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ON VIETORIS-RIPS COMPLEXES OF FINITE METRIC SPACES

WITH SCALE 2

ZIQIN FENG AND NAGA CHANDRA PADMINI NUKALA

Abstract. We examine the homotopy types of Vietoris-Rips complexes on
certain finite metric spaces at scale 2. We consider the collections of subsets of
[m] = {1, 2, . . . ,m} equipped with symmetric difference metric d, specifically,
Fm

n , Fm
n ∪ Fm

n+1, F
m
n ∪ Fm

n+2, and Fm
�A

. Here Fm
n is the collection of size

n subsets of [m] and Fm
�A

is the collection of subsets � A where � is a total

order on the collections of subsets of [m] and A ⊆ [m] (see the definition
of � in Section 1). We prove that the Vietoris-Rips complexes VR(Fm

n , 2)
and VR(Fm

n ∪ Fm
n+1

, 2) are either contractible or homotopy equivalent to a

wedge sum of S2’s; also, the complexes VR(Fm
n ∪ Fm

n+2, 2) and VR(Fm
�A

, 2)

are either contractible or homotopy equivalent to a wedge sum of S3’s. We
provide inductive formulae for these homotopy types extending the result of
Barmak in [4] about the independence complexes of Kneser graphs KG2,k and
the result of Adamaszek and Adams in [2] about Vietoris-Rips complexes of
hypercube graphs with scale 2.

1. Introduction

Along with the development of topological data analysis [10, 6], determining
the homotopy types of Vietoris-Rips complex of finite metric spaces has become
crucial in applied topology. In fact, the idea behind persistent homology is to
compute the (co)homology of a Vietoris-Rips complex filtration built on data, which
is typically a finite metric space in high dimensions ([5]). Vietoris-Rips complexes
were introduced by Vietoris in [17] and then by Rips (see [12]) to approximate
a metric space at a chosen scale for different purposes. Additionally, these kinds
of complexes have been intensively used in computational topology as a simplical
model for the sensor networks ([11, 13, 14]) and as a tool for image processing ([15]).

The Vietoris-Rips complex VR(X ; r) of a metric space (X, d) with scale r ≥ 0
is a simplicial complex with vertex set X , where a nonempty subset σ ∈ [X ]<∞

is a simplex in VR(X ; r) if and only if its diameter satisfies diam(σ) ≤ r. Here,
[X ]<∞ denotes the collection of all finite subsets of X , and for any subset S of X
diam(S) is defined as the supremum of all distances d(x, y) between pairs of points
x, y ∈ S. Recent work has focused on studying Vietoris-Rips complexes of circles
([1]), metric graphs ([7]), geodesic spaces ([18, 19]), and more.

In this paper, we investigate the homotopy type of the Vietoris-Rips complex
VR(F , 2) of a specific class of finite metric spaces with scale 2. Let F be a collection
of subsets of [m] for some m ∈ N, where [m] = {1, 2, . . . ,m}. We define a metric
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d on F such that, for any A and B in F , d(A,B) = |A∆B|, where A∆B denotes
the symmetric difference of A and B, i.e., (A \ B) ∪ (B \ A). Hence, (F , d) is a
finite metric space. In this paper, we study the homotopy types of the Vietoris-Rips
compelxes, VR(Fm

n , 2) (Section 4), VR(Fm
�A, 2) (Section 5), and VR(Fm

n ∪ Fm
n′ , 2)

(Section 6), where Fm
n , Fm

�A, and Fm
n ∪ Fm

n′ are all collections of subsets of [m].
We show that:

i) the complexes VR(Fm
n , 2) and VR(Fm

n ∪Fm
n+1, 2) are either contractible or

homotopy equivalent to a wedge sum of S2’s;
ii) the complexes VR(Fm

�A, 2) and VR(Fm
n ∪ Fm

n+2, 2) are either contractible

or homotopy equivalent to a wedge sum of S3’s.

Furthermore, we identify inductive formulas for determining the homotopy types of
these complexes. The homotopy type of VR(F , r) for r ≥ 0 is closely related to the
study of the independence complex of Kneser graphs in [4] and the Vietoris-Rips
complexes of hypercube graphs in [2].

The independence complex I(G) of a graph G = (V (G), E(G)) is a simplicial
complex whose simplices are the independent sets of vertices of G, i.e., sets of
vertices no two of which are adjacent. The Kneser graph KGn,k has the n-subsets
of [2n+k] as its vertices and its edges are given by pairs of disjoint such subsets. In
particular, any two vertices in KGn,k are not disjoint if and only if their symmetric
difference distance is at most 2n−1. Therefore, the independence complex of KGn,k

is identical to the Vietoris-Rips complex VR(F2n+k
n , 2n−1), where Fm

n denotes the
collection of all n-subsets of [m].

Barmak proved in [4] (Theorem 4.11) that the independence complex of KG2,k,
I(KG2,k), is homotopy equivalent to

∨

(k+3
3 ) S

2. For anym ≥ 4, note that VR(Fm
2 , 2) =

VR(Fm
2 , 3) = I(KG2,m−4); thus, the complex VR(Fm

2 , 2) is homotopy equivalent to

a wedge sum of
(

m−1
3

)

copies of S2. Our result on the homotopy types of VR(Fm
n , 2)

(Corollary 11) is a generalization of Barmak’s result. When m = 2n, the complex
VR(Fm

n ,m − 2) has
(

m
n

)

vertices and is the boundary of a cross-polytope, so it is

homotopy equivalent to S
1
2 (

m

n)−1.
The hypercube graph is a graph whose vertices are all binary strings of length m,

denoted by Qm, and whose edges are given by pairs of such strings with Hamming
distance 1. The Hamming distance between any two binary strings with the same
length is defined as the number of positions in which their entries differ. We can
consider Qm as a metric space equipped with the Hamming distance, and then the
hypercube graph can be identified as the complex VR(Qm, 1).

Adamaszek and Adams investigated the Vietoris-Rips complexes VR(Qm, r) at
small scales r = 0, 1, 2 in their recent work [2]. The complex VR(Qm, 0) is homotopy
equivalent to a wedge sum of (2m − 1)-many S0’s, and VR(Qm, 1) is homotopy
equivalent to a wedge sum of ((m − 2)2m−1 + 1)-many S1’s. Their main result is
that the complex VR(Qm, 2) is homotopy equivalent to a wedge sum of cm copies
of S3’s, where cm is given by cm =

∑

0≤j<i<m(j + 1)(2m−2 − 2i−1). The Čech

complexes of the metric space Qm with scales 2 and 3 are studied in [3].
Each binary string of length m can also be considered as the characteristic func-

tion of a subset of [m]. Hence, there is a natural isometric map between the metric
spaces Qm and P([m]), where P([m]) is the collection of all subsets of [m] equipped
with the symmetric difference metric d. Notice that P([m]) contains the empty
set ∅ as an element. Hence the result about the homotopy type of VR(Qm, 2) by
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Adamaszek and Adams is a special case of Theorem 16 which gives a deeper un-
derstanding on how its homotopy type is formed. Adamaszek and Adams in [2]
used Polymake [8] and Ripser++ [20] to compute the reduced homology groups
of VR(P [m], 3) for m = 5, 6, . . . , 9, with coefficients Z or Z/2Z. They found that
these homology groups are nontrivial only in dimensions 4 and 7, indicating that
the complex VR(P [m], 3) is a wedge sum of copies of S4’s and S7’s. This suggests
that the homotopy type of the complex VR(P [m], 3) is more complicated than that
of the complexes VR(P [m], r) with r = 0, 1, 2. Shukla [16] subsequently proved

that for m ≥ 5, the reduced homology group H̃i(VR(P([m]), 3)) is nontrivial if and
only if i ∈ {4, 7}.

In this paper, we extend the study of Vietoris-Rips complexes to other collections
of subsets in [m] with scale 2 beyond Fm

2 and P [m]. To determine the homotopy
type of VF(P [m], 2), Adamaszek and Adams in [2] used an inductive proof on the
clique complex of the graphG2

ℓ , whose vertices are binary sequences of non-negative
integers ≤ ℓ−1 with edges given by pairs of sequences with Hamming distance ≤ 2.
We adopt a different inductive process to study these complexes and our approach
is also potentially applicable to the investigation of these complexes at larger scales.

We start with introducing notations for certain collections of subsets of [m]. For
n ≤ m, let Fm

≤n be the collection of all subsets of [m] with cardinality ≤ n. It is

easy to see that the complex VR(Fm
≤r, r) is contractible since it is a cone with the

cone vertex being the empty set ∅. We now proceed to define a total ordering ≺
on P([m]) to facilitate the conduction of induction process. For each A ⊆ [m] with
|A| = n, we represent A = {i1, i2, . . . , in} as i1i2 · · · in with i1 < i2 < · · · < in. For
any A,B ⊆ [m], we say A ≺ B if one of the followings holds:

i) |A| < |B|;
ii) there is a k ∈ N such that ik < jk and iℓ = jℓ for any ℓ < k, when

n = |A| = |B|, A = i1i2 · · · in and B = j1j2 · · · jn.

Clearly this is a total order on P([m]) and for any subcollection F of P([m]), (F ,≺)
is also a total order. For any A ⊂ [m], we denote Fm

≺A = {B : B ≺ A and B ⊂ [m]}
and Fm

�A = Fm
≺A ∪{A}. Notice that the set [m] is the maximal elements in P([m]);

hence if A = [m], Fm
�A = P([m]).

We start with some easy observations of the homotopy types of such complexes.
For any collection F of subsets of [m], VR(F , 0) is a complex with |F|-many disjoint
vertices. Also for any 1 ≤ n ≤ m− 1, VR(Fm

n , 1) is also the space of
(

m
n

)

disjoint
vertices since d(A,B) ≥ 2 for any two different subsets A,B with cardinality n.
Also for each i = 0, 1, . . . ,m, the metric space Fm

i is isometric to Fm
m−i since the

complementary mapping with φ(A) = [m]\A preserves the symmetric distance from
Fm

i to Fm
m−i. Therefore VR(Fm

i , r) is homotopy equivalent to VR(Fm
m−i, r) for each

r ≥ 0. We see that the complexes VR(Fm
1 , 2) and VR(Fm

m−1, 2) are contractible
because each pair of their vertices has distance 2. Hence the complex VR(Fm

n , 2) is
contractible when n = 0, 1,m−1, or m. Similarly the complexes VR(Fm

n ∪Fm
n+1, 2)

is contractible if n = 0 or m− 1.

2. Notations and Preliminary Results

Topological Spaces and Wedge sums. Let X and Y be topological spaces.
We write X ≃ Y when they are homotopy equivalent. We denote Sk to be the
k-dimensional sphere. The wedge sum of X and Y , X ∨ Y , is the space obtained
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by gluing X and Y together at a single point. The homotopy type of X ∨ Y
is independent of the choice of points if X and Y are connected CW complexes.
For k ≥ 1,

∨

k X denotes the k-fold wedge sum of X . We denote ΣX to be the

suspension of X . For any sphere Sk, ΣSk is homeomorphic to Sk+1. A function f
from X to Y is said to be null-homotopic if it is homotopic to a constant map. It
is well-known that any mapping from Sn to Sm is null-homotopic when n < m.

Any two metric spaces (X, dX) and (Y, dY ) are said to be isometric if there is a bi-
jective distance-preserving map f from X to Y , i.e., dX(x1, x2) = dY (f(x1), f(x2))
for any x1, x2 ∈ X . Hence if X and Y are isometric, then it is straightforward to
verify that VR(X, r) is homeomorphic to VR(Y, r) for any r ≥ 0.

A cross-polytope with 2n vertices is a regular, convex polytope that exists in
n-dimensional Euclidean space. So it homeomorphic to the unit ball in R

n whose
boundary is homeomorphic to Sn−1.

Simplicial complexes. A simplicial complex K on a vertex set V is a collection
of non-empty subsets of V such that: i) all singletons are in K; and ii) if σ ∈ K
and τ ⊂ σ, then τ ∈ K. For a complex K, we use K(k) to represent the k-skeleton
of K, which is a subcomplex of K. For vertices v1, v2, . . . , vk in a complex K, if
they span a simplex in K, then we denote the simplex to be {v1, v2, . . . , vk}. If σ
and τ are simplices in K with σ ⊂ τ , we say σ is a face of τ . We say a simplex is a
maximal simplex (or a facet) if it is not a face of any other simplex. We say that
L is a full subcomplex of K if it contains all the simplicies in K spanned by the
vertices in L.

A complex K is a clique complex if the following condition holds: a non-empty
subset σ of vertices is in K given that the edge {v, w} is in K for any pair v, w ∈ σ.
For any graph G = (V,E), we denote Cl(G) to be the clique complex of G whose
vertex set is V and Cl(G) contains a finite subset σ ⊂ V as a simplex if each pair
of vertices in σ forms an edge in G. Also, we see that the Vietoris-Rips complex
over any metric space is a clique complex by the definition.

Let L be a complex and v be a vertex not in L. The cone over L with the vertex
v, denoted by v ∗L, is a simplical complex defined on the vertex set L(0)∪{v} such
that a simplex of v ∗ L is either a simplex in L or a simplex in L adjoined with v.
Notice that any cone is contractible.

The following result is proved in [9]. This is an important method to investigate
the homotopy type of a complex by splitting it into two or more subcomplexes.

Lemma 1. Let K be a simplical complex. Suppose that K = K1 ∪ K2 and the
inclusion maps ı1 : K1 ∩K2 → K1 and ı2 : K1 ∩K2 → K2 are both null-homotopic.
Then

K ≃ K1 ∨K2 ∨ Σ(K1 ∩K2).

The next lemma (see [2], Lemma 1) is an easy corollary of this result. For any
vertex v in a complex K, K \ v denote the induced complex on the vertex set
K(0) \ {v}. The star of a vertex v in K is stK(v) = {σ : σ ∪ {v} ∈ K}. Hence for
any v ∈ V , stK(v) is contractible because it is a cone over lkK(v) with the vertex
v, namely v ∗ lkK(v), where lkK(v) = {σ : σ ∪ {v} ∈ K and v /∈ σ}.

Lemma 2. If v is a vertex in K with the inclusion map ı : lkK(v) → K being
null-homotopic, then K is homotopic to K \ v ∨ Σ(lkK(v)).
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Proof. Let v be a vertex in K such that the inclusion map ı : lkK(v) → K is null-
homotopic. It is straightforward to verify that K = stK(v) ∪K \ v. Since stK(v)
is contractible, the inclusion from lkK(v) to stK(v) is also null-homotopic. Notice
that (K \ v) ∩ stK(v) = lkK(v). Hence by Lemma 1 and the fact that stK(v) is
contractible,

K ≃ K \ v ∨ stK(v) ∨ Σ(lkK(v)) ≃ K \ v ∨ Σ(lkK(v)).

�

Lemma 3. If σ is a k-simplex and Kσ is the simplicial complex generated by σ,

then K
(n)
σ is homotopy equivalent to a wedge sum of

(

k
n+1

)

-many of Sn for any
n < k.

Proof. Assume σ = {v0, v1, . . . , vk} and Kσ is the simplicial complex generated by

σ. Denote K = K
(n)
σ . Notice that there are

(

k
n+1

)

-many n-simplices which don’t

contain v0. List such n-simplices as τ1, τ2, . . . , τ( k
n+1)

. Then K = stK(v0)∪
⋃

{Kτi :

i = 1, 2, . . . ,
(

k
n+1

)

} where Kτi is the simplicial complex generated by τi for each i.

Next we show that K ≃
∨

( k
n+1)

Sn by induction.

First notice that stK(v0) ∩ Kτ1 is the boundary of τ1, and hence is homotopy
equivalent to Sn−1. Since both stK(v0) and Kτ1 are contractible, the inclusion
maps from their intersection to each of them are null-homotopic. By Lemma 2,
stK(v0) ∪Kτ1 ≃ ΣSn−1 ≃ Sn. Then inductively, K ≃

∨

( k
n+1)

Sn. �

Also in this paper for convenience, we set
∑b

i=a f(i) = 0 when b < a, where f is
a function on the set of natural numbers.

3. Star Cluster of a subcomplex

To investigate the topology of the independence complex of graphs, Barmak [4]
introduced a general tool using which he answered a question arisen from works of
Engström and Jonsson and investigated lots of examples appearing from literature.
It turns out this concept is a powerful tool to understand general simplicial com-
plexes. For any subcomplex L of K, we define the star cluster of L in K as the
subcomplex

SCK(L) =
⋃

v∈L(0)

stK(v).

If σ is a simplex in K, Barmak in [4] proved that SCK(σ) is contractible, hence
homotopy equivalent to σ. In general, given that L is a subcomplex of K, SCK(L)
is not homotopy equivalent to L as showed in the example below.

Example 4. Let K = VR(P([2]), 1) and L be the full subcomplex with vertices
{∅, {1}, {2}}. Then L is contractible but in the other hand, SCK(L) = K which is
homotopy equivalent to S1.
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∅ {1}

{1, 2}{2}

Next, we’ll give a sufficient condition under which the star cluster of a sub-
complex L in K is homotopy equivalent to L. This result is a generalization of
Barmak’s result about SCK(σ) being contractible for any simplex σ in K; and it
is also heavily used to determine the homotopy type of simplicial complexes in this
paper.

Lemma 5. Let K be a clique complex and L a clique subcomplex of K. Suppose
that the edge {v, w} is in L for any pair v, w ∈ L(0) with (stK(v)∩ stK(w)) \L 6= ∅.
Then the following hold:

i) L is a full subcomplex of K;
ii) for any collection of vertices, v1, v2, . . . , vℓ in L, the complex L′ = L ∪

⋃ℓ

i=1 stK(vi)) is homotopy equivalent to L.

In particular, ii) implies that SCK(L) is homotopy equivalent to L.

Proof. First we prove i). Let σ = {w0, w1, . . . , wk} be a simplex in K and wj ∈ L
for each j = 0, 1, . . . , k. Take an arbitrary pair wj , wj′ of vertices from σ with j 6= j′.
Suppose, for contradiction, that {wj , wj′} /∈ L. Since the 1-simplex {wj , wj′} is in
K, it is in both stK(wj) and stK(wj′ ). Hence, stK(wj) ∩ stK(wj′ ) \ L 6= ∅. Then
by the assumption the edge {wj , wj′} ∈ L which is a contradiction. Therefore each
pair of vertices in σ forms an edge in L. Since L is a clique complex, σ ∈ L.

We’ll prove ii) by induction. Suppose that the vertices v1, v2, . . . , vk−1 in L satisfy
that the complex L0 = L ∪

⋃

{stK(vi) : i = 1, 2, . . . , k − 1} ≃ L. When k = 1,
L0 = L and the result holds. Let vk be any other vertex in L and L1 = L0∪stK(vk).
We’ll show that L1 ≃ L.

We claim that L0 ∩ stK(vk) = stL0(vk). Note that both stK(vk) and stL0(vk)
are contractible, hence so is Σ(stL0(vk)). Then by Lemma 1 and the inductive
assumption,

L1 = L0 ∪ stK(vk) ≃ L0 ∨Σ(stL0(vk)) ∨ stK(vk) ≃ L0 ≃ L.

Next we prove our claim above. The inclusion stL0(vk) ⊆ L0 ∩ stK(vk) is clear
from definition. Then, take a simplex σ ∈ L0∩stK(vk) and we’ll prove σ ∈ stL0(vk)
in the following two cases.

Case a): Suppose that all the vertices of σ are in L. Since σ ∈ stK(vk), σ ∪ {vk} is
a simplex in K whose vertices are in L. Then by i), σ ∪ {vk} ∈ L ⊆ L0;
hence σ ∈ stL0(vk).

Case b): Suppose that the simplex σ contains at least one vertex not in L. Then
clearly σ /∈ L. Because σ ∈ L0, then there exists at lease one k0 with
1 ≤ k0 ≤ k − 1 such that σ ∈ stK(vk0). So σ ∪ {vk0} is a simplex in
K. Since σ ∈ stK(vk), σ ∪ {vk} is also a simplex in K. Also note that
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σ ∈ (stK(vk0) ∪ stK(vk)) \ L. By the assumption {vk0 , vk} is an edge in
K. Since K is a clique complex, σ ∪ {vk0 , vk} is a simplex in K; and this
simplex is in stK(vk0) ⊆ L0. Hence the simplex σ ∪ {vk0 , vk} is in stL0(vk)
which implies that σ is also in stL0(vk).

�

Next, we give a way to split a complex K into a union of two subcomplexes using
star clustering. Then we could apply Lemma 1 to investigate the homotopy type
of the complex K.

Lemma 6. Let K be a simplicial complex and K1,K2 be subcomplexes of K such
that

i) K(0) = K
(0)
1 ∪K

(0)
2 ;

ii) K2 is a full subcomplex of K.

Then K = SCK(K1) ∪K2.

Proof. Let σ be a simplex of K. If one of σ’s vertices, namely v, is in K1, then
σ ∈ stK(v) ⊆ SCK(K1); otherwise, σ ∈ K2 by the assumption. �

4. Vietoris-Rips Complex VR(Fm
n , 2)

Starting from this section, each vertex of a complex is a subset of [m] and we’ll
use A, B, C, or D to represent them. For any subset C of [m], denote N [C] = {A ∈
P([m]) : C ⊂ A and |A\C| = 1} and L[C] = {A ∈ P([m]) : A ⊂ C and |C\A| = 1}.

Fix n,m ∈ N with n < m. For any {i1, i2, . . . , in, in+1} ∈ [m] with i1 < i2 <
. . . < in < in+1, we get that

N [i1, i2, . . . , in−1] = {A ∈ Fm
n : {i1, i2, . . . , in−1} ⊂ A}, and

L[i1, i2, . . . , in+1] = {i1i2 · · · îj · · · in+1 : j ∈ {1, ..., n+ 1}},

here, i1i2 · · · îj · · · in+1 is defined to be {i1, i2, . . . , in, in+1} \ {ij} for each j.

Lemma 7. Assume that m ≥ n + 2 with n ≥ 2 and {i1, i2, . . . , in+1} ⊆ [m].
Then N [i1, i2, .., in−1] and L[i1, i2, . . . , in+1] are maximal simplices in the complex
VR(Fm

n , 2).

Proof. It is straightforward to verify that N [i1, i2, . . . , in−1] is an (m− n)-simplex
and L[i1, i2, . . . , in+1] is an n-simplex in VR(Fm

n , 2).
First, we show that N [i1, i2, . . . , in−1] is a maximal simplex in VR(Fm

n , 2). Let
A be an n-subset of [m] such that A /∈ N [i1, i2, . . . , in−1]. Without loss of gen-
erality, we assume that i1 /∈ A, then we pick i, j ∈ A \ {i1, i2, . . . , in−1} and
k ∈ [m] \ {i, j, i1, i2, . . . , in−1}. Let B = {i1, i2, . . . , in−1, k} which is clearly
in N [i1, i2, . . . , in−1]. Clearly, d(A,B) ≥ 4 since {i, j, k, i1} ⊆ A∆B. Hence
N [i1, i2, .., in−1] is a maximal simplex in VR(Fm

n , 2).
Next, we show that L[i1, i2, . . . , in+1] is a maximal simplex in VR(Fm

n , 2). Let
A be an n-subset of [m] such that A /∈ L[i1, i2, . . . , in+1]. Then there is an i ∈
[m] \ {i1, i2, . . . , in+1} such that i ∈ A. Suppose A ∩ {i1, i2, . . . , in+1} 6= ∅. Then
we can pick B ∈ L[i1, i2, . . . , in+1] such that ({i1, i2, . . . , in+1} \ A) ⊂ B. Then
|A \ B| ≥ 1 since i ∈ A \ B. Also, |B \ A| ≥ 2 since at least 2 elements in
{i1, i2, . . . , in+1} are not in A. So d(A,B) ≥ 3. If A ∩ {i1, i2, . . . , in+1} = ∅,
d(A,B) ≥ 2n ≥ 4 for any B ∈ L[i1, i2, . . . , in+1]. Hence L[i1, i2, . . . , in+1] is a
maximal simplex in VR(Fm

n , 2). �
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For convenience in this paper, we will use N [i1, i2, . . . , in−1] or L[i1, i2, . . . , in+1]
to represent both a simplex and the subcomplex generated by the simplex in
VR(Fm

n , 2) or any other complexes containing them.
For a complex K, let M(K) be the collection of maximal simplices in K. Clearly

K =
⋃

M(K). Hence it is important to understand the collection of maximal
simplices in a complex. Next, we show that there are only these two of maximal
simplices in VR(Fm

n , 2).

Lemma 8. Fix n,m ∈ N with 1 < n < m. Let K be the complex VR(Fm
n , 2).

i) Any maximal simplex σ in K is either N [i1, i2, .., in−1] or L[i1, i2, .., in+1]
for i1, i2, i3, ..., in+1 ∈ [m] with i1 < i2 < ... < in < in+1.

ii) For any k ≥ 2 and {A1, A2, . . . , Ak+1} being a k-simplex in K such that

|
⋂k+1

ℓ=1 Aℓ| < n−1, the only maximal simplex containing {A1, A2, . . . , Ak+1}
as a face is L[A1 ∪ A2].

Proof. To prove i), we pick a maximal simplex σ in the complex K.
Note that the vertices of K are subsets of [m]. Hence, σ is a collection of subsets

of [m] and
⋂

σ ⊂ [m]. If |
⋂

σ| = n− 1, then clearly σ is one of the simplices in the
form N [i1, i2, .., in−1].

We claim that the size of the set
⋂

σ can’t be greater than 0 and less than
n − 1. For the purpose of contradiction, we suppose that 0 < |

⋂

σ| < n − 1. Let
|
⋂

σ| = k with 0 < k < n − 1 and list
⋂

σ as {i1, i2, · · · , ik}. Pick A ∈ σ such
that A \

⋂

σ = {j1, j2, . . . , jn−k}. For each ℓ = 1, 2, . . . , n − k, pick Bℓ ∈ σ such
that jℓ /∈ Bℓ. Also |Bℓ \ A| = 1 because d(Bℓ, A) = 2 for each ℓ. Since k < n − 1,
n − k ≥ 2. Then we let i0 be the number in B1 \ A and j0 be the number in
B2 \ A. If i0 6= j0, then the B1∆B2 = {j1, i0, j2, j0} which is a contradiction. So
i0 = j0. Therefore, by induction, Bℓ \A = {i0} for each ℓ = 1, 2, . . . , n− k. Then if
C = {i0, i2, . . . , ik, j1, . . . jn−k}, then C∆A = {i0, i1} and C∆Bℓ = {i1, jℓ} for each
ℓ = 1, 2, . . . , n − k, i.e., d(C,A) = 2 and d(C,Bℓ) = 2 for each ℓ = 1, 2, . . . , n − k.
If C is in σ, then i1 /∈

⋂

σ; and if C is not in σ, then σ is not a maximal simplex.
These contradictions show that it is impossible that 0 < |

⋂

σ| < n− 1.
Now we suppose that

⋂

σ = ∅. Pick A ∈ σ and represent A as i1i2 · · · in. For
each ℓ = 1, 2, . . . , n, there exists Bℓ ∈ σ such that iℓ /∈ Bℓ. Using the argument
above, we can show that Bℓ \ A = Bℓ′ \ A for each ℓ, ℓ′ = 1, 2, . . . , n. Denote
B1 \A = {in+1}. Then clearly σ = L[i1, i2, . . . , in+1].

To prove ii), we start with a k-simplex {A1, A2, . . . , Ak+1} in K such that

|
⋂k+1

ℓ=1 Aℓ| < n − 1 and k ≥ 2. Then if σ is a maximal simplex in K such that
{A1, A2, . . . , Ak+1} ⊆ σ, then

⋂

σ = ∅ by the argument above, and hence σ is
in the form L[i1, i2, . . . , in+1]. Clearly A1 ∪ A2 ⊆ {i1, i2, . . . , in+1} which means
A1 ∪ A2 = {i1, i2, . . . , in+1} because |A1 ∪ A2| = n + 1. It is clear that no other
maximal simplex contains this simplex. �

We need one more result before the discussion of the homotopy types of the
complex VR(Fm

n , 2). Assume n ≥ 1. Fix a number a ∈ [m], let Sa = {A : A ∈
Fm

n and a ∈ A}. There is a natural isometric mapping between the metric spaces
Fm−1

n−1 and Sa. Hence VR(Fm−1
n−1 , 2) is homeomorphic to VR(Sa, 2). Next, we show

that the homotopy type of the star cluster of the latter in K remains the same.
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Lemma 9. Let n,m be in N such that n < m. Define S1 = {A ⊂ [m] : |A| =
n and 1 ∈ A} and let L be the complex VR(S1, 2). Then

SCVR(Fm
n ,2)(L) ≃ L.

Proof. Let K = VR(Fm
n , 2). We’ll show that the condition in Lemma 5 is satisfied.

Then the result follows.
Pick vertices A and B in L such that {A,B} is not an edge in L, i.e., |A∆B| ≥ 4.

Hence there exist natural numbers i1, i2, j1, and j2 such that {i1, i2} ⊆ A \ B and
{j1, j2} ⊆ B \ A. Suppose, for contradiction, that (stK(A) ∩ stK(B)) \ L 6= ∅. We
pick a vertex C ∈ (stK(A)∩stK(B))\L. Clearly 1 /∈ C. We claim that A\{1} ⊂ C,
otherwise there exists i0 6= 1 such that i0 ∈ A \ C, whence |A \ C| ≥ 2 which is a
contradiction. Similarly, B \ {1} ⊂ C. Therefore, {i1, i2, j1, j2} ⊂ C. Notice that
(A ∩ B) \ {1} has size ≤ n − 3. Suppose that |(A ∩ B) \ {1}| = n − 3. Then the
vertex C has n+1 elements because (A∩B)\{1} ⊂ C and {i1, i2, j1, j2} ⊂ C. This
means that C has at least n + 1 elements which is a contradiction. This finishes
the proof. �

Now we are ready to give a complete characterization of the homotopy types of
VR(Fm

n , 2).

Theorem 10. Suppose that 1 < n < m− 1. The complex VR(Fm
n , 2) is homotopy

equivalent to a wedge sum of spheres. Specifically,

VR(Fm
n , 2) ≃ (

∨

(m−1
n+1)·(

n

2)

S2) ∨ VR(Fm−1
n−1 , 2).

Proof. Notice that the complex VR(Fm−1
1 , 2) is contractible. Hence the result holds

when n = 2 by Barmak’s result mentioned above.
Assume that n > 2 and VR(Fm−1

n−1 , 2) is homotopic to a wedge sum of spheres

S2. We denote K = VR(Fm
n , 2). As in Lemma 9, let S1 = {A ⊂ [m] : |A| =

n and 1 ∈ A} and L be the complex VR(S1, 2). Then, the complex L is homotopy
equivalent to VR(Fm−1

n−1 , 2) which is a wedge sum of S2’s by the assumption. Also
by Lemma 9, the star cluster SCK(L) is homotopy equivalent to L.

Now we examine the collection of maximal simplices inK to decide which of them
is not in SCK(L). Notice that any maximal simplex in the formN [i1, i2, . . . , in−1] or
L[1, i1, . . . , in] contains at least one vertex containing 1 for any i1, i2, . . . , in ∈ [m];
hence any such simplex is in SCK(L). Therefore in the complement of SCK(L),
namely K \ SCK(L), there is only one kind of maximal simplicies in the form

L[i1, i2, . . . , in+1] with ik 6= 1 for any k = 1, 2, . . . , n+1; and there are
(

m−1
n+1

)

-many

such simplices and list them as {σ1, σ2, . . . , σ(m−1
n+1)

}. Here, Kσℓ
is the complex

generated by σℓ for each ℓ = 1, 2, . . . ,
(

m−1
n+1

)

.

For each ℓ with 1 ≤ ℓ ≤
(

m−1
n+1

)

, we denote Lℓ to be the complex whose maximal

simplices are {σj : j = 1, 2, . . . , ℓ}. Hence the complex L(m−1
n+1)

is the complex

VR(S2, 2) where S2 is the collection of n-subsets of [m] not containing 1. Therefore,
K = SCK(L) ∪ L(m−1

n+1)
.

We claim that SCK(L)∪Lℓ is homotopic to (
∨

ℓ·(n2)
S2)∨VR(Fm−1

n−1 , 2) for each

ℓ = 1, 2, . . . ,
(

m−1
n+1

)

. This claim finishes the proof. Next, we’ll prove this claim by

induction. For convenience, denote L0 = ∅.
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Suppose, for induction, that

SCK(L) ∪ Lℓ−1 ≃ (
∨

(ℓ−1)·(n2)

S2) ∨ VR(Fm−1
n−1 , 2).

This holds when ℓ = 1 since L0 = ∅. Then SCK(L)∪Lℓ = SCK(L)∪Lℓ−1 ∪{Kσℓ
}.

Denote σℓ to be L[i1, i2, . . . , in+1] where ik 6= 1 for each k = 1, 2, . . . , n + 1. Next
we’ll find the homotopy type of (SCK(L) ∪ Lℓ−1) ∩ {Kσℓ

}.
For any vertex B ∈ Kσℓ

, B ∈ L[{1}∪B] ⊂ SCK(L). Hence the 0-skeleton of Kσℓ

is contained in SCK(L). Let {B1, B2} be a 1-simplex inKσℓ
. Then |B1∩B2| = n−1.

Because N [B1∩B2] is in SCK(L), the edge {B1, B2} is in SCK [L]. So the 1-skeleton

K
(1)
σℓ of Kσℓ

is also contained in SCK(L). Moreover, any k-simplex with k ≥ 2 in
Kσℓ

is not in SCK(L); otherwise such a k-simplex would be contained in a maximal
simplex which has a vertex containing 1 and hence is different from σℓ. This leads to
a contradiction by ii) in Lemma 8. For any ℓ′ = 1, 2, . . . , ℓ−1, the intersection of the
complexes Kσℓ′

and Kσℓ
contains at most one vertex because of their definitions.

Therefore, (SCK(L) ∪ Lℓ−1) ∩Kσℓ
= K

(1)
σℓ . Recall that σℓ is an n-simplex, hence

K
(1)
σℓ is homotopy equivalent to a wedge sum of

(

n
2

)

-many copies of S1’s by Lemma 3.

Notice thatK
(1)
σℓ is null-homotopic inKσℓ

becauseKσℓ
is contractible. Also, K

(1)
σℓ

is null-homotopic in SCK(L)∪Lℓ−1 because the homotopy type of former is a wedge
sum of S1’s and the homotopy type of latter is a wedge sum of S2’s. Therefore by
Lemma 1, SCK(L) ∪ Lℓ is homotopy equivalent to Σ(

∨

(n2)
S1) ∨ (SCK(L) ∪ Lℓ−1)

which is by inductive assumption (∨
ℓ(n2)

S2) ∨ SCK(L). This finishes the proof

because SCK(L) ≃ L ≃ VR(Fm−1
n−1 , 2). �

By an inductive calculation, we obtain the following corollary.

Corollary 11. Suppose that 1 < n < m− 1. The complex VR(Fm
n , 2) is homotopy

equivalent to a wedge sum of
∑n

k=2

(

m+k−1−n
k+1

)(

k
2

)

-many copies of S2’s.

5. Vietoris-Rips Complex VR(Fm
�A, 2)

In this section, we’ll determine the homotopy type of VR(F�A, 2) for A ∈ P([m])
with |A| = n.

As in the discussion in Section 1, VR(Fm
≤r, r) is a cone with cone vertex being

the empty set, hence contractible; and similarly VR(Fm
≥m−r, r) is also contractible.

Hence, for any A ⊂ [m] with |A| ≤ 2, the complex VR(Fm
�A, 2) is contractible. So

in this section, we will discuss the homotopy type of VR(Fm
�A, 2) with |A| ≥ 3.

The following lemma is easy to prove, but heavily used in the discussion of
VR(Fm

�A, 2).

Lemma 12. For any A,B ∈ P [m] with |A| < |B|, d(A,B) ≤ 2 if and only if
A ⊂ B and |B \A| ≤ 2.

Proof. If A ⊂ B and |B \A| ≤ 2, then d(A,B) = |(A \B) ∪ (B \A)| ≤ 2.
Now we suppose A \ B 6= ∅, i.e. |A \ B| ≥ 1. Since |A| < |B|, |B \ A| ≥ 2,

therefore d(A,B) ≥ 3. If A ⊂ B and |B \A| > 2, then d(A,B) = |B \A| > 2. This
finishes the proof. �

Next, we’ll discuss the homotopy type of VR(Fm
n ∪ Fm

n+1, 2) using a similar
approach as in the proof of Theorem 10.
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Theorem 13. Suppose that 1 < n < m−1. Then the complex VR(Fm
n ∪Fm

n+1, 2) is

homotopy equivalent to a wedge sum of (
∑n

k=2

(

m+k−1−n
k+1

)

·
(

k
2

)

+
(

m
n+2

)

·
(

n+1
2

)

)-many

copies of S2.

Proof. Let K = VR(Fm
n ∪ Fm

n+1, 2) and K0 = VR(Fm
n , 2). By Corollary 11, the

complex K0 is homotopy equivalent to a wedge sum of
∑n

k=2

(

m+k−1−n
k+1

)

·
(

k
2

)

-many

copies of S2’s.
We claim that SCK(K0) ≃ K0. We proceed to show that the condition in

Lemma 5 is satisfied. Hence this claim holds. Take a B ∈ Fm
n+1 such that B ∈

stK(D) ∩ stK(D′) for D,D′ ∈ Fm
n . Then d(B,D) = d(B,D′) = 2, hence by

Lemma 12, D,D′ are both subsets of B which implies that d(D,D′) = 2. This
finishes the proof of the claim.

By Lemma 8, there are two types of maximal simplicies in VR(Fm
n+1, 2). If σ is a

maximal simplex VR(Fm
n+1, 2) which can be represented in the formN [i1, i2, . . . , in],

clearly {i1i2 · · · in} ∪ N [i1, i2, . . . , in] is a simplex in K; hence N [i1, i2, . . . , in] ∈
SCK(K0).

Now we look at the second type of maximal simplices in VR(Fm
n+1, 2). There

are
(

m
n+2

)

-many type of maximal simplicies in VR(Fm
n+1, 2) which are in the form

L[i1, i2, . . . , in+2]; and list such (n + 1)-simplicies as {σ1, σ2, . . . , σ( m

n+2)
}. Denote

Lℓ = SCK(K0) ∪
⋃ℓ

j=1 Kσj
for ℓ = 1, 2, . . . ,

(

m
n+2

)

. Recall that the complex Kσj
is

the complex generated by the simplex σj for j = 1, 2, . . . ,
(

m
n+2

)

.
Assume for induction that Lℓ−1 is homotopic to

∨

∑
n
k=2 (

m+k−1−n
k+1 )·(k2)+(ℓ−1)·(n+1

2 )

S2.

This is clearly true when ℓ = 1. We claim that Lℓ−1 ∩ Kσℓ
= K

(1)
σℓ which

is homotopic to
∨

(n+1
2 ) S

1 and hence is null-homotopic in both Lℓ−1 and Kσℓ
.

By Lemma 1, this implies that Lℓ is homotopy equivalent to a wedge sum of
(
∑n

k=2

(

m+k−1−n
k+1

)

·
(

k
2

)

+ ℓ ·
(

n+1
2

)

)-many S2. This finishes the proof. Next, we’ll
prove our claim.

By part ii) of Lemma 8, any 2-simplex in Kσℓ
is not in Lℓ−1. Let {B1, B2}

be a 1-simplex in Kσℓ
. Then B1 ∩ B2 is an n-subset, i.e., a vertex in K0; so

{B1, B2, B1 ∩B2} is a 2-simplex in K which means {B1, B2} ∈ stK(B1 ∩B2). This

shows that Lℓ−1 ∩Kσℓ
= K

(1)
σℓ . �

To identify the homotopy types of K = VR(Fm
�A, 2) with |A| ≥ 3, we’ll use

Lemma 2 by taking the vertex A so that K = (K \ A) ∪ stK(A). So the key is to
understand the link of A in K, lkK(A). Next lemma shows that lkK(A) is a wedge
sum of S2’s.

Note that when n = 3,
∑n−2

k=2

(

k
2

)

is set to be 0 as introduced in Section 2.

Lemma 14. Suppose that m ≥ n > 2 and A = i1i2 · · · in ∈ P([m]).
Denote i0 = −1 and define dℓ = iℓ − (iℓ−1 + 1) for each ℓ = 1, 2, . . . , n. Then

lkVR(Fm
�A

,2)(A) ≃
∨

∑n−2
k=2 (

k

2)+
∑n−2

ℓ=1 dℓ·(n−ℓ

2 )

S2.

Proof. Let K = VR(Fm
�A, 2). Note that for any B with |B| ≤ n − 3, d(A,B) ≥ 3.

Next we divide the vertices in the link of the vertex A in K, lkK(A), into the
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following pairwise disjoint collections Gk for k = 0, 1, . . . , in−1. These collections
are defined as the following:

i) G0 = {B ∈ P : |B| < n and d(B,A) = 2};
ii) for k ∈ {1, 2, . . . , in−1} \ {i1, i2, . . . , in−1} , Gk contains all the B′s with

|B| = n such that B contains k, all ij ’s with ij < k, all but one of ij ’s with
ij > k;

iii) Gin−1 contains all the B’s with |B| = n such that {i1, i2, . . . , in−1} ⊂ B and
B contains any other number between in−1 and in.

iv) Gij = ∅ for j = 1, 2, . . . , n− 2 for the purpose of convenience.

By Lemma 12, G0 contains all the B’s such that B ⊂ A and |B| = n− 1 or n− 2.

Also, it is clear that
⋃in−1

k=1 Gk contains all the B’s such thatB ≺ A, d(A,B) = 2, and

|B| = n. Hence lkK(A) = VR(
⋃in−1

k=0 Gk, 2). For each k = 0, 1, . . . , in−1, we define

Kk = VR(Gk, 2) if Gk 6= ∅ and K≤k = VR(
⋃k

i=0 Gi, 2). Hence lkK(A) = K≤in−1 .
Since G0 is the collection of all (n−2)-subsets and (n−1)-subsets of the n-set A,

the complexK0 is homeomorphic to VR(Fn
n−2∪F

n
n−1, 2); hence by Theorem 13, the

complex K0 = K≤0 is homotopy equivalent to a wedge sum of (
∑n−2

k=2

(

k
2

)

+
(

n−1
2

)

)-

many copies of S2’s. Since Gij = ∅ for j = 1, 2, . . . , n−2, the complex K≤ij is same
as K≤ij−1 for such j.

Now we investigate the complex Kk with k ≥ 1 and the collection Gk 6= ∅. Fix k
such that 1 ≤ k < in−1 and Gk 6= ∅. Then there exists an ℓ in the set {1, 2, . . . , n−1}
such that iℓ−1 < k < iℓ. Then, the complex Kk is the complex generated by
a proper face of L[i1, . . . , iℓ−1, k, iℓ, . . . , in] which consists of all B which contains
{i1, . . . , iℓ−1, k} and all but one of {iℓ, . . . , in}; hence it is an (n− ℓ)-simplex. And
Kin−1 is a proper face of N [i1, i2, . . . , in−1] which includes all B’s which contains
{i1, i2, . . . , in−1} and another number between in−1 and in; hence it is a complex
generated by a (dn − 1)-simplex.

Next we determine the homotopy type of K≤in−2 . If there is no k such that k ∈
[in−2]\{i1, i2, . . . , in−2}, then d1 = 1 and d2, . . . , dn−2 are all zeroes and the complex
K≤in−2 = K0 which is clearly homotopy equivalent

∨

∑n−2
k=2 (

k

2)+
∑n−2

ℓ=1 dℓ·(n−ℓ

2 ) S
2.

Now we suppose otherwise and fix k such that 1 ≤ k ≤ in−2 and iℓ−1 < k < iℓ
for some ℓ = 1, 2, . . . , n − 2, here we define i0 = 0. Suppose, for induction, that
K≤(k−1) is homotopy equivalent to a wedge sum of S2’s. This holds when k is
the minimal natural number different from i1, i2, . . . in−2 in which case K≤k−1 is
homotopy equivalent to K0. By Lemma 6, K≤k = SCK≤k

(K≤(k−1)) ∪ Kk. We’ll
prove the following two claims and these two claims imply that K≤k ≃ K≤(k−1) ∨
(
∨

(n−ℓ

2 ) S
2) by Lemma 1 and the inductive assumption.

Claim i): SCK≤k
(K≤(k−1)) ≃ K≤(k−1).

Claim ii): SCK≤k
(K≤(k−1)) ∩Kk ≃

∨

(n−ℓ

2 ) S
1.

Proof of Claim i): We’ll verify that the condition in Lemma 5 is satisfied. Then
the result follows. We’ll show that d(C1, C2) ≤ 2 for C1, C2 ∈ K≤(k−1) whenever
stK≤k

(C1) ∩ stK≤k
(C2) \ K≤(k−1) 6= ∅. Pick a vertex D in Kk. Then D contains

k and an (n − 1)-subset of A, denoted by C. Then for any vertex B ∈ K≤(k−1),
D ∈ stK≤k

(B) if and only if B is one of the following: a) C ⊂ B and B contains
one of 1, 2, . . . , k − 1 not in A; b) C; c) any (n− 2) subset of C. Any pair of such
vertices have distance 2; hence they form a 1-simplex in K≤(k−1). This finishes the
proof of Claim i).
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Proof of Claim ii): Since the complex Kk is generated by an (n− ℓ)-simplex,

K
(1)
k is homotopy equivalent to

∨

(n−ℓ
2 ) S

1 by Lemma 3. We’ll show that SCK≤k
(K≤(k−1))∩

Kk = K
(1)
k . Pick any pair of vertices, B1, B2, in Kk. Then, B1 ∩ B2 contains the

number k and an (n − 2)-subset of A, denoted by D. Note that D is a vertex in
the complex K0 ⊆ K≤k−1; therefore, the 1-simplex {B1, B2} ∈ stK≤k

(D). Hence

K
(1)
k ⊆ SCK≤k

(K≤(k−1)) ∩Kk. It is straightforward to verity that for any B ∈ Gi

with i = 1, 2, . . . , k − 1, stK≤k
(B) ∩ Kk is a complex containing only one vertex

because any vertex in this complex must contains B ∩ A and the number k. Simi-
larly, for any B ∈ G0 with |B| = n− 1, there is at most 1 vertex in Kk containing
B as a subset, i.e. having a distance ≤ 2 from B; and if B ∈ G0 with |B| = n− 2,
then there are at most two vertices in Kk which have distance 2 from B. Hence,

stK≤k(B) ∩Kk ⊆ K
(1)
k for any vertex B in the complex K≤(k−1). This finishes the

proof of Claim ii).

By an inductive calculation, we have proved that the complex K≤in−2 is homo-

topy equivalent to a wedge sum of (
∑n−2

k=2

(

k
2

)

+
∑n−2

ℓ=1 dℓ·
(

n−ℓ
2

)

)-many S2’s. Next, we
show that the complex K≤(in−1−1) is homotopy equivalent to K≤in−2 . If dn−1 = 0,
then K<in−1 = K≤in−2 ; otherwise we fix k with in−2 < k < in−1 and suppose
that K≤(k−1) ≃ K≤in−2 . The collection Gk contains two vertices i1i2 · · · in−2kin
and i1i2 · · · in−2kin−1; and the simplex {i1i2 · · · in−2kin, i1i2 · · · in−2kin−1} is in
stK≤(in−1−1)

(D) where D = i1i2 · · · in−2 ∈ K≤(k−1). Hence SCK≤k
(K≤(k−1)) =

K≤k. By a similar discussion as in the proof of claim i), we can verify that the
complexK≤k and its subcomplexK≤(k−1) satisfy the condition in Lemma 5. There-
fore, SCK≤k

(K≤(k−1)) ≃ K≤(k−1). Hence the complex K≤k is homotopy equivalent
to K≤in−2 . Therefore by induction, the complex K≤(in−1−1) is homotopy equivalent
to K≤in−2 .

In the last part, we show that the complex K≤in−1 = lkK(A) is also homo-
topy equivalent to K≤in−2 . Again it is straightforward to verify that K≤in−1 and
K≤(in−1−1) satisfy the condition in Lemma 5. Hence, SCK≤in−1

(K≤(in−1−1)) ≃

K≤(in−1−1). Recall that Kin−1 is a complex generated by a proper face of the sim-
plex N [i1i2 · · · in−1]. Note that i1i2 · · · in−1 is a vertex in K≤(in−1−1); and also,
{i1i2 · · · in−1} ∪ Gin−1 is a simplex in K≤in−1 . So, Kin−1 ⊂ stK≤in−1

(i1i2 · · · in−1);

and hence SCK≤in−1
(K≤(in−1−1)) = K≤in−1 . And this finishes the proof. �

Motivated by the lemma above, we define a natural number rA for each A ⊂ [m]
in the following way. For each A = i1i2 · · · in ⊆ [m] with d1 = i1 and dℓ =
iℓ − (iℓ−1 + 1) for ℓ = 2, 3, . . . , n, we define

rA =

n−2
∑

k=2

(

k

2

)

+

n−2
∑

ℓ=1

dℓ ·

(

n− ℓ

2

)

.

Theorem 15. Suppose that m ≥ n > 2 and A = i1i2 · · · in ∈ P([m]). Then the
complex VR(Fm

�A, 2) is homotopy equivalent to a wedge sum of S3’s.

More specifically, if A is the vertex {1, 2, 3} ⊂ [m],

VR(Fm
�A, 2) ≃ S3.
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And for any other vertex A with {1, 2, 3} ≺ A,

VR(Fm
�A, 2) ≃ (

∨

rA

S3) ∨ VR(Fm
≺A, 2).

Therefore if A ∈ P([m]) with |A| ≥ 3, VR(Fm
�A, 2) is homotopy equivalent to the

wedge sum of
∑

{rB : {1, 2, 3} � B � A}-many copies of S3.

Proof. Let K = VR(Fm
�A, 2) and L = VR(Fm

≺A, 2). Suppose A = {1, 2, 3}. Then

rA = 1, hence lkK(A) is homotopic to S2 by Lemma 14. Because the complex L is
contractible, the complex K is homotopy equivalent to S3 by Lemma 2.

Fix A with {1, 2, 3} ≺ A and suppose for induction that L is homotopy equivalent
to a wedge sum of S3’s. Again by Lemma 14, lkK(A) is homotopic to a wedge sum
of rA-many S2’s. Hence the inclusion map from lkK(A) to L is null-homotopic.
Therefore, the general result holds due to again Lemma 2. �

The following result is a direct application of Lemma 1, Lemma 14, and Theo-
rem 15.

Theorem 16. Suppose that m ≥ n > 2. For each n, we define

tn =
∑

A⊆[m] with |A|=n

rA.

Then,

VR(Fm
≤n, 2) ≃

∨

tn

S3 ∨ VR(Fm
≤n−1, 2).

Therefore, VR(Fm
≤n, 2) is homotopy equivalent to the wedge sum of (

∑n

k=3 tk)-

many copies of S3.

Adamaszek and Adams in [2] proved that VR(Qm, 2) = VR(Fm
≤m, 2) ≃

∨

cm
S3

for any m > 2, where cm =
∑

0≤j<i<m(j + 1)(2m−2 − 2i−1). By Theorem 16,

cm =
∑m

k=3 tk where tn is defined as in the statement of Theorem 16.

6. Vietoris-Rips Complex VR(Fm
n ∪ Fm

n′ , 2)

In this section, we’ll investigate the homotopy types of VR(Fm
n ∪ Fm

n′ , 2) with
n, n′ ∈ N. Clearly when |n − n′| ≥ 3, then VR(Fm

n ∪ Fm
n′ , 2) is a disjoint union of

VR(Fm
n , 2) and VR(Fm

n′ , 2); then by the discussion in Section 4, its homotopy type
is clear. The homotopy types of the complex VR(Fm

n ∪ Fm
n+1, 2) are discussed in

Section 5 (see Theorem 13).
In the following, we’ll find the homotopy types of the Vietoris-Rips complexes

VR(Fm
n ∪ Fm

n+2, 2) for n + 2 ≤ m. Clearly for m ≥ 3, VR(Fm
0 ∪ Fm

2 , 2) and
VR(Fm

m ∪ Fm
m−2, 2) are contractible because both of them are cones. Next, we’ll

discuss the complexes VR(Fm
n ∪ Fm

n+2, 2) in general.
The next result can be obtained by applying the proof of Lemma 14 with small

modifications; next we’ll go through the difference of the proofs. For each A =
i1i2 · · · in ∈ Fm

n with c1 = i1 − 1 and cℓ = iℓ − (iℓ−1 + 1) for ℓ = 2, 3, . . . , n, we
define

sA =

n−2
∑

k=2

(

k

2

)

+

n−2
∑

ℓ=1

cℓ

(

n− ℓ

2

)

.

Note that for any A ⊂ [m] with |A| = n, rA = sA +
(

n−1
2

)

.
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Lemma 17. Suppose that 4 ≤ n < m − 1 and A = i1i2 · · · in ⊂ [m] with i1 ≥ 2.
Let K = VR(Fm

n−2 ∪ Fm
n , 2) ∩ VR(Fm

�A, 2).
Then,

lkK(A) ≃
∨

sA

S2

Proof. As in the proof of Lemma 14, we divide the vertices in lkK(A) into pairwise
disjoint collections Gk for k = 0, 1, . . . , in−1. For k ≥ 1, Gk is exactly defined in the
same way as in the proof of Lemma 14. Note that the vertices in K have either size
n− 2 or n. Then G0 contains all the subsets of A with size n− 2. The complexes
Kk and K≤k are defined in the same ways as in the proof of Lemma 14 for k =
0, 1, . . . , in−1. Hence K0 is homeomorphic to VR(Fn

n−2, 2); hence by Corollary 11,

it is homotopy equivalent to
∑n−2

k=2

(

k
2

)

-many copies of S2’s. Then the rest of the
proof is same as the proof of Lemma 14. �

Theorem 18. Suppose that 1 ≤ n < m− 3. Then the complex VR(Fm
n ∪ Fm

n+2, 2)
is homotopy equivalent to a wedge sum of S3’s.

More specifically,

VR(Fm
1 ∪ Fm

3 , 2) ≃
∨

(m4 )

S3;

and for n ≥ 2, we define om,n =
∑

{sA : A ∈ Fm
n+2 with minA ≥ 2} and then

VR(Fm
n ∪ Fm

n+2, 2) ≃ VR(Fm−1
n−1 ∪ Fm−1

n+1 , 2) ∨
∨

om,n

S3.

Therefore, VR(Fm
n ∪Fm

n+2, 2) is homotopy equivalent to (
∑n

k=2 om+k−n,k+
(

m+1−n
4

)

)-

many copies of S3.

Proof. We firstly prove thatK = VR(Fm
1 ∪Fm

3 , 2) ≃
∨

(m4 )
S3. Let L0 = VR(Fm

1 , 2)

which is a complex generated by a simplex because each pair of singlton sub-
sets of [m] has distance 2. Hence by Lemma 5, SCK(L0) is contractible. By
Lemma 8, there are two types of maximal simplices in VR(Fm

3 , 2), namely N [i1, i2]
and L[i1, i2, i3, i4] for some i1, . . . , i4 ∈ [m]; clearly {i1} ∪ N [i1, i2]} is a simplex
in K. Hence N [i1, i2] ∈ SCK(L0) for each i1, i2 ∈ [m]. Within VR(Fm

3 , 2),
there are

(

m
4

)

-many simplices in the form L[i1, i2, i3, i4] and the intersection of
each pair of such simplices contains at most one vertex. We list such simplices

as {σℓ : ℓ = 1, 2, . . . ,
(

m
4

)

} and define Lℓ = SCK(L0) ∪
⋃ℓ

i=1 σℓ. We see that

σℓ /∈ SCK(L0) for each ℓ = 1, 2, . . . ,
(

m
4

)

because otherwise there is a number in ∩σℓ

which is a contradiction; and because each of σℓ’s proper faces has an nonempty

intersection, we get that σ
(2)
ℓ ⊂ SCK(L0). Hence Lℓ−1∩σℓ = σ

(2)
ℓ ≃ S2. Therefore,

by Lemma 1, L1 ≃ S3 and inductively Lℓ ≃
∨

ℓ S
3. This finishes the proof of first

part.
Now we assume that n ≥ 2 and VR(Fm−1

n−1 ∪ Fm−1
n+1 , 2) is homotopy equivalent

to a wedge sum of S3’s. Let G0 = {B ∈ Fm
n ∪ Fm

n+2 : 1 ∈ B} and K0 = VR(G0, 2);

by a straightforward isometric mapping, we see that K0
∼= VR(Fm−1

n−1 ∪ Fm−1
n+1 , 2)

which is homotopy equivalent to a wedge sum of S3’s by the assumption. Let
G1 = {B ∈ Fm

n ∪ Fm
n+2 : |B| = n or 1 ∈ B} and K1 = VR(G1, 2).
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Next, we show that K1 = SCK1(K0) ≃ K0. Let σ be a simplex in K1 con-
sisting of vertices not containing 1. Then σ is a face of either N [i1, i2, . . . , in−1] or
L[i1, i2, . . . , in+1] with all the numbers> 1. Since 1i1i1 · · · in−1 ∈ N [i1, i2, . . . , in−1],
N [i1, i2, . . . , in−1] ∈ SCK1(K0). Also notice that {1i1i2 · · · in+1}∪L[i1, i2, . . . , in+1]
is a simplex inK1; hence L[i1, i2, . . . , in+1] ∈ SCK1(K0). Therefore,K1 = SCK1(K0).

Next we show that the condition in Lemma 5 is satisfied which implies that
SCK1(K0) ≃ K0. Pick a vertex B = i1i2 · · · in in Fm

n not containing 1 such that
B ∈ stK1(D1) ∩ stK1(D2) with D1, D2 ∈ G0. There are three cases to discuss.

Case 1: Suppose |D1| = |D2| = n + 2. Then by Lemma 12, B ⊂ D1 and B ⊂
D2. Since both D1 and D2 contain 1, |D1 ∩ D2| = n + 1 and therefore
{D1, D2} ∈ K0.

Case 2: Suppose |D1| = n and |D2| = n + 2. Then D1 contains an (n − 1)-subset
of B and 1; hence D1 ⊂ D2. By Lemma 12, d(D1, D2) = 2 and therefore
{D1, D2} ∈ K0.

Case 3: Suppose |D1| = |D2| = n. Then both D1 and D2 contains an (n−1)-subset
of B and 1 and hence |D1 ∩ D2| = n − 1, i.e., d(D1, D2) = 2. Therefore
{D1, D2} ∈ K0.

Now fix A ∈ Fm
n+2 with minA ≥ 2 and assume for induction that VR({B ∈

Fm
n ∪ Fm

n+2 : B ≺ A}, 2) is homotopy equivalent to

VR(Fm−1
n−1 ∪ Fm−1

n+1 , 2) ∨
∨

∑
B∈Fm

n+2
with minB≥2 and B≺A sB

S3

which is a wedge sum of S3’s. If A = min≺{C : C ∈ Fm
n+2 and minC = 2}, then

the set {B : B ∈ Fm
n+2 with minB ≥ 2 and B ≺ A} is empty; so the inductive

assumption holds since VR({B ∈ Fm
n ∪ Fm

n+ : B ≺ A}, 2) ≃ VR(Fm−1
n−1 ∪ Fm−1

n+1 , 2)
by the discussion above.

Let L = VR({B ∈ Fm
n+2 ∪ Fm

n : B � A}, 2). Then by Lemma 17, lkL(A) is
homotopy equivalent to

∨

sA
S2 which is clearly contractible in L \ {A}. Hence by

Lemma 2, L is homotopy equivalent to

VR(Fm−1
n+1 ∪ Fm−1

n+1 , 2) ∨
∨

∑
B∈Fm

n+2
with minB≥2 and B≺A sB

S3 ∨ Σ(
∨

sA

S2),

i.e.

VR(Fm−1
n+1 ∪ Fm−1

n+1 , 2) ∨
∨

∑
B∈Fm

n+2
with minB≥2 and B�A sB

S3.

This finishes the proof. �

We conclude this section by showing that the vertices Fm
n+1 in the complex

VR(Fm
n ∪Fm

n+1∪Fm
n+2, 2) don’t contribute to its homotopy type which means that

it is homotopy equivalent to VR(Fm
n ∪ Fm

n+2, 2).

Theorem 19. Suppose that 1 ≤ n < m− 3 with m ≥ 4. Then,

VR(Fm
n ∪ Fm

n+1 ∪ Fm
n+2, 2) ≃ VR(Fm

n ∪ Fm
n+2, 2).

Proof. Let K = VR(Fm
n ∪Fm

n+1 ∪Fm
n+2, 2) and K0 = VR(Fm

n ∪Fm
n+2, 2). Then we

claim that K = SCK(K0) and SCK(K0) ≃ K0.
It is clear that SCK(K0) ⊆ K. Take a simplex σ in K such that none of its

vertices is in K0; hence all its vertices are in Fm
n+1. By Lemma 8, σ is a face of
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either N [i1, i2, . . . , in] or L[i1, i2, . . . , in+2]. Note that {i1i2 · · · in}∪N [i1, i2, . . . , in]
is a simplex in K with i1i2 · · · in ∈ K0; therefore N [i1, i2, . . . , in] ∈ SCK(K0). Also
{i1i2 · · · in+2} ∪ L[i1, i2, . . . , in+2] is a simplex in K with i1i2 · · · in+2 ∈ K0; hence,
L[i1, i2, . . . , in+2] ∈ SCK(K0). Therefore, SCK(K0) = K.

Take D ∈ Fm
n+1 with D ∈ stK(B1) ∩ stK(B2) where B1, B2 are vertices in K0.

Using a similar discussion as in the proof of Theorem 18, {B1, B2} ∈ K0. Hence
the condition of Lemma 5 is satisfied which implies that SCK(K0) ≃ K0.

Therefore, we conclude that K ≃ K0. �

7. Open Questions

There is little known about the Vietoris-Rips complexes of these finite metric
spaces with large scales. A good number of interesting open questions about the
Vietoris-Rips complex on hypercube groups with large scales have been raised in
[2, 16]. We’ll end our paper with a couple questions related to the independence
complex of Kneser graphs.

Suppose 2 < n < m−2. For any pair of subsets B1, B2 of [m] with |B1| = |B2| =
n, d(B1, B2) ≤ 2k + 1 is equivalent to d(B1, B2) ≤ 2k for any nonnegative integer
k. Hence the Vietoris-Rips complex VR(Fm

n , 3) is identical with VR(Fm
n , 2). Little

is known for larger scale r ≥ 4. The complex VR(F6
3 , 4) is the boundary of a cross-

polytope on 20 vertices, hence it is homotopy equivalent to S9. Using polymake [8],
we find the reduced homology groups of VR(F7

3 , 4) is trivial when n 6= 6 or 9; also,

H̃6(VR(F7
3 , 4)) = Z

29 and H̃9(VR(F7
3 , 4)) = Z

7. This is related to independence
complex of the Kneser graphs. Notice that the complex VR(Fm

3 , 4) is identical
with VR(Fm

3 , 5); therefore both of them are equal to the independence complex of
the Kneser graph KG3,m−6 with m ≥ 6. Then the complex VR(Fm

n , 4) for general
2n < m is very likely to be homotopy equivalent to a wedge sum of spheres with
different dimensions.

Then, we have the following question.

Question 1. Assume that 2n < m. Are the complexes VR(Fm
n , 4) with 2n < m

homotopy equivalent to a wedge sum of spheres S6’s and S9’s?

In general, it is worth to investigate the following question.

Question 2. What are the homotopy types of the complex VR(Fm
n , r) for r ≥ 4?
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