using Theorem 1.1 this shows that ∆ deformation
retracts onto T .

It is well-known, [Wag36], that any triangulation T of F can be transformed
into any other triangulation T ′ by a sequence of flips which consist in replac-
ing a quadrangle γ that is triangulated by a diagonal δ and triangles α, β
by that quadrangle with its other triangulation which has diagonal δ′ and
triangles α′, β′:

δ

α

β

 δ′α′ β′

Thus given a matching on simplices of ∆ not in T it suffices to remove
α′, β′, δ′ from the matching and add α, β, δ to it. In the original matching
the 3-simplex corresponding to γ has to be matched with one of α′ and β′ and
δ′ with the other of the two. Removing these two matches from the matching
and adding instead the corresponding matches without primes leads to the
required matching. The new matching is acyclic because in the resulting
matching the edges of the quadrangle τ are unmatched as are all triangles
except for the one matched with the simplex corresponding to τ . Thus every
maximal ↗-↘-sequence involving α, β, δ ends in an unmatched edge or an
unmatched triangle and, in particular, does not cycle. �
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At this point we have proven the theorem except for the case of the dodec-
ahedron with δ3 < r ≤ δ4.

3. Warmup: the cube

We could now proceed directly to the proof of the remaining case and the
reader is free to do so in the next section. However, we choose to first
give an alternative proof of the fact that if P is the cube then the complex
X := VR≤2(P

(0) is a 3-sphere (this follows from Lemma 2.2 above). We do
so for two reasons: first and most importantly, this proof follows the same
strategy as the proof for the dodecahedron in the next section while being
simpler, and second, it generalizes to higher-dimensional cubes.

The complex X contains three types of maximal simplices of diameter 2,
each of which is a 3-simplex:

Such a picture determines a class of simplices as follows: the graph can
be embedded as a full subgraph into the edge graph of the cube and any
such embedding gives a simplex, which consists of the images of the colored
vertices. Thus the first kind consists of a vertex and its neighbors and there
are eight of these, call them α1, . . . , α8. The second consists of the vertices
of a square and there are six of these, call them β1, . . . , β6. The last kind
finally consists of every other vertex of the cube and there are two of these,
call them τ1, τ2.

Now we can understand X = VR≤2 as follows. We first consider the sub-
complex Y := X r {τ1, τ2} obtained by removing the two simplices of the
third kind. We define a matching on this subcomplex matching each αi with
the 2-simplex consisting of the outer vertices (its unique facet any two of
whose vertices have distance two). This defines a deformation retraction of
Y onto the subcomplex consisting of simplices that are contained in some
βi. This complex is the 2-skeleton of the cube with each square fattened up
to a 3-simplex. In particular, it is easily seen to be homotopy equivalent to a
2-sphere. More precisely, we can use Lemma 2.6 to retract each βi to either
of the two subdivisions of its corresponding square.

At this point we know that X is the 2-sphere Y with two 3-balls τ1, τ2 added
to it. This is very plausibly but not necessarily a 3-sphere. It remains to
see how the balls are glued in, i.e. determine the maps ∂τi ∼= S2 → S2 ' Y
up to homotopy. In order to do so, we need to trace how the facets of each
τj are mapped under the deformation retraction defined by the matching.
Each facet of τj is matched with some αi and thus is retracted to the other
three facets of αi. Thus the boundary of τ1 is retracted to some subdivision
of the boundary of the 2-skeleton of the cube — and τ2 to a different one:
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Since both of these subdivisions are retracts of Y we see that the maps
∂τi → Y are homotopy equivalences. It follows that X is indeed a 3-sphere.

The proof for the dodecahedron in the following section differs from this one
in two aspects: first, there are ten rather than two 3-simplices to remove and
second, the deformation retraction is more complicated.

Higher-dimensional cubes at radius 2. The above proof generalizes to
VR≤2(Cn) where Cn is an n-dimensional cube. The result has been shown
in [AA22] so we only sketch our proof. The maximal simplices of diameter
2 are again of three types: 1-balls around vertices, 2-faces, and the third
type above of which there are two within any 3-face. As above one can
remove the simplices of the third type and retract the remaining complex to
a subdivision of the 2-skeleton. It is clear that the 2-skeleton is a wedge of
spheres and that its homology is generated by the 2-skeleta of 3-faces. It is
also clear (from the discussion of the 3-cube above) that each 2-skeleton of a
3-face gets filled in by one of the simplices of the third kind. Thus VR≤2(Cn)
is a wedge of 3-spheres and it remains to determine their number which is
twice the number of 3-faces minus b2(C

(2)
n ).

The number fkn of k-faces of the n-cube satisfies the relation fk+1
n+1 = fk+1

n +fkn
with f00 = 1 and fkn = 0 for n < k. This leads to the generating function

α(x, y) =
∑
n,k≥0

fknx
nyk =

1

1− (2 + y)x
.

Since C(k)
n is a wedge of k-spheres, bk(C

(k)
n ) is the reduced Euler characteristic

signed appropriately:

ẽkn = (−1)k(χ(Cn)(k) − 1) = bk(C(k)
n )

Its generating function is

β(x, y) =
∑
n,k≥0

ẽknx
nyk

=
1

1 + y
α(x, y)− 1

(1 + y)(1− x)
=

x

(1− x)(1− (2 + y)x)
.
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Specializing to fixed k we see that the generating functions in n for fkn and
bk(C

(k)
n ) are

αk(x) =
1

k!

∂k

∂yk
α(x, 0) =

xk

(1− 2x)k+1
and

βk(x) =
1

k!

∂k

∂yk
β(x, 0) =

xk+1

(1− x)(1− 2x)k+1
.

Since b3(VR≤2(Cn)) = 2f3n − b2(C
(2)
n ) it has generating function

2α3 − β2 =
x3

(1− x)(1− 2x)4
.

One notices, in particular, that this is 1/x · β3 so that b3(VR≤2(Cn)) =

b3(C
(3)
n+1), possibly hinting at a different approach.

4. The interesting case

In this section we treat the case left after Section 2: P is the dodecahedron
and 3 ≤ r < 4, so we may just take r = 3. Let Γ be the edge graph of P . We
follow the strategy from the last section and start by identifying the critical
simplices:

Lemma 4.1. The complex VR≤r contains 10 tetrahedra τ1, . . . , τ10 such that
any two of its vertices have distance 3. �

These are well-known: under the action of the rotation group H of the do-
decahedron they fall into two orbits and the action on each orbit witnesses
that the rotation group is H ∼= A5. Let G = Aut(P ) denote the full symme-
try group of P , so G = H × {±1}. As in the previous section, we want to
refer to G-orbits or types of simplices: when drawing a graph Λ with a set
B of vertices colored, it describes at the same time all simplices obtained as
ι(B) were ι : Λ → Γ is an embedding as a full subgraph. Taking the same
graph and coloring a subset B′ ⊆ B we have specified for every simplex ι(B)
a face ι(B′). With this notation the simplices in Lemma 4.1 are those of the
type

.

The main technical ingredient to our proof is:

Proposition 4.2. There is a strong deformation retraction of VR≤3r{τ1, . . . , τ10}
to VR≤2. More precisely there is a partial acyclic matching on the simplices
of VR≤3 of diameter 3 whose only critical simplices are τ1, . . . , τ10.
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Figure 1. Matched simplices with C3 and C2 symmetry.

Figure 2. Matched simplices with broken C2 symmetry.

The matching will be G-equivariant up to the restrictions discussed in Sec-
tion 1. Since the matching cannot quite be equivariant, we make the fol-
lowing modification to our approach of specifying simplices: we fix once and
for all a random orientation of the edges of Γ. Now we orient at most one
edge of Λ and require the embedding ι : Λ→ Γ to take that edge to an edge
oriented in the same sense. Every unoriented edge of Λ can be mapped to
an edge with arbitrary orientation.

To illustrate the significance of this consider the three types of simplices
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Figure 3. Matched simplices with trivial stabilizer.

, , and .

We want to match the first type with the second. Note however, that the
first type has a symmetry which the second and third type do not have.
So without the edge orientation the first type would have the second as a
facet in two ways but it cannot be matched with both. Thus the role of the
edge orientation is to distinguish between (co)facets of simplices that have
symmetry.

With these explanations on how to read pictures, the matching referred to in
Proposition 4.2 is the one given in Figures 1, 2 and 3. The heuristic to pro-
ducing this matching was to preserve symmetry when possible as in Figure 1,
and to otherwise destroy and recover it (as discussed in the introduction) as
in Figure 2.

Proof of Proposition 4.2. To prove the proposition we need to verify that
every simplex of diameter 3 in VR≤3(Γ) except for τ1, . . . , τ10 appears in
Figures 1, 2 and 3. This is tedious but easy and we leave it to the reader (or
their computer).

It remains to see that the matching is acyclic. This is done by showing
that the relations↗ and↘ on simplices of VR≤3(Γ) of adjacent dimensions
d, d + 1 can be refined to a partial order. More precisely, a potential ↗-↘
cycle in dimensions d, d + 1 would involve only simplices that are part of a
matched pair in these dimensions. It thus suffices to show that the simplices
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Figure 4. Acyclicity of the matching in dimensions 5 and 6.
A red arrow from σ to τ means that σ ↗ τ . All relations ↗
are shown and there are no relations↘ among the simplices.
The point is that every arrow is pointing right.

Figure 5. Acyclicity of the matching in dimensions 4 and 5.
A red arrow from σ to τ means that σ ↗ τ . A black arrow
from τ to σ means that τ ↘ σ. All relations ↗ are shown
and all relations ↘ among the simplices as well. The point
is that every arrow is pointing right.

that are part of such a matching can be ordered. Such orders are depicted
in Figures 4 to 8. �

To prove our theorem it remains to show that the map

∂τi ∼= S2 → S2 ' VR≤3r{τ1, . . . , τ10}
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Figure 6. Acyclicity of the matching in dimensions 3 and 4.
The meaning is as in Figure 5.

Figure 7. Acyclicity of the matching in dimensions 2 and 3.
The meaning is as in Figure 5.

Figure 8. Acyclicity of the matching in dimensions 1 and 2.
The meaning is as in Figure 5.
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along which τi is glued in is a homotopy equivalence. To study this map is
a purely algorithmic matter: we just have to homotope it along the defor-
mation retraction from Proposition 4.2. In order to facilitate the exposition
we make use of Hurewicz’s theorem:

Theorem 4.3 ([Hat02, Theorem 4.32]). If a space X is 1-connected then
the map π2(X)→ H2(X) is an isomorphism.

Therefore it suffices to show:

Proposition 4.4. For each i the homology class [∂τi] generates

H2(VR≤3r{τ1, . . . , τ10}) ∼= H2(VR≤2) ∼= H2(S
2) ∼= Z.

In order to compute integral homology we need to deal with oriented sim-
plices. We do this by adding numbers to the colored blue vertices B of our
defining graphs Λ. As usual permuting the numbers of a simplex σ by an
even permutation gives the same simplex, while permuting them by an odd
permutation gives the simplex with opposite orientation, i.e. −σ. Our sign
convention for boundaries is that

∂[1, . . . , n] =
n∑

i=1

(−1)i[1, . . . , î, . . . , n].

Proof of Proposition 4.4. The facets of the simplices τ1, . . . , τ10 are of type

ϕ =

2

3

1

so we need to know how they are mapped (homologically) under the defor-
mation retraction. Our matching matches them with the simplices

ψ = 4

2

3

1

.

In order to determine the image of ϕ under the retraction we compute the
boundary of ψ as

∂ψ = − 3

1

2 + 32

1

− 3

2

1

+

2

3

1

.

Thus under the first step of the retraction ϕ is taken to

3

1

2 + 23

1

+ 3

2

1

.
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Each summand is again matched with a cofacet and we compute its boundary
as

∂ 3
4

1

2 = − 2
3

1 + 2
3

1

− 3

1

2 + 3

1

2

so the image of ϕ after two retraction steps is

ω = 2
3

1 + 2
3

1

+ 2

3 1

+ 3
2

1

+ 3
2

1

+ 3

2
1

+
3

1

2 +
3

2

1

+

3
1

2

The summands in the first two rows lie in VR≤2(Γ). For the summands in
the last row

ρ = 3

1

2

or ρ′ = 3

1

2

the retraction image depends on edge orientations in Γ. While ρ is matched
with a facet and therefore does not contribute to second homology, ρ′ is
matched with a cofacet whose boundary is

∂ 3 4

1

2

= 1 3

2

+ 2 3

1
+ 3

2

1

+ 3

1

2

.

What we retain from this is that the sum ρ+ ρ′ is retracted to

κ+ κ′ := 2 3

1

+ 3 2

1

It remains to make one observation. Each simplex τi has four facets of type
ϕ. While we do not know whether a single simplex of type ϕ retracts through
simplices of type ρ′ or ρ and thus has κ in its retraction image or not, the
sum of the four facets will have ρ + ρ′ in its retraction image and therefore
κ+ κ′ as well.
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Thus in summary the boundary of τi retracts to the sum of four chains of
type

ω′ = 2
3

1 + 2
3

1

+ 2

3 1

+ 3
2

1

+ 3
2

1

+ 3

2
1

+
3

2 1

+
3

2

1

+

32

1

each of which corresponds to the subdivision

of the corresponding subcomplex of P (2). The sum represents a homology
class generating H2(P

(2)). �

Remark 4.5. From the proof one sees that H3(VR≤3(P
(2))) is equivariantly

isomorphic to the ZG-module

ker(Zτ1 ⊕ . . .⊕ Zτ10
ϕ→ Z)

where ϕ(τi) = 1 for all i. This allows to read off the G-module structure, at
least with field coefficients. When numbered appropriately, H ∼= A5 acts on
each of τ1, . . . , τ5 and τ6, . . . , τ10 by its natural permutation representation
while the {±1} factor swaps τi and τi+5 for 1 ≤ i ≤ 5.

Using representation notation we let 1 ⊕ ν be the natural representation of
A5 where 1 is the trivial representation and ν is the (4-dimensional) standard
representation. We also let 1 and σ be the trivial and the sign representation
of {±1} respectively. We denote by the same symbols the representations of
G obtained by composing with the quotient homomorphism (which makes
sense because both trivial representations give the trivial representation).
Then our discussion above shows that Qτ1⊕ . . .⊕Qτ10 is the representation
(1⊕ ν)⊗ (1⊕ σ) = 1⊕ σ ⊕ ν ⊕ (ν ⊗ σ). It follows that H3(VR≤3(P

(2));Q)
as a G-representation is σ ⊕ ν ⊕ (ν ⊗ σ).
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