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We present a time dependent variational method to learn the mechanisms of equilibrium reactive processes
and efficiently evaluate their rates within a transition path ensemble. This approach builds off variational
path sampling methodology by approximating the time dependent commitment probability within a neural
network ansatz. The reaction mechanisms inferred through this approach are elucidated by a novel decom-
position of the rate in terms of the components of a stochastic path action conditioned on a transition. This
decomposition affords an ability to resolve the typical contribution of each reactive mode and their cou-
plings to the rare event. The associated rate evaluation is variational and systematically improvable through
the development of a cumulant expansion. We demonstrate this method in both over- and under-damped
stochastic equations of motion, in low-dimensional model systems and the isomerization of solvated alanine
dipeptide. In all examples, we find that we can obtain quantitatively accurate estimates of the rates of the
reactive events with minimal trajectory statistics, and gain unique insight into the transitions through the
analysis of their commitment probability.

INTRODUCTION

In complex systems, understanding the mechanism of
transitions between long-lived metastable states is ham-
pered by the general collective nature of the dynamics
and the difficulty of observing these rare but important
events.1 While methods like transition path sampling2
exist to harvest rare events computationally, their distil-
lation into mechanistic descriptions is cumbersome, and
the conversion of that description into quantitative state-
ments of their rate is challenging.3,4 Here, we present a
method that uses a neural-network ansatz with a vari-
ational optimization procedure to compute the time de-
pendent commitment probability from a reactive trajec-
tory ensemble. The method involves learning a unique
policy, in the form of an optimal external control force,
that reweights a reactive conditioned path ensemble to
an unconditioned ensemble that reacts autonomously.
The optimal force is simply related to the commitment
probability,5,6 and serves as an ideal descriptor of the re-
action. The reweighting principle developed within the
framework of variational path sampling7 is expressed in
terms of the stochastic action, which allows us to decom-
pose the rate into additive contributions from different
degrees of freedom, including collective coordinates that
describe molecular transitions. This decomposition pro-
vides a means of identifying relevant order parameters
without making a-priori assumptions. The combination
of the mechanistic insight afforded by an interpretable
representation of the reaction and the validation through
a variational evaluation of the rate, provides a robust
method for distilling features of equilibrium transition
path ensembles.

The investigation of reactive events requires access to
timescales that are considerably longer than the local re-
laxation time of the system. The canonical approach to
investigate these processes has leveraged physically intu-
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itive low-rank descriptions of the system to infer mech-
anistic insight, and bridge the timescales through reac-
tive flux calculations or importance sampling.8–12 The
notion of an ideal reaction coordinate capable of provid-
ing a complete description of the reactive event dates
back to Onsager,13 and was formalized within the con-
text of chemical physics as the committor– a map be-
tween the phase space position of a system and the like-
lihood of it reacting.3,14–16 Learning this high dimen-
sional function has attracted interest from a diversity of
fields, and significant advances has been made through
methods that employ importance sampling and machine
learning.16–35Some notable approaches have leveraged
the confinement of the transition region to compute it
using string methods,16,17,36 coarse-grained the phase-
space to approximate it through diffusion maps,19,28,37,38
and parameterized neural-networks by either fitting the
committor directly18,21,34 or solving the variational form
of the steady-state backward Kolmogorov equation22 by
combining it with importance sampling methods.23–25
While the learning procedures applied previously have
been successful in fitting high dimensional representa-
tions of the reaction coordinate or committors, their non-
linearity has largely resulted in a difficulty in interpreting
the relative importance of physically distinct descriptors
and converting those descriptors into a robust measure of
the rate. Earlier developments of methods based on like-
lihood maximization18,39,40 have offered linear ways to
make this analysis tractable to complex processes.41–45
However, these approaches have overwhelmingly relied
on physical intuition to express likelihood functions.44

The method that we present builds off of variational
path sampling6,7,46–48 that has provided an alterna-
tive approach for sampling rare events. These meth-
ods and related ones employ ideas from stochastic op-
timal control,49–52 and are most useful in investigating
nonequilibrium steady states as they do not invoke de-
tailed balance. Of particular interest is a recent method6
that has detailed how to express a low-rank ansatz for
an optimal control force to drive rare events and estimate
their rates. Our work exploits the fact that the optimiza-
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tion of this control force, or policy, is related to the time
dependent committor. We find that in equilibrium sys-
tems, where path sampling methods afford a way to gen-
erate a reference reactive trajectory ensemble, the opti-
mization of this committor becomes straightforward, and
allows the use of a neural-network (NN) ansatz to solve
the time-dependent backward Kolmogorov equation,53
providing a time dependent and probabilistic represen-
tation of the reaction. While the method computes a
nonlinear function, the form of the optimized loss is given
by the difference in stochastic actions that quantifies the
distance between a conditioned and a reference trajec-
tory ensemble. For systems in which we saturate the
variational bound, this quantity is unique and linearly
decomposable on a per-coordinate basis, and can be un-
derstood as a measure of the importance of each coor-
dinate to conditioning a trajectory to be reactive. This
metric is purely based on the intrinsic mechanism of the
reaction, and can be extended to collective coordinates,
allowing us to identify the relevant reaction descriptors
without making a-priori assumptions.

This paper is organized as follows. First, we review the
variational path sampling formalism to discuss the theory
behind this method. Next, we validate this method by
applying it to a couple of low dimensional systems where
numerically exact results are possible. We probe the sen-
sitivity of this method to limited statistics as well as the
applicability to systems integrated with underdamped
equations of motion. Then, we illustrate how the per-
coordinate stochastic action encodes the relevance of a
coordinate to the reaction. Finally, we apply this method
to study the isomerization of alanine dipeptide in implicit
and explicit solvent. In both of these cases, we show how
the method can be used to infer a mechanistic picture of
the reaction, and identify important reaction descriptors
among a redundant set of internal coordinates.

I. VARIATIONAL PATH SAMPLING FORMALISM

For simplicity, we consider a system evolving under an
overdamped Langevin equation of the form,

γiṙi(t) = Fi
(
rN
)

+ ηi(t) (1)

where ṙi is the rate of change of the ith particle’s po-
sition at time t in d dimensions, γi is the friction co-
efficient, and ηi(t) denotes a Gaussian random force
with mean 〈ηi(t)〉 = 0 and variance 〈ηi(t) ⊗ ηj(t′)〉 =
2γikBTδij1dδ(t− t′) where ⊗ denotes the cross-product
operator, 1d is an identity-matrix of size d×d and kBT is
Boltzmann’s constant times the temperature. The con-
servative force Fi

(
rN
)

= −∇iV
(
rN
)
is given by the gra-

dient of the potential V
(
rN
)
with rN the full N -particle

configuration. We are interested in investigating reactive
events, so we consider potentials that exhibit metastabil-
ity.

We consider transitions between two metastable states,
A and B, which in general are collections of configura-
tions defined through the indicator functions hA[rN (t)]
and hB [rN (t)], where

hX [rN (t)] =

{
1 rN (t) ∈ X
0 rN (t) /∈ X (2)

for X = {A,B}. For the rest of the the paper, indicator
functions are going to written down simply as functions
of time in favor of brevity. The rate for the A → B
transition can be defined by the time derivative of the
side-side correlation function,9

k =
d

dt

〈hA(0)hB(t)〉
〈hA〉

=
d

dt
〈hB|A(t)〉 (3)

where 〈· · · 〉 denotes an average computed over a station-
ary distribution and hB|A is the conditional probability
of starting in A and ending in B at t. Provided a sep-
aration of timescales between the local relaxation time
within a state, τmol, and 1/k, the rate is given by the
path integral

ktf =

∫
D[X]hB|A(tf )P [X] (4)

where when tf is in the range τmol < tf � 1/k,
the probability to transition grows linearly with time.
The path integral sums over all trajectories X =
{rN (0), . . . , rN (tf )}, or the timeseries of the state of the
system evolved for time tf , weighted by the likelihood
of observing a trajectory P [X]. This path integral is
a trajectory partition function associated with reactive
paths,54 and equal to the transition probability between
A to B in time tf .

Variational path sampling uses the path partition func-
tion representation of the rate together with a dynam-
ical reweighting approach55 to extract reactive paths
effectively,46 evaluate rates accurately,6 and we show
here, provide detailed mechanistic information concern-
ing the rare event. Variational path sampling does this
by considering the system as before, but under the action
of an additional time-dependent drift λi(rN , t), which en-
ters the equation of motion as

γiṙi = Fi(r
N ) + λi(r

N , t) + ηi(t) (5)

where the conservative force, noise and friction are the
same as the reference system without λi(rN , t). For
this driven system, the rate kλ between the same two
metastable states A and B is given by an analogous re-
lation as in the reference system

kλtf =

∫
D[X]hB|A(t)Pλ[X] (6)

where Pλ[X] denotes the probability of observing a tra-
jectory X integrated using Eq. 5. By virtue of the
Girsanov transformation, these two rate expressions can
be related to each other. Specifically, using the Radon-
Nikodym derivative to define the change in stochastic
action, ∆Uλ[X] = lnPλ[X]/P [X], the rate in the driven
system can be rewritten as56

ln kλtf = ln

∫
D[X]P [X]hB|A(tf )e∆Uλ

= ln ktf + ln
〈
e∆Uλ

〉
B|A (7)

where we have employed 〈. . . 〉B|A =
〈hB(tf )hA(0) . . . 〉/〈hA(0)〉 as a conditional average
over a reference reactive ensemble to relate the two
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rates. For the case of the overdamped Langevin equa-
tion, the change in stochastic action is given by a
difference of Onsager-Machlup actions57

∆Uλ[X] = −
N∑
i=1

1

4γikBT

∫ tf

0

dt |λi|2 − 2λi · (γiṙi − Fi)

(8)

where | . . . | denotes the norm of the vector, and · denotes
the dot product operator. The discretized form of the
OM action can be simplified further by noting that the
difference between the the time derivative of the positions
and the conservative force is simply given by the noises.

The relationship between rates in Eq. 7 is exact for any
time-dependent drift λi(rN , t). It is distinct from that
employed previously,6 which related the reference and
driven rates to an expectation value in the driven sys-
tem. In variational path sampling, we consider a class
of λi(rN , t) which enforce the transition to occur with
probability 1. In such a case, provided access to a reac-
tive path ensemble in which to evaluate the expectation
values, the rate in the reference system can be obtained
directly as an exponential average,

ln ktf = − ln
〈
e∆Uλ

〉
B|A (9)

= −〈∆Uλ〉B|A −
∞∑
n=2

1

n!
C(n)
B|A(∆Uλ) (10)

or a cumulant expansion, where C(n)
B|A(∆Uλ) denotes the

n’th cumulant of ∆Uλ averaged in the reactive ensemble.
We will refer to these different estimators as k(exp) for the
exponential average and k(n) for the cumulant expansion
where n will denote where the sum was truncated.

Truncation of the cumulant expansion for n = 1 pro-
vides a variational bound of the rate. This is seen by
applying Jensen’s inequality to Eq. 7,

ln ktf≤ ln kλtf − 〈∆Uλ〉B|A (11)
=⇒ ln ktf≤ −〈∆Uλ〉B|A

where we have used conservation of probability ln kλtf ≤
0 in the second step to eliminate the rate of the driven
process from the inequality. Hence, the rate in the ref-
erence system is just the Kullback-Leibler (KL) diver-
gence between the driven and reference path ensembles,
or equivalently the mean change in action. In equilibrium
systems, this relation is similar to the variational struc-
ture of transition state theory, which also provides an up-
per bound to the rate.9 However, this expression is also
closely related to the reversible work theorem in equilib-
rium thermodynamics,58 as it relates the smallest change
required to transform one ensemble to another.59,60 In
this case, the transformation is between an unconditioned
path ensemble and a reactive path ensemble. Just as the
minimum amount of work done on a physical system is
given by its reversible limit, which reflects the way in
which a system would naturally transform, so too we
find the minimum driving force to ensure a reaction is
related to the way in which a system would naturally
react.61 This is shown by noting that the force that sat-
urates this bound in Eq. 11 is the Doob force, denoted

λ∗(rN , t), and is related to the solution of the back-
ward Kolmogorov equation.5,6,62,63 For an overdamped
Langevin dynamics this is,

∂tq(r
N , t) = −

N∑
i=1

Fi
(
rN
)

γi
· ∇iq(rN , t)−

kBT

γi
∇2
i q(r

N , t)

(12)
with boundary conditions q(rN , tf ) = hB(tf ) and
q(rN , 0) = hA(0). The function that solves this
expression, q(rN , t), is the time-dependent committor
function,5,6 or the probability of reaching state B at
tf given a position rN at time t. In the stationary
limit, where the separation of timescales prohibits multi-
ple transitions, q(rN , t) reduces to the time independent
committor function of transition path theory.64,65 The
explicit relation between the Doob force λ∗(rN , t) and
q(rN , t) is,

λ∗(rN , t) = 2kBT∇ ln q(rN , t) (13)

where by construction this force makes all trajectories
reactive, and the reactions occur as they would in the
original system. This force uniquely saturates the in-
equality in Eq. 11, thus providing a unique description
of the reaction in a complex system.6

This formalism allows us to compute both the time-
dependent committor q(rN , t) and the rate k from a reac-
tive trajectory ensemble by parameterizing the external
force λ and optimizing it by maximizing the expectation
value of the change in action averaged within the reactive
trajectory ensemble. In this work, we will consider pa-
rameterizing λ with both linear functional forms as well
as a non-linear form provided by a neural network. The
optimization of either is done by defining a loss function,
Lλ, as

Lλ =

〈 tf/∆t∑
n=0

N∑
i=1

∆t

4γikBT

(
− |λi(n∆t)|2 (14)

+2λi(n∆t) · ηi(n∆t)
)〉

B|A

where the sum is over each particle that the noises act
on, and λi is the component of the driving force on the
degree of freedom associated with the noise. This loss
function is just the change in stochastic action in the dis-
cretized form, so in optimizing λi we are simultaneously
optimizing our estimate of the rate in the reference sys-
tem. This optimization occurs over nint iterations, and
requires averages within the reactive trajectory ensem-
ble, which we will generate with standard path sampling
tools like transition path sampling. Since this method
requires the positions and the noises at each time step,
the method of generation of transition path ensemble re-
quires some care. For complex systems where we use
transition path sampling, we store the random number
seeds for each runs, and then save the new trajectories
only when they are accepted by rerunning them with the
same seed. We find this method to be minimally slower
than running standard transition path sampling. The op-
tion to save and change the seeding is available in most
molecular dynamics simulation packages.
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II. CHOICE OF ANSATZ AND CONVERGENCE

The accuracy of the rate estimate, and the mechanis-
tic information afforded by the evaluation of q(rN , t), de-
pends on the fidelity with which the function can be rep-
resented. This depends on the ansatz used to expand it,
and in particular, its expressibility. It also depends on the
ease by which the function is learned, as inevitably the
reactive path ensemble needed to train q(rN , t) will be
computationally expensive to generate. In this section,
we consider the relative merits of expanding the driving
force in both linear and nonlinear bases, and assess their
accuracy and data efficiency.

A. Linear Function Ansatz

We first consider the case of linear function ap-
proximations. A linear functional for λ(rN , t) =
2kBT∇ ln q(rN , t) can generically be expressed as its as-
sociated potential,

2kBT ln q(rN , t) =

nb∑
n=1

cnϕn(rN , t) (15)

where cn and ϕn(rN , t) denote the n’th coefficient and
basis function, and nb denotes the total number of basis
functions. This can be written compactly as λ(rN , t) =
∇[c ·Φ(rN , t)], where c is the nb length vector of coeffi-
cients and Φ(rN , t) is the vector of basis functions. For a
linear functional expansion, the optimal set of coefficients
c∗ has a closed form that can be computed by taking the
derivative of the loss function in Eq. 14 and setting it to
0. Computing the coefficients reduces to solving a nb×nb

set of linear equations, whose solution is

c∗ =

[〈∫ tf

0

dt ∇Φ⊗∇Φ

〉
B|A

]−1〈∫ tf

0

dt η·∇Φ

〉
B|A
(16)

where ⊗ denotes an outer product. For an orthonor-
mal basis, the optimal coefficients are simply related to
the average noise-weighted basis function,66 but in gen-
eral, the functions are not expected to be orthonormal.
Because of this simplicity in training, linear bases are
particularly efficient to employ. In cases where the reac-
tion coordinate can be described well by a limited set
of coordinates or order parameters, they can also be
accurate.6,7,31,33,46

To understand the utility of a linear functional ap-
proximation, we consider a particle evolving in a two-
dimensional external potential with two reactive channels
visualized in Fig. 1 (A). The potential V (x, y) is

V (x, y)/kBT = 2[6+4x4−6y2 +3y4 +10x2(y2−1)] (17)

where x and y are dimensionless coordinates and we have
worked in a reduced unit system determined by kBT =
γx = γy = 1, and employed a first order Euler integrator
with timestep equal to 0.004 t∗ with t∗ = γx/kBT as our
reduced time unit. We considered transitions defined by
the indicator functions

hA(t) = Θ(−x(t) + 0.85) hB(t) = Θ(x(t)− 0.85)
(18)

(A)

(B)

(C)

ln ktf
LLB

LNN

ln ktf
LLB

(A)

(B)

(C)

ln kt f

L LB

L NN

ln kt f

L LB

∆ Uλ � B |A ∆ Uλ N t B |A,N t

∆ Uλ � B |A ∆ Uλ N t B |A

∆ Uλ � B |A ∆ Uλ d c B |A

∆ Uλ � B |A ∆ Uλ d c B |A,d c

ln kt f

ln kt f

ln kt f

ln kt f

(A)

(B)

(A)

(B)

˜

(A)

(B)

∆ U x
λ � ∆ U y

λ � ∆ Uλ �

∆ U rr
λ �∆ Ũ θθ
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Figure 1. Functional ansatz testing. (A) Potential energy
surface of the simple 2D model where the lines denote a sep-
aration of 2 kBT . (B) Convergence of the loss function using
the linear (LLB) ansatz and neural-net (LNN) ansatz. (C)
Convergence of the linear basis with basis set size. Error bars
denote one standard error computed from 3 independent tri-
als.

where Θ denotes the Heaviside step function. A reac-
tive path ensemble was generated by running brute force
trajectories in order to sample 400 reactions, and the
rate was evaluated by computing the side-side correla-
tion function. We found that tf/t∗ = 2 was a sufficient
observation time to be in the linear growth regime for
the transition probability with ln ktf = −6.1± 0.1.

The linear approximation used were localized Gaussian
basis functions of the form

ϕn(x, y, t) = e−ax(x−xn)2e−ay(y−yn)2e−at(t−tn)2 (19)

where the Gaussian centers {xn, yn, tn} were equally
spaced on a grid within the range of x = [−1.5, 1.3],
y = [−1.6, 1.6] and t = [0, 2] and Gaussian widths were
choosen such that {ax = 1.4/(n

1/3
b −1), ay = 1.6/(n

1/3
b −
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1), at = 1/(n
1/3
b − 1)}. The expansion coefficients, c∗,

were computed using Eq. 16 averaged over the path en-
semble consisting of the 400 reactive trajectories. The
optimization was done in one step, nint = 1 by solving
the linear equation in Eq. 16, where we found the loss
function immediately converged to the brute force esti-
mate of the rate for nb = 123 as shown in Fig. 1 (B). The
dependence of the rate estimate with the size of the basis
is shown in Fig. 1 (C), where the loss decays slowly, ob-
taining a value of the rate statistically indistinguishable
from the brute force estimation of the rate for nb = 83.
This slow decay could be mitigated somewhat with fine
tuning the basis, but we do not explore that here.

B. Neural Network Function Ansatz

Since the form of the force is rapidly varying and non-
linear, saturation of the inequality in Eq. 11 requires a
large number of basis functions. If we express the linear
ansatz in the full configuration space, the number of ba-
sis set coefficients grows exponentially with the degrees
of freedom, making it intractable to converge the loss to
the rate for complex systems. In order to circumvent
the exponential scaling of the number of basis sets with
the dimensionality of the system, we consider employing
a neural network (NN) ansatz to compute the time de-
pendent committor, associated Doob force through auto-
matic differentiation, and evaluate the rate through op-
timization. The input comprises the features selected
for expressing the force and is connected to two hidden
layers. For the two hidden layers, the Swish activation
function67 is used as its derivatives are free from discon-
tinuities, while also being exempt from the weight decay
problem.68 The penultimate layer only contains a single
unit, with a sigmoid activation function. The output of
this layer is the model’s estimate of the time-dependent
committor, q(rN , t). The final layer is a lambda layer,
which simply computes the log of the committor. The
output of this layer represents the many-body potential,
ln q(rN , t), and the forces can be computed by taking a
derivative of the output with respect to the input co-
ordinates via autodifferentiation. While one can simply
parametrize the forces instead of the committor, this ar-
chitecture automatically enforces the conservativeness of
the potential and offers a simple way to obtain the com-
mittor without the need to perform a multidimensional
integration.

For the NN ansatz for the same 2D system above, x,
y and t were used as the input features and optimization
was performed using the RMSprop optimizer69 on 200 re-
active trajectories. The learning rate was choosen to be
0.001, and for each iteration the loss function and associ-
ated gradients were evaluated over half of the trajectories
drawn randomly from the ensemble. The training curve
plotted in Fig. 1 (B) shows that the loss function plateaus
to ln ktf within nint = 20 indicating that this ansatz was
successful in learning the exact time-dependent commit-
tor quickly. While the training required multiple itera-
tions, the number of parameters used to converge to the
brute force rate was around 500 without specific opti-
mization, fewer than required in the naive linear function
approximation. The flexibility of the NN ansatz and the

relatively swift training suggest it as a viable means of
approximating the time dependent committor. As a con-
sequence, in the remainder of the manuscript, we consider
only the performance of the NN ansatz.

C. Convergence with Limited Statistics

To illustrate the efficiency of this method, we tested the
convergence of the NN ansatz with the statistics used to
compute the rate and time dependent committor within
the previously introduced model two-dimensional poten-
tial. Specifically, we tested the convergence of the NN
ansatz with the number of reactive trajectories used in
training, as well as the time lag between configurations
along a reactive trajectory. For both cases, we use two
estimators, one which probed how closely the restricted
trajectory ensemble is to the full trajectory ensemble,
and a second which indicated how well a model trained
on an approximated trajectory ensemble performs on the
original trajectory ensemble. All of these estimators are
based on comparisons between the OM action and ln ktf ,
as the agreement between the two signifies the success of
the model in learning the true committor. Hence, the dif-
ference between the two offers a natural metric to probe
the error between the parameterized and the true com-
mittor. We denote the error from each of these approxi-
mate estimates as ∆L.

For the first case, we vary the number of trajectoriesNt

used for training the model. The model trained on this
limited trajectory ensemble, with force denoted by λNt is
then used to compute the first cumulant for the original
trajectory ensemble comprised of the full 200 trajectories,
〈∆UλNt 〉B|A. This is compared to the first cumulant ob-
tained by training the model on the original trajectory
ensemble with an optimal estimate of the rate. The dif-
ference of these two values, plotted in Fig. 2 (A), is an
indicator of how close the committor trained on the re-
stricted ensemble is to the actual committor. This plot
shows that the estimator converges quickly with Nt, and
suggests that about 50 trajectories are sufficient to learn
the time-dependent committor for this specific system.
Another way of probing how the restricted trajectory en-
semble compares to the original trajectory ensemble is
to perform both training and averaging in the restricted
trajectory ensemble, and compare that estimate to the
true rate. This difference between the action averaged
in a restricted ensemble 〈∆UλNt 〉B|A,Nt

, also shown in
Fig 2 (A), is observed to be negative for Nt = 10, indi-
cating overfitting of the model to the restricted trajec-
tory ensemble. However, this error vanishes quickly, and
plateaus to 0 for Nt = 50. This is a reflection of the tran-
sition path ensemble and the similarity of different reac-
tive trajectories. The error bars for all of these cases are
obtained by training 5 different models on Nt randomly
selected trajectories from the trajectory ensemble.

For the second case, we approximate the trajectory en-
semble by storing only every configurations after a time-
lag of dc∆t where ∆t is the timestep used to integrate
the trajectory. The original reactive trajectory ensemble
comprises 200 trajectories with 500 discrete timesteps,
and the number of configurations used per trajectory are
obtained by dividing 500 by dc. We train the model in
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∆Uλ∗ B|A ∆UλNt B|A,Nt

∆Uλ∗ B|A ∆UλNt B|A

∆Uλ∗ B|A ∆Uλdc B|A

∆Uλ∗ B|A ∆Uλdc B|A,dc

ln ktf

ln ktf

ln ktf

ln ktf

(A)

(B)

∆
∆

Figure 2. Convergence of rate estimates with respect to the
accuracy of the reactive trajectory ensemble. (A) Error esti-
mators for the loss function of the NN ansatz as a function
of the number of reactive trajectories Nt used for training.
(B) Error estimators for the loss function of the NN ansatz
as a function of the number of configurations used per tra-
jectory. dc = 1 corresponds to the original ensemble, where
every configuration is used for training. Error bars denote
one standard error computed from 5 independent trials.

this approximated trajectory ensemble and compute the
same error estimates. The first estimate compares the
first cumulant averaged in the original trajectory ensem-
ble (dc = 1) with the model trained on the approximated
trajectory ensemble to the loss computed by performing
both averaging and training in the original trajectory en-
semble, 〈∆Uλdc 〉B|A. In this case, this estimate probes
how well the the NN ansatz is able to extrapolate the
forces for timesteps that it has not been trained on. The
difference plotted in Fig. 2 (B) indicates that this ex-
trapolation fails quickly. The second estimate probes the
loss obtained by performing both averaging and train-
ing in the approximated trajectory ensemble whose loss
is 〈∆Uλdc 〉B|A,dc . To get this estimate, the variance in
Eq. 14 had to be scaled by a factor of d−1

c to account for
the change in the effective timestep ∆t. This difference
plotted in Fig. 2 (B) shows that this approximation only
works well for dc ≤ 5. The poor scaling with dc reflects
the fact that stochastic diffusions with different variances
have no overlap in the continuum limit.70

III. RATE DECOMPOSITION AND FEATURE SELECTION

From an information theoretic point of view, the rate
is a ratio of a conditioned and an unconditioned tra-

jectory partition function.2,54,71,72 Our optimization di-
rectly minimizes the KL-divergence between a trajectory
ensemble driven with force λ and the undriven reactive
trajectory ensemble. As the KL-divergence is expressible
by the change in stochastic action along a trajectory, it
involves a sum over all the degrees of freedom that the
noises act on. For a suboptimal force, the rate is given
by the average of the exponential of this quantity, cou-
pling the noises from different degrees of freedom. How-
ever, when the variational bound is saturated and the
rate is given by a simple mean, the accompanying change
of action is linearly decomposable. This decomposition
provides mechanistic insight, and affords a means of op-
timizing the features that form the representation of λ.
We generally find a NN ansatz to saturate the bound in
Eq. 11, which allows us in this section to explore a va-
riety of featurizations and their corresponding contribu-
tions to the rate. Specifically, we consider networks with
Cartesian and collective coordinates, as well as those in-
tegrated with underdamped equations of motion.

A. Cartesian coordinates

Using an NN ansatz allows us to compute the exact
time dependent committor and associated Doob force.
When Eq. 11 is saturated, the rate is given by the first
cumulant of the change in action. This allows us to de-
compose the rate into independent contributions,

ktf = exp

[
−

Nd∑
i=1

〈∆U iλ∗〉B|A
]

(20)

where

∆U iλ∗ =

∫ tf

0

dt
[λ∗i (t)]

2

4γikBT
(21)

is the contribution to the rate per stochastic degree of
freedom. The change in action, ∆U iλ∗ , is strictly pos-
itive, indicative of the transition probability being less
than 1, and results from functional minimization of Eq.
14. The stochastic action for the Langevin equation is a
sum of Gaussian random variables for each degree of free-
dom at each timeslice, and a change in stochastic action
is a difference of Gaussian random variables. Given this,
and recognizing the quadratic dependence on λ∗i (t) for
the change in action, we observe that λ∗i (t) is essentially
fitting the bias in the Gaussian noises generated when
conditioning the stochastic process to react. Therefore,
only degrees of freedom that require activation, or a rare
sequence of noises, will accumulate a significant change
in stochastic action or contribute significantly to the rate.
Degrees of freedom that are uncorrelated with the reac-
tion will not contribute to the rate, as their noises will
remain unbiased.

To illustrate how this decomposition can be used to
identify the relevance of coordinates, we consider the
same 2D system visualized in Fig. 1 (A) and perform
a decomposition of the rate. The two stochastic coordi-
nates, x and y, are fed into the neural network ansatz
and optimized. The resultant distributions for the indi-
vidual components of the stochastic action, P [∆Uαλ∗ ], for
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(A)

(B)

˜
∆Ux

λ∗ ∆Uy
λ∗ ∆Uλ∗

∆Urr
λ∗∆Ũθθ

λ∗ ˜

∆Uλ∗

Figure 3. Decomposition of the rate into contributions from
different degrees of freedom. (A) The distribution of the rel-
ative action for the two Cartesian coordinates x and y. (B)
The decomposition of the rate performed for the polar coordi-
nates r and θ, using Eq. 20. Due to the orthogonality of the
transformation, and the isotropicity of the diffusivities, the
coupling term is zero. The perfect overlap between the ∆Ũθθλ
and the total relative action identifies θ to be an excellent
descriptor of the reaction coordinate.

α = {x, y}, defined as

P [∆Uαλ∗ ] = 〈δ(∆Uαλ∗ −∆Uαλ∗ [X])〉B|A
are shown in Fig. 3 (A). Neither of the two distributions
show a complete overlap with the distribution of the to-
tal rate, P [∆Uλ∗ ], indicating that both x and y are im-
portant in describing the reaction coordinate. However
P [∆Uxλ∗ ] is shifted towards larger values, and the expec-
tation value of 〈∆Uxλ∗〉B|A is found to be be larger than
〈∆Uyλ∗〉B|A, allowing us to quantitatively assert that the
coordinate x is more important to the reaction than y,
as it encodes more information of the conditioned path
ensemble. However y is still relevant, in agreement with
intuition from the geometry of the potential.

B. Collective coordinates

While the decomposition above can quantify the rele-
vance of an coordinate to a reactive event, they are ex-
pressed in the bare Cartesian coordinates that enter into
the equation of motion. As such, their utility is dimin-
ished in many-particle systems which are translationally
and rotationally invariant, and for which the number of
degrees of freedom is large. A canonical approach in the
study of rare events in complex systems is to employ col-
lective coordinates, which are nonlinear combinations of

the original Cartesian coordinates and may encode the
expected symmetries of the system. In order to extend
the formalism into this regime, we consider the trans-
formation between Cartesian and collective coordinates,
r → r̃, and its subsequent impact on the rate decompo-
sition. The Jacobian of the transformation Jr(r̃) is,

Jr(r̃) =
[
∇r r̃1 · · · ∇r r̃ñ

]
which is a matrix of Nd× Ñ partial derivatives where Ñ
is the size of the collective variable function space. Under
this transformation, the original forces λ(rN , t) and the
transformed forces λ̃(r̃, t) are related by

λ(rN , t) = JTr (r̃) · λ̃(r̃, t) (22)

where the force acting on the original coordinate ri due to
the force λ̃j which depends on the collective coordinate
r̃j is given by a product of λ̃j and the Jacobian element
Jij . Inserting this into the expression for the optimal
stochastic action, in Eq. 20, we obtain

∆Uλ∗ =

Ñ∑
j,k

∆Ũ jkλ∗ (23)

with

∆Ũ jkλ∗ =

∫ tf

0

dt
λ̃∗j λ̃

∗
k

4kBT
Γ−1
jk (24)

where the initially linearly independent factors from each
Cartesian coordinate, indexed by i, are expressed as a
pair of contributions from the collective coordinates, in-
dexed by j and k. From this form it is evident that
the contribution to the rate incurred from the trans-
formed coordinates r̃ are not necessarily independent
of each other or bipartite.72 Zero coupling between r̃j
and r̃k is obtained when the effective friction Γ−1

jk =∑
i=1 JijJik/γi = δjk/γ, with γi = γ, a condition that

requires the friction weighted transformed coordinates to
be orthogonal.

As an illustration of the decomposition under a change
of coordinates, we consider the same 2D system as be-
fore, but rather than parameterizing λi on x and y, we
transform into polar coordinates (x, y) → (r, θ), where
r = x2 + y2 and tan θ = y/x. We quantify the contribu-
tions to the rate from the polar coordinates, by training
the NN ansatz on the polar coordinates. The partials
are prepared ahead of time and are passed into the loss
function along with the noises. The relative action dis-
tributions in the transformed coordinates, P [∆Ũα,α

′

λ∗ ] for
α, α′ = {r, θ} computed using Eq. 24 are shown in Fig. 3
(B). Since polar coordinates are orthogonal and γx = γy,
the coupling term ∆Ũα,α

′

λ∗ = 0 for α 6= α′. We observe
that the distribution corresponding to the coordinate θ
almost perfectly overlaps with the total action distribu-
tion, indicating that θ is an excellent descriptor of the
reaction coordinate. The distribution for r is centered
around 0 and narrow, illustrating it is unbiased by con-
ditioning on a reaction and thus contributes little to the
rate. This decomposition of the rate in collective coordi-
nates provides a simple metric to identify the relevance
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of physically meaningful descriptors to a reactive process,
without making any a-priori assumptions about the re-
action. The form of this metric is purely based on the
physical mechanism of the reaction, as it quantifies how
conditioning a trajectory ensemble to be reactive shifts
the noise distributions per-coordinate. This allows us to
do hypothesis testing for the relevance of collective co-
ordinates, and discover the coordinates that are gating
the rare event, and those that are uncorrelated with bar-
rier crossing, through the size of their contribution to the
rate. This hypothesis testing requires the saturation of
the variational bound, which if not achieved points to the
lack of relevant features in the NN ansatz.

C. Importance of velocity

In a general molecular system, motion is not over-
damped and as a consequence the full phase space
spanned by both configurational coordinates as well as
their conjugate velocities are required to specify a reac-
tive trajectory. In order to understand the importance
of including velocity degrees of freedom in a parameter-
ization of λ, we consider formally when it can be ne-
glected. For concreteness, we consider an the under-
damped Langevin equation of the form

mv̇i = −γvi + Fi(r
N ) + ηi ṙi = vi (25)

where vi is the velocity of particle i and the rest of the
quantities are defined in the same way as in Eq. 1. For
simplicity we take the mass, m, and friction γ to be in-
dependent of particle index, though generalizations are
straightforward. We start by noting that the backward
Kolmogorov equation takes the form,

∂tq = −
∑
i=1

vi ·∇riq−
γvi
m
·∇viq+

Fi
m
·∇viq+

2γkBT

m2
∇2

viq

(26)
which when solved with the same boundary conditions
as Eq. 12 yields the time dependent committor function
q(rN ,vN , t) whose arguments we suppress above for ease
of notation. Since the noise acts only on the velocities,
the Doob force is given by the gradient of the committor
with respect to the velocities rather than the positions,

λ∗i (r
N ,vN , t) =

2γkBT

m
∇vi ln q(rN ,vN , t) (27)

thus naively it would seem that parameterizing a velocity
dependence is crucial whenever an underdamped equa-
tion is used. However, in the limit that γ−1 → 0, we find
that the velocity dependence can be safely ignored.

This can be understood via application of perturba-
tion theory, where q(rN ,vN , t) is expanded in orders of
γ−1.36,73,74 To first order, q(rN ,vN , t) becomes

q(rN ,vN , t) = q0(rN , t) +
mv

γ
· ∇rq0(rN , t) +O(γ−2)

(28)
where q0 is independent of the velocity. Substituting the
approximated form of q into the underdamped backward
Kolmogorov equation, we find,

∂tq ≈ −
∑
i=1

Fi
γ
· ∇riq0 −

mv2
i

γ
∇2

riq0 +O(γ−2) (29)

which when averaged over the Maxwell-Boltzmann dis-
tribution, yields

∂tq = −
N∑
i=1

Fi
(
rN
)

γ
·∇riq0−

kBT

γ
∇2

riq0 +O(γ−2) (30)

which to first order in 1/γ is identical to Eq. 12,
the overdamped backward Kolmogorov equation, with
q(rN ,vN , t) ≈ q0(rN , t). As a consequence, the commit-
tor in the overdamped limit becomes a function solely
of rN and the Doob force is given by a gradient with
respect to position. In Appendix A, we show that to
O(γ−2) this approximation also saturates the variational
inequality for the rate expression.

In order to gain intuition for when the higher order
terms in Eq. 28 become negligible, we consider the reac-
tion of a particle in a simple double well potential of the
form

V (x)/kBT =
1

64
(x− 4)2(x+ 4)2 (31)

where x is a dimensionless coordinate and we take kBT =
m = 1, which determines a dimensionless time unit
t∗ =

√
m/kBT . We considered transitions between states

defined by the indicator functions

hA(t) = Θ(−x(t) + 3.6) hB(t) = Θ(x(t)− 3.6) (32)

and obtain 400 reactive trajectories each of length
tf/t

∗ = 5 using a timestep of 0.01 t∗ using first order
integrator. We studied this system over a range of γ/γ∗
between 0.1 and 1 with γ∗ = m/t∗. We trained a NN
ansatz only on the positions and time, and compared the
optimized value of the loss function to the brute-force
rates evaluated from a direct mean first passage time
calculation. Figure 4 (A) shows the difference between
the two estimates, along with the brute-force rate as a
function of γ/γ∗. The reactive rates show a Kramers’
turnover10 at γ/γ∗ ≈ 0.3, and the optimized loss is con-
sistently off by a factor of 1.5 for γ/γ∗ < 0.3. After
the turnover, the error in rate estimate decreases mono-
tonically, until it completely vanishes for γ/γ∗ = 1. It
is surprising that this relatively small friction is already
consistent with the overdamped limit.

To further understand the importance of velocity in the
time dependent committor, we train a model to optimize
for the velocity-dependent commitor for γ/γ∗ = 0.1 and
γ/γ∗ = 1. For both of these cases, the optimized value
of the loss was within a standard error of the true rate.
The plot of the optimized committor evaluated at time
t = tf/2 as a function of velocity and position is shown in
Figs. 4 (B) and (C). The functional dependence on time
is not strong away from t = 0 and t = tf . For γ/γ∗ = 1.0,
q(x, v, t) depends weakly on v, with the dependence be-
ing captured by a linear shift along x to an otherwise
simple sigmodal dependence on x. This is precisely the
dependence expected from the expansion in Eq. 28. How-
ever, for γ/γ∗ = 0.1 the committor is strongly sensitive
to the velocity. For v = 0 the large x behavior of q(x, v, t)
slowly converges to 1 reflecting the potential for the par-
ticle even at large values of x to fail to react. For nega-
tive velocities, the inflection point of q(x, v, t) is shifted
to positive values of x, consistent with corresponding val-
ues of the potential that are low enough below the barrier
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ln ktf

Lx

(A)

(B)

(C)

Figure 4. Computation of the committor for reactive pro-
cesses that are integrated using the underdamped equations
of motion. (A) The reaction rate and the error estimate in the
loss function for optimizing the velocity-independent commit-
tor, Lx, as a function of the friction coefficient γ. (B) and (C)
show the optimized position and velocity dependent commit-
tor of the reaction between the metastable well depicted by
the potential energy surface V (x) in red, for friction coeffi-
cient γ = 1.0 and γ = 0.1 respectively. For (B) and (C) the
dot-dashed, solid and dashed lines denote slices of the com-
mittors at constant velocity, v = −1, 0 and 1, respectively.

that the particle is trapped. Correspondingly, for positive
velocities, q(x, v, t) is shifted to negative values of x, re-
flecting the high likelihood of reacting even for positions
not quite to the top of the barrier. This behavior is not
reproducible by scaling a spatially dependent committor
by a simple constant. Hence, featurization of the veloc-
ity, or expansion of the committor to higher orders in
γ−1 is required to accurately encode the time-dependent
committor for this low-friction regime.

IV. APPLICATION TO ALANINE DIPEPTIDE

To examine the efficacy of this method for a complex
molecular system, we investigate the isomerization of ala-
nine dipeptide. Alanine dipeptide has two metastable
conformations. It can transition between these two states
via the rotation of the Ramachandran angles φ and ψ.
A multitude of path sampling methods have focused on
this model due to the collective nature of this transition
in the gas phase and in solution. While the transition
can be tracked using the φ and ψ, they serve only as or-
der parameters and are not sufficient in describing the
complete reaction coordinate or committor.14,18 Signifi-
cant advancements in methods to parameterize the time
independent committor have been made by resolving this
model along physically motivated, predetermined order
parameters.21,23,28,75–81 As we show, choosing among a
large number of internal coordinates without considera-
tion of their correlation or coupling risks neglecting im-
portant aspects of the transition path ensemble. This
is because internal coordinates do not form an orthog-
onal set of coordinates, and collective motions such as
the rotations of a single dihedral angle can be coupled
with the motions of angles and other dihedrals. Below
we first consider isomerization of alanine dipeptide in im-
plicit solvent, and then in explicit solution. For both we
parameterize ln q(rN , t) using the NN ansatz.

A. Isomerization in implicit solvent

In implicit solvent we consider isomerization of alanine
dipeptide between its C7eq and C7ax conformations, as
visualized in the inset in Fig. 5. To investigate this re-
action, we first generated a reactive trajectory ensemble.
Simulations were performed in OpenMM82 and the AM-
BER ff14SB forcefield83 was used for parametrizing the
dipeptide interactions. A Langevin thermostat with the
leap-frog discretization was used as the integrator.84 The
timestep was chosen to be 1 fs, γ was set to 10 ps−1 and
the transition path length tf was set as 1 ps. The indica-
tor functions identifying the metastable wells C7ax and
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Figure 5. Convergence of the loss function for isomerization
in implicit solvent along with a representative snapshot of the
two metastable conformations C7ax (left) and C7eq (right).
Solid black line denotes the true rate, ln ktf , with shading
denoting one standard error.
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C7eq were defined using the Ramachandran angle φ,

hA(t) = Θ(φ(t)− π/4) hB(t) = Θ(−φ(t) + π/4)
(33)

and the first trajectory was generated by running for-
ward and backward simulations from the top of the sad-
dle point along the dihedral φ = 0. Transition path
sampling2 was used to obtain a reactive trajectory en-
semble and the shooting from the top method85 was
used to generate new trajectories. This method offers
a way to decrease correlations between the trajectories
as well as increase the acceptance rate for new trajec-
tories by performing shooting moves within a restricted
region near the saddle point, which for this case was cho-
sen as −π/6 ≤ φ ≤ π/6. A total of 1000 trial trajectories
were generated, and the acceptance rate came out to be
approximately 0.4. Every 5th trajectory in the ensemble
was saved and used for analysis for a total of 200 trajec-
tories. For the choice of reaction descriptors, we used all
the internal coordinates that did not involve the hydro-
gen atoms. This set consists of 9 bonds, 11 angles and 12
dihedrals, the latter two of which contain 9 total redun-
dant coordinates. These internal coordinates along with
the Jacobians matrices are computed for the 200 saved
trajectories, and saved to be used for training.

We use the underdamped approximation discussed in
section Eq. 28, which exempts us from including the ve-
locities as a part of the feature set. The loss function is
modified accordingly for the action of the Langevin leap-
frog integrator86 implemented in OpenMM, as shown in
Appendix B. The RMSProp optimizer with a learning
rate of 0.001 was used to train the model, and training
was performed for 8000 steps. A 90-10 training valida-
tion split was used for optimization, and the splits were
randomized every 100 epochs. Figure 5 shows the value
of the training set loss, along with the reaction rate ob-
tained by computing the mean first passage time of 400
reactive trajectories generated independently. The loss
function plateaus around the 4000th step, with the value
being within one standard error of the true rate.

To gain mechanistic insight into the reaction, we per-
formed the decomposition of the relative action in terms
of the internal coordinates. Following Eq. 24, we com-
puted the 〈Ũ jkλ∗ 〉B|A matrix and visualize it in Fig. 6 (A).
The angles and dihedrals are represented using the letters
a and d respectively, and the numbers in the subscripts
are defined in Appendix C. We observe that the matrix of
contributions to the rate is sparse, with only a few select
coordinates and their couplings obtaining a significant
value. The contributions from the distances have been
removed from the plot as their combined value was calcu-
lated to be statistically indistinguishable from zero. The
effective decoupling of the bond vibrations from the an-
gles and dihedrals provides evidence that the NN-based
ansatz is not overfitting redundant features from the lim-
ited input dataset, consistent with physical intuition for
stiff bonds.

We also observe a strong coupling among the dihedrals
and the angles. Internal coordinates do not form an or-
thogonal set of coordinates, and the off-diagonal terms
in the matrix indicate that the reaction is mediated by
the coupling between these internal degrees of freedom.
Moreover, the change in action is delocalized between sets

of internal coordinates that have been ignored in previ-
ous studies. We note that the off-diagonal elements of the
matrix are negative, while the diagonal terms are posi-
tive. This prevents us breaking down the rate in terms of
additive contributions from different degrees of freedom.
However, the matrix is symmetric so we can sum over
the rows of the matrix and define the contribution from
a single collective coordinate j as

∆Ū jλ∗ =

Ñ∑
k

∆Ũ jkλ∗ (34)

where ∆Ũ jkλ∗ is defined the same way as in Eq. 24. The
reason for using this measure is based on the sum rule
for the OM action along transformed coordinates, which
from using calculus of variation follows

λ̃∗j

Ñ∑
k

λ̃∗kΓ−1
jk = λ̃∗j

Nd∑
i

Jijηi (35)

which is distinct from the case of Cartesian coordinates,
where the relation is given by [λ∗i ]

2 = λ∗i ηi. This dif-

(A) ∆U jk
λ∗˜jk
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50

Figure 6. Decomposition of the rate of isomerization of ala-
nine dipeptide in implicit solvent. (A) The ∆Ũ jkλ computed
using Eq. 22 as a function of internal coordinates. (B) De-
composition of the rate in terms of contributions from internal
degrees of freedom, computed by summing up the rows of the
matrix in (A).



11

ference reflects the fact that the noises along pairs of
transformed coordinates are not necessarily independent
of each other and cannot be assumed to follow bipar-
tite dynamics.72 Summing over the rows of the matrix
can be understood as a marginalization of the OM ac-
tion over all the coupled coordinates Plotted in Fig. 6
(B), this decomposition is found to be positive for almost
all the internal coordinates except for two. These nega-
tive values are within the standard error. This allows us
to extract the leading contributors to the C7ax → C7eq

reaction. We observe that the Ramachandran angle φ
(d4) is found to incur the largest contribution. This is a
remarkable result as no a-priori information of the reac-
tion coordinate was passed into the model for training.
While the indicator functions that were used to define
the boundaries of the metastable wells were defined us-
ing φ, the optimization scheme itself did not require any
description of the indicator functions. Yet, this method
automatically finds the Ramachandran angle φ to con-
tribute the most to isomerization, out of 32 internal co-
ordinates, 9 of which are redundant.

This decomposition reveals other leading contributors
to the reaction and highlights other order parameters
that are activated. The C-N-Cα-Cβ (d3) and the Cβ-Cα-
C-N (d8) torsions are found to be the next two leading
contributors, suggesting that rotation of the Ramchan-
dran angle φ is strongly coupled to the orientation of the
alkyl bond. Some other important internal coordinates
that are selected by this method include the O-C-N an-
gle (a3), the C-O-C-N improper torsion (d11) and the
Cβ-Cα-C-O (d7) torsion. These internal coordinates also
emphasize the importance of the relative orientation of
the O-C bond and the methyl-bond. Our final observa-
tion is that the contribution from other Ramachandran
angle ψ (d6) is found to be effectively zero. This is an-
other significant result as ψ has long been used as the 2nd
order parameter to explore the isomerization of alanine
dipeptide due to the topology of the free energy surface.
As this has been mentioned previously,14 future studies
should consider coarse-graining along other dihedral an-
gles for performing committor analysis of this reaction.

B. Isomerization in Explicit Solvent

Finally to demonstrate the ability to tackle very high
dimensional systems, we explore the conformational iso-
merization of alanine dipeptide in explicit solvent. As
the potential energy landscape of along the Ramachan-
dran angles is modified due to solvent interactions,14,87
we consider the isomerization between the C5 and αL
states, visualized in Fig. 7. The equations of motion
and forcefields for the peptide are the same as in the im-
plicit solvent study, and the TIP3P forcefield88 is used for
parameterizing the water molecules. Lorentz-Berthelot
mixing rules are used for the peptide-water interactions.
A periodic box of volume 27 nm3 is used with 862 water
molecules, and the Ewald Summation is used for comput-
ing the long ranged interactions. The basin definitions
for αL and C5 are the same as that of the C7ax and C7eq

states, respectively. The same method as before is used
for obtaining a reactive trajectory ensemble, with an en-
semble of 200 reactive trajectories used for learning the

(A)

(B)
Lλ

ln k(2)tf

ln k(exp)tf

Figure 7. Investigation of the conformational isomerization
of alanine dipeptide in explicit solvent. (A) Representative
snapshot of the two metastable conformations, αL (left) and β
(right). (B) Value of the loss function along with the two rate
estimators k(2) and k(exp) during training. The rate can be
leveraged by the two estimators, even though the loss function
does not converge to ln ktf . Solid black line denotes the true
rate, ln ktf , with shading denoting one standard error.

time dependent committor.
For this reaction, we restrict the input feature to only

parameterize the internal coordinates of the peptide.
Noting that bond vibrations are decoupled from rotations
of the dihedrals and that water interactions are mediated
through hydrogen bonds, our input feature set comprises
all the 36 angles and 45 dihedrals and contains 42 re-
dundancies. While the solvent degrees of freedom can be
parameterized using symmetry functions,89–91 our goal is
to illustrate how our method can leverage a quantitative
insight into the reaction mechanism even when it does
not have access to the full phase space.

Optimization of the NN ansatz is performed using the
RMSProp Optimizer for 2500 steps, and the results are
shown in Fig. 7 (B). The loss function plateaus to a value
of 2 higher than ln ktf , which was computed through
evaluation of the first mean passage time from 400 in-
dependently run trajectories. This discrepancy between
the first cumulant and the true rate is expected, as the
feature set excludes the relevant solvent degrees of free-
dom. Regardless, we are able to obtain the correct rate
from this method by computing the second cumulant and
exponential average, the form of which is given in Eqs.
9 and 10. Both these estimators are plotted, and are ob-
served to converge to the rate computed independently.
The agreement between the exponential estimator and
second cumulant is only expected when the loss function
is perturbatively close to the true value, otherwise the
additional cumulants would be needed. Note that even
in the case where the Doob force is not fully optimal,
driven trajectories are almost surely reactive.

Since the variational bound is not saturated, the sum
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given in Eq. 20 does not equal the rate. This means that
the description of the time dependent committor is not
exact. However, because we are perturbatively close we
can still use the method to extract the relative impor-
tance of degrees of freedom as before. First, we perform
the same decomposition as Eq. 34. While not visualized,
the ∆Ũ jkλ matrix is found to be less sparse for the reac-
tion in solvent, due to the renormalization of the solvent
effects into the peptide degrees of freedom. To gain quan-
titative insight, we sum of the rows of the ∆Ũ jkλ matrix
as before, and plot the contributions from the 20 leading
features. Plotted in Fig. 8 (A), this decomposition shows
that the rotations of angles involving hydrogen atoms be-
come more important than the internal rotations of the
peptide dihedrals. Most of the leading contributors are
angles that involve one or two hydrogen atoms, reem-
phasizing the effect of solvent in mediating this reaction.
This is in accord with the findings of previous papers on
the isomerization of solvated alanine dipeptide.18,21,92,93
However what is striking is that no single mode is dom-
inant, with no internal coordinate accounting for more
than 5% of the rate.

To confirm the role of the hydrogen atoms, we plot a
decomposition in terms of the individual atoms in Fig. 8
(B) using the action expressed in the bare coordinates.
The plot reveals that the methyl carbon contributes the
most to the rate, followed by the acetyl carbonyl oxygen

(A)

(B)

C

H

N

O

Figure 8. Decomposition of the rate of isomerization of ala-
nine dipeptide in explicit solvent. (A) Decomposition of the
rate in terms of contributions from the top twenty internal
degrees of freedom, computed using Eq. 34. (B) Decompo-
sition of the rate in terms of contributions from all atoms,
computed using Eq. 20. The atom indices are labelled in the
snapshot of the peptide in Appendix C.

atom. However, the combined importance of the hydro-
gens far outweighs both. This finding also illuminates
why the addition of solvent transforms the reactive mech-
anism. Both these atoms strongly interact with water
molecules via hydrophilic and hydrophobic effects that
are mediated through hydrogen-bonding and volume ex-
clusion, respectively.18,21,92,93 We find that this method
is able to provide a rate estimate and quantify the renor-
malized contributions from different degrees of freedom
even when it does not have access to the full phase space.
This feature can be particularly useful for more complex
systems, where a complete description of the system is
not tractable due to computational or memory bottle-
necks.

CONCLUSION

We have detailed a novel method that can be used
to evaluate the time-dependent committor and the rate
from a reactive trajectory ensemble. The method em-
ploys an ansatz for parameterizing a many-body poten-
tial that is related to the time-dependent committor,
and can be optimized by variationally solving the back-
ward Kolmogorov equation, as expressed through a tra-
jectory reweighting theory used within variational path
sampling. For reactive processes in equilibrium, where
the cost of obtaining a reactive trajectory ensemble is in-
dependent of the rarity of the reaction, this method pro-
vides a simple procedure to compute the rate and distill
mechanistic information.

Combining this optimization scheme with a neural net-
work ansatz for the time dependent committor allows
us to saturate the variational rate bound, and gives us
a complete description of the transition path ensemble.
Specifically, we have described how to decompose the rate
in terms of additive contributions from different degrees
of freedom. This procedure of quantifying contributions
can be applied to collective coordinates and order param-
eters that are used for characterizing reactions of complex
molecular systems. We showcase this decomposition by
investigating the reaction of Brownian particles in sim-
ple potentials in underdamped and overdamped regimes.
We have shown how to apply this procedure to conforma-
tional changes in solution, leveraging insightful informa-
tion about the reactive event even when the full phase
space is not provided as training data. In cases where
the variational bound is not saturated, the rate can still
be computed using other estimators. This decomposition
could lend insight into the design of models to accurately
recover kinetic information.94

The formalism employed, casts the time dependent
committor as an optimal control force naturally making
this model generative. Specifically, when the variational
bound is saturated, a time dependent control force is
produced that generates reactive trajectories in an unbi-
ased manner. While not used as such here, this proce-
dure can be employed to glean higher order statistics of
the reactions over and above the rate.6 When the varia-
tional bound is not saturated the control force can still
be applied to generate unbiased transition path statis-
tics through ensemble reweighting.55 One could envision
an iterative procedure in cases where path sampling is
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difficult, for example in cases of long diffusive trajecto-
ries, where initial control forces are gradually optimized
through alternative cycles of training and reactive ensem-
ble generation.

As the method is based on ensembles of trajectories
and path reweighting, there is no formal restriction to
equilibrium systems. Indeed, variational path sampling
has been initially applied to systems whose dynamics
break detailed balance. As such the procedures devel-
oped here for NN based function approximations and rate
decompositions transfer over directly to rare transitions
in nonequilibrium steady-states. However, traditional
path sampling techniques that render the generation of
a path ensemble simple in equilibrium are not typically
as effective away from equilibrium. For those systems,
one would have to consider using path sampling meth-
ods that do not invoke detailed balance.95–97 The itera-
tive procedure alluded to above is likely a robust means
of extending this methodology to study phase transitions
in active matter and driven assembly.
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Appendix A: Saturation of variational bound

In Section III C we detailed how the time depen-
dent committor can be approximated for a formally un-
derdamped system evolving in an overdamped regime.
Here we demonstrate that the approximate form of the
time dependent committor saturates the variational rate
bound up to order O(γ−2). Using the approximation
q(rN ,vN , t) = q0(rN , t) + mv · ∇rq0(rN , t)/γ + O(γ−2)
we consider the log transform, Q = ln q, which to equiv-
alent order in perturbation theory is

Q(rN ,vN , t) ≈ ln

(
q0 +

mv

γ
· ∇rq0 +O(γ−2)

)
= ln q0 +

mv

γ
· ∇r ln q0 +O(γ−2) (A1)

where we will use Q0 = ln q0. For an underdamped equa-
tion of motion the relative action, ∆Uλ is given by

∆Uλ[X] = −
N∑
i=1

1

4γkBT

∫ tf

0

dt
[
λ2
i

−2λi ·
(
mv̇i + γvi − Fi(r

N )
)]

just as in the overdamped case. Substituting the under-
damped Doob force,

λ∗i =
2γkBT

m
∇viQ(rN ,vN , t) (A2)

into ∆Uλ[X] we find,

∆Uλ∗ =

N∑
i

∫ tf

0

dt
[
v̇i · ∇viQ+

γ

m
vi · ∇viQ (A3)

−Fi
m
· ∇viQ−

γkBT

m2
(∇viQ)2

]
The first term can be resolved using Ito’s Lemma

Q̇ = ∂tQ+

N∑
i

v̇i ·∇viQ+vi ·∇riQ+
γkBT

m2
∇2

viQ (A4)

Substituting this back to the relative action, we get:

∆Uλ∗ = −
∫ tf

0

dt

N∑
i

[γkBT

m2
(∇viQ)2 + vi · ∇riQ (A5)

+
γkBT

m2
∇2

viQ−
γ

m
vi · ∇viQ+

Fi
m
· ∇viQ

]
− Q̇+ ∂tQ

Finally, using the perturbative approximation of Q in
Eq. A1, and substituting the approximated form of the
backward Kolmogorov equation in Eq. 29 yields

∆Uλ∗ = −
∫ tf

0

dt

N∑
i

[kBT

γ
(∇riQ0)2 +

mv2
i

γ
∇2

riQ0

+
Fi
γ
∇riQ0

]
− Q̇+ ∂tQ

=

∫ tf

0

dt Q̇ = − ln q (A6)

Hence, ∆Uλ∗ quantifies the transition probability be-
tween the states A and B over time tf when averaged
over an initial distribution in A.

Appendix B: Relative action for Langevin leap-frog integrator

The equations of motion for the Langevin leap-frog
integrator is given by82,86

vi[t+ ∆t/2] = αvi[t−∆t/2] +
1− α
γmi

Fi[t] + ηi[t] (B1)

ri[t+ ∆t] = ri[t] + vi[t+ ∆t/2]∆t

where the definitions of vi, ri and Fi are the same as in
Eq. 25, mi is the mass of particle i, γ is friction coeffi-
cient, ∆t is the timestep, and α = exp[−γ∆t]. The noise,
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Figure 9. Atom indices for alanine peptide.

ηi is a Gaussian random variable with mean 〈ηi(t)〉 = 0
and variance 〈ηi(t)⊗ηj(t′)〉 = kBT (1−α2)m−1

i δij1δ(t−
t′). For this discretization, the relative stochastic action
is

∆Uλ =

tf/∆t∑
n

N∑
i

(1− α)λi
2[n∆t]

2(1 + α)miγ2kBT
− λi[n∆t]ηi[n∆t]

γkBT (1 + α)

(B2)

which is the same general form as in the overdamped
case.

Appendix C: Internal coordinates for alanine dipeptide

In the studies on alanine dipeptide we parameterized
our NN ansatz for the time dependent committor based
on a set of internal coordinates. In Tables I and II we
define each of the angles and dihedrals referred to in the
main text based on the atom numbering Fig. 9.

Label Type Description Contribution
d4 Dihedral 4 - 6 - 8 - 14 0.416
d3 Dihedral 4 - 6 - 8 - 10 0.160
d8 Dihedral 10 - 8 - 14 - 16 0.079
a3 Angle 5 - 4 - 6 0.048
d11 Dihedral 1 - 6 - 4 - 5 0.043
d7 Dihedral 10 - 8 - 14 - 15 0.042
a1 Angle 1 - 4 - 5 0.025
a8 Angle 8 - 14 - 15 0.023
a10 Angle 15 - 14 - 16 0.022
a11 Angle 14 - 16 - 18 0.021
a9 Angle 8 - 14 - 16 0.021
a6 Angle 6 - 8 - 14 0.019
a2 Angle 1 - 4 - 6 0.018
d12 Dihedral 8 - 16 - 14 - 15 0.014
a4 Angle 4 - 6 - 8 0.011
a7 Angle 10 - 8 - 14 0.009
d9 Dihedral 8 - 14 - 16 - 18 0.004
d10 Dihedral 15 - 14 - 16 - 18 0.002
a5 Angle 6 - 8 - 10 0.002
d2 Dihedral 5 - 4 - 6 - 8 0.001
d1 Dihedral 1 - 4 - 6 - 8 -0.009
d6 Dihedral 6 - 8 - 14 - 16 -0.010
d5 Dihedral 6 - 8 - 14 - 15 -0.012

Table I. Contribution to rate in implicit solvent

Label Type Description Contribution
a13 Angle 0 - 1 - 3 0.035
a41 Angle 17 - 16 - 18 0.035
d4 Dihedral 4 - 6 - 8 - 14 0.034
a23 Angle 7 - 6 - 8 0.032
a33 Angle 11 - 10 - 12 0.032
a12 Angle 0 - 1 - 2 0.031
a15 Angle 2 - 1 - 3 0.030
a34 Angle 11 - 10 - 13 0.029
d21 Dihedral 5 - 4 - 6 - 7 0.026
a47 Angle 20 - 18 - 21 0.025
d7 Dihedral 10 - 8 - 14 - 15 0.024
d3 Dihedral 4 - 6 - 8 - 10 0.023
d11 Dihedral 1 - 6 - 4 - 5 0.023
a27 Angle 9 - 8 - 10 0.021
d23 Dihedral 4 - 6 - 8 - 9 0.019
a35 Angle 12 - 10 - 13 0.018
a44 Angle 16 - 18 - 21 0.017
d33 Dihedral 9 - 8 - 10 - 12 0.015
a42 Angle 16 - 18 - 19 0.015
d17 Dihedral 3 - 1 - 4 - 5 0.015

Table II. Contribution to rate in explicit solvent
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