ON COVERING DIMENSION AND SECTIONS OF VECTOR BUNDLES

M. C. CRABB

Abstract

An elementary result in point-set topology is used, with knowledge of the mod 2 cohomology of real projective spaces, to establish classical results of Lebesgue and Knaster-Kuratowski-Mazurkiewicz, as well as the topological central point theorem of Karasev, which is applied to deduce results of HellyLovász, Bárány and Tverberg.

1. Introduction

Throughout this note, X will be a compact Hausdorff topological space and ξ_{1}, \ldots.., $\xi_{n}(n \geqslant 1)$ will be n finite-dimensional real vector bundles over X. We write $\xi=\xi_{1} \oplus \cdots \oplus \xi_{n}$.

Suppose that A_{1}, \ldots, A_{n} are closed subspaces covering X and that, for each $k \in\{1, \ldots, n\}$, the restriction of ξ_{k} to A_{k} admits a nowhere zero section, s_{k}^{\prime} say. By Tietze's theorem, s_{k}^{\prime} extends to a section s_{k} of ξ_{k} on X. Then $s=\left(s_{1}, \ldots, s_{n}\right)$ is a nowhere zero section of ξ. (And conversely, if ξ admits a nowhere zero section $s=\left(s_{k}\right)$, we may construct such closed subspaces A_{k} by choosing an inner product on each ξ_{k} and setting $A_{k}=\left\{x \in X \mid\left\|s_{k}(x)\right\|=\max \left\{\left\|s_{j}(x)\right\| \mid 1 \leqslant j \leqslant n\right\}\right\}$.) The main result of this paper, modelled on a cohomological lemma [8, Lemma 3.2] of Karasev and stated as Theorem 2.1, is in the same vein as this classical observation. The methods are from elementary point-set topology. As applications we derive in Sections 3 and 4, using ideas introduced by Karasev in [7, 8], a classical result of Lebesgue and Knaster-Kuratowski-Mazurkiewisz and the more recent topological central point theorem of Karasev with, as corollaries, results of Helly-Lovász and Bárány [2].

When we discuss Euler classes, we shall use representable cohomology as, for example, in [5, Section 8].

From the foregoing summary it should be clear that most of the ideas presented in this note derive from the paper [8] of Karasev. It is hoped, nevertheless, that the elementary approach taken here may have some conceptual advantages.

2. The principal Result

Theorem 2.1. Let ξ_{1}, \ldots, ξ_{n} be n finite-dimensional real vector bundles over a compact Hausdorff topological space X. Suppose that $\left(U_{i}\right)_{i \in I}$ is a finite open cover of X such that each point of X lies in U_{i} for at most n indices $i \in I$.

[^0]Suppose that for each $i \in I$ and $k \in\{1, \ldots, n\}$ there exists a section of ξ_{k} with no zeros in U_{i}. Then $\xi=\xi_{1} \oplus \cdots \oplus \xi_{n}$ admits a global nowhere zero section.

Proof. We begin with an argument from [10, Lemma 2.4]. Choose a partition of unity $\left(\varphi_{i}\right)_{i \in I}$ subordinate to the cover. For $x \in X$, define

$$
J(x)=\left\{j \in I \mid \varphi_{j}(x)=\max \left\{\varphi_{i}(x) \mid i \in I\right\}\right\}
$$

By assumption $\# J(x) \leqslant n$ (and $J(x)$ is non-empty). For a non-empty subset $J \subseteq I$, we now set

$$
U_{J}=\left\{x \in X \mid \text { for all } j \in J, \varphi_{j}(x)>0 \text { and } \varphi_{i}(x)<\varphi_{j}(x) \text { for all } i \in I-J\right\}
$$

It is clearly an open subset of $\bigcap_{j \in J} U_{j}$. Moreover, $x \in U_{J(x)}$, so that the sets U_{J} cover X. If J and J^{\prime} are distinct subsets of I with $\# J=\# J^{\prime}$, then $U_{J} \cap U_{J^{\prime}}=\emptyset$. (For there exist elements $j \in J$, with $j \notin J^{\prime}$, and $j^{\prime} \in J^{\prime}$, with $j^{\prime} \notin J$. .)

Choose a partition of unity $\left(\psi_{J}\right)$ subordinate to the open cover $\left(U_{J}\right)_{J \subseteq I: 1 \leqslant \# J \leqslant n}$ of X and, for each J with $\# J=k \leqslant n$, a section s_{J} of ξ_{k} which is nowhere zero on U_{J} (possible because $U_{J} \subseteq U_{i}$ if $i \in J$). We can then define a section s_{k} of ξ_{k} by

$$
s_{k}(x)=\sum_{\# J=k} \psi_{J}(x) s_{J}(x)
$$

Notice that, if $\psi_{J}(x) \neq 0$ for some J with $\# J=k$, then $s_{k}(x) \neq 0$. For, if J^{\prime} is a different subset with $\# J^{\prime}=k, \psi_{J^{\prime}}(x)=0$.

The section $s=\left(s_{1}, \ldots, s_{n}\right)$ of ξ is nowhere zero.
Corollary 2.2. Suppose that $\left(A_{i}\right)_{i \in I}$ is a finite closed cover of X such that each point of X lies in A_{i} for at most n indices $i \in I$.

Suppose that for each $i \in I$ and $k \in\{1, \ldots, n\}$ the restriction of ξ_{k} to A_{i} admits a nowhere zero section. Then ξ admits a global nowhere zero section.

Proof. It is an elementary exercise to show that there is an open cover $\left(U_{i}\right)_{i \in I}$ such that (i) $A_{i} \subseteq U_{i}$, (ii) for each (i, k) there exits a global section of ξ_{k} with no zeros in U_{i}, and (iii) each point of X lies in at most n of the sets U_{i}. Then we can apply Theorem 2.1.
(Here are the details when $\# I>n$. Consider a subset $J \subseteq I$ with $\# J>n$. The open sets $X-A_{j}, j \in J$, cover X. Choose a partition of unity $\left(\chi_{j}\right)_{j \in J}$ subordinate to this cover. Then we can define $U_{j}^{J}=\left\{x \in X \mid \# J \cdot \chi_{j}(x)<1\right\}$. By construction $\bigcap_{j \in J} U_{j}^{J}=\emptyset$ (because $\sum_{j \in J} \chi_{j}(x)=1$ for any x) and $A_{j} \subseteq U_{j}^{J}$ for $j \in J$.

Every nowhere zero section of ξ_{k} over the closed set A_{i} extends to a global section of ξ_{k} and such a section will be nowhere zero on an open neighbourhood of A_{i}. So it is easy to choose U_{i} in the intersection of the sets U_{i}^{J} with $\# J>n$ and $i \in J$ to satisfy (i) and (ii). And then, for any set J with $\# J>n$, we have $\bigcap_{i \in J} U_{i}=\emptyset$.)

3. A theorem of Lebesgue

If the $\bmod 2$ cohomology Euler class $e(\xi)$ of ξ is non-zero, the zero-set $\operatorname{Zero}(s)=$ $\{x \in X \mid s(x)=0\}$ of any section s of ξ is non-empty.

Proposition 3.1. Let $p: X \rightarrow Y$ be a continuous map from X to a compact Hausdorff space Y. Suppose that $\left(B_{i}\right)_{i \in I}$ is a finite cover of Y by closed sets such that any point of Y lies in at most n of the sets B_{i}.

If the mod 2 cohomology Euler class $e(\xi)$ of ξ is non-zero, then there exist $i \in I$ and $k \in\{1, \ldots, n\}$ such that $p(\operatorname{Zero}(s)) \cap B_{i}$ is non-empty for each section s of ξ_{k}.

Proof. We take $A_{i}=p^{-1}\left(B_{i}\right)$ in Corollary 2.2. Since $e(\xi) \neq 0, \xi$ does not admit a nowhere zero section. Hence there is a pair (i, k) such that $\operatorname{Zero}(s) \cap B_{i} \neq \emptyset$ for every section s of ξ_{k}.

For a finite set V of cardinality $n+1$, we write $\mathbb{R}[V]$ for the $(n+1)$-dimensional real vector space of maps $t: V \rightarrow \mathbb{R}, \Delta(V)$ for the n-simplex of maps t such that $t(v) \geqslant 0$ for all $v \in V$ and $\sum_{v} t(v)=1, S(\mathbb{R}[V])$ for the unit n-sphere in $\mathbb{R}[V]$ of vectors t with $\sum_{v} t(v)^{2}=1$ and $P(\mathbb{R}[V])$ for the n-dimensional real projective space of lines $[t]$ in $\mathbb{R}[V]$ (where $t \in \mathbb{R}[V]$ is non-zero). There is a surjective map

$$
\pi_{V}: P(\mathbb{R}[V]) \rightarrow \Delta(V)
$$

defined by $\left(\pi_{V}[t]\right)(v)=t(v)^{2}$ for $t \in S(\mathbb{R}[V])$. There is also an embedding

$$
\sigma_{V}: \Delta(V) \hookrightarrow S(\mathbb{R}[V])
$$

defined by $\left(\sigma_{V}(t)(v)=\sqrt{t(v)}\right.$, such that the composition

$$
\Delta(V) \xrightarrow{\sigma_{V}} S(\mathbb{R}[V]) \rightarrow P(\mathbb{R}[V]) \xrightarrow{\pi_{V}} \Delta(V)
$$

is the identity. The Hopf line bundle over $P(\mathbb{R}[V])$, with fibre $\mathbb{R} t \subseteq \mathbb{R}[V]$ at $[t]$, is denoted by H.

The support, $\operatorname{supp}(t)$, of $t \in \mathbb{R}[V]$ is the set of points $v \in V$ such that $t(v) \neq 0$. For an integer $d, 0 \leqslant d \leqslant \# V$, we write $\mathcal{S}_{d}(V)$ for the set of finite subsets T of $\Delta(V)$ such that any two elements of T have disjoint supports and $\# V-\# T=d$. For $T \in \mathcal{S}_{d}(V)$, we write Δ_{T} for the convex hull of T; it is a simplex of codimension d in $\Delta(V)$.

Lemma 3.2. For $T \in \mathcal{S}_{d}(V)$, the simplex Δ_{T} can be expressed as $\pi_{V}(\operatorname{Zero}(s))$ for some section s of the vector bundle $d H=\mathbb{R}^{d} \otimes H$.

Proof. Let E_{T} be the codimension d vector subspace of $\mathbb{R}[V]$ spanned by $\sigma_{V}(T)$. The section s_{T} of $\operatorname{Hom}\left(H, \mathbb{R}[V] / E_{T}\right)$ over $P(\mathbb{R}[V])$ given by the projection $s_{T}([t])=$ $\left\{[t] \hookrightarrow \mathbb{R}[V] \rightarrow \mathbb{R}[V] / E_{T}\right\}$, for $t \in S(\mathbb{R}[V])$, has the property that $\pi_{V}\left(\operatorname{Zero}\left(s_{T}\right)\right)=$ Δ_{T}. Choose some isomorphism $\mathbb{R}[V] / E_{T} \cong \mathbb{R}^{d}$ to get the required section s.

Theorem 3.3. Let $\left(V_{l}\right)_{l=1}^{m}$ be a family of m finite sets with $\# V_{l}=d_{l} n_{l}+1$, where $d_{l} \geqslant 1$ and $n_{l} \geqslant 1, l=1, \ldots, m$, are positive integers. Write $n=n_{1}+\ldots+n_{m}$. Suppose that $\left(B_{i}\right)_{i \in I}$ is a finite closed cover of

$$
Y=\Delta\left(V_{1}\right) \times \cdots \times \Delta\left(V_{m}\right)
$$

such that any point of Y lies in at most n of the sets B_{i}.
Then for some $i \in I$ and $l \in\{1, \ldots, m\}$ the projection of B_{i} to the lth factor $\Delta\left(V_{l}\right)$ meets each of the codimension d_{l} simplices Δ_{T} for $T \in \mathcal{S}_{d_{l}}\left(V_{l}\right)$.

The Lebesgue theorem [8, Theorem 4.1] is the special case $n_{l}=1, d_{l}=1$, for all l; the case $m=1, d_{1}=1$ is a result of Knaster, Kuratowski, Mazurkiewicz [8, Remark 2.2].

We follow the method of Karasev [8, Theorems 2.1 and 4.1].
Proof. This is an immediate consequence of Proposition 3.1. Take p to be the product

$$
\pi_{V_{1}} \times \ldots \times \pi_{V_{m}}: X=P\left(\mathbb{R}\left[V_{1}\right]\right) \times \cdots \times P\left(\mathbb{R}\left[V_{m}\right]\right) \rightarrow Y=\Delta\left(V_{1}\right) \times \cdots \times \Delta\left(V_{m}\right)
$$

and ξ_{k} to be the multiple $d_{l} H_{l}$ of the Hopf bundle H_{l} over $P\left(\mathbb{R}\left[V_{l}\right]\right)$ if $n_{1}+\ldots+n_{l-1}<$ $k \leqslant n_{1}+\ldots+n_{l}$. The Euler class $e(\xi)=e\left(H_{1}\right)^{d_{1} n_{1}} \ldots e\left(H_{m}\right)^{d_{m} n_{m}}$ is non-zero.

The next lemma gives a way of checking that $e(\xi)$ in the application of Proposition 3.1 is non-zero.
Lemma 3.4. Suppose that X is a closed subspace of a compact Hausdorff space \hat{X} and that ξ is the restriction of a vector bundle $\hat{\xi}$ over \hat{X}. Let η be a real vector bundle over \hat{X} with the property that the restriction of η to each connected component of the complement $\hat{X}-X$ admits a nowhere zero section.

If the mod 2 cohomology Euler class $e(\hat{\xi} \oplus \eta)$ is non-zero, then $e(\xi)$ is non-zero.
Proof. Fix a Euclidean metric on η. For each component C of $\hat{X}-X$ choose a continuous section s_{C} of the sphere bundle $S(\eta \mid C)$, and choose a continuous function $\rho: \hat{X} \rightarrow[0,1]$ such that $\rho^{-1}(0)=X$. Then one can define a continuous section s of η with zero-set $\operatorname{Zero}(s)=X$ by $s(x)=\rho(x) s_{C}(x)$ if $x \in C, s(x)=0$ if $x \in X$.

Since $e(\hat{\xi} \oplus \eta)=e(\hat{\xi}) \cdot e(\eta)$ is non-zero, the restriction $e(\xi)$ of $e(\hat{\xi})$ to $\operatorname{Zero}(s)=X$ is non-zero. See, for example, [5, Proposition 2.7].

This allows us to deduce Karasev's strengthened KKM theorem [8, Theorem 2.1]).

Proposition 3.5. Let $\left(B_{i}\right)_{i \in I}$ be closed subsets of a simplex $\Delta(V)$ with vertex set V of cardinality $d n+r+1$, where $d \geqslant 1$ and $r \geqslant 0$ are integers, such that any point of $Y=\bigcup_{i \in I} B_{i}$ lies in at most n of the sets B_{i}. Then, either for some $i \in I$ the subset B_{i} meets each codimension d simplex Δ_{T} for $T \in \mathcal{S}_{d}(V)$, or some connected component of $\Delta(V)-Y$ intersects every dn-dimensional simplex Δ_{T} for $T \in \mathcal{S}_{r}(V)$.
Proof. Considering $\pi_{V}: \hat{X}=P(\mathbb{R}[V]) \rightarrow \hat{Y}=\Delta(V)$, take $X \subseteq \hat{X}$ to be $\pi_{V}^{-1}(Y)$ and $p: X \rightarrow Y$ to be the restriction of π_{V}. Let each ξ_{k} be the restriction of $d H$, so that ξ is the restriction of $\hat{\xi}=d n H$ to X. Take $\eta=r H$, so that $e(\hat{\xi} \oplus \eta)=e(H)^{d n+r}$ is non-zero.

If, for each component of $\Delta(V)-Y$, written as the image $\pi_{V}(C)$ of a component C of $\hat{X}-X$, there is some simplex Δ_{T}, where $T \in \mathcal{S}_{r}(V)$, such that $\pi_{V}(C) \cap \Delta_{T}=\emptyset$, then Lemma 3.2 provides a nowhere zero section of $r H=\eta$ over C. By Lemma 3.4, $e(\xi)$ is then non-zero, and we can apply Proposition 3.1 to deduce the existence of an $i \in I$ such that B_{i} meets each codimension d simplex.

4. Karasev's topological central point theorem

An early result of the following type appears in [12, Lemma 3.1].
Proposition 4.1. Let $f: X \rightarrow Z$ be a continuous map from X to a compact Hausdorff space Z with covering dimension less than n. Suppose that the mod 2 cohomology class $e(\xi)$ is non-zero.

Then there exists a point $z \in Z$ and $k \in\{1, \ldots, n\}$ such that $z \in f(\operatorname{Zero}(s))$ for each section s of ξ_{k}.

Proof. Suppose that for each point $z \in Z$ there exist sections s_{k}^{z} of $\xi_{k}, 1 \leqslant k \leqslant n$, such that $z \notin f\left(\operatorname{Zero}\left(s_{k}^{z}\right)\right)$ for each k. Then the open sets $\left(Z-f\left(\operatorname{Zero}\left(s_{1}^{z}\right)\right) \cap \cdots \cap\right.$ $\left(Z-f\left(\operatorname{Zero}\left(s_{n}^{z}\right)\right), z \in Z\right.$, cover Z. Since Z is compact with covering dimension $<n$, this open cover may be refined by a finite open cover $\left(W_{i}\right)_{i \in I}$ such that each point of Z lies in at most n of the sets W_{i}.

Set $U_{i}=f^{-1}\left(W_{i}\right)$. Then we may apply Theorem 2.1 to the open cover $\left(U_{i}\right)_{i \in I}$ of X to conclude that there exist i and k such that for every section s of ξ_{k} the
zero-set $\operatorname{Zero}(s)$ meets U_{i}. So $W_{i} \nsubseteq Z-f(\operatorname{Zero}(s))$ for every section s of ξ_{k}. But $W_{i} \subseteq Z-f\left(\operatorname{Zero}\left(s_{k}^{z}\right)\right)$ for some $z \in Z$. This contradiction completes the proof.

Theorem 4.2. Let $\left(V_{l}\right)_{l=1}^{m}$ be a family of m finite sets with $\# V_{l}=d_{l} n_{l}+1$, where $d_{l}, n_{l} \geqslant 1, l=1, \ldots, m$ are positive integers. Write $n=n_{1}+\ldots+n_{m}$. Suppose that

$$
g: Y=\Delta\left(V_{1}\right) \times \cdots \times \Delta\left(V_{m}\right) \rightarrow Z
$$

is a continuous map to a compact Hausdorff space Z with covering dimension less than n.

Then for some $l \in\{1, \ldots, m\}$

$$
\bigcap_{T \in \mathcal{S}_{d_{l}}\left(V_{l}\right)} g\left(\prod_{j<l} \Delta\left(V_{j}\right) \times \Delta_{T} \times \prod_{j>l} \Delta\left(V_{j}\right)\right) \neq \emptyset
$$

Karasev's topological central point theorem, as in [7, Theorem 1.1] and [8, Theorem 5.1], is the special case $m=1$.

Proof. We apply Proposition 4.1 with X and ξ_{k} as in Theorem 3.3 and with f equal to the composition of

$$
\pi_{V_{1}} \times \cdots \times \pi_{V_{m}}: X=P\left(\mathbb{R}\left[V_{1}\right]\right) \times \cdots \times P\left(\mathbb{R}\left[V_{m}\right]\right) \rightarrow Y=\Delta\left(V_{1}\right) \times \cdots \times \Delta\left(V_{m}\right)
$$

with $g: Y \rightarrow Z$. We recall that $\xi_{k}=d_{l} H_{l}$ if $n_{1}+\ldots+n_{l-1}<k \leqslant n_{1}+\ldots+n_{l}$, so that the Euler class $e(\xi)=e\left(H_{1}\right)^{d_{1} n_{1}} \cdots e\left(H_{m}\right)^{d_{m} n_{m}}$ is non-zero.

As an application we prove a result of Helly-Lovász [2, Theorem 3.1].
Corollary 4.3. Suppose that $C_{l, v}, l=1, \ldots, m, v \in V_{l}, \# V_{l}=d_{l}+1$, are convex subsets of a real vector space E with the property that the intersection $C_{1, v_{1}} \cap \cdots \cap$ $C_{m, v_{m}}$ is non-empty for each $\left(v_{1}, \ldots, v_{m}\right) \in V_{1} \times \cdots \times V_{m}$.

If $\operatorname{dim} E<m$, then, for some l, the intersection $\bigcap_{v \in V_{l}} C_{l, v}$ is non-empty.
Proof. For each $\left(v_{1}, \ldots, v_{m}\right) \in V_{1} \times \cdots \times V_{m}$ choose $z_{v_{1}, \ldots, v_{m}} \in C_{1, v_{1}} \cap \cdots C_{m, v_{m}}$. We apply Theorem 4.2 with $n=m, n_{l}=1$, and $Z \subseteq E$ the convex hull of the points $z_{v_{1}, \ldots, v_{m}}$. Take g to be the piecewise linear map

$$
\left(\sum_{v_{1} \in V_{1}} t_{1}\left(v_{1}\right), \ldots, \sum_{v_{m} \in V_{m}} t_{m}\left(v_{m}\right)\right) \mapsto \sum_{\left(v_{1}, \ldots, v_{m}\right) \in V_{1} \times \cdots \times V_{m}} t_{1}\left(v_{1}\right) \cdots t_{m}\left(v_{m}\right) z_{v_{1}, \ldots, v_{m}} \in Z .
$$

We conclude from Theorem 4.2, noting that a codimension d_{l} simplex in $\Delta\left(V_{l}\right)$ is a point, that there is some l and $z \in Z$ such that, for each $v \in V_{l}$ the vector z can be written as

$$
z=\sum_{\left(v_{1}, \ldots, v_{m}\right) \in V_{1} \times \cdots \times V_{m}: v_{l}=v} t_{1}\left(v_{1}\right) \cdots t_{m}\left(v_{m}\right) z_{v_{1}, \ldots, v_{m}},
$$

where $\sum_{v_{j} \in V_{j}} t_{j}\left(v_{j}\right)=1$ for each j and so $\sum_{\left(v_{1}, \ldots, v_{m}\right)} t_{1}\left(v_{1}\right) \cdots t_{m}\left(v_{m}\right)=1$. Since each $z_{v_{1}, \ldots, v_{m}}$ with $v_{l}=v$ lies in the convex set $C_{l, v}$, we see that $z \in C_{l, v}$, as required.

Bárány's dual result [2, Theorem 2.1] (as formulated in [6, Theorem 3.1] and [9, Theorem 3]) can be obtained in a similar fashion.

Corollary 4.4. Let $K \subseteq E$ be a non-empty compact convex subspace of a finitedimensional real vector space E. Suppose that V_{1}, \ldots, V_{m} are finite sets with $\# V_{l}=$ $d_{l}+1, l=1, \ldots, m$, and that $\varphi_{l}: V_{l} \rightarrow E$ are maps with the property that for each $\left(v_{1}, \ldots, v_{m}\right) \in V_{1} \times \cdots \times V_{m}$ the convex hull of $\left\{\varphi_{1}\left(v_{1}\right), \ldots, \varphi_{m}\left(v_{m}\right)\right\}$ in E is disjoint from K.

If $\operatorname{dim} E<m$, then, for some $l \in\{1, \ldots, m\}$, the convex hull of $\varphi_{l}\left(V_{l}\right)$ in E is disjoint from K.

Proof. Choose a basepoint $* \in K$. Let A to be the affine space of affine linear maps $z: E \rightarrow \mathbb{R}$ such that $z(*)=-1$. Notice that the dimension of A, as affine space, is equal to $\operatorname{dim} E$.

For each $\left(v_{1}, \ldots, v_{m}\right) \in V_{1} \times \cdots \times V_{m}$ choose an affine linear map $z_{v_{1}, \ldots, v_{m}} \in A$ taking strictly positive values on $\left\{\varphi_{1}\left(v_{1}\right), \ldots, \varphi_{m}\left(v_{m}\right)\right\}$ and strictly negative values on K. We again apply Theorem 4.2 with $n=m, n_{l}=1$, and $Z \subseteq A$ the convex hull of the points $z_{v_{1}, \ldots, v_{m}}$. As in the proof of Helly's theorem, take g to be the piecewise linear map

$$
\left(\sum_{v_{1} \in V_{1}} t_{1}\left(v_{1}\right), \ldots, \sum_{v_{m} \in V_{m}} t_{m}\left(v_{m}\right)\right) \mapsto \sum_{\left(v_{1}, \ldots, v_{m}\right) \in V_{1} \times \cdots \times V_{m}} t_{1}\left(v_{1}\right) \cdots t_{m}\left(v_{m}\right) z_{v_{1}, \ldots, v_{m}} \in Z
$$

Theorem 4.2 provides some l and $z \in Z$ such that, for each $v \in V_{l}$ the affine linear map z can be written as

$$
z=\sum_{\left(v_{1}, \ldots, v_{m}\right) \in V_{1} \times \cdots \times V_{m}: v_{l}=v} t_{1}\left(v_{1}\right) \cdots t_{m}\left(v_{m}\right) z_{v_{1}, \ldots, v_{m}},
$$

where $\sum_{\left(v_{1}, \ldots, v_{m}\right)} t_{1}\left(v_{1}\right) \cdots t_{m}\left(v_{m}\right)=1$, so that z takes a strictly positive value at each $\varphi_{l}(v) \in \varphi_{l}\left(V_{l}\right)$ and strictly negative values on K.

As observed by Sarkaria [11] (and expounded in [3]), Tverberg's theorem is an easy consequence of Corollary 4.4. The following generalization, discussed in [3, Theorem 3.8] and due to Arocha, Bárány, Bracho, Fabila and Montejano [1], can be viewed as a coincidence theorem.

Corollary 4.5. Let $r \geqslant 0$ and $m \geqslant 1$ be integers. For $l=1, \ldots, m, s=0, \ldots, r$, let $V_{l, s}$ be non-empty finite sets and $\varphi_{l, s}: V_{l, s} \rightarrow F$ be maps to a finite-dimensional real vector space F satisfying the two conditions:
(i) for each $l \in\{1, \ldots, m\}$, there is a non-zero vector in F that can be expressed, for each $s=0, \ldots, r$, as a linear combination with non-negative coefficients of the elements of $\varphi_{l, s}\left(V_{l, s}\right)$;
(ii) for each s and $v_{l} \in V_{l, s}, l=1, \ldots, m$, the convex hull of $\left\{\varphi_{1, s}\left(v_{1}\right), \ldots, \varphi_{m, s}\left(v_{m}\right)\right\}$ is disjoint from $\{0\}$.

Then, if $r \cdot \operatorname{dim} F<m$, there is a partition $\{1, \ldots, m\}=\bigsqcup_{s=0}^{r} I_{s}$ into $r+1$ non-empty subsets I_{s} and a non-zero vector $c \in F$ such that

$$
\sum_{i \in I_{s}} \lambda_{i} \varphi_{i, s}\left(v_{i}\right)=c \quad \text { for } s=0, \ldots, r
$$

for some $\lambda_{i} \geqslant 0$ and $v_{i} \in V_{i, s}$ for $i \in I_{s}$.
If, further, there is some affine hyperplane H in F that contains all the subsets $\varphi_{l, s}\left(V_{l, s}\right)$ but does not contain 0 , then c may be chosen in the hyperplane H and then $\sum_{i \in I_{s}} \lambda_{i}=1$ for each s.

Proof. Let L_{r} be the quotient of $\mathbb{R}^{r+1}=\bigoplus_{s=0}^{r} \mathbb{R} e_{s}$ by the subspace generated by $e_{0}+\ldots+e_{r}$ and write $\left[e_{s}\right]$ for the coset of e_{s}.

We take $V_{l}=\bigsqcup_{s=0}^{r} V_{l, s}, E=L_{r} \otimes F, \varphi_{l}: V_{l} \rightarrow E$ defined by $\varphi_{l}(v)=\left[e_{s}\right] \otimes \varphi_{l, s}(v)$ for $v \in V_{l, s}$, and apply Corollary 4.4 with $K=\{0\}$. By assumption, the convex hull of each $\varphi_{l}\left(V_{l}\right)$ in E contains 0 . (Notice that, if $a_{1}, \ldots, a_{r} \in F$, then $\sum_{s}\left[e_{s}\right] \otimes a_{s}=0$ if and only if $a_{1}=a_{2}=\cdots=a_{r}$.)

So there exist $v_{i} \in V_{i}, i=1, \ldots, m, \lambda_{i} \geqslant 0$, and a non-zero $c \in F$ such that $\sum_{i: v_{i} \in V_{i, s}} \lambda_{i} \varphi_{i, s}\left(v_{i}\right)=c$. Take $I_{s}=\left\{i \mid v_{i} \in V_{i, s}\right\}$.

If there is a linear form $\alpha: F \rightarrow \mathbb{R}$ taking the value 1 on all $\varphi_{l, s}\left(V_{l, s}\right)$, we can scale to arrange that $\alpha(c)=1$, and then $\sum_{i \in I_{s}} \lambda_{i}=1$.

The original Tverberg theorem is the case in which $V_{l, s}=\{*\}$ is a single point for all l, s and $\varphi_{l, s}(*)$ is independent of s.

Appendix A. Cohomology

It is a classical result that, if $\left(A_{k}\right)_{k=1}^{n}$ is a closed cover of a compact Hausdorff space X and, for each k, e_{k} is a mod 2 cohomology class of X that restricts to zero on A_{k}, then the product $e_{1} \cdots e_{n}$ is zero. Here is the corresponding version of Corollary 2.2, which was used by Karasev in the form [8, Lemma 3.2].

Theorem A.1. Let X be a compact Hausdorff space and let e_{1}, \ldots, e_{n} by classes in the mod 2 cohomology of X.

Suppose that $\left(A_{i}\right)_{i \in I}$ is a finite closed cover of X such that each point of X lies in A_{i} for at most n indices $i \in I$ and that for each $i \in I$ and $k \in\{1, \ldots, n\}$ the restriction of e_{k} to A_{i} is zero.

Then $e_{1} \cdots e_{n}=0$.
Proof. By the argument used in the proof of Corollary 2.2 one can manufacture an open cover $\left(U_{i}\right)$ such that each cohomology class is represented by a map which is null (not just null-homotopic) on U_{i}. The construction in the proof of Theorem 2.1 gives an open cover $\left(U_{J}\right)$ indexed by the non-empty subsets J of I with $\# J \leqslant n$. The map representing e_{k} is null on the disjoint union of the sets U_{J} with $\# J=k$. Since these n open sets cover X, the product $e_{1} \cdots e_{n}$ is represented by the null map, and so the cohomology class $e_{1} \cdots e_{n}$ is zero.

Appendix B. Fibrewise joins

The principal result, Theorem 2.1, extends from sphere bundles to fibre bundles (understood to be locally trivial).
Lemma B.1. Let $E \rightarrow X$ be a fibre bundle over a compact Hausdorff space X with each fibre a compact ENR. Then there is a fibrewise embedding $j: E \hookrightarrow \Omega$ into an open subspace of a trivial real vector bundle $X \times V$ admitting a fibrewise retraction $r: \Omega \rightarrow E$.

Proof. We recall the well known argument (from, for example, [4, II, Lemma 5.8]). Choose a finite open cover $\left(U_{i}\right)_{i=1}^{n}$ of X, with a partition of unity $\left(\varphi_{i}\right)$ subordinate to the cover, and trivializations of the restriction of E to each subspace $U_{i}: E \mid U_{i} \rightarrow$ $U_{i} \times F_{i}: y \mapsto\left(x, f_{i}(y)\right)$, for a point $y \in E_{x}$ in the fibre of E at $x \in X$, where F_{i} is a compact Euclidean Neighbourhood Retract (ENR) embedded as a subspace $F_{i} \subseteq \Omega_{i} \subseteq V_{i}$ of an open subspace Ω_{i} of a Euclidean space V_{i} with a retraction $r_{i}: \Omega_{i} \rightarrow F_{i}$.

Putting $V=\bigoplus_{i=1}^{n} V_{i}$, define an embedding $j: E \rightarrow X \times V$ by

$$
j(y)=\left(x, \varphi_{1}(x) f_{1}(y), \ldots, \varphi_{n}(x) f_{n}(y)\right)
$$

for $y \in E_{x}$.
Let $W_{i} \subseteq X \times V$ be the open subset of points $\left(x,\left(v_{j}\right)\right)$ such that either $n \varphi_{i}(x)<\frac{1}{2}$ or

$$
\varphi_{i}(x)>0 \text { and } v_{i} / \varphi_{i}(x) \in \Omega_{i}
$$

Observe that $j(E) \subseteq W_{i}$.
Define $q_{i}: W_{i} \rightarrow X \times V$ by $q_{i}\left(x,\left(v_{j}\right)\right)=\left(x,\left(v_{j}\right)\right)$ if $n \varphi_{i}(x)<\frac{1}{2}$, and

$$
q_{i}\left(x,\left(v_{j}\right)\right)=\left(x,\left(t \varphi_{j}(x) f_{j}(y)+(1-t) v_{j}\right)\right) \text { if } n \varphi_{i}(x) \geqslant \frac{1}{2}
$$

where $r_{i}\left(v_{i} / \varphi_{i}(x)\right)=f_{i}(y)$ and $t=\min \left\{1, n \varphi_{i}(x)-1 / 2\right\}$. So, if $n \varphi_{i}(x) \geqslant 1$, we have $t=1$ and $q_{i}\left(x,\left(v_{j}\right)\right) \in j(E)$. And, because $\sum_{j} \varphi_{j}(x)=1$, there is at least one i such that $n \varphi_{i}(x) \geqslant 1$.

Now take Ω and r to be the open subset

$$
\Omega=\left\{\left(x,\left(v_{j}\right)\right) \in W_{1} \mid q_{i}\left(q_{i-1}\left(\cdots q_{1}\left(x,\left(v_{j}\right)\right) \cdots\right)\right) \in W_{i+1}, i=1, \ldots, n-1\right\}
$$

and retraction $r\left(x,\left(v_{j}\right)\right)=q_{n}\left(q_{n-1}\left(\cdots q_{1}\left(x,\left(v_{j}\right)\right) \cdots\right)\right)$.
Theorem B.2. Let E_{1}, \ldots, E_{n} be n fibre bundles, with each fibre a compact ENR, over a compact Hausdorff topological space X. Suppose that $\left(A_{i}\right)_{i \in I}$ is a finite closed cover of X such that each point of X lies in A_{i} for at most n indices $i \in I$.

Suppose that for each $i \in I$ and $k \in\{1, \ldots, n\}$ there exists a section of $E_{k} \mid A_{i}$ over A_{i}. Then the fibrewise join $E=E_{1} *_{X} \cdots *_{X} E_{n}$ admits a global section.

We shall write points of the join $F_{1} * \cdots * F_{n}$ of spaces $F_{k}, k=1, \ldots, n$, as $\left[\left(y_{1}, \ldots, y_{n}\right),\left(t_{1}, \ldots, t_{n}\right)\right]$, where $y_{k} \in F_{k}, t_{k} \in[0,1]$, and $\sum t_{k}=1$.

Proof. The proof of Corollary 2.2 using Theorem 2.1 is readily adapted.
First, using Lemma B. 1 to see that a section of E_{k} over A_{i} extends to a section over an open neighbourhood of A_{i} in X, we construct an open cover $\left(U_{i}\right)$ such that (i) $A_{i} \subseteq U_{i}$, (ii) for each (i, k) there is a section of $E_{k} \mid U_{i}$ over U_{i}, and (iii) each point of X lies in at most n of the sets U_{i}.

Then having produced the open subsets U_{J} as in the proof of Theorem 2.1 and chosen ψ_{J}, we choose sections s_{J} of $E_{k} \mid U_{J}$, where $\# J=k$. These combine over the finite disjoint union of the subsets U_{J} to give a section s_{k} of E_{k} over $\bigsqcup_{\# J=k} U_{J}$. A section s of the fibrewise join $E_{1} *_{X} \cdots *_{X} E_{n}$ is given by $s(x)=$ $\left[\left(s_{1}(x), \ldots, s_{n}(x)\right),\left(t_{1}(x), \ldots, t_{n}(x)\right)\right]$, where $t_{k}(x)=\sum_{\# J=k} \psi_{J}(x)$, so that $t_{1}(x)+$ $\cdots+t_{n}(x)=1$.

References

[1] J. L. Arocha, I. Bárány, J. Bracho, R. Fabila and L. Montejano, Very colorful theorems. Discrete Comput. Geom. 42 (2009), 142-154.
[2] I. Bárány, A generalization of Carathéodory's theorem. Discrete Math. 40 (1982), 141-152.
[3] I. Bárány and P. Soberón, Tverberg's theorem is 50 year old: a survey. Bull. Amer. Math. Soc. 55 (2018), 459-492.
[4] M.C. Crabb and I.M. James, Fibrewise Homotopy Theory. Springer, Berlin, 1998.
[5] M. C. Crabb and J. Jaworowski, Aspects of the Borsuk-Ulam theorem. J. Fixed Point Theory Appl. 13 (2013) 459-488.
[6] A. F. Holmsen and R. Karasev, Colorful theorems for strong convexity. Proc. Amer. Math. Soc. 145 (2017), 2713-2726.
[7] R. N. Karasev, A topological central point theorem. Top. Appl. 159 (2012), 864-868.
[8] R. N. Karasev, Covering dimension using toric varieties. Top. Appl. 177 (2014), 59-65.
[9] N. B. Mustafa and S. Ray, An optimal generalization of the Colorful Carathéodory theorem. Discrete Math. 339 (2016), 1300-1305.
[10] R. Palais, Homotopy theory of infinite dimensional manifolds. Topology 5 (1966), 1-16.
[11] K. S. Sarkaria, Tverberg's theorem via number fields. Israel J. Math. 79 (1992), 317-320.
[12] C-T. Yang, On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobo and Dyson, II. Annals of Math. 62 (1955), 271-283.

Institute of Mathematics, University of Aberdeen, Aberdeen AB24 3UE, UK
Email address: m.crabb@abdn.ac.uk

[^0]: Date: February 2023, revised March 2024.
 2020 Mathematics Subject Classification. Primary 55R25, 54F45, 55M10, Secondary 55R40, 55M30.

 Key words and phrases. vector bundle, covering dimension, Euler class.

