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Abstract. We discuss our recent study of local quantum mechanical uncertainty relations in quantum many
body systems. These lead to fundamental bounds for quantities such as the speed, acceleration, relaxation
times, spatial gradients and the Lyapunov exponents. We additionally obtain bounds on various transport
coefficients like the viscosity, the diffusion constant, and the thermal conductivity. Some of these bounds
are related to earlier conjectures, such as the bound on chaos by Maldacena, Shenker and Stanford while
others are new. Our approach is a direct way of obtaining exact bounds in fairly general settings. We employ
uncertainty relations for local quantities from which we strip off irrelevant terms as much as possible, thereby
removing non-local terms. To gauge the utility of our bounds, we briefly compare their numerical values
with typical values available from experimental data. In various cases, approximate simplified variants of the
bounds that we obtain can become fairly tight, i.e., comparable to experimental values. These considerations
lead to a minimal time for thermal equilibrium to be achieved. Building on a conjectured relation between

quantum measurements and equilibration, our bounds, far more speculatively, suggest a minimal time scale
for measurements to stabilize to equilibrium values.

1 Introduction

In this work, we summarize our recent findings discussed in Refs. [12,10] and briefly compare
rigorous bounds on physical quantities that we obtained using our approach with experimental
data. A large number of conjectured bounds on physical quantities have been advanced. These
include an upper bound on the Lyapunov exponent [8], a lower bound on various lifetimes and
relaxation rates [1,5,9,11], a lower bound on the viscosity [4,11,17,19], a lower bound on the ratio of
shear viscosity and entropy density [6], and many others. It is notable that early works by Eyring
[2,3] and other pioneers on chemical reaction rates and intuitive proposed extensions implicitly
suggest similar inequalities (although these have not been proposed as fundamental bounds). Our
primary goal is to rigorously derive such bounds in broad settings using local variants of the
quantum mechanical uncertainty relations.

2 Bounds from local uncertainty relations in many body systems

We consider a macroscopic system Λ of NΛ particles, with a density matrix ρΛ, whose dynamics is
governed by the time independent HamiltonianHΛ. The rate of change of an arbitrary local opera-

torQH
i in the Heisenberg picture is

dQH
i

dt
=

i

~

[

HΛ, Q
H
i

]

. The subscript i can be thought of as a par-

ticle index. We note that we can replaceHΛ in the above expression by the local Heisenberg picture
Hamiltonian H̃H

i which represents only the portion of HΛ containing terms that do not commute

with our chosen local operator QH
i . With this,

dQH
i

dt
=

i

~

[

H̃H
i , QH

i

]

. Next, we use the textbook

type quantum uncertainty relation which is trivially provable to be valid
(

via, e.g., the use of
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Cauchy-Schwarz inequalities for Hilbert-Schmidt (trace) type inner products satisfying the inner
product positive semi-definite property

(

Tr(ρΛA
†A) ≥ 0

)

associated with the density matrices ρΛ

providing expectation values
)

for general mixed states, σA σB ≥ 1

2

∣

∣

〈

[A,B]
〉∣

∣. Here, A and B are

any two operators and σ2
A =

〈

(A− 〈A〉)2
〉

, 〈A〉 ≡ Tr (ρΛA). Using this,

∣

∣

∣

∣

〈

dQH
i

dt

〉∣

∣

∣

∣

≤ 2

~
σH̃H

i

σQH
i
.

Now we focus on the value of σ2
H̃H

i

when averaged over the entire system and consider the partic-

ular case of ρΛ defining a macroscopic thermal system at a temperature T for which the variances
may be evaluated. For a translationally invariant system in thermal equilibrium, the variance
(

σH̃H
i

)2

≡ kBT
2Cv,i (defining an effective local heat capacity Cv,i) assumes the same value of

each i. (The energy variance of the full many body Hamiltonian HΛ is given by kBT
2C

(Λ)
v with

C
(Λ)
v the heat capacity of the global system Λ.) Putting everything together,







〈

dQH

dt

〉2

σ2
QH






≤ 4kBT

2Cv,i

~2
, (1)

where X ≡ 1
NΛ

NΛ
∑

i=1

Xi. Even though the right hand side of Eq. 1 is independent of the spatial index

i, we have kept it to underscore that Cv,i is an effective local heat capacity.

2.1 Upper bound on the relaxation rate (Lower bound on the relaxation time)

The left hand side of Eq. 1 is, dimensionally, the square of the relaxation rate associated with the
operator QH

i . This leads to a bound on the relaxation rate,

τ−1
Q ≤ 2T

√

kBCv,i

~
. (2)

At high temperatures, when the equipartition theorem applies, i.e., Cv,i = O(kB), this inequality
becomes, τ−1

Q ≤ O (2kBT/~), implying that, τQ ≥ O (~/2kBT ).

2.2 Upper bound on particle speeds and lower bounds on particle displacements

Choosing the operator QH
i in the above analysis to be the αth Euclidean component of the dis-

placement of a particle in the system, we get,

(

〈

drHα
dt

〉2
/

σ2
rHα

)

≤ 4kBT
2Cv,i

~2
. Here, H̃H

i =
(pHiα)

2

2m
,

implying that if equipartition holds (at high temperatures), Cv,i = kB/2. If in addition, we assume
that the fluctuation of the particle positions is slowly varying, i.e., all the particles have similar
values of σrH

iα
, then,

√

〈

drHα
dt

〉2

≤
√
2kBTσrHα

~
. (3)

A related bound for the expectation value of the square of the velocity components can also be

obtained using a similar analysis. [12] Thus, at high temperatures,

〈

(

drHα
dt

)2
〉

≤
2 (kBT )

2 σ2
rHα

~2
.

The advantage of this relation is that in the classical limit, the left hand side takes the value
kBT

m
, implying that the fluctuation of the each component of a particle’s position is bounded from

below.

σ2
rHα

≥ ~
2

2mkBT
=

λ2
T

4π
, (4)



Quantity
Simplified bound

(order of magnitude)
Approximate
value of bound

Typical value(s)
of quantity

Related conjectured
bounds

Relaxation
time

τ &
~

2kBT

0.01 ps
(T = 300 K)

— Planckian time [18]

Speed |v| .
kBTσrH

α

√
2

~

7 km/s
(T = 660◦C,
σrH

α
= 0.4 Å)

3 km/s (sound speed in
aluminum at 660◦C, just
below its melting point)

Melting speed [9]

Diffusion
constant

D &
~

2πm
5× 10−10 m2/s

(for water)
1.1× 10−9 m2/s

(for water at STP)
—

Shear
viscosity

η & nh

η .
mkBT

3R~

η & 2× 10−5 Pa s

η . 3× 10−3 Pa s
(for water)

6× 10−5 Pa s

2× 10−3 Pa s
(for water)

Bound on viscosity to
entropy density [6], Minimum
viscosity [4,19,17], Minimum
kinematic viscosity [16,15]

Bulk
viscosity

ζ &
n~

√

d3(z + 1)

3× 10−7 Pa s
(for water at 100◦C)

5× 10−4 Pa s
(for water at 100◦C)

—

Lyapunov
exponent

λL .
2kBT

√
d

~

1014 Hz
(T = 300 K, d = 3)

—
Chaos bound,

λL .
2πkBT

~
[8]

Spatial
gradient

〈

(

∂f

∂rα

)2
〉

/

〈f2〉 ≤ 8π

λ2

T

— — —

Table 1. A summary of our bounds for quantum thermal systems at a temperature T . Here, m denotes the mass of a
particle, R its radius, and σ

rH
iα

is the standard deviation of a Cartesian component (α) of its position, d is the number

of spatial dimensions, n the number of particles per unit volume, z the effective coordination number, f an arbitrary
function of the spatial coordinates and other degrees of freedom. In this table, we used the classical equipartition theorem
at sufficiently high temperatures where classical equipartition applies. Further simplifying approximations were made to our
exact bounds. In several of our inequalities, the Green-Kubo type integrals for the diffusion constant and other transport
coefficients were evaluated up to the first zero of their respective particle velocity and other autocorrelation functions
and rigorously bounded (thus not accounting for localization effects (D = 0) that appear when oscillatory autocorrelation
function contributions are dominant). More physically transparent approximate derivations lead to some of the above shown
inequalities. Comprehensive details on these bounds and those on other quantities can be found in Ref. [12].



λT being the thermal de Broglie wavelength.
Other bounds that can be obtained using similar analysis are summarized in Table 1. These

have been simplified using semi-classical and other arguments in order to obtain expressions
devoid of specific system details.

3 Quantum measurements and equilibration

In Refs. [12,10], the Eigenstate Thermalization Hypothesis, associated entropy maximization, and
other considerations were applied to the measurement problem. Here, the interactions Hdevice−Q

between a measuring device and a local microscopic quantity Q being measured were included in
the full system Hamiltonian HΛ. It was illustrated that a time average of Q (over its equilibration
time set by τQ) is given by eigenstate expectation values when the interactions in Hdevice−Q are
appreciable. That is, inasmuch as local measurements of Q are concerned [12,10],

ρcollapse“=”ρequil., (5)

where ρcollapse is the density matrix associated with this short time averaged measurement and
ρequil. emphasizes that the latter short time average may be replaced by an average with the
density matrix of the equilibrated system that includes the measurement device and the typical
microscopic quantity Q being measured. Here, “=” highlights that this equality and density
matrix are not associated with a bona fide “collapse” to an eigenstate of Q but rather to a time
average over an interval which can be exceedingly short for a small local observable Q (see Table
1) for which equilibration may indeed typically be very rapid. Ref. [13] more recently raised a
conjecture similar to the one of Eq. (5) that we earlier proposed in Refs. [12,10].

4 Conclusions

Our local quantum uncertainty based bounds on the relaxation times in equilibrated quantum
systems [12,10] are intimately related to conjectured Matsubara like Planckian time scales [18] and
do not hinge on the Lieb-Robinson [7] and related bounds [14] on the speed in which information
may spread. These bounds may further relate to possible fundamental limits on measurement
and equilibration times (a conjectured connection between measurement and equilibration was
briefly reviewed). Our lower bound on the shear viscosity is closely connected to proposed bounds
on the viscosity to entropy density ratio [6], and other viscosity bounds [19,17,16]. Our upper
bound on the shear viscosity in equilibrated systems, that follows from the bound on the diffusion
constant when the Stokes-Einstein relation applies is, like others reviewed here (e.g., those on
general spatial gradients of general functions), new [12]. When applied to various observables, our
bound on the Lyapunov exponent is slightly tighter than the celebrated conjectured chaos bound
of Ref. [8]. Furthermore, our derivation uses a definition of the Lyapunov exponent similar to
that in the the classical arena which does not rely on the use of regularized Out of Time Ordered
Correlators (OTOC). When contrasted with experimental data for commonplace systems such as
water and aluminum, our simplified bounds are relatively tight (see Table 1 and [12] (and further
comparisons for the viscosity bound in [4,17])). A comprehensive study further contrasting some
of our other bounds (both exact and their approximate simplified variants) with experimental
data will be illuminating.
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