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Abstract—In this paper, the performance optimization of
federated learning (FL), when deployed over a realistic wireless
multiple-input multiple-output (MIMO) communication system
with digital modulation and over-the-air computation (AirComp)
is studied. In particular, a MIMO system is considered in which
edge devices transmit their local FL models (trained using
their locally collected data) to a parameter server (PS) using
beamforming to maximize the number of devices scheduled for
transmission. The PS, acting as a central controller, generates
a global FL model using the received local FL models and
broadcasts it back to all devices. Due to the limited bandwidth
in a wireless network, AirComp is adopted to enable efficient
wireless data aggregation. However, fading of wireless channels
can produce aggregate distortions in an AirComp-based FL
scheme. To tackle this challenge, we propose a modified federated
averaging (FedAvg) algorithm that combines digital modulation
with AirComp to mitigate wireless fading while ensuring the
communication efficiency. This is achieved by a joint transmit
and receive beamforming design, which is formulated as an
optimization problem to dynamically adjust the beamforming
matrices based on current FL model parameters so as to minimize
the transmitting error and ensure the FL performance. To
achieve this goal, we first analytically characterize how the
beamforming matrices affect the performance of the FedAvg in
different iterations. Based on this relationship, an artificial neural
network (ANN) is used to estimate the local FL models of all
devices and adjust the beamforming matrices at the PS for future
model transmission. The algorithmic advantages and improved
performance of the proposed methodologies are demonstrated
through extensive numerical experiments.

Keywords—Federated learning, MIMO, AirComp, digital mod-
ulation.

I. INTRODUCTION

Federated learning (FL) has been extensively studied as a
distributed machine learning approach with data privacy [1]–
[7]. During the FL training process, edge devices are required
to train a local learning model using its collected data and
transmit the trained learning model to a parameter server (PS)
for global model aggregation. The PS, acting as a central
center, can coordinate the process across edge devices and
broadcast the global model to all devices. This procedure is
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repeated across several rounds until achieving an acceptable
accuracy of the trained model.

Since the PS and edge devices must exchange their trained
models iteratively over the wireless channels, FL performance
can be significantly affected by imperfect and dynamic wire-
less transmission in both uplink and downlink. Compared to
the PS broadcasting FL models to edge devices, edge devices
uploading local models to the PS is more challenging due to
their limited transmit power [8]–[12]. To tackle this challenge,
over-the-air computation (also known as AirComp) techniques
have recently been integrated into the implementation of FL
[13]–[17]. Instead of decoding the individual local models
of each device and then aggregating, AirComp allows edge
devices to transmit their model parameters simultaneously over
the same radio resources and decode the average model (global
model) directly at the PS [18]–[20]. However, most of these
existing works, such as [21] and [22], focused on the use of
AirComp for analog modulation due to its simplicity for FL
convergence analysis, which may not be desirable for practi-
cal wireless communication systems that almost exclusively
use digital modulations. In consequence, it is necessary to
study the implementation of AirComp-based FL over digital
modulation-based wireless systems.

A. Related Works
Recent works such as [23]–[33] have studied several im-

portant problems related to the implementation of AirComp-
based FL over wireless networks. The authors in [23] mini-
mized the mean-squared error (MSE) of the FL model during
AirComp transmission under transmit power constraints in a
multiuser multiple-input multiple-output (MIMO) system. In
[24], the authors maximized the number of devices that can
participate in FL training under certain MSE requirements
in an AirComp-based MIMO framework. A joint machine
learning rate and receiver beamforming matrix optimization
method was proposed in [25] to reduce the aggregate distortion
and satisfy an FL performance requirement. The authors in
[26] investigated the deployment of FL over an AirComp-
based wireless network to minimize the energy consumption
of edge devices. In [27], the authors optimized the set of
participating devices in an AirComp-assisted FL framework to
speed up FL convergence. A receive beamforming scheme was
designed in [28] to optimize FL performance without knowing
channel state information (CSI). The authors in [29] minimized
the FL model aggregation error under a channel alignment
constraint in a MIMO system. The authors in [30] derived the
optimal threshold-based regularized channel inversion power
control solution to minimize the mean squared error (MSE)
for an analog AirComp system with imperfect CSI. A channel
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inversion-based power control policy was developed in [31]
to resist channel fading and meet the SNR threshold in an
AirComp FL framework. In [32], the authors minimized the
computation error by jointly optimizing the transmit power
at devices and a signal scaling factor at the PS. The authors
in [33] minimized the transmit power of each device while
ensuring a minimum MSE performance. One key challenge
faced by these works is their limited practical applicability
to high-order digital modulation-based wireless systems. By
harnessing high-order digital modulation, individual devices
can encode FL model parameters into discrete symbols and
transmit multiple symbols simultaneously within the same
frequency band. This approach optimizes bandwidth utilization
and enhances data transmission efficiency. Moreover, digital
modulation leverages error correction coding and modulation
schemes (such as QAM) to enhance resistance against noise
and interference. Hence, it is important to note that these works
do not explicitly consider the incorporation of coding and
digital modulation techniques, which are crucial components
in real-world wireless communication systems.

Recently, several works [34]–[42] have studied the im-
plementation of AirComp FL over digital modulation-based
wireless systems. The authors in [34] designed one-bit quan-
tization and modulation schemes for edge devices. One-bit
gradient quantization scheme is proposed in [35] to achieve
fast FL model aggregation. In [36], the authors designed
a joint channel decoding and aggregation decoding scheme
based on binary phase shift keying (BPSK) modulation for
AirComp FL. The authors in [37] evaluated the performance
of FL gradient quantization in digital AirComp. In [38],
the convergence of FL implemented over an AirComp-based
MIMO system is derived. The authors in [39] proposed a
digital transmission protocol tailored to FL over wireless
device-to-device networks. In [40], the authors proposed an
AirComp method that utilizes non-coherent detection and
digital modulation to achieve high test accuracy. The authors
in [41] adopted BPSK for over-the-air computations to min-
imize the normalized MSE. A joint transmission and local
computing strategy was designed in [42] that utilizes multiple
amplitude shift keying (MASK) symbols to minimize the
energy consumption used for FL training. However, these prior
works [34]–[42] mainly used low order digital modulation
(i.e., BPSK) and hence their designed AirComp FL cannot
be easily extended to modern wireless systems that use high-
order digital modulation schemes such as quadrature amplitude
modulation (QAM). This is because the transmitted symbols
that are processed by low-order digital modulation (such as
the symbols -1 and +1 in BPSK) are linearly superimposed.
This linear superimposition does not exist in high-order dig-
ital modulation schemes with complex mapping relationships
between bits and symbols (such as Gray code).

B. Contributions

The main contribution of this paper is to develop a novel
AirComp FL framework over high-order digital modulation-
based wireless systems. Our key contributions include:

• We propose a novel AirComp-based MIMO system in
which distributed wireless devices utilize high-order mod-
ulations to encode their trained local FL parameters into

symbols and simultaneously transmit these modulated
symbols over unreliable wireless channels to a PS that
directly generates the global FL model via its received
symbols. However, the introduction of high-order digital
modulations leads to the loss of linearity and superpos-
itivity among the symbols transmitted by each device,
which in turn affects the convergence of the trained FL
model and poses challenges to FL performance. To tackle
this issue, the PS and devices must cooperatively adjust
the transmit and receive beamforming matrices to cap-
ture the nonlinearity relationship among the modulated
symbols and improve FL performance. To this end, we
formulate this joint transmit and receive beamforming
matrix design problem as an optimization problem whose
goal is to minimize the FL training loss.

• To solve this problem, we first analytically characterize
how the errors introduced by the proposed AirComp
system affect FL training loss. Our analysis shows that the
introduced errors caused by wireless transmission (i.e.,
fading and additive white Gaussian noise) and digital
post-processing (i.e., digital demodulation) determine the
gap between the optimal FL model that the FL targets
to converge and the trained FL model. In particular, the
errors caused by wireless transmission depend on the
channel conditions and the trained FL model parameters.
However, the errors caused by digital post-processing
depend on the adopted modulation scheme and the num-
ber of devices participated in FL training. Hence, to
minimize the errors caused by both wireless transmission
and digital post-processing, the PS and the devices must
dynamically adjust the transmit and receive beamforming
matrices based on the adopted modulation scheme, the
trained FL model parameters, and channel conditions.

• To find the optimal transmit and receive beamforming
matrices, we first introduce an artificial neural network
(ANN)-based algorithm to predict the FL model parame-
ters of all devices since optimizing beamforming matrices
requires the information of each trained local model
parameter which cannot be obtained by the PS. Then,
given the predicted parameters, we derive a closed-form
solution of the optimal transmit and receive beamforming
matrices based on the adopted modulation scheme and
channel conditions that minimize the distance between
the received signals of all devices and the predicted
parameters in the decision region, which ensures the
accuracy for model aggregation and FL performance. We
show that the added latency introduced by the ANN
inference is marginal compared to the improvement in
convergence speed provided by our beamforming opti-
mization.

• Numerical evaluation results on real-world machine
learning task datasets show that our proposed AirComp-
based system can improve the test accuracy by 10%-
30% compared to the AirComp-based system with analog
modulation and BPSK, respectively.

The rest of this paper is organized as follows. The system
model and problem formulation for the AirComp-based system
in FL framework are described in Section II. Section III
analyzes the convergence of the designed FL framework and
derives a closed-form optimal design of the transmit and
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TABLE I
LIST OF NOTATIONS

Notation Description
K Number of devices
M Adopted modulation order
Nr Number of antennas on the PS
Nt Number of antennas on devices
Nk Number of training data samples on device k

(xk,n,yk,n) Training data sample n on device k
N Number of training data samples of all devices
gt Global FL model

wk,t Local FL model
∆wk,t Updates of wk,t

ŵk,t Modulated symbol vector of wk,t

∆w̃k,t Prediction of ∆wk,t

∆ŵk,t Modulated symbol vector of ∆w̃k,t

nt Additive white Gaussian noise
Ak,t Transmit beamforming matrix
Bt Receive beamforming matrix
Hk Channel vector between device k and the PS
P0 Maximal transmit power on device
ξ Minimum Euclidean distance in decision region

aI
i, a

Q
i Constellation point of symbol i

a∗ Vector of predicted constellation point
M Set of all constellation points

receive beamforming matrices based on the analysis. In Sec-
tion IV, our numerical evaluation is presented and discussed.
Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an FL system implemented over a cellular
network, where K wireless edge devices train their individual
machine learning models and send the machine learning
parameters to a central PS through a noisy wireless MAC as
shown in Fig. 1. In the considered model, the PS is equipped
with Nr antennas while each device k is equipped with Nt

antennas.
Each device has Nk training data samples and each training

data sample n in device k consists of an input feature vector
xk,n ∈ RNI×1 and a corresponding label vector yk,n ∈
RNO×1 where NI and NO are the dimension of input and
output vectors, respectively. Table I provides a summary of
the notations used throughout this paper. The objective of the
training is to minimize the global loss function over all data
samples, which is given by

F (g) = min
g

1

N

K∑
k=1

Nk∑
n=1

f (g,xk,n,yk,n) , (1)

where g ∈ RV×1 is a vector that represents the global FL
model of dimension V trained across the devices with N =
K∑

k=1

Nk being the total number of training data samples of all

devices. f (g,xk,n,yk,n) is the local loss function of each
device k with FL model g and data sample (xk,n,yk,n).

To minimize the global loss function in (1) in a distributed
manner, each device can update its FL model using its local
dataset with a backward propagation (BP) algorithm based on
stochastic gradient descent (SGD), which can be expressed as

wk,t = gt −
λ

|Nk,t|
∑

n∈Nk,t

∂f (g,xk,n,yk,n)

∂g
, (2)

where λ is the learning rate, Nk,t is the subset of training
data samples (i.e., minibatch) selected from device k’s training
dataset Nk at iteration t with |Nk,t| being the number of data
samples in Nk,t, and wk,t is the updated local FL model of
device k at iteration t. Here, each device must perform |Nk|

|Nk,t|
local updates to traverse the entire local training dataset.

Given wk,t, distributed devices must simultaneously ex-
change their model parameters with the PS via bandwidth-
limited wireless fading channels for model aggregation. The
equation of model aggregation is given by

gt =

K∑
k=1

|Nk|
N

wk,t, (3)

where |Nk| represents the number of data samples in Nk.
To ensure all devices can participate in FL model exchang-

ing via wireless fading channels, each device adopts digital
modulation to mitigate wireless fading and the PS adopts
beamforming to maximize the number of devices scheduled
for FL parameter transmission. Next, we will mathematically
introduce the FL training and transmission process integrated
with digital modulation in the considered MIMO communi-
cation system. In particular, we first introduce our designed
digital modulation process that consists of two steps: (i) digital
pre-processing at the devices and (ii) digital post-processing
at the PS.

A. Digital Pre-Processing at the Devices

To transmit wk,t over wireless fading channels, each device
k leverages digital pre-processing to represent each numerical
FL parameter in wk,t using a symbol vector, which is

ŵk,t = l (wk,t) , (4)

where ŵk,t ∈ RW is a modulated symbol vector with W
being the number of symbols, and l (·) denotes the digital
pre-processing function that combines decimal-to-binary con-
version and digital modulation, where the decimal-to-binary
conversion is used to represent each numerical FL parameter
with a binary coded bit-interleaved vector, and the digital
modulation is used to modulate several binary bits as a symbol
[43]. For convenience, the modulated signal ŵk,t is normalized
(i.e., |ŵk,t| = 1). We use rectangular M -quadrature-amplitude
modulation (QAM) for digital modulation and it can be
extended to other types of digital modulation schemes.

Given the transmit beamforming matrix Ak,t ∈ CNt×W

and the maximal transmit power P0 at device k, the power
constraint can be expressed as [44]–[46]

E
(
|Ak,tŵk,t|2

)
= |Ak,t|2 ≤ P0. (5)

where E (x) represents the expectation of x and the equality
in (5) is achieved since the modulated signal is normalized.

B. Post-Processing at the PS

Considering the multiple access channel property of wire-
less communication, the received signal at the PS is given by

st (At) =

K∑
k=1

HkAk,tŵk,t + nt (6)
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Fig. 1. Illustration of our methodology and system model. An FL algorithm is deployed over multiple devices and one PS in a MIMO communication system.
We design the transmit and receive beamforming matrices to optimize the FL training process.

where At = [A1,t, · · · ,AK,t] denotes the transmit beam-
forming matrices of all devices, Hk ∈ CNr×Nt denotes the
MIMO channel vector for the link from device k to the PS,
and nt ∈ CNr is the complex additive Gaussian noise with
zero mean and identity covariance matrix scaled by the noise
power σ2, i.e., nt ∼ CN (0, σ2I).

Since st (At) is the weighted sum of all users’ local FL
models, we consider directly generating the global FL model
gt+1 from st(At). This is a major difference between the
existing works and this work. The digital beamformer output
signal can be expressed as

ŝt (Bt,At) = Bt
Hst(At), (7)

where Bt ∈ CNr×W is the digital receive beamforming
matrix.

Given the received symbol vector ŝt (Bt,At), the PS can
reconstruct the numerical parameters in global FL model gt+1,
which can be expressed as

gt+1 (Bt,At) = l−1 (ŝt (Bt,At)) , (8)

where l−1 (·) is the inverse function with respect to l (·)
that combines the binary-to-decimal function and the digital
demodulation function. From (7) and (8), we see that the
designed transmit and receive beamforming matrices enable
the PS and devices to collaboratively adjust the weights of
the transmitted and received signals, thus achieving FL model
aggregation.

C. Problem Formulation
Next, we introduce our optimization problem. Our goal is

to minimize the FL training loss by designing the transmit and
receive beamforming matrices under the total transmit power
constraint of each device, which is formulated as follows:

min
B,A

F (g (BT ,AT )) , (9)

s.t. |Ak,t|2 ≤ P0,∀k ∈ K,∀t ∈ T . (9a)

where A = [A1, . . . ,AT ] and B = [B1, . . . ,BT ] are the
transmit and receive beamforming matrices for all iterations,
respectively. T is a constant which is large enough to guarantee
the convergence of FL.

From (9), we can see that the FL training loss
F (g (BT ,AT )) depends on the global FL model g (BT ,AT )
that is trained iteratively. Meanwhile, as shown in (6) and
(7), edge devices and the PS must dynamically adjust At

and Bt based on current FL model parameters to minimize
the gradient deviation caused by AirComp in the considered
MIMO system with digital modulation. However, the PS does
not know the gradient vector of each edge device and hence
the PS cannot proactively adjust the receive beamforming
matrix using traditional optimization algorithms. To tackle this
challenge, we propose an ANN-based algorithm that enables
the PS to predict the local FL gradient parameters of each
device. Based on the predicted local FL model parameters,
the PS and edge devices can cooperatively optimize the beam-
forming matrices to improve the performance of FL. Next,
we first mathematically analyze the FL update process in the
considered AirComp-based system to capture the relationship
between the beamforming matrix design and the FL training
loss per iteration. Based on this relationship, we then derive the
closed-form solution of optimal At and Bt that depends on the
predicted FL models achieved by an ANN-based algorithm.

III. SOLUTION FOR PROBLEM (9)

To solve (9), we first analyze the convergence of the
considered FL so as to find the relationship between digital
beamforming matrices At, Bt, and FL training loss in (9).
The analytical result shows that the optimization of beam-
forming matrices At and Bt depends on the FL parameters
transmitted by each device. However, the PS does not know
these FL parameters since it must determine the beamforming
matrices At and Bt before the FL parameter transmission.
Therefore, we propose to use neural networks to predict the
local FL models of each device and proactively determine the
beamforming matrices using these predicted FL parameters.

A. Convergence Analysis of Designed FL

We first analyze the convergence of the considered FL sys-
tem. Since the update of the global FL model depends on the
instantaneous signal-to-interference-plus-noise ratio (SINR)
affected by the digital beamforming matrices At and Bt, we
can only analyze the expected convergence rate of FL. To
analyze the expected convergence rate of FL, we first assume
that a) the loss function F (g) is L−smooth with the Lipschitz
constant L > 0, b) F (g) is strongly convex with positive
parameter µ, c) F (g) is twice-continuously differentiable, and
d) ∥∇f(gt,xkn,ykn)∥2≤ζ1+ζ2 ∥∇F (gt)∥2 , as done in [47].
These assumptions can be satisfied by several widely used loss
functions such as mean squared error, logistic regression, and
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cross entropy. Based on these assumptions, next, we first derive
the upper bound of the FL training loss at one FL training step.
The expected convergence rate of the designed FL algorithm
can now be obtained by the following theorem.

Theorem 1. Given the optimal global FL model g∗,
the current global FL model gt, the transmit beamform-
ing matrix At, and the receive beamforming matrix Bt,
E (F (gt+1(At,Bt))− F (g∗)) can be upper bounded as

E (F (gt+1(At,Bt))− F (g∗))

⩽E (F (gt)− F (g∗))− 1

2L
∥∇F (gt)∥2

+
1

2L
E (∥et∥+ ∥êt(At,Bt)∥)2 , (10)

where

et =

∥∥∥∥∥∥∥∥∥
K∑

k=1

∑
n∈Nk,t

∇f (gt,xn,k,yn,k)

K∑
k=1

|Nk,t|

−l−1


K∑

k=1

l

( ∑
n∈Nk,t

∇f (gt,xn,k,yn,k)

)
K∑

k=1

|Nk,t|


∥∥∥∥∥∥∥∥∥∥
+ Υ

(11)

with the first term being the gradient trained by SGD , the
second term being the gradient demodulated from a sum of
all selected devices’ symbols, and Υ being the variance bound
introduced by random sampling of mini-batches of all devices.
In particular, Υ depends on the variance of the local updated
gradient in minibatch SGD, which is [48]–[50]

E||ŵk,t −wk,t|| =
σ2
k

|Nk|
, (12)

where ŵk,t is the optimal updated local model without vari-
ance and σ2

k is the variance of the local gradient. Given σ2
k

|Nk|

on each device k, the relationship between Υ and σ2
k

|Nk| is

Υ =

K∑
k=1

σ2
k

|Nk|
, (13)

and

êt(At,Bt) = l−1


K∑

k=1

l

( ∑
n∈Nk,t

∇f (gt,xn,k,yn,k)

)
K∑

k=1

|Nk,t|



− l−1


Bt

(
K∑

k=1

HkAk,tl

( ∑
n∈Nk,t

∇f (gt,xn,k,yn,k)

)
+nt

)
K∑

k=1

|Nk,t|

 .

(14)

Proof: See Appendix A.

From Theorem 1, we see that, since et does not depend
on At or Bt, the optimization of the digital beamforming
matrices cannot minimize et. In consequence, we can only
minimize ∥êt∥ to decrease the gap between the FL training
loss at iteration t + 1 and the optimal FL training loss (i.e.,
E (F (gt+1)− F (g∗))). Thus, problem (9) can be rewritten as

min
Bt,At

∥êt∥2 (15)

s.t. |Ak,t|2 ≤ P0,∀k ∈ K,∀t ∈ T . (15a)

To minimize ∥êt∥ in (15), the PS and edge devices must
obtain the information of MIMO channel vector Hk as well

as the trained gradients l

( ∑
n∈Nk,t

∇f (gt,xn,k,yn,k)

)
so as

to adjust At and Bt. However, the trained FL gradients
∆wk,t =

∑
n∈Nk,t

∇f (gt,xn,k,yn,k) cannot be obtained by the

PS before edge devices sending FL model parameters. Hence,
the PS must predict ∆wk,t for optimizing At and Bt and
minimizing ∥êt∥.

B. Prediction of Local FL Models

Next, we explain the use of neural networks to predict the
local FL model updates of all devices at the PS. Formally, the
task is to predict parameters of device k’s FL model update
at time t, i.e., ∆wk,t ∈ RV×1, from the global aggregation
available at the PS at time t − 1, i.e., gt−1 ∈ RV×1. This is
considered a regression task since the values of the FL model
are continuous. Therefore, we propose to use multilayer per-
ceptrons (MLPs), a standard type of artificial neural network
(ANN) for handling regression tasks [51].

Our proposed MLP-based prediction algorithm consists of
three layers: (a) input layer, (b) a single hidden layer, and (c)
output layer. These components are defined as follows:

• Input layer: The input to the MLP is a vector g′
t−1 ∈

RV ′×1 that represents the previous aggregated results of
the FL parameters being predicted. This is a subset of
gt−1 ∈ RV×1, where the number of parameters V ′ ≤ V
is adjustable. Since the total parameter dimension V may
be large (e.g., for the CIFAR-10 experiments in Sec. IV,
V = 1.17 × 107), selecting a smaller number V ′ to
predict can lead to complexity reduction advantages. As
we mentioned in (6), all devices are able to connect with
the PS so as to provide the input information for the MLP
to predict the local FL models for next iteration.

• Output layer: The output of the MLP is a vector ∆w̃′
k,t ∈

RV ′×1 that represents prediction of the V ′ parameters
in device k’s local FL model update for the current
iteration t. The resulting estimate ∆w̃k,t ∈ RV×1 of
∆wk,t used in the beamforming design in Section III-C
is then a combination of (a) the V ′ parameter predictions
∆w̃′

k,t that the ANN has made, and (b) the other V −V ′

parameters in gt−1 that are not part of the ANN.
• Single hidden layer: We employ a single hidden layer of

dimension D to learn the nonlinear relationships between
the input g′

t−1 and the output ∆w̃′
k,t. The weight matrix

between the input vector and the neurons in the hidden
layer for device k is denoted vin

k ∈ RV ′×D. Meanwhile,
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the weight matrix between the neurons in the hidden layer
and the output vector is denoted vout

k ∈ RD×V ′
.

Based on this, the states of the neurons in the hidden layer
are given by

vk,t = σ
(
vin
k g′

t−1 + bvk
)
, (16)

where σ (x) = 2
1+exp(−2x) − 1 is a sigmoidal activation and

bvk ∈ RD′×1 is the bias vector. Then, the output of the MLP
is given by

∆w̃′
k,t = vout

k vk,t + bok, (17)

where bok ∈ RV ′×1 is another bias vector.
The MLP is trained through an online gradient descent

method in parallel with the FL model updating. However, in
the considered model, the PS only has access to the value
of gt that is directly demodulated from the received signal
from all devices. Hence, the PS and the devices must exchange
information to train the MLP for each device cooperatively. In
particular, at each iteration, device k first calculates its local
update ∆wk,t and gt−1 received from the PS, and extracts
∆w′

k,t ∈ RV ′×1 from ∆wk,t. Then, it calculates the gradient
of the MLP parameters with respect to the MLP’s prediction of
∆w′

k,t from g′
t−1. Finally, device k transmits these gradients

to the PS, which updates the MLP parameters accordingly. We
will see in Sec. IV that the per-iteration latency introduced
by this MLP procedure is overcome by the reduction in the
number of training rounds needed for convergence, so long as
the size of the MLP is limited.

C. Optimization of the Beamforming Matrices

Having the predicted local FL model updates ∆w̃k,t, the PS
can optimize the beamforming matrices At and Bt to solve
Problem (15). Substituting ∆w̃k,t, (6), and (7) into (15), we
have

min
Bt,At

∥∥∥∥∥∥∥∥∥l
−1


K∑

k=1

l (∆w̃k,t)

K∑
k=1

|Nk,t|



−l−1


Bt

(
K∑

k=1

HkAk,tl (∆w̃k,t) + nt

)
K∑

k=1

|Nk,t|


∥∥∥∥∥∥∥∥∥
2

(18)

s.t. |Ak,t|2 ≤ P0,∀k ∈ K,∀t ∈ T . (18a)

In (18), l−1

 K∑
k=1

l(∆w̃k,t)

K∑
k=1

|Nk,t|

 is independent of At and Bt

and can be regarded as a constant. However, the exis-
tence of the inverse function l−1(·) defined in (8) signifi-
cantly increases the complexity for solving (18). Considering
l−1(·) that is used to demodulate the symbols into numer-
ical FL parameters, the minimization of the gap between

l−1

 K∑
k=1

l(∆w̃k,t)

K∑
k=1

|Nk,t|

 and l−1

Bt

(
K∑

k=1

HkAk,tl(∆w̃k,t)+nt

)
K∑

k=1

|Nk,t|
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Fig. 2. An example of 16-QAM constellation at the PS with 4 devices.

is equivalent to minimize the distance between

K∑
k=1

l(∆w̃k,t)

K∑
k=1

|Nk,t|

and
Bt

(
K∑

k=1

HkAk,tl(∆w̃k,t)+nt

)
K∑

k=1

|Nk,t|
in the decision region of

digital demodulation, as shown in Fig. 2. To this end, in

this section, we first derive the position of

K∑
k=1

l(∆w̃k,t)

K∑
k=1

|Nk,t|
in the

decision region and remove l−1(·) from (18) for simplification.
Then, we present a closed-form optimal design of the transmit
and receive beamforming matrices.

Given ∆w̃k,t and the digital pre-processing function l(·)
defined in (4), the modulated symbol vector ∆ŵk,t =
l (∆w̃k,t) = [∆ŵI

k,t,1∆ŵQ
k,t,1, . . . ,∆ŵI

k,t,L∆ŵQ
k,t,L] can be

obtained where ∆ŵI
k,t,i and ∆ŵQ

k,t,i are the i-th in-phase and
quadrature symbols modulated by ∆w̃k,t, respectively. Since
in-phase and quadrature-phase symbols that have vertical and
horizontal decision regions are mutually independent, the

value of l−1

 K∑
k=1

∆ŵk,t

K∑
k=1

|Nk,t|

 can be obtained via individually

analyzing the decision region of each in-phase and quadrature-
phase symbols which are∣∣∣∣∣∣∣∣∣

1
K∑

k=1

|Nk,t|

K∑
k=1

∆ŵI
k,t,i − aIi

∣∣∣∣∣∣∣∣∣ ⩽
ξ

2
,

∣∣∣∣∣∣∣∣∣
1

K∑
k=1

|Nk,t|

K∑
k=1

∆ŵQ
k,t,i − aQi

∣∣∣∣∣∣∣∣∣ ⩽
ξ

2
, (19)

where aIi, a
Q
i ∈ M =

{
1−

√
M

2 ξ, 3−
√
M

2 ξ, . . . ,
√
M−1
2 ξ

}
are

the constellation points in the decision region with M being
the set of all constellation points. ξ =

√
4P0

(
√
M−1)

2 is the
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minimum Euclidean distance between two constellation points.
Using (19), aIi and aQi are given by

aIt,i =

x
∣∣∣− ξ

2
+

K∑
k=1

∆ŵI
k,t,i

K∑
k=1

|Nk,t|
⩽ x ⩽

ξ

2
+

K∑
k=1

∆ŵI
k,t,i

K∑
k=1

|Nk,t|
∩M


(20)

and

aQt,i =

x
∣∣∣− ξ

2
+

K∑
k=1

∆ŵQ
k,t,i

K∑
k=1

|Nk,t|
⩽ x ⩽

ξ

2
+

K∑
k=1

∆ŵQ
k,t,i

K∑
k=1

|Nk,t|
∩M

 .

(21)

Given a∗
t = [aIt,1a

Q
t,1, . . . , a

I
t,WaQt,W ], problem (18) can be

rewritten as

min
Bt,At

∥∥∥∥∥a∗
t −Bt

H
K∑

k=1

HkAk,t∆ŵk,t −Bt
Hnt

∥∥∥∥∥
2

(22)

s.t. ∥Ak,t∥2 ≤ P0,∀k ∈ K,∀t ∈ T . (22a)

where ∆ŵk,t = l (∆w̃k,t) is a modulated symbol vector of
∆w̃k,t. Problem (22) can be solved by an iterative optimiza-
tion algorithm. In particular, to solve problem (22), we first fix
Bt, then the objective functions and constraints with respect
to At are convex and can be optimally solved by using a dual
method [52]. Similarly, given At, problem (22) is minimized

as B∗
t =

 a∗
t

K∑
k=1

HkA∗
k,t∆ŵk,t

H

.

D. Implementation and Complexity
Next, we discuss the implementation and complexity of the

designed FL algorithm. With regards to the implementation
of the proposed algorithm, the PS must a) use MLPs to
predict the devices’ local FL model update, and b) design
the transmit and receive beamforming matrices based on the
predicted updates. To train the MLPs that are used for the
predictions of devices’ local FL model update, the PS will use
the global FL model gt−1 that is directly reconstructed from
the received symbol vector ŝt−1 at iteration t−1. Additionally,
the PS needs the gradients of the MLP parameters vin

k ,vout
k

calculated on the device. To design the optimal transmit and
receive beamforming matrices, the PS requires the maximal
transmit power P0 and the MIMO channel vector Hk of each
device k. We ignore the overhead of each device transmitting
P0 to the PS since it is a scalar. With regards to Hk, the PS
can use channel estimation methods to learn Hk over each
uplink channel so as to design optimal transmit and receive
beamforming matrices.

To satisfy the synchronization requirement in the proposed
AirComp framework, it is necessary to incorporate clock
synchronization for precise control of information transmis-
sion timing and channel state information (CSI) feedback, for
accurate estimation of transmission delay. For clock synchro-
nization, the PS can broadcast a shared block to all devices to
achieve time calibration, as in previous studies [53]–[55]. For

Algorithm 1 Proposed FL Over AirComp-based System
1: Init: Global FL model g0, beamforming metrics A0 and

B0, MIMO channel matrix H .
2: for iterations t = 0, 1, · · · , T do
3: for k ∈ {1, 2, · · · ,K} in parallel over K devices do
4: Each device calculates and returns wk,t based on

local dataset and gt in (2).
5: Each device leverages digital pre-processing to mod-

ulate each model parameter into a symbol.
6: Each device sends the symbol vector ŵk,k to the

PS using the optimized transmit beamforming matrix
Ak,t.

7: end for
8: The PS directly demodulates the global FL model gt+1

from the received superpositioned signal using (8).
9: The PS predicts the local FL model ŵk,t+1 of each

device based on demodulated gt+1 using trained ANNs.

10: The PS proactively adjusts the transmit and receive
beamforming matrices using the augmented Lagrangian
method and broadcast the transmit beamforming matrix
Ak,t+1 to each device k.

11: end for

accurate estimation of transmission delay, the PS can obtain
the CSI directly from the uplink pilot signals transmitted from
devices, as done in previous studies [56]–[58].

We identify two components of our algorithm that could
potentially impact complexity and latency: (1) the MLP and
(2) optimizing At and Bt. The training complexity of the MLP
can be made small compared to the complexity of FL training.
Specifically, the computational complexity of the MLP lies
in the size of input g′

t−1 and output ∆w̃′
k,t, as well as the

number of the neurons in the hidden layer. As discussed in
Sec. III-B, the sizes of g′

t−1 and ∆w̃′
k,t are both V ′, while

the number of neurons in the hidden layer is D. Hence, the
computational complexity is O(2V ′D), which implies that the
training complexity of the MLP can be controlled directly
based on limiting the size of V ′ and D. In Sec. IV, for the ML
task, we will set MLP to predict parameters for the last layer
of the neural network, so that V ′ ≪ V . We can further select
D such that 2V ′D ≪ V , i.e., so the MLP is substantially
smaller than the FL model.

Regarding the optimization of At and Bt, the complexity
scales in the number of iterations required for the solver
to converge. For finding optimal At and Bt, problem (22)
can be solved by a traditional augmented Lagrangian method
that approaches the optimal solution via alternating updating
At, Bt, and the Lagrangian multiplier vector. The introduced
Lagrangian multiplier vector consists of K constraints, where
K is the number of devices in the considered FL framework.
Hence, the PS is required to sequentially update K Lagrangian
multipliers, At = [A1,t, · · · ,AK,t], and Bt at each iteration.
Letting LO be the number of iterations until the augmented
Lagrangian method converges, the complexity is O(LOK

2).
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IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Simulation Setup

We consider a circular network area with a radius r = 1500
m with one PS at its center serving K = 20 uniformly dis-
tributed devices. In particular, the PS allocates 64 subcarriers
to all devices and the bandwidth of each subcarrier is 15
kHz. By default, the channels between the PS and devices
are modeled as independent and identically distributed with
Rayleigh fading and a pathloss exponent of β = 2. The other
default settings of parameters used in simulations are listed in
Table II.

For comparison purposes, we consider several baseline Air-
Comp FL frameworks: analog modulation, BPSK modulation,
64 QAM without the assistance of MLP, 64 QAM replacing
the MLP with a tabular approach, and an ideal upper bound of
64 QAM over noiseless channels. These considered baselines
are detailed as follows:

• The analog AirComp FL framework, from [27], enables
each device to use digital beamforming and analog modu-
lation for transmitting FL parameters over wireless fading
channels (labeled “Analog FL” in plots).

• The BPSK AirComp FL framework, from [36], enables
each device to quantize its trained FL model parameters
into one bit and use digital beamforming and BPSK
for transmitting quantized FL parameters over wireless
fading channels (labeled “BPSK FL” in plots).

• An AirComp FL framework without the assistance of
MLP enables the devices to quantize their trained FL
model parameters into 6 bits and directly use digital
beamforming and 64 QAM for transmitting quantized
FL parameters over wireless fading channels (labeled
“Proposed method without MLP” in plots).

• An AirComp FL framework considering noiseless chan-
nels enables the devices to quantize their trained FL
model parameters into 6 bits and use digital beamforming
and 64 QAM for quantized FL parameter transmission
over noiseless channels. Then, the PS uses the receive
beamforming matrix optimized by MLP to adjust the
decision region of the received superimposed signals to
minimize the transmission error (labeled “Proposed FL
over noiseless channels” in plots).

• An AirComp FL framework where, as in our method,
the devices quantize their trained FL model parameters
into 6 bits and directly use digital beamforming and 64
QAM for transmitting quantized FL parameters. How-
ever, ChannelComp from [41] is employed to optimize
the transmission error instead of the ANN (labeled “Pro-
posed method with ChannelComp” in plots).

The Fashion-MNIST dataset [59] and CIFAR-10 dataset
[60] are used as ML tasks in our performance evaluation. For
Fashion-MNIST, each local FL model consists of five convolu-
tional layers and one fully-connected layer, with V = 9.2×105

total model parameters. For CIFAR-10, each local FL model is
a standard ResNet-18 that consists of 17 convolutional layers
and one fully-connected layer, with V = 1.17 × 107 total
model parameters.

For the MLP described in Sec. III-B, we focus on predicting
the parameters of the last layer in each ML model (i.e., the
fully connected layers). This leads to V ′ = 640 for both the

TABLE II
DEFAULT SIMULATION PARAMETERS

Parameters Values Parameters Values Parameters Values
K 20 M 64 σ2 -90 dBW
Nr 2 Nt 2 Nk 2000
P0 1 mW T 50 W 7840
NI 28 NO 10 λ 0.01
r 1500 m D 160 L0 100

CNN in Fashion-MNIST and the Resnet-18 in CIFAR-10. To
restrict the ANN’s total size to a small fraction of the ML
model in each case, we set D = 160 for Fashion-MNIST
and D = 320 for CIFAR-10, in line with CIFAR-10’s higher
complexity (leading to the MLP being 22% and 3% of the
model sizes, respectively). As we will see in Sec. IV-C, we find
that this retains a strong MSE performance for each dataset.
Similar considerations can be made for other ML tasks.

Throughout the simulations, we will consider data samples
to be allocated across devices in either an independent and
identically distributed (IID) or non-IID manner. In the IID
data setting, each device is allocated datapoints from all 10
class labels, while in the non-IID case, they each only receive
datapoints from a fraction of the labels, assumed to be 6 by
default [61], [62].

It is worth noting that the convolution kernels exhibit sen-
sitivity to errors, which significantly degrade the performance
of the FL model, as will be demonstrated in the simulations.
However, considering the relatively small number of param-
eters in convolution kernels, it is viable to utilize traditional
methods such as orthogonal frequency division multiple access
for transmitting the kernel parameters.

Finally, in some of our experiments (Fig. 4, Table III,
Table IV, Fig. 9), we will conduct accuracy comparisons
over time/latency incurred rather than communication rounds.
These calculations employ standard models for communication
and computation delays [63], [64], which we present in
Appendix B. For experiments that refer to convergence (in
particular, Tables III & IV), algorithms are considered to have
converged when the value of the FL loss variance calculated
over five consecutive iterations is less than 0.001.

B. Training Speed and Accuracy Comparisons

We first conduct several experiments comparing our
methodology to the baselines in terms of convergence speed
and accuracy. In Fig. 3, we show how the test accuracy of all
considered algorithms changes over communication rounds,
on the Fashion-MNIST task, for the IID data setting. In this
figure, we can see that, the proposed algorithm improves the
test accuracy by up to 15.5% and 24.5% compared to analog
FL and BPSK FL, respectively. From Fig. 3, we can also
see that the performance of analog FL experiences noticeable
fluctuations. This is due to the noise over wireless channels
introducing dynamic errors into FL parameter transmission
process, thus affecting FL test accuracy. We also see that
the proposed method without using MLP for predicting FL
gradients cannot converge, which verifies that the optimal
beamforming matrices design depends on the prediction of
FL gradients.

Fig. 4 shows how the test accuracy changes over time
elapsed, measured in seconds, as opposed to iterations. Here,
the elapsed time consists of the FL model training time,
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Fig. 3. Testing accuracy of the proposed AirComp-based FL system over
communication rounds, for an IID data allocation on the Fashion-MNIST
task. We see that our proposed method provides substantial improvements
over the baselines, approaching the noiseless channel case.

Fig. 4. Test accuracy of the proposed AirComp-based FL system over time
on the Fashion-MNIST task, for an non-IID data allocation. The overall trends
are similar to those observed in Fig. 3.

inference time that is used for predicting FL parameters, and
the model transmission time. The overall trends are similar
to those observed in Fig. 3: compared to BPSK FL, while
our proposed methodology converges more slowly, it ends up
improving the test accuracy by up to 27%. This is because the
proposed FL uses more bits instead of one bit in BPSK FL to
represent each FL parameter, thus increasing the dynamics of
global FL model generation. In addition, this figure also shows
that the proposed algorithm can reduce the convergence time
by 20.3% compared to analog FL. This finding underscores the
fact that although the utilization of MLP introduces additional
inference latency, it ultimately results in a decrease in the
overall convergence time of FL. We will further investigate
the latency vs. accuracy tradeoff in Tables III and IV.

Fig. 5 shows how the test accuracy changes as the number
of communication rounds varies on the CIFAR-10 dataset, for
the IID data distribution setting. Overall, we make similar
observations from this figure as for Fashion-MNIST in Fig.

Fig. 5. Test accuracy of the proposed AirComp-based FL system across
communication rounds, for an IID data allocation on the CIFAR-10 dataset.
Compared to Fig. 3, we observe significant improvements over the baselines.
The larger gap from the noiseless channel case shows the impact of noise on
more complex learning tasks (CIFAR-10 vs. Fashion-MNIST).

3. We see that our proposed method can improve the test
accuracy by up to 20% compared to analog FL, due to the
proposed FL approach utilizing digital modulation (i.e., 64
QAM) to mitigate channel impairments and misalignments.
We can also see that BPSK FL can only achieve 30% test
accuracy. The lower overall accuracies of each algorithm are
consistent with CIFAR-10 being a more difficult learning
task than Fashion-MNIST. Along these lines, the impact of
fading and additive white Gaussian noise is stronger for this
case compared with the Fashion-MNIST experiments, which
can be explained by CIFAR-10 having an ML model that is
more complex, causing the results to be more sensitive to
impairments. Fig. 5 also shows that our methodology with the
ANN model prediction strategy leads to an improvement of up
to 10% compared to employing ChannelComp [41]. This con-
firms that our prediction-based strategy obtains smaller errors
compared to the transmission error minimization employed by
this competing approach.

In Fig. 6, we repeat the experiment from Fig. 5, but this time
under a non-IID setting, where the data samples of each device
are drawn from 6 (instead of 10) classes. From this figure, we
see that the proposed FL with 64-QAM can improve the test
accuracy by up to 18% and 13% compared with analog FL and
ChannelComp, similar to in the IID case. Fig. 6 also shows
that under noiseless channels, the accuracy of the AirComp-
based system is 6% better, consistent with the IID case.

Finally, in Tables III and IV, we compare the performance
of the proposed method with that of analog FL and BPSK
FL in terms of (i) latency per iteration, (ii) overall training
time, (iii) average rounds to convergence, and (iv) converged
test accuracy, on the Fashion-MNIST and CIFAR-10 datasets,
respectively, for the non-IID cases. Compared to analog FL we
see that while our method incurs a higher latency in each round
(e.g., 1.26 vs. 1.03 sec in Fashion-MNIST), it has a smaller
latency across the entire training process (e.g., 18.90 vs. 23.69
sec in Fashion-MNIST), since it requires less total rounds to
converge. Employing the MLP within our method introduces



10

Fig. 6. Test accuracy of the proposed AirComp-based FL system across
communication rounds, for a non-IID data allocation on the CIFAR-10 task.
The overall trends are consistent with the IID case in Fig. 5, showing that our
methodology obtains improvements under different data partitions.

additional latency and computational overhead, but aids in
designing the beamforming matrices to reduce transmission
errors, thereby reducing the total number of rounds required.
BPSK FL has the lowest latencies of all, but suffers from
poor testing accuracy at convergence, due to the fact that it
quantizes the FL parameters to a single bit. We observe too
that the per-round and total latencies are higher in CIFAR-10,
which is the most complex of the tasks, with the largest ML
model being trained and transmitted.

TABLE III
LATENCY VS. ACCURACY TRADEOFF FOR TRAINING ON THE

FASHION-MNIST DATASET.

Avg. Lat. for
Each Round

Avg. Lat. for
Entire Training

Avg. Rounds
to Converge

Converged
Test Acc.

Proposed 1.26 s 18.90 s 15 90%
Analog FL 1.03 s 23.69 s 23 76%
BPSK FL 0.21 s 1.05 s 5 67%

C. Robustness of MLP Predictor
Given the importance of the ANN-based predictor at the PS

to our approach, we conduct further analysis to assess how it
is impacted by the learning environment. First, in Fig. 7, we
show the performance of the MLP predicting FL parameters
on the CIFAR-10 dataset as the data partitioning varies across
devices. In the non-IID cases, the data samples of each device
are from a fraction of the labels: 3 of 10, 6 of 10, and 9 of 10,
respectively. The MSE is used to evaluate the performance of
the MLP on the test dataset at each iteration of training. In
this figure, we see that the proposed ANN algorithm achieves
a predominantly linear convergence speed prior to tapering
off. This is because the proposed ANN has only three fully-
connected layers thus having a relatively low computational
complexity. Fig. 7 also shows that as the proposed ANN
method converges, the MSE approaches 0, which implies the
proposed ANN approach can predict FL parameters accurately.
We also see that the values of the MLP MSE in both the IID
and non-IID data distributions are similar. This indicates that

TABLE IV
LATENCY VS. ACCURACY TRADEOFF FOR TRAINING ON THE CIFAR-10

DATASET.

Avg. Lat. for
Each Round

Avg. Lat. for
Entire Training

Avg. Rounds
to Converge

Converged
Test Acc.

Proposed 21.46 s 966 s 45 73%
Analog FL 20.92 s 1255 s 60 52%
BPSK FL 2.95 s 118 s 40 31%

Fig. 7. MSE performance of the proposed ANN-based model parameter
predictor across training iterations on the CIFAR-10 dataset. We see that the
ANN prediction quality is robust to the data distribution across devices.

MLP is capable of capturing the nonlinear relationships of
the FL parameters for different distributions of data samples
across the devices.

Next, in Table V, we show the MSE of the MLP when the
FL models of devices are transmitted over different channel
conditions, on the CIFAR-10 dataset. Here, we consider a non-
IID data distribution where the data samples of each device
are from 6 of 10 labels. We consider the implementation of
the proposed framework over four channel conditions: (a) a
Rayleigh model with noise variance σ2 = −90 dBm, (b) a
Rayleigh model with noise variance σ2 = −95 dBm, (c) a
Rician model with noise variance σ2 = −90 dBm and Rician
factor k = 7, and (d) a Rician model with noise variance σ2 =
−90 dBm and Rician factor k = 10. The pathloss exponent
is set to β = 2 for Rayleigh and β = 4 for Rician. The
MSE performance of the MLP without transmission errors is
considered as an optimal baseline. Overall, we can see that
the MLP demonstrates satisfactory performance in terms of
MSE regardless of the channel model, which indicates the
robustness of the proposed ANN algorithm. We also notice that
the MSE of the MLP transmitted through the Rician fading
channel is lower than the MSE of the MLP transmitted through
the Rayleigh fading channel due to the influence of the line-
of-sight signal. Additionally, as the Rician factor increases and
the noise variance decreases, the MSE of the MLP transmitted
over different channels approaches the optimal baseline.

Finally, Fig. 8 assesses the error in the obtained aggregated
model gt at the PS for different methods. The error is
defined as the sum of the distances between all weights in
the aggregated model at the PS and that in the true average
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TABLE V
MSE PERFORMANCE OF THE PROPOSED ANN-BASED MODEL PARAMETER PREDICTOR WHEN THE DEVICE MODELS ARE TRANSMITTED

OVER DIFFERENT CHANNEL CONDITIONS, FOR CIFAR-10 WITH A NON-IID DATA PARTITION.

MLP with perfect
communication

Rayleigh,
σ2 = −90 dBm

Rayleigh,
σ2 = −95 dBm

Rician,
σ2 = −90 dBm,

k = 7

Rician,
σ2 = −90 dBm,

k = 10
Converged

MSE (×10−7) 7.73 13.21 11.14 8.51 7.80

Fig. 8. Cumulative distribution function (CDF) of the errors in the aggregated
models, for training on Fashion-MNIST dataset under the IID data partition.

of the models across the devices. The results are shown as
the cumulative distribution function (CDF) of the value of
the errors obtained over training rounds. We can see that
the proposed method achieves a lower error rate compared
to the proposed FL without using MLP for FL gradient
prediction. This is because without predicting FL gradient
vectors, the PS cannot proactively adjust the transmit and
receive beamforming matrices to minimize transmission errors
and can only use fixed beamforming design that directly
aggregates all local models via linear superimposition. This
linear superimposition is not available for digital modulation
schemes since digital modulation may introduce complex
mapping relationships between bits and symbols thus resulting
in additional demodulation errors.

D. Impacts of Channel Conditions and SNR
We next investigate the impact of channel conditions on

the performance of our methodology. In Fig. 9, we show
the performance of the proposed method on the Fashion-
MNIST dataset under various channel models. In particular,
we consider the Rayleigh fading channel and the Rician fading
channel. For each model, we consider three different settings,
varying the noise variance σ2 = −90 dBm, pathloss exponent
β, and Rician factor k. Overall, from this figure, we can see
that the proposed algorithm is reasonably robust to the specific
channel conditions, with the testing accuracy staying within
a window of ±0.04. The best performance occurs when the
channel is Rician and k = 10. This is consistent with the
Rician factor being the ratio of the power of the dominant path

Fig. 9. Impact of Rician (dashed lines) and Raleigh (solid lines) channel
models on training performance, for the Fashion-MNIST dataset under an
IID data partition. Overall, we see that our methodology is reasonably robust
to variations in the channel model.

Fig. 10. Impact of SNR on test accuracy for the Fashion-MNIST dataset, for
an IID data partition. We see that the performance of all methods begins to
decay once the SNR drops below 10 dB.

component to the power of the whole signal. Thus, k = 10
is the case of the largest dominant path, which reduces FL
transmission errors and improves the FL performance.

We next consider the impact of the received SNR. Fig.
10 shows how the test accuracy of considered FL algorithms
changes as SNR decreases, for the Fashion-MNIST dataset.
In Fig. 10, we can see that the test accuracy of the proposed
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Fig. 11. Impact of SNR on convergence performance for the Fashion-MNIST
dataset, for the same settings as in Fig. 10. We see that our method converges
significantly faster at higher SNRs, with less transmission errors occurring.

method decreases as SNR decreases, while the test accuracy
of BPSK FL remains unchanged, when the SNR is larger
than 10 dB. Additionally, the test accuracy of BPSK FL is
lower than the proposed method at any SNR values. This is
because the quantization error in BPSK significantly affects
the model training process and results in a degeneration of
test accuracy. Fig. 10 also shows that the proposed method
with Nr = 4 receiver antennas can achieve 8% gains in
terms of test accuracy compared to that with Nr = 2 receiver
antennas when SNR is 10 dB. Thus, an increase of the number
of receiver antennas can improve the test accuracy in the
proposed FL framework. This is because an increase of the
number of receiver antennas enables the PS to exploit transmit
diversity and reduce transmission error in the AirComp-based
system.

Finally, in Fig. 11, we show how the number of commu-
nication rounds that the considered FL algorithms require to
converge changes as SNR decreases, for the same settings as
in Fig. 10. We can see that, compared with BPSK FL, the
number of communication rounds required to converge for
our methodology decreases noticeably as the SNR increases.
This is due to the fact that, as SNR decreases, the probability
of introducing additional transmission errors increases thus
reducing the FL convergence speed.

E. Impact of Network Size

Finally, we consider the impact of the number of devices on
the performance. Fig. 12 shows how the test accuracy changes
as the number of devices varies. In Fig. 12, we can see that
the test accuracy increases as the number of devices increases.
This is because as the number of devices increases, the number
of data samples available in the network for training increases.
This helps improve the performance both of our higher-order
modulation method as well as for BPSK FL. Fig. 12 also
shows that as the number of receiver antennas increases from
Nr = 2 to Nr = 4, the test accuracy of the proposed
methodology experiences a slight improvement, because of
the PS’s ability to exploit transmit diversity.

Fig. 12. Impact of network size on obtained accuracy for the Fashion-MNIST
dataset under an IID data partition. A larger network has a positive impact
on accuracy performance.

Fig. 13. Impact of network size on convergence performance, for the same
settings as Fig. 12. A larger network reduces the iterations required.

In Fig. 13, we show how the number of rounds required
to converge varies as the number of devices changes, for the
same dataset and settings as Fig. 12. Overall, we see that as the
number of devices increases, the number of rounds needed to
converge decreases, in addition to improving the overall testing
accuracy. Fig. 13 also shows that our method can exploit a
larger number of antennas to reduce the iterations required
for convergence, with appropriate design of the beamforming
matrices.

V. CONCLUSION

In this article, we have developed a novel framework that
enables the implementation of FL algorithms over a digital
MIMO and AirComp based system. We have formulated
an optimization problem that jointly considers transmit and
receive beamforming matrices for the minimization of FL
training loss. To solve this problem, we analyzed the expected
improvement of FL training loss between two adjacent itera-
tions that depends on the digital modulation mode, the number
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of devices, and the design of beamforming matrices. To obtain
this bound in practice, we introduced an ANN based algorithm
to estimate the local FL models of all devices; then, the
optimal solution of beamforming matrices can be determined
based on the predicted FL model and the derived expected im-
provement of FL training loss. Numerical evaluation on real-
world machine learning tasks demonstrated that the proposed
methodology yields significant gains in classification accuracy
and convergence speed compared to conventional approaches.

APPENDIX A
PROOF OF THEOREM 1

To prove Theorem 1, we first rewrite F (gt+1) using the
second-order Taylor expansion and the property of the L-
smooth in Assumption a), which can be expressed as

F (gt+1) ≤ F (gt) + (gt+1 − gt)∇F (gt) +
L

2
∥gt+1 − gt∥2 .

Let gt+1 − gt = ∇F (gt) − ot and the learning rate λ = 1
L ,

we have

E (F (gt+1))− E (F (gt))

≤− λE (∇F (gt)− ot)∇F (gt) +
Lλ2

2
E ∥∇F (gt)− ot∥2

(a)
= − 1

2L
E ∥∇F (gt)∥2 +

1

2L
E
(
∥ot∥2

)
,

where (a) stems from the fact that Lλ2

2 ∥∇F (gt)− ot∥2 =
1
2L ∥∇F (gt)∥2− 1

Lo
T∇F (gt)+

1
2LE

(
∥ot∥2

)
with ot being

a gradient deviation caused by the errors in local FL model
transmission, which can be given as follows

E
(
∥ot∥2

)
=E

(
∥∇F (gt)− (gt+1 − gt)∥2

)

=E
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(23)

where ∇f (gt,xn,k,yn,k) is the gradient trained

by (xn,k,yn,k). ŝt

( ∑
n∈Nk,t

∇f (gt,xn,k,yn,k)

)
=

B
K∑

k=1

HkAkl

 ∑
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+Bnt

K∑
k=1
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is the received

signal.

K∑
k=1

l

 ∑
n∈Nk,t

∇f(gt,xn,k,yn,k)


K∑

k=1

|Nk,t|
is the theoretical signal

that is obtained via modulation at devices and demodulation
at the PS without channel impairments and misalignments.
Given ∇f (gt,xn,k,yn,k), the first term in (23) represents
the discrepancy of gradients introduced by random sampling
of mini-batches, which can be rewritten as

E
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where ŵk,t is the optimal updated local model without vari-
ance. Given σ2

k

|Nk| on each device k, the variance bound of all

devices is Υ =
K∑

k=1

σ2
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|Nk| .

And then, we have E
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and

êt(At,Bt) = l−1
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This completes the proof.

APPENDIX B
LATENCY MODELS

We present here the models employed for calculating la-
tency/delay in the experiments. For our algorithm, the latency
encompasses the time of updating and transmitting both the
MLP and the local FL models. For the analog FL and BPSK
FL baselines, the latency consists of the time of updating and
uploading the FL parameters only. Our models of the four
components are given below.

MLP updating time: The updating time of the MLP
depends on the computational complexity of the MLP and
the computational power of each device. The computational
complexity of the MLP depends on the size of input g′

t−1

and output ∆w̃′
k,t, as well as the number of the neurons in

the hidden layer. As discussed in Section III-B, the sizes of
g′
t−1 and ∆w̃′

k,t are both V ′, and the number of neurons in
the hidden layer is D. Then, following the latency models in
[63], the updating time of the MLP can be modeled as

LMLP,U =
2α2V ′D

εfD
ρ, (26)

where 2V ′D is the total number of parameters, fD is the CPU
clock frequency of a device (in cycles/sec), ε is the number
of parameter update operation executed by one CPU cycle, ρ
is the time-consumption coefficient depending on the specific
chip of each device, and α is the quantization precision.

FL updating time: The updating time of the FL model
similarly depends on the computational complexity of the
adopted model and the computational power of each device.
For Fashion-MNIST and CIFAR-10, we employ a series
of convolutional layers and one linear layer. The training
complexity depends on the specific structure of each layer.
In each convolutional layer i, let Mi denote the size of
the convolutional kernel, Ki denotes the side length of the
output feature map generated by each convolutional kernel,
and C in

i and Cout
i denote the number of input channels and

output channels, respectively. Then, the number of operations

required for training one of the models is OFL =
I∑

i=1

M2
i ×

K2
i × C in

i × Cout
i + Cout

I+1 × Lout, where Lout is the output
dimension of the entire network and I is the number of
convolutional layers [65]. Then, the updating time of the FL
model is given by

LFL,U =
OFLα

2

εfD
ρ. (27)

MLP transmission time: The transmission time of the
MLP depends on the size of the MLP and the channel states.
Given the number of parameters is 2V ′D, the transmission
time of the MLP can be modeled as

LMLP,T =
l (2αV ′D)

C
, (28)

where l (·) denotes the digital pre-processing function de-
scribed in Sec. II-A. C is the channel capacity (in bits/sec),
which is given for MIMO channels as [64]

C = E
[
log det

(
INr

+
SNR

Nt

)
HH∗

]
, (29)

where SNR = P0/σ
2 is the common signal-to-noise ratio

(SNR) at each receive antenna with σ2 being the variance of
the additive white Gaussian noise, Nt and Nr are the numbers
of transmitting and receiving antennas, respectively, and H is
the MIMO channel vector.

FL transmission time: The transmission time of the FL
model depends on the size of the adopted FL model and
the channel state. Given the neural network structures, the
transmission delay can be modeled as

LFL,T =
l (V α)

C
, (30)

where C is as defined above and V =
∑I

i=1 M
2
i ×C in

i ×Cout
i +

Cout
I+1 × Lout is the number of parameters in the adopted FL

model.
For the CIFAR-10 task, I = 17, V = 1.17×107, and OFL =

1.7 × 1012, and for the Fashion MNIST task, I = 5, V =
9.2×105, and OFL = 1.2×109. The value of α is variable for
different baselines: for BPSK, α = 1 (i.e., single bit precision),
for analog FL, α = 32 (i.e., full precision computation), and
for our proposed method using 64 QAM, α = 6. We set ε =
105, ρ = 1, and fD = 1 GHz in our experiments.
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