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Abstract

We investigate degeneracy in the P-Matroid Oriented Matroid Complementarity Problem (P-
OMCP) and its impact on the reduction of this problem to sink-finding in Unique Sink Orientations
(USOs). On one hand, this understanding of degeneracies allows us to prove a linear lower bound
for sink-finding in P-matroid USOs. On the other hand, it allows us to prove a promise preserving
reduction from P-OMCP to USO sink-finding, where we can drop the assumption that the given
P-OMCP is non-degenerate. This places the promise version of P-OMCP in the complexity class
PromiseUEOPL.
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1 Introduction

Degenerate input can be an issue in structural analysis and algorithm design for many
algebraic and geometric problems. It is often swept under the rug by assuming the input to
be non-degenerate. For example, one often assumes all input points of a geometric problem
to be in general position. In some problems (e.g., the minimum convex partition [10]), such
an assumption is inappropriate as it makes the problem considerably easier. In other cases,
degenerate inputs can be solved easily by resolving degeneracy using perturbation techniques.

In this paper, we investigate degeneracy in the context of the P-Matroid Oriented
Matroid Complementarity Problem (P-OMCP). Assuming non-degeneracy, this prob-
lem can be solved by converting it into a Unique Sink Orientation of the hypercube graph,
and finding a sink within that orientation. Oriented matroids are abstractions for many
types of configurations of geometric objects, such as (pseudo-)hyperplane arrangements or
point configurations. Just like these geometric configurations, oriented matroids can exhibit
degeneracies. In this paper, we analyze the effects of these degeneracies on the reduction
from P-OMCP to Unique Sink Orientation sink-finding.

Both the P-OMCP as well as Unique Sink Orientations are combinatorial abstractions
of the P-Matrix linear complementarity problem (P-LCP). The complexity status
of the P-LCP remains an interesting and relevant open question, since the problem can
be used to solve many optimization problems, such as Linear Programming [9], and binary
Simple Stochastic Games [8, 13]. Sink-finding in Unique Sink Orientations can also be used
to solve geometric problems such as the problem of finding the smallest enclosing ball of a
set of balls [6].
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2 On Degeneracy in the P-OMCP

2 Background

2.1 Oriented Matroids
For a more extensive introduction to oriented matroids, we refer the reader to the compre-
hensive textbook by Björner et al. [1]. We consider oriented matroidsM = (E, C) in circuit
representation, where E is called the ground set, and C is the collection of circuits ofM.

A circuit X ∈ {−, 0,+}E is a signed set represented by a tuple of sets X = (X+, X−)
where for all e ∈ X+ : Xe = + and e ∈ X− : Xe = −. We write −X for the inversed signed
set −X = (X−, X+). The support is defined as the set of non-zero elements X := X+ ∪X−.

I Definition 1 (Circuit axioms). For an oriented matroidM = (E, C) on the ground set E
the following set of axioms are satisfied for C:

(C0) (∅, ∅) /∈ C.
(C1) X ∈ C ⇔ −X ∈ C.
(C2) For all X,Y ∈ C, if X ⊆ Y , then X = Y or X = −Y .
(C3) For all X,Y ∈ C, X 6= −Y , and e ∈ X+ ∩ Y − there is a Z ∈ C such that

Z+ ⊆ (X+ ∪ Y +) \ {e} and
Z− ⊆ (X− ∪ Y −) \ {e}.

A basis B ⊆ E of an oriented matroidM = (E, C) is an inclusion-maximal subset of E
such that B contains no circuit. The rank of an oriented matroid is the size of its bases. An
oriented matroid is called uniform, if all subsets of E with cardinality equal to the rank of
the oriented matroid are bases.

The cocircuits C∗ of an oriented matroid M are the circuits of the dual oriented ma-
troidM∗. To understand duality, we need the following notion of orthogonality:

I Definition 2. Two signed sets X,Y are said to be orthogonal, if X ∩ Y = ∅, or there exist
e, f ∈ X ∩ Y , such that XeYe = −XfYf .

In other words, two signed sets are orthogonal if their supports either do not intersect at all,
or if they agree (same non-zero sign) and disagree (opposite non-zero sign) on at least one
element.

I Lemma 3 ([1]). Let X ∈ C be a circuit and Y ∈ C∗ be a cocircuit of some oriented
matroidM. Then, X and Y are orthogonal.

Given the set of circuits, the set of cocircuits can be computed, since the cocircuits are
exactly the inclusion-minimal non-empty signed sets that are orthogonal to all circuits. Since
duality of oriented matroids is self-inverse, the opposite holds too.

I Definition 4. In an oriented matroidM = (E, C), given a basis B and an element e 6∈ B,
the fundamental circuit C(B, e) is the unique circuit X with Xe = + and X ⊆ B ∪ {e}.

I Definition 5. In an oriented matroid M = (E, C), given a basis B and an element
e ∈ B, the fundamental cocircuit C∗(B, e) is the unique cocircuit D with De = + and
D ∩ (B \ {e}) = ∅.

An oriented matroid M̂ = (E ∪ {q}, Ĉ) is called an extension of M, if its minor
M̂ \ q := (E, {X | X ∈ Ĉ and Xq = 0}) is equal toM. A localization is a way to describe an
extension M̂ = (E ∪ {q}, Ĉ) ofM = (E, C).
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I Definition 6. Given an oriented matroid M on ground set E and with cocircuits C∗, a
function σ : C∗ → {−, 0,+} defines the following family of signed sets

Ĉ∗ :={(Y, σ(Y )) : Y ∈ C∗} ∪
{(Y1 ◦ Y2, 0) : Y1, Y2 ∈ C∗, for adjacent Y1, Y2 with
σ(Y1) = −σ(Y2) 6= 0},

where the notation (X, s) denotes the signed set where all elements of E have the same sign
as in X, and the new element q gets sign s. For the definition of adjacency, we refer the
reader to [1]. For the further discussion, only the first of the two sets forming Ĉ∗ is relevant.

The function σ is called a localization, if Ĉ∗ is a valid set of cocircuits. Then, the oriented
matroid M̂ on the ground set E∪{q} with cocircuits Ĉ∗ is called the extension ofM specified
by σ.

2.2 P-OMCP
We consider oriented matroidsM = (E2n, C) on the ground set E2n = S ∪ T , which is made
up of two parts S = {s1, . . . , sn} and T = {t1, . . . , tn}, S ∩ T = ∅. We call a set J ⊆ E2n

complementary, if it contains no complementary pair si, ti.

I Definition 7 (P-matroid). An oriented matroid M = (E2n, C) is a P-matroid if S is a
basis and there is no sign-reversing circuit. A sign-reversing circuit is a circuit X such that
for each complementary pair si, ti contained in X, Xsi = −Xti .

I Example 8. The matroidM = ({s, t}, C) is a P-Matroid. The matroidM′ = ({s, t}, C′)
is not a P-Matroid, since both of its circuits are sign-reversing.

C = {
(
+ +

)
,
(
− −

)
}, C′ = {

(
+ −

)
,
(
− +

)
}.

Let q be such that q /∈ E2n. Then Ê2n := S ∪ T ∪ {q}, and we write M̂ = (Ê2n, Ĉ) for an
extension ofM.

I Example 9. M̂ = ({s, t, q}, Ĉ) and M̂′ = ({s, t, q}, Ĉ′) are both valid extensions of the
P-Matroid M from Example 8 for Ĉ and Ĉ′ as given below. Figures 1 and 2 show the
realizations of the corresponding oriented matroids as arrangements of oriented hyperplanes
through the origin; each one-dimensional cell of these arrangements corresponds to a circuit.

000

s

t

q

(
0 + +

)

(
0 − −

)

(
− 0 +

)
(
+ 0 −

)
(
− − 0

)

(
+ + 0

)
Ĉ = {

(
+ + 0

)
,(

− − 0
)
,(

+ 0 −
)
,(

− 0 +
)
,(

0 + +
)
,(

0 − −
)
}

Figure 1 Realization of M̂.
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0 0 −
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Figure 2 Realization of M̂′.

Given an extension M̂ = (Ê2n, Ĉ) of a P-matroid, the goal of the P-Matroid Oriented
Matroid Complementarity Problem (P-OMCP) is to find a circuit X ∈ Ĉ with X ≥ 0, Xq = +,
and Xsi

Xti
= 0 for every i ∈ [n]. The matroid extension is given to an algorithm by a circuit

oracle, which given a set B ⊂ Ê2n and another element e ∈ Ê2n \B either returns that B is
not a basis of M̂, or returns the fundamental circuit C(B, e) (recall that this is the unique
circuit X ∈ Ĉ with Xe = + and X ⊆ B∪{e}). It is known that in P-matroids and P-matroid
extensions, every complementary set B ⊂ S ∪ T of size n is a basis [11]. Every P-OMCP
instance has a unique solution [17]. The unique solution of an P-OMCP instance with M̂ of
Example 9 as input is

(
0 + +

)
, the unique solution in M̂′ is

(
0 0 +

)
.

A P-matroid extension (a P-OMCP instance) is non-degenerate, if for every complementary
basis B, the circuit C(B, q) is non-zero on all elements in B ∪ {q}.

I Example 10. The red shaded area in Figures 1 and 2 denotes the areas where q is positive.
The circuits marked in red are the fundamental circuits C({s}, q) and C({t}, q). As can be
seen, the P-Matroid extension M̂ in Example 9 is non-degenerate, whereas M̂′ is degenerate.

2.3 Unique Sink Orientation (USO)
The n-dimensional hypercube graph Qn (n-cube) is the undirected graph on the vertex set
V (Qn) = {0, 1}n, where two vertices are connected by an edge if they differ in exactly one
coordinate. An orientation O : V (Qn)→ {−,+}n assigns each vertex an orientation of its
incident edges, where O(v)i = + denotes an outgoing edge from vertex v in dimension i and
O(v)i = − denotes an incoming edge. A Unique Sink Orientation (USO) is an orientation,
such that every non-empty subcube contains exactly one sink, i.e., a unique vertex v with
O(v)i = − for all dimensions i in the subcube [16].

I Lemma 11 (Szabó-Welzl Condition [16]). An orientation O of Qn is USO if and only if for
all pairs of distinct vertices v, w ∈ V (Qn), we have: ∃i ∈ [n] : (vi 6= wi) ∧ (O(v)i 6= O(w)i).

The classical algorithmic problem associated to USOs is that of finding the unique global
sink v with ∀i : O(v)i = −, with as few as possible queries to an oracle computing O.

2.4 Classical Reduction
Todd [17] showed that a non-degenerate P-OMCP given by a matroid M̂ = (Ê2n, Ĉ) can
be translated to an USO of the n-cube. Every vertex v of the cube is associated with a
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complementary basis B(v) ⊂ S ∪T . For each i ∈ [n], si ∈ B(v) if vi = 0, otherwise ti ∈ B(v).
The orientation O(v) is then computed using the fundamental circuit C := C(B(v), q):

O(v)i :=
{

+ if Csi
= − or Cti

= −,
− if Csi = + or Cti = +.

As the P-OMCP instance is non-degenerate, no other case can occur. Todd showed that the
computed orientation O is USO, and that its sink v corresponds to a fundamental circuit
C(B(v), q) which is positive on all elements and thus a solution to the P-OMCP instance.

I Example 12. Recall the P-Matroid extension M̂ from Example 9. Figure 3 shows the
USO created by this reduction, where B(0) = s and B(1) = t.

0

C(B(0), q) =
(
− 0 +

)
1

C(B(1), q) =
(
0 + +

)

Figure 3 USO created by the reduction from M̂.

3 The Effect of Degeneracy on the Resulting USOs

In the above reduction, if the P-OMCP instance is degenerate, we can sometimes not
decide which way to orient an edge since Csi

= Cti
= 0. For now, we leave these edges

unoriented. This leads to a partial orientation of the hypercube, which is a function
O : V (Qk)→ {−, 0,+}k where O(v)i = 0 denotes an unoriented edge. We call such a partial
orientation arising from a degenerate P-OMCP a partial P-matroid USO (PPU). In this
section we aim to understand the structure of unoriented edges in PPUs.

Not every partial orientation can be turned into an USO by directing the unoriented
edges. We thus state the following condition inspired by the Szabó-Welzl condition:

I Definition 13. A partial orientation O is said to be partially Szabó-Welzl if for any two
distinct vertices v, w ∈ V (Qk), either

O(v)i = O(w)i = 0 for all i with vi 6= wi, or (1)
∃i : vi 6= wi ∧

(
(O(v)i = + ∧O(w)i = −) ∨ (O(v)i = − ∧O(w)i = +)

)
. (2)

I Lemma 14. A partial orientation O which is partially Szabó-Welzl can be extended to an
USO by orienting all unoriented edges towards the endpoint with fewer 1s, i.e., downwards.

Proof. By orienting all unoriented edges of O from the vertex with more 1s to the vertex
with fewer 1s (i.e., “downwards”), any two vertices that previously fulfilled condition (1)
of Definition 13 now fulfill the classic Szabó-Welzl condition as in Lemma 11. Note that
condition (2) of Definition 13 is equivalent to this classic condition on full (non-partial)
orientations. We conclude that all pairs of vertices must now fulfill the Szabó-Welzl condition
as in Lemma 11. J

I Lemma 15. A partial P-matroid USO is partially Szabó-Welzl.

Proof. Assume two vertices v, w in a PPU O failed both conditions of Definition 13. Let
V = C(B(v), q) and W = C(B(w), q) be the fundamental circuits used to derive O(v) and
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O(w). Since v and w violate the first condition of Definition 13, V 6= W . Applying circuit
axiom (C3) to V and −W to eliminate the element q shows that there exists a circuit Z
with certain properties. Since q 6∈ Z, Z must contain both si and ti for at least one i ∈ [k]
(since all complementary sets are independent in a P-matroid extension). As we assumed
that v and w violate the second condition of Definition 13, we know that si and ti must
have opposite signs in Z. Since this holds for any i ∈ [k], Z is a sign-reversing circuit of the
underlying P-matroid, which contradicts Definition 7. We conclude that no two vertices can
fail Definition 13. J

I Lemma 16. In a partial P-matroid USO, the unoriented edges form a set of vertex-disjoint
faces. In each such face, the orientation is the same at every vertex.

Proof. Let v be a vertex of a PPU, and let w be another vertex within the face spanned
by the unoriented edges incident to v. Then, the fundamental circuit C(B(v), q) fulfills all
the conditions that a circuit has to fulfill to be the fundamental circuit C(B(w), q). Since
fundamental circuits are unique in all oriented matroids [11], we must have C(B(v), q) =
C(B(w), q) and thus v and w must be oriented the same way, which implies the lemma. J

Lemmas 14–16, and [14, Corollary 6] imply that the unoriented subcubes of a PPU can
in fact be oriented according to any USO:

I Corollary 17. Let O be a PPU and let O′ be the orientation obtained by independently
orienting each unoriented face f of O according to some USO of the same dimension as f .
Then, O′ is USO.

Proof. By Lemmas 14 and 15, O can be extended to some USO. By Lemma 16, each
unoriented face is a hypervertex; a face where all edges of the same dimension leaving the
face are oriented the same way. By [14, Corollary 6], each such hypervertex can be reoriented
according to an arbitrary USO while preserving that the whole orientation is USO. J

I Example 18. Recall the P-Matroid extension M̂ from Example 9. Figure 4 shows the
USO created by this reduction, where B(0) = s and B(1) = t.

0

C(B(0), q) =
(
0 0 +

)
1

C(B(1), q) =
(
0 0 +

)

Figure 4 USO created by the reduction from the degenerate P-Matroid extension M̂′.

4 Constructions Based on Degeneracy and Perturbations

In this section we show how existing constructions of oriented matroid extensions can be
interpreted as constructions of (partial) P-matroid USOs. An extension M̂ of an oriented
matroid M can be uniquely described by a localization, a function σ from the set C∗ of
cocircuits ofM to the set {−, 0,+}. We give some more background about localizations in
Section 2.1. Note that not every function f : C∗ → {−, 0,+} describes a valid extension and
thus not every such function is a localization. The following lemma connects a localization
to the circuits relevant to the resulting (partial) P-matroid USO.
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I Lemma 19. Let M be a P-matroid and let σ be a localization for M describing the
extension M̂. Then, for any complementary basis B ofM (and thus also of M̂), and every
element e ∈ B, the sign of e in the fundamental circuit C(B, q) of M̂ is the opposite of the
sign assigned by σ to the fundamental cocircuit C∗(B, e) ofM.

Proof. D := C∗(B, e) is a cocircuit of M. By Definition 6, D̂ := (D,σ(D)) must be a
cocircuit of M̂.

By Definition 5, D̂ must be a subset of Ê2n \ (B \ {e}) and D̂e = +. On the other hand,
the support of C := C(B, q) must be a subset of B ∪ {q}, and Cq = +.

Lemma 3 says that C and D̂ must be orthogonal, i.e., their supports either do not
intersect, or they must agree and disagree on at least one element. Since C ∩ D̂ ⊆ {e, q}, the
first case only occurs if Ce = D̂q = 0. The second case can only occur if Ce = −D̂q, since
Cq = D̂e = +. J

Las Vergnas [12] showed that the set of localizations is closed under composition, i.e.,
given two localizations σ1, σ2, the following function is a localization too:

∀c ∈ C∗ : (σ1 ◦ σ2)(c) :=
{
σ1(c), if σ1(c) 6= 0,
σ2(c), otherwise.

Lemma 19 allows us to understand the effect of such composition on the resulting (partial)
P-matroid USO: For localizations σ1, σ2 and their corresponding PPUs O1, O2, the PPU O′

given by the localization σ1 ◦ σ2 is

∀v ∈ V (Qk), i ∈ [k] : O′(v)i =
{
O1(v)i, if O1(v)i 6= 0,
O2(v)i, otherwise.

This can be seen as filling in all unoriented subcubes of O1 with the orientation O2.
Furthermore, Las Vergnas [12] describes lexicographic extensions of oriented matroids.

I Definition 20 (Lexicographic extension [12]). Let M = (E, C) be an oriented matroid.
Given an element e ∈ E and a sign s ∈ {−, 0,+}, the function σ : C∗ → {−, 0,+} given by

σ(D) :=
{
s ·De, if De 6= 0,
0, otherwise,

is a localization. The extension ofM specified by this localization is called the lexicographic
extension ofM by [s · e].

Lexicographic extensions of uniform P-matroids give rise to PPUs in which all edges of
some dimension are oriented the same way, and one half is left unoriented while the other
half is completely oriented (see Figure 5).

I Lemma 21. LetM = (E2n, C) be a P-matroid. Let M̂ be the lexicographic extension of
M by [+ · ti]. Then, in the partial P-matroid USO O defined by M̂, the upper i-facet (the
facet of vertices v with vi = 1) is an unoriented subcube, and all i-edges point towards this
facet. Furthermore, ifM is uniform, the lower i-facet is completely oriented.

Proof. We first prove that all edges in dimension i are oriented from the vertices with vi = 0
to the vertices with vi = 1. As ti is positive in all cocircuits C∗(B, ti) for B such that ti ∈ B,
σ assigns + to all such cocircuits. By Lemma 19, for each vertex v with vi = 1, we have
O(v)i = −.
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Figure 5 The form of the PPU given by a lexicographic extension of a uniform P-matroid.

Furthermore, sinceM is a P-matroid, every complementary set of n elements is a basis;
thus, also every such set is a cobasis. We therefore know that every fundamental cocircuit
C∗(B, e) for a complementary set B must be non-zero on both elements of the complementary
pair which includes e.

For any basis B with si ∈ B, ti is thus non-zero in C∗(B, si), and σ assigns a non-zero
sign to this cocircuit. By [11, Theorem 5.4], a P-matroid contains no sign-preserving cocircuit,
so si and ti must have opposite signs in this cocircuit. Thus, ti must be negative in C∗(B, si),
and σ assigns − to it. We conclude that for each vertex v with vi = 0, we have O(v)i = +.

Next, we prove that the facet of vertices v with vi = 1 is unoriented. Let B be a basis
with ti ∈ B, and let e ∈ B \ {ti} be some element. Now, note that ti 6∈ C∗(B, e). Thus, σ
assigns 0 to these circuits, and therefore C(B, q)e = 0, showing that this facet is unoriented.

Lastly, we prove that ifM is uniform, the facet of vertices v with vi = 0 is completely
oriented. When M is uniform, all subsets B ⊂ E of size n are bases and cobases. Thus,
|C∗(B, e)| = n+ 1, and for every complementary B such that si ∈ B and any e ∈ B, we have
that ti ∈ C∗(B, e) and therefore σ assigns a non-zero sign to that circuit. This shows that
|C(B, q)| = n+ 1 too, proving that all edges around a vertex v with vi = 0 are oriented. J

Of course this lemma symmetrically also applies to lexicographic extensions where s = − or
e = si. Switching ti out for si swaps the role of the two facets, and switching the sign makes
all i-edges point to the oriented facet instead of the unoriented one.

We can use these two construction techniques to prove a lower bound on the number
of queries needed by deterministic sink-finding algorithms on P-matroid USOs. In essence,
we successively build a localization by composition with lexicographic extensions. The
construction keeps the invariant that there exists an unoriented subcube guaranteed to
contain the global sink. The dimension of this subcube is reduced by at most one with every
query, thus at least n queries are required.

I Theorem 22. LetM = (E2n, C) be a uniform P-matroid. Then, for every deterministic
sink-finding algorithm A, there exists a non-degenerate extension M̂ of M such that A
requires at least n queries to find the sink of the P-matroid USO given by M̂.

Proof. We specify an adversarial procedure which iteratively builds up a localization σ for
M. At any point of this procedure, the current localization describes an extension M̂ for
which the PPU O contains exactly one unoriented subcube U , and all edges incident to U
are oriented into U . Thus, the global sink of O must lie in U , but its exact location has not
been determined yet.

At the beginning of the procedure, σ is set to be all-zero, i.e., O is completely unoriented
and U is the whole cube. Now, whenever the sink-finding algorithm queries a vertex v, the
adversarial procedure must return the complete orientation around this vertex. If v lies
outside of U , it is already completely oriented, and its orientation can simply be returned.
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Otherwise, if v lies in U , the localization σ has to be changed. To do this, we pick one
dimension i which spans U . If vi = 0, we change σ to σ′ := σ ◦ [+ · ti], i.e., σ is combined
with the lexicographic extension [+ · ti]. On O this has the effect that some edges in U are
oriented. By Lemma 21, all edges in the lower i-facet of U are oriented, and all i-edges in U
are pointed away from this facet. Thus, v is now completely oriented, and U has shrunk by
one dimension. The orientation of v can thus be returned.

Note that if vi = 1, the lexicographic extension would be picked to be [+ · si], the rest of
the procedure staying the same.

Since U shrinks by only one dimension with every query, and U has n dimensions at the
beginning, the first n vertices queried by the algorithm are never the sink. Thus, it takes at
least n queries to determine the sink. J

Previously, the best known lower bound for sink-finding on P-matroid USOs was Ω(logn)
queries [18]. In contrast, the stronger, almost-quadratic lower bound of Schurr and Szabó [14]
does not apply to P-matroid USOs (for a proof of this see Lemma 30 in Appendix B).

The P-Matrix Linear Complementarity Problem (P-LCP) is an algebraic analogue of
P-OMCP. We discuss our results (Sections 3 and 4) in the context of P-LCPs in Appendix A.

5 The Search Problem Complexity of P-OMCP

An instance of Unique End of Potential Line consists of an implicitly given exponentially
large graph G, in which each vertex has a positive cost and in- and out-degree at most one.
Thus, the graph is a collection of directed paths called lines. The computational task is as
follows: if the nodes of G form a single line (that starts in some given start vertex) with
strictly increasing cost, then find the unique end node of this line — a sink. Otherwise, either
find some sink in G or a violation certificate that shows that G does not consist of a single
line. Unique End of Potential Line is a total search problem, i.e., there always exists a
sink or a violation. Note that there might exist a sink and a violation simultaneously.

I Definition 23. The search complexity class Unique End of Potential Line (UniqueEOPL)
contains all problems that can be reduced in polynomial time to Unique End of Potential
Line. Thus, the complexity class UniqueEOPL captures all total search problems where the
space of candidate solutions has the structure of a unique line with increasing cost.

UniqueEOPL was introduced in 2018 by Fearnley et al. [4]. UniqueEOPL is a subclass of
PPAD ∩ PLS [3]. Problems in UniqueEOPL are not known to be solvable in polynomial time.

The promise version of a total search problem with violations is to find a solution under
the promise that no violations exist for the given instance. PromiseUEOPL is the promise
version of the search problem class UniqueEOPL.

A search problem reduction from a problem R to a problem T is promise preserving,
if every violation of T is mapped back to a violation of R and every valid solution of T
is mapped back to a valid solution or a violation of R. Promise preserving reductions
are transitive. When containment of a search problem R in UniqueEOPL is shown via a
polynomial time, promise preserving reduction, the promise version of R is contained in
PromiseUEOPL.

We now state the problem of USO sink-finding as a total search problem with a violation.

I Definition 24. Given an orientation function O : {0, 1}n → {+,−}n, the task of the total
search problem Unique Sink Orientation Sink-Finding (USO-SF) is to find:

(U1) A vertex v ∈ {0, 1}n such that ∀i ∈ [n] : O(v)i = −. The vertex v is a sink.
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(UV1) Two distinct vertices v, w ∈ {0, 1}n with ∀i ∈ [n] : (vi = wi)∨ (O(v)i = O(w)i). The
orientation O does not fulfill the Szabó-Welzl condition and thus is not USO.

I Lemma 25 ([4]). USO-SF is in UniqueEOPL and its promise version is in PromiseUEOPL.

Next, we define the P-OMCP problem as a total search problem with violations.

I Definition 26. Let M̂ = (Ê2n, Ĉ) be an oriented matroid with the set S being a basis. The
task of the total search version of P-OMCP is to find one of the following:

(M1) A circuit X ∈ Ĉ such that X ≥ 0, Xq = + and ∀i ∈ [n] : Xsi
Xti

= 0.
(MV1) A circuit Z ∈ C which is sign-reversing.
(MV2) A complementary set B ⊂ E2n of size n which is not a basis of M̂.
(MV3) Two distinct, complementary circuits X,Y ∈ C with Xq = Yq = + and

∀i ∈ [n] : Xsi
Yti

= Xti
Ysi

= 0, or Xsi
= Yti

and Xti
= Ysi

.

The definition of the violation (MV3) may look unintuitive, but the following lemma
shows that it correctly implies that M̂ is not a P-matroid extension.

I Lemma 27. A violation of type (MV3) implies that M̂ is not a P-matroid extension.

Proof. Suppose we are given such a violation, i.e., two distinct complementary circuits
X,Y ∈ C with Xq = Yq = + and ∀i ∈ [n] : Xsi

Yti
= Xti

Ysi
= 0 or Xsi

= Yti
and Xti

= Ysi
.

As X,Y are distinct, X 6= Y . Since Xq = Yq = +, it holds that X 6= −Y . We can thus
apply circuit axiom (C3) on circuits X and −Y and element q ∈ X+ ∩ (−Y )−. It follows
that there must exist some circuit Z with:

Z+ ⊆ X+ ∪ (−Y )+ \ {q} and
Z− ⊆ X− ∪ (−Y )− \ {q}.

If Z contained no complementary pair, it would be a complementary set. Any complementary
set B ⊇ Z of size n can not be a basis, since Z is a circuit. This is a violation of type (MV2)
and implies that M̂ is not a P-matroid extension.

Otherwise, Z must contain at least one complementary pair si, ti. As X and Y are
complementary, si and ti are each only contained in one of the two circuits, w.l.o.g. si ∈ X and
ti ∈ Y . Therefore, si and ti are each only contained in one of the two sets X+ ∪ (−Y )+ \ {q}
and X− ∪ (−Y )− \ {q}. Since Xsi

= Yti
, they are both in different sets, and thus Zsi

= −Zti
.

Since this holds for every complementary pair in Z, we conclude that Z is sign-reversing.
Thus Z is a violation of type (MV1), and M̂ can not be a P-matroid extension.

Note that even if we cannot find Z explicitly in polynomial time, we can check the
conditions on X and Y in polynomial time. J

Technically, the violation (MV1) would be enough to make this search problem total, but
our reduction to USO-SF detects only violations of type (MV2) and (MV3). Note that as
Fearnley et al. [5] already observed, there may be a difference in the complexity of a total
search problem depending on the violations chosen. There is no trivial way known to the
authors to transform a violation of type (MV3) or (MV2) to a violation of type (MV1).

With the help of Lemmas 14 and 15 we now adapt Todd’s reduction of non-degenerate
P-OMCP instances to USO (recall Section 2.4) to also work with degenerate instances and
their respective total search versions.
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Given a P-OMCP instance M̂ = (Ê2n, Ĉ) (note that M̂ is possibly not a P-matroid
extension, or degenerate), we define the orientation O : V (Qn)→ {+,−}n:

O(v)i :=



− if B(v) is not a basis,
− if vi = 0 and Csi = 0,
+ if vi = 1 and Cti

= 0,
+ if vi = 0 and Csi

= −
or vi = 1 and Cti = −,

− otherwise,

with B(v) and C := C(B(v), q) defined as in Section 2.4. Furthermore, using Lemmas 14
and 15 we know that O is USO if M̂ is a P-matroid extension.

I Theorem 28. The construction above is a polynomial time, promise preserving reduction
from P-OMCP to USO-SF.

Proof. Given a P-OMCP instance M̂ = (Ê2n, Ĉ), let (Qn, O) be an USO-SF instance with
O as defined above.

Polynomial time For the reduction we build an orientation oracle O for USO-SF from the
given circuit oracle for P-OMCP. Note that this does not mean that we have to compute
the output of O for every vertex, we simply have to build the algorithm (usually represented
by a logical circuit) computing O from the algorithm computing the circuit oracle.

Since O merely computes B(v) from a given vertex, invokes the circuit oracle, and then
performs a case distinction, it can clearly be built and queried in polynomial time in n.

Correctness To prove correctness of this reduction being promise preserving, we must show
that every violation of USO-SF can be mapped back to a violation of P-OMCP and every
valid solution of USO-SF can be mapped back to a valid solution or a violation of P-OMCP.

A solution of type (U1) Let v ∈ V (Qn) be a solution to the USO-SF instance, i.e., a sink.
It might be that v is a sink because B(v) is not a basis, and thus O(v)i = − for all i. To

map this back to a violation or solution of P-OMCP, we first check if the P-OMCP oracle
returns that B(v) is not a basis for the input C(B(v), q). If so, we found a violation of type
(MV2). Otherwise, the fundamental circuit C(B(v), q) is a solution to the P-OMCP instance:
Since v is a sink, there is no index at which the fundamental circuit is negative. All entries
of C(B(v), q) are positive and the complementarity condition is fulfilled by construction of
B(v).

A violation of type (UV1) If a violation is found, we have two distinct vertices v and w
with ∀i ∈ [k] : (vi = wi) ∨ (O(v)i = O(w)i). We first again check whether B(v) or B(w) are
bases, if not we map this violation to a violation of type (MV2).

Otherwise, we show that there are two distinct complementary circuits X,Y ∈ C with
Xq = Yq = + and ∀i ∈ [n] : Xsi

Yti
= Xti

Ysi
= 0 or Xsi

= Yti
and Xti

= Ysi
, i.e., a violation

of type (MV3). We claim that the circuits X := C(B(v), q) and Y := C(B(w), q) fulfill these
conditions.

First, we need to show that X 6= Y . If the two circuits were equal, they would have to
be degenerate on all dimensions spanned by v and w. Then by construction of O, v and w
could not fail Szabó-Welzl (see Lemma 14).
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Next, we see that by definition C(B(v), q)q = + and C(B(w), q)q = + and both circuits
are complementary.

Finally, we show that for each dimension i, either (i) Xsi
Yti

= Xti
Ysi

= 0 or (ii) Xsi
= Yti

and Xti = Ysi . For every dimension i for which vi = wi (w.l.o.g. both are 0), both Xti = 0
and Yti

= 0. Therefore, condition (i) holds. For a dimension i for which vi 6= wi, if at
least one of the i-edges incident to vi and wi is degenerate, we have Xsi = Xti = 0 (or
Ysi

= Yti
= 0). Thus, condition (i) also holds in this case. For a dimension i in which

both are non-degenerate, since v and w are a violation of type (UV1), O(v)i = O(w)i. By
construction of O it must hold that Xsi

= Yti
and Xti

= Ysi
, i.e., condition (ii) holds.

Therefore, the circuits C(B(v), q) and C(B(w), q) form a violation of type (MV3). J

It follows that P-OMCP as defined in Definition 26 is in UniqueEOPL and its promise
version is in PromiseUEOPL.
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A P-Matrix Linear Complementarity

We only give a short overview over the P-Matrix Linear Complementarity problem here, and
refer the interested reader to the comprehensive textbook by Cottle, Pang and Stone [2], as
well as the seminal paper of Stickney and Watson [15] on solving P-LCPs using sink-finding
in USOs.

A P-matrix is a matrix M ∈ Rn×n where every principal minor is positive. Given a
P-matrix M and a vector q ∈ Rn, the P-Matrix Linear Complementarity Problem (P-LCP)
given by (M, q) is to find two vectors w, z ∈ Rn with (i) w −Mz = q, (ii) wT z = 0, and
(iii) w, z ≥ 0. Every P-LCP has a unique solution.

Any pair of vectors w, z fulfilling condition (i) and wi = 0 ∨ zi = 0 for all i is called a
candidate solution. Given a choice from {wi, zi} for each index i, there is a unique candidate
solution for which the chosen entries of w and z are 0. This unique candidate solution can be
computed with basic linear algebra. We say that (M, q) is non-degenerate, if all candidate
solutions contain n non-zero elements.

It is well-known that a P-LCP can be translated to a P-OMCP. This is achieved by
considering the matrix [I;−M ;−q], associating the first n columns (those of I) with S, the
next n columns (those of −M) with T , and the last column with element q. The circuits
of the P-matroid extension M̂ are then given by the minimal linear dependencies of these
column vectors.

Non-degenerate P-LCPs can thus be reduced to sink-finding in USOs (by this detour
through P-OMCP, but also more directly by an equivalent reduction [15]). USOs that are
obtained through this reduction are called P-Cubes and are heavily studied. Degenerate
P-LCPs yield degenerate P-OMCPs, and we call their corresponding partial orientations
partial P-Cubes. All structural results from Section 3 also hold for partial P-Cubes, since
they are a (strict) subset of the partial P-matroid USOs.

The constructions from Section 4 can also be translated to work with P-LCPs. The
composition of localizations can be replaced by the composition of vectors q. This composition
is computed as q′ := q1 + ε · q2 for some ε > 0, where ε is chosen to be small enough that no
sign of a non-zero element of any candidate solution is flipped. The lexicographic extensions
correspond to setting q to be equal to vectors ei,−ei,Mi, or −Mi. Armed with constructions
equivalent to both compositions and lexicographic extensions, we can restate Theorem 22 in
the context of P-LCP:

I Theorem 29. Let M be an n × n P-matrix such that the matrix [I;−M ] has no linear
dependencies of fewer than n+1 columns. Then, for every deterministic sink-finding algorithm
A, there exists a vector q such that A requires at least n queries to find the sink of the P-Cube
given by the P-LCP instance (M, q).

B Schurr and Szabó’s Lower Bound

On an intuitive level, Schurr and Szabó’s adversarial construction yielding the Ω(n2/ logn)
lower bound for deterministic sink-finding algorithms [14] works as follows: In the first phase,
the construction answers n − dlog2 ne queries of the algorithm. After these queries, it is
guaranteed that there exists some face of dimension n−dlog2 ne in which no vertex has been
queried yet. The queries in the first phase are answered such that this face is a hypersink (all
edges are incoming) and can thus be filled in with any USO. The lower bound then follows
from a recursive argument.
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In more detail, in the first phase, the construction keeps a set of dimensions L and an
USO s̃ of the cube spanned by the dimensions in L. Queried vertices are oriented according to
their projected location in s̃ for the dimensions in L, and always outgoing for the dimensions
in [n] \ L. As an invariant, no two queried vertices can be the same vertex when projected
onto the cube spanned by L, thus a dimension is added to L (and s̃ is adapted by a defined
procedure) whenever this condition would be violated.

I Lemma 30. There exists a deterministic sink-finding algorithm A, against which Schurr
and Szabó’s adversarial construction from the proof of [14, Theorem 9] produces an USO
that is not a P-matroid USO.

Proof. We describe an algorithm A that forces the construction to make s̃ a fixed 3-dim-
ensional subcube which is not a P-matroid USO. For this strategy to work, we require five
queries. We set the dimension of the final cube to be at least 8, such that the construction
stays in the first phase for at least five queries.

All vertices queried by our algorithm have a zero in all coordinates except the first three;
we therefore omit writing these additional zeroes in their coordinates. The algorithm begins
by querying the following two vertices:

v1 = 000, v2 = 111

After the second query, the construction has to add one of the first three dimensions to
the set L, since otherwise v1 and v2 have the same coordinates within the (empty) set L.
Note that the algorithm can detect this choice `, as the only incoming edge of v2 is in this
dimension `. W.l.o.g., we assume the algorithm picks ` = 1, i.e., L = {1}.

The algorithm continues by querying v3 = 011. Once again, the construction has to pick
either the second or third dimension to be added to L, as otherwise v1 and v3 have the same
coordinates within the dimensions in L. Again this choice can be detected by the algorithm,
and w.l.o.g. we assume that now L = {1, 2}.

The algorithm now queries v4 = 100, and L does not change, since all vertices v1, . . . , v4
have different coordinates in the dimensions {1, 2}.

The final query is v5 = 001, and now L must be changed to {1, 2, 3}. The USO s̃ on the
cube spanned by L evolves with these queries as shown in Figure 6. Note that at no point
the construction has any choice in how to orient the edges in the newly added dimension,
since all edges of dimensions not in L incident to queried vertices must be oriented away
from the queried vertex by definition of the construction. Thus, the construction is forced to
build this orientation when confronted with our algorithm.

v1 ∩ ∅ v1 ∩ {1} v2 ∩ {1}
v1 ∩ {1, 2}

v2 ∩ {1, 2}v3 ∩ {1, 2}

v3 ∩ {1, 2, 3}

v4 ∩ {1, 2, 3}

v2 ∩ {1, 2, 3}

v1 ∩ {1, 2, 3}

v4 ∩ {1, 2}

v5 ∩ {1, 2, 3}

∅ {1} {1, 2} {1, 2, 3}L :

s̃ :

Figure 6 The orientation s̃ built by Schurr and Szabó’s adversarial construction. The notation
v ∩ L describes projection of v onto the cube spanned by the dimensions in L.
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By [7], every n-dimensional P-Cube must contain n vertex-disjoint paths from the source
to the sink (a property called Holt-Klee). The orientation s̃ clearly does not fulfill this, as
it does not have three edges from the lower 3-facet (containing the source) to the upper
3-facet (containing the sink). Thus, s̃ is not a P-Cube. In 3 dimensions, the set of P-Cubes
is the same as the set of P-matroid USOs [11] (this follows from every oriented matroid of
7 elements being realizable). We thus also know that s̃ is not a P-matroid USO. As both
P-Cubes and P-matroid USOs are closed under the operation of taking subcubes [11], and
because the final orientation constructed by the construction of Schurr and Szabó contains s̃
as the subcube spanned by v1 and v2, it cannot be a P-Cube or a P-matroid USO, either. J
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