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Abstract

We present a method that captures the fluctuations beyond mean field in chemical reactions in
the regime of small copy numbers and hence large fluctuations, using self-consistently determined
memory : by integrating information from the past we can systematically improve our approximation
for the dynamics of chemical reactions. This memory emerges from a perturbative treatment of the
effective action of the Doi-Peliti field theory for chemical reactions. By dressing only the response
functions and by the self-consistent replacement of bare responses by the dressed ones, we show how a
very small class of diagrams contributes to this expansion, with clear physical interpretations. From
these diagrams, a large sub-class can be further resummed to infinite order, resulting in a method
that is stable even for large values of the expansion parameter or equivalently large reaction rates.
We demonstrate this method and its accuracy on single and multi-species binary reactions across a
range of reaction constant values.

1 Introduction

An important problem with wide ranging applications, especially in biology and synthetic chemistry, is
the one of treating strong stochasticity in chemical reaction networks. This is most pronounced when
the copy number of participating molecules are small, typically of the order of a few molecules [1–4].
Indeed, thinking of copy number fluctuations as Poissonian the mean n̄ and the standard deviation

√
n̄

are of the same order when n̄ = O(1), so that fluctuations can never be neglected. Equivalently, the time
evolution of lower order moments of the copy number distributions are hierarchically coupled to higher
order moments, and this hierarchy cannot be truncated by neglecting relative copy number fluctuations,
or by treating them as small enough to be Gaussian.

Recent experiments in living cells, in gene and protein regulation networks [5–9] have shown the impor-
tance of intrinsic stochasticity originating from the operation of these biochemical networks in the limit
of small copy number of participating molecules. Indeed, this limit is the natural regime of operation
for many of these networks. For example there are only a few copies of each gene coding for a protein in
each cell, which transcribe a few copies of mRNA that are later translated into proteins. Sometimes even
a few copies of a signalling molecule or transcription factor are enough to trigger signalling pathways in
a cell [10]. This regime of small copy numbers is dominated by large fluctuations in the time courses
of the molecule numbers, where mean field or mass action kinetics, which is the standard description of
chemical reaction dynamics, becomes inaccurate [11, 12], and very few methods [13] exist that are able
to accurately calculate the time-dependent moments of the stochastic process. Experiments have even
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shown that that random fluctuations in gene expression can lead to very different behaviours of otherwise
identical cells [5, 7]. Understanding the dynamics in the regime of strong fluctuations is thus essential if
we want to be able to infer the relevant biology from experimental measurements of such systems.

The challenges arising from strong fluctuations become even more acute for spatially resolved dynamics,
i.e. reaction-diffusion systems. A common approach [14] to theoretically treat and make inferences
from such systems is to divide space into small compartments, and model diffusion as molecules being
destroyed in one compartment and created in a neighbouring one. In dilute mixtures, or generally for
small enough compartments the number of molecules in each compartment is then always small enough
and fluctuations again large. In the context of population dynamics the intrinsic stochasticity from
such small populations can lead to features such as noise-induced Turing patterns that are absent in
the deterministic limit [15]. Large fluctuations in the dynamics can also lead to extinction or fixation of
stochastic populations [16, 17]. Similar rare events also play a role in epidemic models, affecting e.g. the
distribution of outbreak sizes [18].

To track large fluctuations, the Chemical Master Equation (CME) is the widely accepted theoretical
description for stochastic chemical reactions [19]. It gives the time evolution of the probability of the
system to be in a certain state specified by the copy numbers of all species, starting from some initial
distribution across states. However, analytical solutions to the CME are available only for very specific
cases. Instead one usually has to rely on stochastic simulations such as the rejection-free Gillespie
algorithm [20], which can exactly simulate and sample the underlying distribution. In the regime of large
fluctuations, a very large number of such simulations have to be carried out to get accurate and reliable
statistics, which becomes computationally extremely expensive, especially in the case of multiple reacting
species where high-dimensional distributions need to be sampled. In addition, stochastic simulations do
not allow one to extract a likelihood function for the probability of a given time course of copy numbers,
given a set of reaction constants. Hence they cannot be used to infer such dynamical parameters, which
is often an important step towards understanding e.g. the biological function of a reaction network.

Even though analytical solutions of the CME are rare, a few landmark results exist. In particular
Renyi [12] gave the time dependent solution of the A+B → C binary reaction starting from deterministic
initial conditions, and showed that the mass action kinetics description is only approximately valid and
breaks down for small copy numbers. McQuarrie et al. [21] fully solved some other simple binary reactions
starting from deterministic initial conditions using the technique of generating functions; we refer the
reader to the review by McQuarrie [11] for a detailed historical overview of the development of chemical
reaction stochastics. The stochastic solution of the Michaelis-Menten enzyme dynamics with a single
enzyme was given by Arányi and Tóth [22]. As regards the simpler question of steady state distributions,
a straightforwardly solvable case is that of a single species where only one molecule can be created or
destroyed in a reaction [23]. Steady state solutions are also available for a number of multi-species
systems with binary reactions such as gene regulation or multi-enzyme Michaelis-Menten reactions; we
refer the reader to [13] for a full list.

Jahnke and Huisinga [24] solved the CME for a reaction network with an arbitrary number of species with
time dependent rates but undergoing only birth, death or conversion reactions with only one reactant
and one product molecule. These results were based on guessing the form of the solution, using carefully
crafted transformations or exploiting special properties of unary reaction networks, which preserve the
Poisson character of copy number distributions. These results are thus not generalizable to include other
reactions.

Given the scarcity of exact solutions, approximate approaches to the CME have been widely explored [13].
One popular approximation scheme consists of approximating the CME, a continuous-time Markov jump
process on a discrete state space of copy numbers, by a diffusion process for concentrations that can take
any non-negative real value. Such a description is obtained by a second order expansion of the CME,
originally developed by Kramers [25] and Moyal [26], and yields the so-called Chemical Fokker-Planck
equation, with an associated Chemical Langevin equation. The simulation of these equations can be
easier than the CME but many challenges remain in the low copy number regime, including the lack of
a natural boundary condition at zero copy number and the consequent appearance of imaginary noise
terms in the Chemical Langevin Equation. Schnoerr et al [27] showed that some of these problems can
be circumvented by formally extending the state space of the Chemical Langevin Equation to complex-
valued concentrations.
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Another popular approximation method called the system size expansion is due to van Kampen [28]
and based on a perturbative expansion of the CME in inverse system volume. This leads to mean
concentrations that are given by the solutions of the macroscopic rate equations, with fluctuations scaling
as the inverse square root of the system volume. To the leading order in this small parameter the
fluctuations are Gaussian, and only retaining these yields the so-called Linear Noise Approximation
(LNA) [29, 30]; in the limit of small copy numbers this can have severe deviations from the solution
of the underlying CME [32]. Keeping the next order in the expansion of the CME results in Effective
Mesoscopic Rate Equations (EMRE) [31] that, unlike the LNA, contain corrections to the mean copy
numbers. Higher order corrections in inverse system size can be obtained but are quite cumbersome
and computationally expensive to calculate; diagrammatic perturbation theory can be used to make the
expansion easier to use [33]. A related technique is the WKB approximation [17], which again studies
large systems but instead of the typical Gaussian fluctuations concentrates on large deviations that are
exponentially rare in system size.

Moment closure approximations, widely deployed for various stochastic systems, remain one of the most
commonly used techniques to deal with stochastic reaction systems [13]. The starting point for these is the
hierarchically coupled system of equations for the time evolution of the moments (mean concentrations,
mean square concentrations etc.) that can be derived from the CME. In these equations the time
evolution of lower order moments depends on higher order moments so they have to be closed by hand
at some order, e.g. by assuming some form for the nth moments or by setting cumulants beyond some
order to zero. The most common approach is the normal moment closure [34], which assumes higher
than second order cumulants to be zero, thus effectively imposing a Gaussian form of the distribution of
the concentrations, for all times. These approximations, however, have well-documented problems [13]
such as concentrations that diverge in time or become negative, negative variances etc.

Vastola [35] has recently used the Doi-Peliti path integral approach to re-derive the results of Jahnke
and Huisinga [24], including also arbitrary unary reactions in his analysis. We will also use the Doi-Peliti
path integral technique in this work, but will then deploy the tools of statistical field theory and show
that under certain approximation, we can obtain very accurate and general results that allows us to treat
generic reaction networks made up of binary reactions in addition to arbitrary unary reactions.

In this paper we develop novel approximation methods for chemical reaction networks in the challenging
regime of small copy numbers or, equivalently, large fluctuations. The starting point is the Doi-Peliti [36,
37] path integral, which exploits the correspondence between classical statistical systems and quantum
systems by using ladder operators to represent the creation and annihilation of molecules. We then apply
diagrammatic perturbation theory around the Gaussian part of the path integral, which can capture
all unary reactions and corresponds exactly to Poissonian copy number distributions. The perturbation
expansion is formally set up using the rates of binary and higher order [38] reactions as small parameters.
Nonetheless the applicability of our approach is not limited to this parameter regime because we capture
many non perturbative effects by resummation and self-consistency; we will justify this theoretically and
also demonstrate it numerically.

Our method relies on identifying a series of key diagrams in the perturbation expansion that can be
efficiently resummed. In addition, we self-consistently replace the “bare” response functions that appear
by their perturbatively corrected or “dressed” versions. The resulting approximation, which we call
self-consistent bubble resummation (SBR), allows us to capture many non-perturbative effects, giving
the method a broad scope of applicability. We focus throughout on the first and the second copy number
moments, namely the means and the two-time correlation and response functions of the process and
show how these can be very accurately calculated at a computational cost that is small relative to that
of stochastic simulations. We benchmark all of our results against numerically exact solutions of the
underlying chemical master equation.

This manuscript is organized as follows: in section 2 we start from the chemical master equation and
construct the Doi-Peliti path integral for a generic chemical reaction network. We demonstrate also some
properties of the path integral that will be relevant later in our analysis. We then move on to identify a
baseline set of reactions around which we will set up the perturbation theory. In section 3 we introduce
the effective action and vertex functions corresponding to the path integral description, and derive a
general equation for calculating the time evolution of the mean copy numbers. In section 4 we consider
as a paradigmatic example a binary single species reaction A+A→ A. We demonstrate the derivation
of our approximation method for this case, and show how it performs in numerical tests against the
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exact CME benchmark. We follow this by explaining how our approach extends to the case where other
single species reactions are included. In section 5 we extend the method to the multi-species binary
reaction A + B → C and again demonstrate its numerical performance. We conclude with a summary
and outlook in section 6.

2 Coherent state path integral for reaction networks

We consider a system of N molecular species Xi indexed by i = 1, 2, . . . , N with ni denoting the number
of molecules of species i in the system. The state of the system is given by specifying the number of
molecules of all species, n = (n1, n2, . . . nN ). We allow a general system of reactions where reaction β

converts rβ1 copies of species X1 together with rβ2 copies of X2 etc. into sβ1 copies of X1, sβ2 copies of X2

etc., or in shorthand
N∑
i=1

rβi Xi
kβ−→

N∑
i=1

sβi Xi (2.1)

Here kβ is the rate for the reaction, with units of inverse time. The order of the βth reaction [38] is

defined by to be
∑
i r
β
i . We collect the rβi and sβi into vectors rβ and sβ for the reactant and product

stochiometry, respectively. The probability that this reaction will take place in a time interval (t, t+ dt)
is given by the microscopic propensity function, which depends on the state of the system n as

fβ(n) = kβ
∏
i

ni!

(ni − rβi )!
(2.2)

The ratio of factorials takes care of the appropriate combinatorics, whereby e.g. for the reaction 2X1 →
X2 the reaction probability is proportional to the number n1(n1 − 1)/2 = n1!/(n1 − 2)!/2 of pairs of X1

molecules that can react. The factor 1/2 that appears here compared to eq. (2.2), which in the general

case would be 1/
∏
i r
β
i !, has been included in the definition of kβ to make the following expressions

shorter.

To illustrate the notation above, a single chemical reaction where a molecule of A reacts with a B molecule
to form a C molecule would be represented by

A+B
k−→ C (2.3)

where rA = 1, rB = 1, sC = 1 and rC = sA = sB = 0, with reaction constant kβ = k and propensity
function fβ(nA, nB , nC) = knAnB .

2.1 Chemical Master Equation

Given a set of reactions β defined as above, the probability of the state of the system P (n, τ) evolves
according to the Chemical Master Equation (CME) [19] given by

∂P (n, τ)

∂τ
=
∑
β

fβ(n− sβ + rβ)P (n− sβ + rβ , τ)−
∑
β

fβ(n)P (n, τ) (2.4)

Following the seminal work by Doi and Peliti [36, 37], one can – as the first step towards a path
integral formulation – cast the master equation in a quantum mechanical “second quantized” form [39]

by introducing annihilation and creation operators for species i, âi and â†i , respectively, which obey the
following commutation relations[

â†i , â
†
j

]
= [âi, âj ] = 0

[
âi, â

†
j

]
= δij (2.5)

We introduce a ket |n〉 = |n1, n2, . . . , ni, . . . , nN 〉 that defines the state of the system. The creation and
annihilation operators act on the state ket |n〉 as (notice that the normalization differs from the standard
choice used in quantum mechanics)

âi|n〉 = ni |n1, n2, . . . , ni − 1, . . . , nN 〉 (2.6)

â†i |n〉 = |n1, n2, . . . , ni + 1, . . . , nN 〉 (2.7)
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The state |n〉 can therefore be obtained by acting on the zero or “vacuum” state |0〉 with the appropriate

product of creation operators â†i ,

|n〉 =
∏
i

(â†i )
ni |0〉 (2.8)

The operator n̂i that counts the number of molecules of species i is given by

n̂i = â†i âi (2.9)

To obtain the quantum mechanical form of the CME, one identifies the probability distribution P (n, τ)
across states with the vector |P (τ)〉 =

∑
n P (n, τ)|n〉. As the CME is a linear equation for the P (n, τ),

it can then equivalently be written in the form of an imaginary time Schrödinger equation,

∂τ |P (τ)〉 = Ĥ|P (τ)〉 (2.10)

with an effective Hamilton operator Ĥ. Comparing with the original CME, one can read off Ĥ (see [39])
as

Ĥ =
∑
β

kβ

[∏
i

(â†i )
sβi (âi)

rβi −
∏
i

(â†i )
rβi (âi)

rβi

]
(2.11)

which e.g. for the system defined in eq. (2.3) would reduce to

Ĥ = k
[
â†C − â

†
Aâ
†
B

]
âAâB (2.12)

The formal solution for the time evolution of the system to time t is then generally given by

|P (t)〉 = eĤt|P (0)〉 (2.13)

We will consider throughout an initial state in which the copy number of each molecular species i has
independent Poisson fluctuations around a mean n̄0i. Such states can be written in the simple form

|P (0)〉 =
∑
n

∏
i

(
e−n̄0i

n̄ni0i

ni!

)
|n〉 = e

∑
i n̄0i(â

†
i−1)|0〉 (2.14)

where the second version follows from eq. (2.8).

2.2 The path integral and the action

To construct the path integral, one can split the quantum mechanical time evolution by eĤt into small
discrete time intervals ∆t, and insert at each time step resolutions of the identity operator, expressed
as integrals over an (overcomplete) set of coherent states [36, 37, 39]. We generalize this construction
using two sets of generating fields θ and θ̃ defined for each species at each time step, namely θi(τ), θ̃i(τ).
Inserting then factors of

e
∑
i θi(τ)∆t âi I e

∑
i θ̃i(τ)∆t (â†i−1) (2.15)

at each discretized time τ allows one to generate averages such as means, correlation functions etc. by
taking derivatives w.r.t the generating fields. Defining here the θ̃ factor with (â†− 1) rather than â† will
simplify a number of formulas below. The steps of the method are detailed in appendix A.4 and lead to
the following path integral for the generating function or partition function,

Z(θ̃, θ) = lim
∆t→0

N−1

∫ ∏
i,τ

dφ∗i (τ)dφi(τ)eS(φ∗,φ) (2.16)

The normalization constant N ensures that Z(0, 0) = 1. The integrations are over the (time-discretized)
paths of the complex fields φi(τ) defining the coherent states. The action S depends on these fields and
their complex conjugates φ∗i (τ) and reads

S (φ∗, φ) = ∆t

t∑
τ=∆t

H(φ∗(τ),φ(τ−)) +
∑
i

{
φi(t) + n̄0i(φ

∗
i (0)− 1)− φi(0)φ∗i (0)

−∆t

t∑
τ=∆t

φ∗i (τ)∆τφi(τ) + ∆t

t∑
τ=0

[
θ̃i(τ) (φ∗i (τ)− 1) + θi(τ)φi(τ)

]} (2.17)

5



where τ− ≡ τ−∆t, t is the total time of the dynamics considered, and we use ∆τφi(τ) = 1
∆t (φi(τ)−φ(τ−))

as a shorthand for the discrete time derivative. H(φ∗(τ),φ(τ−)) is obtained from the Hamiltonian Ĥ in

eq. (2.11) by replacing â†i by φ∗i (τ) and â by φi(τ−).

One can now apply a Doi-shift [39, 40] by replacing φ∗i (τ) = 1 + φ̃i(τ). This turns out to make the

average of φ̃ = 0 and can be justified by appropriate rearrangements in the partition function before the
coherent states are introduced [39]. If we continue to use the same label for the function H evaluated at
φ∗ = 1 + φ̃, then in terms of the new variables the action reads

S(φ̃, φ) = ∆t

t∑
τ=∆t

H(φ̃(τ),φ(τ−)) +
∑
i

{
n̄0iφ̃i(0)− φi(0)φ̃i(0)

−∆t

t∑
τ=∆t

φ̃i(τ)∆τφi(τ) + ∆t

t∑
τ=0

[
θ̃i(τ)φ̃i(τ) + θi(τ)φi(τ)

]} (2.18)

We will work in discrete time and only take the continuous time limit in the final equations of motion,
but one can also take this limit in the expression for the action to obtain

S(φ̃, φ) =

∫ t

0

dτ H(φ̃(τ),φ(τ−)) +
∑
i

(
n̄0iφ̃i(0)− φi(0)φ̃i(0)

+

∫ t

0

dτ
[
−φ̃i(τ)∂τφi(τ) + θ̃i(τ)φ̃i(τ) + θi(τ)φi(τ)

] ) (2.19)

2.3 Response and correlation functions

Once the path integral is defined over the fields φ and φ̃, we need to show how the average values of
observables such as mean copy numbers of species i, its variance or other two time quantities are related
to the statistics of these fields. We start by taking derivatives w.r.t. θ̃i(τ+) (with τ+ ≡ τ + ∆t) and θi(τ)
in eq. (A.18) such that the operators are normal ordered,

1

(∆t)2

(
∂

∂θ̃i(τ+)
+ 1

)
∂

∂θi(τ)
Z

∣∣∣∣∣
θ,θ̃=0

= 〈1|â†ie
Ĥ∆tâie

Ĥτ |P (0)〉 = 〈ni(τ)〉 (2.20)

where ni(τ) is the copy numbers of species i at time τ . The last equality applies in the limit ∆t → 0,

where the short-time propagator eĤ∆t can be ignored. In the path integral one can take the same
derivatives, which gives

1

(∆t)2

(
∂

∂θ̃i(τ+)
+ 1

)
∂

∂θi(τ)
Z

∣∣∣∣∣
θ,θ̃=0

= 〈[φ̃i(τ+) + 1]φi(τ)〉 (2.21)

This average simplifies to 〈φi(τ)〉 because of a causality property of the path integral: any average of a
product of φ or φ̃ fields vanishes when the last factor – the one associated with the latest of all times
that occur – is a φ̃.

To see this causality property, consider a reaction where a molecule of species i is created spontaneously
with rate k1i. From eq. (2.11), this corresponds to a term k1i(a

†
i − 1) in Ĥ, and hence, generalizing to

a time-dependent creation rate, to a contribution ∆t
∑
τ k1i(τ)φ̃i(τ) in the action. Comparing this with

the generating term ∆t
∑
τ θ̃i(τ)φ̃i(τ) from the θ̃i(τ)-field shows that, whenever we take derivatives of

the partition function, we have the identity

1

∆t

∂

∂k1i(τ)
=

1

∆t

∂

∂θ̃i(τ)
(2.22)

Now any product f<τ of fields evaluated at times before τ can be generated by a sequence of appropriate
derivatives of Z. Taking then an additional derivative as in our last identity and setting the generating
fields to zero afterwards shows that

1

∆t

∂

∂k1i(τ)
〈f<τ 〉 = 〈φ̃i(τ)f<τ 〉 (2.23)
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However, the l.h.s. vanishes by causality – the average of f<τ cannot depend on a creation rate at a later
time – and therefore so does the r.h.s., as claimed.

Summarizing so far, then, and introducing the symbol µ for the means of our fields, we have

µi(τ) = 〈φi(τ)〉 = 〈ni(τ)〉
µ̃i(τ) = 〈φ̃i(τ)〉 = 0

(2.24)

The second line follows again from the causality property. In fact, applying the property inductively,
one sees that the average of any product of φ̃-factors vanishes, e.g. 〈φ̃(τ)φ̃(τ ′)〉 = 0 ∀ τ, τ ′.

Similarly calculating the fourth order derivatives in terms of the number operator and from the path
integral we have for τ ′ < τ−,

1

(∆t)4

(
∂

∂θ̃i(τ+)
+ 1

)
∂

∂θi(τ)

(
∂

∂θ̃i(τ ′+)
+ 1

)
∂

∂θi(τ ′)
Z

∣∣∣∣∣
θ,θ̃=0

= 〈ni(τ)ni(τ
′)〉

= 〈[φ̃i(τ+) + 1]φi(τ)[φ̃(τ ′+) + 1]φi(τ
′)〉

(2.25)

while the analogue for τ ′ = τ is

1

(∆t)4

(
∂

∂θ̃i(τ+)
+ 1

)
∂

∂θi(τ)

(
∂

∂θ̃i(τ+)
+ 1

)
∂

∂θi(τ)
Z

∣∣∣∣∣
θ,θ̃=0

= 〈n2
i (τ)〉 − 〈ni(τ)〉 = 〈[φ̃i(τ+) + 1]2φ2

i (τ)〉

(2.26)
These can now be linked to the connected response and correlation functions for each species i,

Ri(τ, τ
′) = 〈φi(τ)φ̃i(τ

′)〉 − 〈φi(τ)〉〈φ̃i(τ ′)〉 = 〈δφi(τ)δφ̃i(τ
′)〉

Ci(τ, τ
′) = 〈φi(τ)φi(τ

′)〉 − 〈φi(τ)〉〈φi(τ ′)〉 = 〈δφi(τ)δφi(τ
′)〉

(2.27)

The corresponding disconnected functions do not have the subtraction of the product of the averages;
note though that since 〈φ̃〉 = 0, the connected and the disconnected response functions are identical. On
the r.h.s. of eq. (2.26) we have, by causality again, the disconnected correlator 〈φ2

i (τ)〉 = Ci(τ, τ)+µi(τ)2.
Subtracting the squared mean shows

Var(ni(τ))− 〈ni(τ)〉 = Ci(τ, τ) (2.28)

The l.h.s. vanishes for Poissonian copy number fluctuations, so a non-zero equal-time correlator of the
φ-field indicates deviations from Poisson statistics.

For the τ ′ < τ− case in eq. (2.25) we have from causality

〈ni(τ)ni(τ
′)〉 = 〈φi(τ)φi(τ

′)〉+ 〈φi(τ)φ̃(τ ′+)φi(τ
′)〉 (2.29)

or

〈δni(τ)δni(τ
′)〉 = 〈ni(τ)ni(τ

′)〉 − 〈ni(τ)〉〈ni(τ ′)〉 = Ci(τ, τ
′) + 〈φi(τ)φ̃(τ ′+)φi(τ

′)〉 (2.30)

where the copy number fluctuations are defined as δn(τ) = n(τ)− µ(τ). The final three-point correlator
cannot be simplified in general, but for Gaussian field statistics one can use Wick’s theorem and causality
to express it as 〈φi(τ)φ̃(τ ′+)φi(τ

′)〉 = 〈φi(τ)φ̃(τ ′+)〉〈φi(τ ′)〉 so that

〈δni(τ)δni(τ
′)〉 = Ri(τ, τ

′)µi(τ
′) + Ci(τ, τ

′) for τ ′ < τ (2.31)

2.4 Baseline action and Gaussian path integral

Equipped with the path integral for describing chemical reactions, we now look at a concrete set of
chemical reactions that we call the baseline because the Hamiltonian of eq. (2.11) associated with these
reactions will be quadratic in creation and annihilation operators. We will treat other reactions as
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perturbations of this quadratic baseline Hamiltonian. If we consider the set of only creation and (unary)
destruction reactions for each of the species with the following rate constants

∅ k1i−−→ Xi Xi
k2i−−→ ∅ (2.32)

then from eq. (2.11) with the operators replaced by the fields, the Doi-shifted Hamiltonian in the action
is

H0(φ̃,φ) =
∑
i

(
k1iφ̃i − k2iφ̃iφi

)
(2.33)

It is clearly decoupled across the different species and only has linear and quadratic terms in φ, φ̃. We
will later use it a baseline for perturbation theory (with the linear terms omitted), hence the notation
H0. The corresponding baseline action S0 from eq. (2.18) becomes

S0(φ̃, φ) =
∑
i

{
n̄0iφ̃i(0)− φi(0)φ̃i(0) + ∆t

t∑
τ=∆t

[
−φ̃i(τ)∆τφi(τ) + k1iφ̃i(τ)− k2iφ̃i(τ)φi(τ−)

]
+ ∆t

t∑
τ=0

[
θ̃i(τ)φ̃i(τ) + θi(τ)φi(τ)

]}
(2.34)

Because the path integral is Gaussian, we can calculate the means of the fields by extremizing the action

∂S0

∂φ̃i(τ)

∣∣∣∣∣φi(τ)=µi(τ)

φ̃i(τ)=µ̃i(τ)

= 0 and
∂S0

∂φi(τ)

∣∣∣∣∣φi(τ)=µi(τ)

φ̃i(τ)=µ̃i(τ)

= 0 (2.35)

The derivatives with respect to φ̃i(τ) for 0 < τ ≤ t give the equations of motion for the means as

µi(τ)− µi(τ −∆t) = ∆t
(
k1i − k2iµi(τ −∆t) + θ̃i(τ)

)
(2.36)

while for τ = 0 one obtains the initial condition

µi(0) = n̄0i + θ̃i(0)∆t (2.37)

Conversely, the φi(τ) derivatives yield for 0 ≤ τ < t

µ̃i(τ)− µ̃i(τ + ∆t) = ∆t (−k2iµ̃i(τ + ∆t) + θi(τ)) (2.38)

and for τ = t one obtains a final condition

µ̃i(t) = θi(t)∆t (2.39)

The equations for the physical means thus have to be solved forwards in time as expected, while the ones
for the conjugate means are solved backwards starting from the final condition.

The physical problem corresponds to zero value of generating fields, from which we can recover the
initial condition that species i has initial mean n̄0i and the fact that µ̃i(τ) = 0 ∀ τ as expected. In the
continuous time limit one also obtains for the physical means the expected equation of motion

∂τµi(τ) = k1i − k2iµi(τ) (2.40)

with two terms on the r.h.s. reflecting creation and destruction of particles of species i. This equation is
also valid if we generalize to time-dependent creation rates k1i(τ)

∂τµi(τ) = k1i(τ)− k2iµi(τ) (2.41)

and gives the solution

µi(τ) = n̄0ie
−k2iτ +

∫ τ

0

dτ ′e−k2i(τ−τ ′)k1i(τ
′) (2.42)

We can calculate the response function using the relation demonstrated in eq. (2.23), which incidentally
has a direct analogue for the Martin-Siggia-Rose-Jansen-de Dominicis (MSRJD) path integral [41–44]:

R0i(τ, τ
′) = 〈φ(τ)φ̃(τ ′)〉0 =

1

∆t

∂〈φi(τ)〉0
∂k1i(τ ′)

=
1

∆t

∂µi(τ)

∂k1i(τ ′)
(2.43)
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where all averages are evaluated at zero generating fields, θ̃ = θ = 0, and the zero subscripts indicate
evaluation within the baseline path integral. In the continuous time limit the derivative becomes a
functional derivative w.r.t. k1i(τ

′) and one finds explicitly from eq. (2.42)

R0i(τ, τ
′) = e−k2i(τ−τ ′)Θ(τ − τ ′) (2.44)

with Θ(·) the Heaviside step function. This response function is causal as expected,

R0i(τ, τ
′) = 0 if τ < τ ′ (2.45)

i.e. the real field φ needs to be ahead in time of the conjugate field φ̃, and its equal-time limit is unity,
limτ ′→τ− R0(τ, τ ′) = 1. We note for later also the operator inverse of the response function

R−1
0i (τ, τ ′) = (∂τ + k2i)δ(τ − τ ′) (2.46)

For a direct calculation of the response function in discrete time by inversion of the precision matrix of
the Gaussian path integral, see appendix A.5.

We consider finally the correlation functions calculated within our baseline path integral. These are zero
because the baseline action only has quadratic terms of the form φ̃φ (see appendix A.5), i.e. the bare
correlation functions are

C0i(τ, τ
′) = 〈φi(τ)φi(τ

′)〉0 − 〈φi(τ)〉0〈φi(τ ′)〉0 = 0 (2.47)

In our subsequent analysis we will consider only the bare correlation function, that is we will approximate
Ci as generally defined in eq. (2.27) to be always equal to C0i. From eq. (2.28) this implies that
Var(ni(τ)) = 〈ni(τ)〉, so we are then effectively approximating the variance of every copy number by its
value for a Poisson distribution. The full distribution can in fact also be shown to be Poissonian for our
baseline path integral (see appendix A.7 for a proof). In the general case Ci(τ, τ) quantifies the deviation
from this behaviour and our approximation is valid if Ci(τ, τ)� 〈ni(τ)〉; see section 4.7 and fig. 4 for a
numerical test of this approximation.

3 Interactions and effective action

We now consider higher order reactions. The associated “interacting” Hamiltonian Hint will no longer
be quadratic and we will treat it as a perturbation to our baseline H0, introducing a parameter α to set
up a perturbation theory:

Hα = H0 + αHint (3.1)

We will call the associated action Sα. To simplify the perturbation theory it is useful to have a baseline
with zero means. We therefore define H0 and S0 from here on to contain only the quadratic terms from
the baseline Hamiltonian and action, respectively. Any linear terms such as

∫
dτ k1iφ̃i(τ) from particle

creation will be included in Hint and treated perturbatively.

We now need a formalism to calculate means and response functions within the interacting, non-Gaussian
path integral. A useful starting point is the generating function of the connected n-point functions W,
also called the free energy and given by

W(θ̃, θ) = lnZ(θ̃, θ) (3.2)

This is a function of the set of generating fields θ̃ and θ for all species i and all times τ . The one- and
two-point functions are just the by now familiar field means and response and correlation functions

〈φi(τ)〉 =
δW(θ̃, θ)

δθi(τ)
, 〈φ̃i(τ)〉 =

δW(θ̃, θ)

δθ̃i(τ)
(3.3)

Rij(τ, τ
′) = 〈δφi(τ)δφ̃j(τ

′)〉 =
δ2W(θ̃, θ)

δθi(τ)δθ̃j(τ ′)
, Cij(τ, τ

′) = 〈δφi(τ)δφj(τ
′)〉 =

δ2W(θ̃, θ)

δθi(τ)δθj(τ ′)
(3.4)

and generally depend on θ̃, θ. We use continuous time notation in this section for brevity.
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From the free energy one can define the effective action Γ as the Legendre transform of the free energy
with respect to generic field means (also known as “background fields” in field theory) that we collectively
denote µ̃ and µ, to represent the set of means for all species and all times,

Γ(µ̃, µ) = extr
θ̃,θ

{
ln

∫
dφ̃ dφ exp

[
Sα(φ̃, φ)−

∑
i

(∫
dτ µ̃i(τ)θ̃i(τ) +

∫
dτ µi(τ)θi(τ)

)]}
(3.5)

The extremization conditions yield

µi(τ) =
δW(θ̃, θ)

δθi(τ)
µ̃i(τ) =

δW(θ̃, θ)

δθ̃i(τ)
(3.6)

which by comparison with eq. (3.3) shows that µ and µ̃ are indeed the means of the field variables. The
generating fields θ̃, θ can be viewed as Lagrange multipliers whose value is determined by extremizing
the free energy with the constraint that the fields φ̃i(τ) and φi(τ) have mean values µ̃i(τ) and µi(τ)
∀ i, τ . From the Legendre transform property, the values of the generating fields are given by

θi(τ) = −δΓ(µ̃, µ)

δµi(τ)
θ̃i(τ) = −δΓ(µ̃, µ)

δµ̃i(τ)
(3.7)

From eq. (3.7) one then obtains the variational equations for the means,

δΓ(µ̃, µ)

δµi(τ)
= 0

δΓ(µ̃, µ)

δµ̃i(τ)
= 0 (3.8)

by asserting that the physical problem has no generating fields, i.e. θ̃i(τ) = θi(τ) = 0 ∀ i, τ . These
equations tell us that the physical means µ̃ and µ are those that make the value of Γ(µ̃, µ) an extremum,
motivating the name effective action for this quantity. The variational equations define the equations of
motion of µi(τ) and µ̃i(τ). For the conjugate means we know that the solution will be µ̃i(τ) = 0 ∀ i, τ
from the arguments in section 2.3.

By considering more general derivatives of the effective action, one obtains the so-called vertex functions.
We write the definition for the case of a single species but this can be easily extended to the multiple
species case with extra indices in Γl,m:

Γl,m(τ1, . . . , τl, τ
′
1, . . . , τ

′
m) =

δ(l+m)Γ

δµ̃(τ1) . . . δµ̃(τl)δµ(τ ′1) . . . δµ(τ ′m)

∣∣∣∣∣
µ(τ)=µ̃(τ)=0 ∀ τ

(3.9)

Unlike in typical quantum field theory settings, the physical means of the φ-fields will be nonzero in our
case. Writing these as µ∗, a second set of vertex functions can be defined via derivatives evaluated not
at zero but at the physical means:

Γl,m∗(τ1, . . . , τl, τ
′
1, . . . , τ

′
m) =

δ(l+m)Γ

δµ̃(τ1) . . . δµ̃(τl)δµ(τ ′1) . . . δµ(τ ′m)

∣∣∣∣∣
µ(τ)=µ∗(τ),µ̃(τ)=0 ∀ τ

(3.10)

We will now describe how to calculate the physical means µ∗(τ) using the vertex functions. The effective
action Γ can be reconstructed from the set of vertex functions by a Taylor expansion around µ = µ̃ = 0:

Γ(µ̃, µ) =
∑
j,k

1

k!j!
Γk,j : µ̃kµj (3.11)

where Γk,j is the vertex function at zero means as before. The “:” notation indicates contraction across
all the temporal “indices” of the vertex function and is a shorthand for

Γk,j : µ̃kµj ≡
∫
dτ1 · · · dτkdτ ′1 · · · dτ ′j Γk,j(τ1, . . . , τk, τ

′
1, . . . , τ

′
j)µ̃(τ1) · · · µ̃(τk)µ(τ ′1) · · ·µ(τ ′j) (3.12)

Differentiating eq. (3.11) w.r.t µ̃(τ) and setting µ̃ = µ̃∗ and µ = µ∗ we have for the first order vertex
function at the physical means

Γ1,0∗(τ) =
∑
j,k

1

(k − 1)!j!
Γk,j(τ, . . . ) : (µ̃∗)k−1(µ∗)j (3.13)
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Since the physical means of the conjugate fields vanish, µ̃∗ = 0, we only need to keep the k = 1 term
and obtain

Γ1,0∗(τ) =
∑
j

1

j!
Γ1,j(τ, . . . ) : (µ∗)j (3.14)

Now from the variational equation of motion (3.8), Γ1,0∗(τ) = 0 ∀ τ . Writing the j = 0 and j = 1 terms
on the right explicitly then gives as the equation for the physical means µ∗,

0 = Γ1,0(τ) + Γ1,1(τ, ·) : µ∗ +
∑
j≥2

1

j!
Γ1,j(τ, . . . ) : (µ∗)j (3.15)

The Γ1,1-term can now be simplified using the generic Legendre transform relation that the second
derivatives of W and Γ – which give the connected two-point correlation functions and the two-point
vertex functions, respectively – are, up to a minus sign, inverses of each other [45, 46]. Writing this
result in 2× 2-block form for the θ̃ and θ components, respectively, we have for the physical (θ̃ = θ = 0)
solution with response and correlation functions R∗ and C∗:(

0 (R∗)T

R∗ C∗

)
= −

(
Γ2,0∗ Γ1,1∗

(Γ1,1∗)T Γ0,2∗

)−1

(3.16)

This implies Γ1,1∗ = −(R∗)−1 and Γ0,2∗ = 0. It turns out that the same relations also hold at zero
means, i.e. Γ1,1 = −R−1 and Γ0,2 = 0. We thus have

R−1(τ, ·) : µ∗ = Γ1,0(τ) +
∑
j≥2

1

j!
Γ1,j(τ, . . . ) : (µ∗)j (3.17)

We can simplify further on the l.h.s. by using the Feynman-Dyson equation discussed below (see eq. (4.20)),
i.e. R−1 = R−1

0 − Σ with the response self-energy Σ, like R, evaluated at µ = 0 and R0 the bare propa-
gator,

R−1
0 (τ, ·) : µ∗ = Γ1,0(τ) + Σ(τ, ·) : µ∗ +

∑
j≥2

1

j!
Γ1,j(τ, . . .) : (µ∗)j (3.18)

We also write an equivalent form obtained by multiplying by the bare response function, which will have
a direct diagrammatic analogue:

µ∗(τ) = R0(τ, ·) : Γ1,0(·) +R0(τ, ·) : Σ(·, ·) : µ∗ +
∑
j≥2

1

j!
R0(τ, ·) : Γ1,j(·, . . .) : (µ∗)j (3.19)

If we define a new function of a single time argument, Ω1,j(τ), as the contraction of Γ1,j with j factors
of µ∗,

Ω1,j(τ) =
1

j!
Γ1,j(τ, . . . ) : (µ∗)j (3.20)

then the equation of motion for the means can be written more explicitly as∫ τ

0

dτ ′R−1
0 (τ, τ ′)µ∗(τ ′) = Γ1,0(τ) +

∫ τ

0

dτ ′Σ(τ, τ ′)µ∗(τ ′) +
∑
j≥2

Ω1,j(τ) (3.21)

Using the form of R−1
0 from eq. (2.46) and dropping the asterisks on the physical means again for

notational simplicity, we have finally

(∂τ + k2)µ(τ) = Γ1,0(τ) +

∫ τ

0

dτ ′Σ(τ, τ ′)µ(τ ′) +
∑
j≥2

Ω1,j(τ) (3.22)

We will deploy the above equation to determine the mean copy numbers of the dynamics, µ(τ), by
constructing the vertex functions Γ1,m (hence Ω1,m) and the self-energy Σ using diagrammatic pertur-
bation theory. Independently of specific calculations, what is notable is that eq. (3.22) contains memory
corrections in the last two terms on the r.h.s., which depend on the entire history of the copy numbers
up to time τ . Such memory terms thus arise naturally when applying the effective action formalism to
Doi-Peliti field theory.
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4 Single species interactions: A+ A→ A

We will now consider a system with particles of only a single species, A, with the baseline creation and

destruction reactions ∅
k1−⇀↽−
k2

A and in addition the binary coagulation reaction

A+A
k3−→ A (4.1)

with rate k3. As throughout we will assume that the initial distribution of copy numbers is Poissonian.
With the binary reaction present, this system is not exactly solvable in our formalism because the path
integral is no longer Gaussian. Instead it must be dealt with perturbatively, as we will illustrate in this
section.

4.1 Internal vertices and Feynman rules

As explained above, we include the term k1φ̃ from the creation reaction in the interaction Hamiltonian
Hint so that H0 is purely quadratic. The same applies to the initial condition term n̄0φ̃(0). For the
coagulation reaction the Hamiltonian operator eq. (2.11) is k3[â†â2 − (â†)2â2], which after replacing
operators by fields and Doi-shift becomes −k3(φ̃+ φ̃2)φ2, giving for the interaction part of the action

Sint = ∆t

t∑
τ=∆t

[
k1φ̃(τ)− k3φ̃(τ)φ(τ−)φ(τ−)− k3φ̃(τ)φ̃(τ)φ(τ−)φ(τ−)

]
+ n̄0φ̃(0) (4.2)

Diagrammatically this is represented by the following three internal vertices:

Sint = ∆t
∑
τ

φ̃ k1, τ
+ φ̃

φ

φ

−k3, τ +

φ̃

φ̃

φ

φ

−k3, τ

 (4.3)

Here we use outgoing arrows to indicate φ̃ legs; legs without arrows are φ legs. The φ legs are always
one time step behind the φ̃ legs at the same vertex. We have three types of vertices:

1. The one-legged vertex with just a φ̃ leg is a source term and indicates the creation of A with the
rate k1(τ) at time τ . We have included the initial condition term here by defining a time-dependent
creation rate k1(τ) = k1 + δτ,0n̄0/∆t.

2. The three-legged vertex with one φ̃ leg and two φ legs reflects the coagulation reaction we are
actually considering, with two incoming A molecules at time τ− that react at time τ with rate k3

to form one A molecule.

3. In analogy with the MSRJD path integral and the associated Langevin equation with multiplicative
noise [40, 47], the four-legged vertex can be interpreted as describing the noise in the system whereby
two A molecules meet at rate k3 but do not react, resulting in two outgoing A molecules.

The perturbative expansion is now set up by expressing averages in the full non-Gaussian path integral
as 〈. . .〉 = 〈. . . eαSint〉0 where the second average is taken across the Gaussian baseline defined by the
quadratic action S0. One then expands in powers of α or equivalently Sint and evaluates the resulting
Gaussian averages using Wick’s theorem. Each factor in a Wick pairing corresponds to a bare second
order correlation function or “propagator”, in our case specifically a bare response function.

We then have the following rules for constructing diagrams in the perturbative expansion:

1. Feynman diagrams can be constructed using the internal vertices of the interacting action; a sum-
mation over internal time indices of the vertex functions is always implied.
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2. Given the causal nature of the bare response function, we can only join a φ̃ leg at an earlier time,
marked by an outgoing arrow, with a φ leg (without arrow) at the same or later time. This forms
a response function, R0, which connects two vertices.

3. Two φ̃ or two φ legs cannot be joined to each other because they result in 〈φ̃φ̃〉0 or 〈φφ〉0 correlations,
both of which are zero because the baseline action only has φφ̃ terms.

4. A φ̃ leg cannot connect to φ leg at the same vertex because the φ leg is a time step behind, resulting
in a vanishing response function.

5. Again because of the causality of the response function, there must not be any closed time loops
in the diagrams. This implies there must be a consistent flow of time along the response functions;
we will draw this from right (early times) to left (later times) below.

6. The vertex functions Γl,m are drawn with l amputated φ̃ legs (with outgoing arrows) and m am-
putated φ legs (without arrows) where propagators can connect, to form the appropriate diagrams
that contribute to connected n-point correlation functions. When connecting propagators, the
direction of the arrows must be respected.

7. For the vertex functions Γl,m, it is known from field theory [46] that these are constructed using
only one particle irreducible (1PI) diagrams, that is diagrams that cannot be split into two separate
components when any propagator (i.e. response) line is cut. In particular such diagrams cannot
contain tadpoles [48], i.e. sub-diagrams with only internal vertices that are connected to the rest
of the diagram by a single propagator line. For Γl,m∗, on the other hand, tadpoles are included,
i.e. here all diagrams contribute that are 1PI in the broader sense that they cannot be separated
by cutting a single response line, into two components that each contain at least one external
connection via an amputated leg.

4.2 Vertex functions and equation of motion for the mean

We begin by noting that the self-energy Σ that appears in eq. (3.19) vanishes for the reaction A+A→ A
because there is no vertex with only one outgoing and only one incoming leg; we will see this more
explicitly in section 4.3. The diagrammatic analogue of eq. (3.19) is then

τ = + + + + . . .

(4.4)

The l.h.s. diagrammatically represents the mean or one point function at time τ , i.e µ(τ). In the diagrams
on the r.h.s. the shaded circles represent the vertex functions Γ1,m connected to the left external vertex
φ(τ), by a line in the middle which is the response function with the arrow specifying the direction of
time, from right to left. The sum over the internal time index where the response function connects to
the vertex function is implied. The empty circles represent µ as on the left, and we use dashed lines to
connect them to the vertex functions, to indicate that there is no propagator there. These together make
up the Ω1,m as in eq. (3.20), which are the vertex functions with the m amputated φ(τ1), . . . , φ(τm) legs
replaced by m factors of µ(τ1), . . . , µ(τm) and summed over the internal times τ1, . . . τm.

The 1PI one-point vertex function with one φ̃ leg, i.e Γ1,0, for our example system is represented dia-
grammatically as

Γ1,0 = =
k1

(4.5)

The first diagram gives our generic diagrammatic notation for such a vertex function; the second equality
asserts that for our system there is only a single 1PI diagram contributing to Γ1,0 with the value αk1(τ),
which is of O(α) as it contains one internal vertex; we do not write these powers of α explicitly in the
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diagrams. The dashed lines indicate the amputated φ̃ leg where a propagator can connect. The arrow
also indicates the direction of the flow of time in the vertex function.

Taking only the first term on the r.h.s of eq. (4.4), the mean is given by

µ(τ) = ∆t
∑
τ ′

R0(τ, τ ′)αk1(τ ′) (4.6)

Multiplying by R−1
0 we get

∆t
∑
τ

R−1
0 (τ, τ ′)µ(τ ′) = αk1(τ) (4.7)

In continuous time this gives the equation of motion for the mean,

(∂τ + k2)µ(τ) = αk1(τ) (4.8)

which is the same result as eq. (2.40) obtained in the baseline theory. In continuous time k1(τ) =
k1 + n̄0δ(τ) and the δ(τ) term just fixes the initial condition µ(τ = 0+) = n̄0 as expected. We leave this
initial condition term implicit throughout the rest of the paper and write k1 again instead of k1(τ).

To account for the effect of the interactions, we include the other terms on the r.h.s of eq. (4.4). For
this, we consider the vertex functions Γ1,m, i.e. with one amputated φ̃ leg and any number of amputated
φ legs, at zero mean. The simplest case is m = 2, which up to O(α5) has the expansion Γ1,2, given by

Γ1,2 = = + +

+ +

(4.9)

The first diagram, for example, which with one internal vertex is O(α), represents the contribution

Γ1,2(τ, τ ′, τ ′′)|α = −2αk3
δτ−,τ ′

∆t

δτ ′,τ ′′

∆t
(4.10)

where the factor 2 arises from the two ways of associating the two amputated φ legs with the internal
vertex. To leading order in α we then have Ω1,2 from eq. (4.10) as

Ω1,2(τ)|α =
1

2!
(−2αk3)(∆t)2

∑
τ ′,τ ′′

δτ−,τ ′

∆t

δτ ′,τ ′′

∆t
µ(τ ′)µ(τ ′′) = −αk3µ

2(τ−) (4.11)

Combining with the O(α) term from Γ1,0 gives

µ(τ) = αk1∆t
∑
τ ′

R0(τ, τ ′)− αk3∆t
∑
τ ′

R0(τ, τ ′)µ2(τ ′−) (4.12)

Multiplying by R−1
0 on both sides and going to continuous time gives the mean field equation

∂τµ(τ) = αk1 − k2µ(τ)− αk3µ
2(τ) (4.13)

This description, which only accounts for tree diagrams, i.e. diagrams without loops, corresponds directly
to mass action kinetics (MAK) for particle creation at rate αk1, decay at rate k2 and coagulation at rate
αk3.

We pause briefly here to note that the diagrams above have a clear physical interpretation that parallels
the structure of the reaction we are considering. Time is propagated from right to left in the diagrams
by response functions, with a consistent flow of time and no closed time loops. The Ω1,m diagrams give
all possible ways in which m molecules of A can react to form one molecule of A, using the two internal
vertices.
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So far we have only considered O(α) diagrams, which therefore have a single internal vertex. Higher
order diagrams involve loops built using the four-legged internal vertex, such as the diagrams in eq. (4.9).
The O(α2) contribution there is

Γ1,2(τ, τ ′, τ ′′)|α2 = = 2× 2(−αk3)2R2
0(τ−, τ

′
+)
δτ ′,τ ′′

∆t
(4.14)

where the symmetry factor of 2 comes from the two ways to connect the internal vertices via response
functions. Multiplying by µ(τ ′)µ(τ ′′) and summing gives Ω1,2 at this order as

Ω1,2(τ)|α2 =
1

2!
2× 2(−αk3)2∆t

∑
τ ′

R2
0(τ−, τ

′
+)µ2(τ ′) = 2(−αk3)2∆t

∑
τ ′

R2
0(τ−, τ

′)µ2(τ ′−) (4.15)

By including this term we get the equation for the mean in continuous time to O(α2) as

∂τµ(τ) = αk1 − k2µ(τ)− αk3µ
2(τ) + 2(−αk3)2

∫ τ

0

dτ ′R2
0(τ, τ ′)µ2(τ ′) (4.16)

At O(α3) we have a further contribution to Ω1,2 from the two loop diagram in eq. (4.9),

Ω1,2(τ)|α3 = 4(−αk3)3(∆t)2
∑
τ ′,τ ′′

R2
0(τ−, τ

′)R2
0(τ ′−, τ

′′)µ2(τ ′′−) (4.17)

The correction to the equation of motion from this diagram is

∂τµ(τ) = · · ·+ 4(−αk3)3

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′R2
0(τ, τ ′)R2

0(τ ′, τ ′′)µ2(τ ′′) (4.18)

From O(α3), however, also higher order vertices Γ1,m, m ≥ 3 will contribute, giving terms in ∂τµ(τ) of
third and higher order in µ. The simplest such contribution, Γ1,3, to O(α3) is

(4.19)

In the next section we will see how to include some of these higher order corrections without the need
to explicitly calculate them, by dressing the response functions.

4.3 Self-energy and equation of motion for the response function

As explained in section 3, one in general needs to use the dressed response function, R, in the equation
of motion of the mean, see e.g. eq. (3.17). R is obtained from the bare response function R0 and the
self-energy Σ using the Feynman-Dyson equation [44, 46]. Σ here refers just to the response block of the
self-energy, which consists of all 1PI diagrams with one amputated φ̃ and one amputated φ leg where
two propagators can connect. Using Σ, the full response (double line on the l.h.s.) can be expressed
diagrammatically as

= Σ + Σ Σ + Σ Σ Σ + . . . (4.20)

which by treating the time (and potentially species) arguments in R and Σ as indices can be written in
matrix form as

R = R0 +R0ΣR0 +R0ΣR0ΣR0 + · · · = R0 (I− ΣR0)
−1

= (R−1
0 − Σ)−1 (4.21)

or equivalently
(R0)−1R = I + ΣR (4.22)
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Using the inverse bare response R−1
0 (τ, τ ′) = (∂τ + k2)δ(τ − τ ′) we then have

∂τR(τ, τ ′) = δ(τ − τ ′)− k2R(τ, τ ′) +

∫
dτ ′′Σ(τ, τ ′′)R(τ ′′, τ ′) (4.23)

An exactly analogous relation also holds between the physical dressed propagator R∗ and the correspond-
ing self-energy Σ∗:

∂τR
∗(τ, τ ′) = δ(τ − τ ′)− k2R

∗(τ, τ ′) +

∫
dτ ′′Σ∗(τ, τ ′′)R∗(τ ′′, τ ′) (4.24)

Both R∗ and Σ∗ are defined at the physical means µ = µ∗, i.e. with tadpoles included in the diagrams
as explained in section 4.1.

For the A+A→ A reaction as pointed out earlier we have Σ = 0 because there are no vertices with only
one φ leg. Diagrams for the physical self-energy Σ∗ can also contain the k1-vertex but as this has only one
leg, at least one other internal vertex is required and we can include the three- and four-legged internal
vertices from the interacting action to form diagrams for the self-energy. To organize these diagrams it
is useful to recall the lowest order diagrams (to O(α3)) for the vertex functions Γ1,m:

, , ,

(4.25)

From these we can now construct diagrams for Σ∗, that is the self-energy with tadpoles, by replacing
m − 1 amputated φ legs by m − 1 factors of µ: this leaves one amputated φ̃ leg and one amputated φ
leg as required for self-energy diagrams. We obtain in this way

Σ∗ = + +

+ + + . . .

(4.26)

The value of these self-energy diagrams to O(α2) is

Σ∗(τ, τ ′)
∣∣∣
α2

= 2
δτ−,τ ′

∆t
(−αk3)µ(τ ′) + 4(−αk3)2R2

0(τ−, τ
′
+)µ(τ ′) (4.27)

The equation for R∗ to O(α2) in continuous time thus becomes

∂τR
∗(τ, τ ′) = δ(τ − τ ′)− k2R

∗(τ, τ ′)− 2αk3µ(τ)R∗(τ, τ ′) + 4(−αk3)2

∫
dτ ′′R2

0(τ, τ ′′)µ(τ ′′)R∗(τ ′′, τ ′)

(4.28)

In the next section we will see how we can replace the bare response in our diagrams by the physical
dressed response, as discussed in this section, which sums an infinite hierarchy of diagrams leading to
the self-consistent response function approximation.

4.4 Self-consistent response function approximation

Up to this point, the equations for the mean copy number µ we have derived involve the bare response
R0. To implicitly include higher order diagrams, a standard approach is the Hartree-Fock (HF) approx-
imation [44], where R0 is replaced by the dressed response at zero mean, R. However, in the system we
are considering, the two are identical as Σ = 0 so nothing would be gained.
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We will therefore proceed differently and self-consistently replace the bare propagator R0 by the dressed
physical propagator R∗, order by order in α. In contrast to the standard HF approach we also do this
not just to one-loop order but in all the diagrams that we keep, irrespective of the number of loops they
have. Tadpole diagrams in R∗ then produce diagrams, in e.g. Ω1,2, that are not part of this quantity as
originally defined, and we are effectively including contributions from Ω1,3 etc. in Ω1,2.

For notational simplicity and as we will no longer need to refer to the propagator at zero mean, we will
from now on use R to denote R∗, the dressed propagator at the physical copy number means. In the
diagrams we will similarly use double lines with an arrow as in eq. (4.20) to denote R∗.

Every self-consistent replacement of R0 by R sums up an infinite series of diagrams, which means we only
have to explicitly consider a subset of diagrams in the diagrammatic expansion of the vertex functions.
We will consider only the following series of diagrams for Γ1,2 or equivalently Ω1,2,

Ω1,2 = = + + + . . .

(4.29)

where we have replaced the bare R0 by the dressed R, denoted by the double lines. To see the effect of
this replacement we can look at the lowest order diagram that is affected, namely the O(α2) diagram
here. Expanding the dressed propagator also to O(α2) – by stringing together self-energy diagrams from
eq. (4.27) – we get up to O(α4)

= + +

+ + + . . .

(4.30)

Keeping the analogous diagrams in Σ∗ and making the same self-consistent approximation gives

Σ∗ = + + + . . .

(4.31)

Again one can expand the dressed response in each of these diagrams to generate the infinite series of
diagrams that we have summed up. For example, expanding the propagator to O(α2) in the O(α2)
diagram above yields to O(α4)

= +

+ + +

(4.32)

Both in the vertex functions and the self-energy, the self-consistent replacement procedure thus implicitly
includes an infinite series of diagrams. To avoid double counting we must therefore exclude any diagrams
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containing self-energy parts, because these are automatically generated by the self-consistent replacement
procedure. As any self-energy part can be separated from a diagram by cutting two lines, namely its
incoming and outgoing response line, this can be formalized in the following additional Feynman rule:

For vertex functions and the self-energy, we keep all diagrams that do not separate when two
lines are cut. Diagrams that do separate in this way are also kept, unless one of the parts
has one incoming and one outgoing line, as this would form a self-energy contribution.

For example, all the “bubble” diagrams in eq. (4.9) do separate if we cut two response lines in the
same loop, but neither of the resulting pieces are self-energy components. On the other hand, if we cut
the bottom two lines of the diagram in eq. (4.19) then we get a self-energy component and hence that
diagram must be excluded.

4.5 Self-consistent bubble resummation (SBR)

We are now ready to state the approximation we will use to determine copy number means as well as
(physical) response functions. We retain in the exact equation of motion eq. (3.22) only the Ω1,2 term
and discard Ω1,m with m ≥ 3. Bearing in mind the interpretation that Ω1,2 gives all possible ways in
which two A particles interact in a time delayed fashion to form one particle, we are thus neglecting
effective interactions between more than two particles. This is physically reasonable as there are no
direct reactions between more than two particles in the A+A→ A system.

In the diagrammatic series eq. (4.9) for Γ1,2 we have only bubble diagrams. Writing out the corresponding
Ω1,2 we have

Ω1,2(τ) = −αk3µ
2(τ−) + 2(−αk3)2∆t

∑
τ ′

R2
0(τ−, τ

′)µ2(τ ′−) + 4(−αk3)3(∆t)2
∑
τ ′,τ ′′

R2
0(τ−, τ

′)R2
0(τ ′−, τ

′′)µ2(τ ′′−)

+ 8(−αk3)4(∆t)3
∑
τ ′,τ ′′

τ ′′′

R2
0(τ−, τ

′)R2(τ ′−, τ
′′)R2

0(τ ′′−, τ
′′′)µ2(τ ′′′− ) + . . . (4.33)

As every order here acquires one extra factor of (−2αk3)R2
0, this series of diagrams can be summed as a

geometric series (see appendix A.6), giving in the continuous time limit

Ω1,2(τ) = −αk3

∫ τ

0

dτ ′
(
δ(τ − τ ′) + 2αk3R

2
0(τ, τ ′)

)−1
µ2(τ ′) (4.34)

where the inverse is now in the operator sense, generalizing the matrix inverse one has in the discrete
time case. A similar geometric series summation has also been considered by Cardy [40] in the context
of asymptotic vertex renormalization.

The resulting equation of motion for µ, i.e eq. (3.22) is then simplified to

(∂τ + k2)µ(τ) = αk1 + Ω1,2(τ) (4.35)

This gives all quadratic contributions in µ on the r.h.s. We call this the bubble resummation (BR)
approximation.

Finally we consider the same series of diagrams for Ω1,2 but with the self-consistent replacement of the
bare response R0 by the physical dressed response R as in eq. (4.29); the result is as in eq. (4.33) but
with R0 replaced by R, giving

Ω1,2(τ) = −αk3

∫ τ

0

dτ ′
(
δ(τ − τ ′) + 2αk3R

2(τ, τ ′)
)−1

µ2(τ ′) (4.36)

As explained in the previous section, this effectively includes an infinite series of further diagrams that
correspond to contributions from Ω1,m with m ≥ 3.

The full response R then also needs to be determined via the self-energy Σ∗ and we use the analogous
series of self-consistent bubble diagrams for this, as shown in eq. (4.31). These are the only diagrams
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containing only a single factor of µ. One could interpret these as self-energy contributions where one
particle interacts with an “external” particle to coagulate, possibly with some time delay, into a single
particle. The resulting self-energy is

Σ∗(τ, τ ′) = 2δτ−,τ ′(−αk3)µ(τ ′) + 4(−αk3)2R2(τ−, τ
′
+)µ(τ ′) + 8(−αk3)3∆t

∑
τ ′′

R2(τ−, τ
′′)R2(τ ′′−, τ

′
+)µ(τ ′)

+ 16(−αk3)4(∆t)2
∑
τ ′′,τ ′′′

R2(τ−, τ
′′)R2(τ ′′−, τ

′′′)R2(τ ′′′− , τ
′
+)µ(τ ′) + . . . (4.37)

Again this can be summed in the continuous time limit (see appendix A.6) to yield

Σ∗(τ, τ ′) = (−2αk3)
(
δ(τ − τ ′) + 2αk3R

2(τ, τ ′)
)−1

µ(τ ′) (4.38)

The physical response is then given by the Feynman-Dyson equation

(∂t + k2)R(τ, τ ′) = δ(τ − τ ′) +

∫ τ

0

dτ ′′Σ∗(τ, τ ′′)R(τ ′′, τ ′) (4.39)

and the last two equations have to be solved self-consistently, i.e. simultaneously, with eq. (4.35) and
eq. (4.36). We call this approach of summing infinitely many bubble diagrams and replacing the bare
response by the physical dressed response, the self-consistent bubble resummation (SBR) method. As
explained, the self-consistency captures in the equations for both means and response some but not all
(see section 4.6) corrections of higher than quadratic order in µ.

Eq. (4.39) for the response R is an integro-differential equation of Kadanoff-Baym type [49] as occurs
in Quantum Field Theory, but in what would be imaginary time there. Within the scope of this paper
we simply integrate it on a two-dimensional time grid with a fixed step size, but there are more efficient
and adaptive methods available that could be used in future, see for example [50, 51]. Even with
our straightforward numerical approach, the results in section 4.7 will show superior performance and
stability of SBR over the mean field solution and other common approximation methods.

4.6 Excluded diagrams

The series of bubble diagrams with the self-consistent physical dressed propagator replacement still
leaves out some diagrams in the vertex functions Γ1,m with m ≥ 3, starting at O(α4). These diagrams
do separate if we cut two propagator lines, but the resulting pieces do not form a part of self-energy, that
is they either have two incoming or two outgoing response lines. Up to O(α5) the only omitted diagrams
are contributions to Γ1,3:

+

+ +

(4.40)

Starting at O(α6) there are omitted diagrams from even higher order vertex functions like Γ1,4, such as

(4.41)
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Figure 1: Average copy number dynamics µ(τ) for the A+A→ A system with baseline creation and destruction.
The system was simulated with the stochastic Gillespie algorithm, two trajectories of which are shown as orange
and green dashed lines. The average and standard deviation over 106 such trajectories are plotted as the blue
solid line and the shaded area, respectively. The mean from the numerical integration of the master equation is
shown as the red dash-dotted line. Inset: enlarged part of the graph from τ = 0.8 to τ = 1 with the standard
error as the shaded area, showing that master equation and Gillespie numerics are consistent. The simulation
parameters are from the standard set given in section 4.7.

Similarly in the physical self-energy Σ∗ there are diagrams we have omitted, with at least two factors of
µ and of O(α3) or higher:

+

+ +

+

(4.42)

We have verified the diagrammatic calculations via a short-time expansion of the exact dynamics up to
O(t5), using the hierarchy of coupled equations for the moments of the copy number distribution derived
from the master equation. This can be compared to the corresponding expansion of the SBR eqs. (4.35),
(4.36), (4.38) and (4.39). We find that the missing terms are accounted for precisely by the diagrams
shown above. For brevity, these calculations are not shown in this paper.

4.7 Numerical results

In this paper we focus on the challenging regime of small copy numbers of molecules. To demonstrate
the power of the SBR method (see section 4.5), we compare the mean copy number and the two-time
number-number correlator for the system considered so far, i.e. a single molecular species A undergoing

the reaction A + A
k3−→ A with the baseline reactions A

k2−→ ∅ and ∅ k1−→ A and with an initial Poisson
distribution for the number of molecules of A. We compare our results and report the error relative to
the numerical solution of the master equation. The latter is obtained by finite space projection [52],
i.e. by truncating the state space at a sufficiently large copy number (see appendix A.8). For the SBR
predictions, we use an Euler integration scheme to jointly integrate the discrete time equations for
mean µ(τ) and Response R(τ, τ ′), performing the inversions required in eqs. (4.36) and (4.38) as matrix
inversions of the corresponding discretized quantities.

Unless otherwise stated, the simulations for this system are carried out with the following standard
parameter set k1 = 1, k2 = 1, k3 = 1, α = 1, time step ∆t = 0.002, total integration time t = 2 and
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Figure 2: Dynamics of average copy number µ̂ (left) as predicted by different approximation methods and
relative deviation (right) to the ground truth µ (grey dashed line). The error of SBR is an order of magnitude
lower than the MAK. The simulation parameters are from the standard set given in section 4.7.

µ(0) = 4/3, so that the initial copy number is Poisson with this mean and variance as shown in fig. 1.
As a consistency check on the numerical solution of the master equation, we also run 106 stochastic
Gillespie simulations [20] and calculate the average and the standard deviation across these runs. As
the dynamics proceeds from the initial time, the average copy number decreases to about 0.8 in the
steady state, with the standard deviation remaining of the same order as the mean throughout. We are
therefore in the regime of large stochastic fluctuations as illustrated by the two sample trajectories in
fig. 1. In the inset we show an enlarged section of the mean copy number time course from τ = 0.8 to
τ = 1, which demonstrates that the Gillespie simulations and the master equation solution are consistent
within their error bars as they should be. Because we are in the large fluctuation regime, note that even
after averaging over a million stochastic trajectories, the Gillespie mean still has discernible fluctuations.
This highlights the inefficiency of stochastic simulations, which becomes even more pronounced in the
case of multiple species. Since we are interested in small errors, we will then rely on comparisons with the
numerical solution of the master equation instead of stochastic simulations. The effects of the integration
time step ∆t are discussed in appendix A.1.

With the master equation solution as ground truth in place, we compare the performance of different
approximation methods in fig. 2. We plot the actual trajectories on the left and the relative deviation

on the right. The latter is defined as µ̂(τ)−µ(τ)
µ(τ) where µ̂ is the estimator for the mean copy number

as provided by the different methods and µ is the true mean. The SBR method has the second best
performance, followed by the (bare) bubble resummation (BR), which is obtained by simply solving
eqs. (4.34) and (4.35) with the bare response given by eq. (2.44). The mean field approximation or
mass action kinetics (MAK), obtained by integrating eq. (4.13), is stable but has an error an order of
magnitude worse than SBR. The results of normal moment closure are also plotted. This method takes
all cumulants of the copy number distribution of higher than second order as zero and was implemented
using the package [53]. This works well only for small times, after which its copy number dynamics
diverges and can even enter the negative copy number regime, a problem well known for moment closure
methods. We also compare the results to the Effective Mesoscopic Rate Equations (EMRE) [31] at unit
volume, which for this system has the best performance. (The full power of SBR and its advantages
over EMRE will become clear for reaction networks with multiple species, see section 5.3.) Finally, we
also plot the results for a diagrammatic expansion to O(α2) without resummation, thus keeping only the
(bare) α2 term in eq. (4.14). This gives poor performance because the bare response function used is
not sensitive to relaxation effects from the A+A→ A reaction (see appendix A.2). Comparing with the
BR method, we conclude for this example that the resummation of an infinite series of bubble diagrams
is more important for accuracy than the self-consistent replacement of the response function.

To understand the physical effects of k3 we plot in fig. 3 (left) the actual (ground truth) mean copy number
dynamics at different values of k3 as a function of k3τ . Note that as we increase k3, the dynamics becomes
faster due to the higher reaction rate for the A+A→ A reaction. We therefore correspondingly decrease
the total integration time t and the time step ∆t. The number of time steps (in our case B = 1000) is then
the same for each k3, as is k3t. In fig. 3 (right) we use this to compare the performance of the different
methods as we change the binary interaction rate k3 as compared to the baseline rates. This clearly
demonstrates that SBR not only works for large values of k3 but outperforms other common methods
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Figure 3: Average copy number dynamics from the master equation µ (left) and time-averaged absolute relative
deviation ε, eq. (4.43), of different approximation methods (right) for different binary interaction rate k3. To
measure errors systematically as we increase k3, we decrease total integration time t and time step ∆t by the
same factor, keeping the number of time steps and k3t the same for each copy number dynamics time course.
From the error measurement on the right plot we see that the SBR method outperforms other common methods
over a range of five orders of magnitude of k3. Its also outperforms EMRE at small k3, and has comparable
performance at large k3 values.

Figure 4: The equal time connected number correlator, i.e. copy number variance (left) and the copy numbers
plus standard deviation error bars at three time points in the dynamics (right; error bars are scaled by 0.5 for
better visibility of the y-scale), for the master equation ground truth and SBR and MAK approximations as shown
in the legend. On the left we additionally plot the Linear Noise Approximation (LNA) result. The standard
parameter set is used. Both the SBR and MAK approximations work with the bare correlation functions C0 ≡ 0
and so predict a Poissonian variance 〈δn(t)δn(t)〉 = µ̂(t).

over a large range of k3. This is because even though we are starting from a perturbative expansion, the
SBR method includes many non-perturbative effects both via the resummation and the self-consistent
response function replacement. EMRE has a slightly better performance at large k3 values, while SBR
is much better at smaller k3. The performance metric shown is the time-averaged relative deviation in
mean copy number,

ε =
1

B

∑
τ

∣∣∣∣ µ̂(τ)− µ(τ)

µ(τ)

∣∣∣∣ (4.43)

where B is the total number of time steps. As in our previous comparison at fixed k3, the bare bubble
resummation has the second lowest error behind SBR, and both outperform mass action kinetics and
normal moment closure. For small k3 the A+A→ A reaction is the slowest process and the steady state
is reached within our time window. For large k3, on the other hand, the decay of the mean copy number
becomes largely independent of k3 when plotted against k3τ : the fast A + A → A reaction dominates
here rather than being a small perturbation, so it is encouraging that SBR still performs well. Note
that outside the window shown there is then a slow (in relative terms) approach to the steady state
determined primarily by the baseline creation and destruction rates k1 and k2 (see appendix A.3).

Moving on to the second order statistics, in fig. 4(left) we plot the copy number variance or equivalently
the equal-time connected correlator 〈δn(τ)δn(τ)〉 as a function of time τ for the ground truth (see
appendix A.8), MAK, SBR and the Linear Noise Approximation (LNA) [28, 29] at unit volume. Both
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Figure 5: Response functions R(τ, τ ′) obtained from the master equation (left) and the MAK (centre) and SBR
(right) approximations, for the standard parameter set. The response functions are plotted against time lag τ−τ ′
at several fixed values of the time τ ′ where the perturbation is applied. The different curves overlap for MAK
because it predicts a time translation invariant response. The true response (left) is not invariant under time
translation and SBR (right) correctly captures this effect.

Figure 6: Response functions R(τ, τ ′) and two-time connected number correlator 〈δn(τ)δn(τ ′)〉 (normalized by
the equal-time connected correlator 〈δn(τ ′)δn(τ ′)〉) as obtained from the master equation, the MAK, SBR and
LNA methods, for the standard parameter set. The response functions are plotted as a function of the lag time
τ − τ ′ between perturbation and response, at fixed values of the perturbation time τ ′ = 1.6, 1.2, 0.8, 0.4 (left to
right). The MAK, SBR and the LNA predict that the response and the normalized correlator are identical to
each other, while in the true dynamics the two quantities are slightly different (solid and dashed grey lines). The
SBR method very closely reproduces the true response function and correlator over the whole range of τ and τ ′,
while the exponential MAK response decays too slowly and the LNA deviates in the other direction.

SBR and MAK assign to the correlation functions the bare value C0 ≡ 0, so from eq. (2.28) predict a
Poissonian variance 〈δn(τ)δn(τ)〉 = µ(τ). In the ground truth one finds a smaller variance, i.e. anti-
Poisson effects. This leads to MAK coincidentally predicting a variance closer to the ground truth (for
τ > 0) than SBR, by a cancellation of two errors: on the one hand it underestimates the mean copy
number, and on the other hand it ignores the anti-Poisson effects so overestimates the variance. The
LNA makes the best prediction for the equal-time connected correlator (i.e. the variance), but we will
see that in the comparison to SBR this is no longer the case for the two-time correlator, see fig. 6.

The SBR estimates for the mean copy numbers are more accurate so its predictions for the copy number
error bars (plotted as mean ± half standard deviation) overlap well with the ground truth as shown
in fig. 4(right). There are deviations, which can be traced back to the fact that the true correlation
functions C(τ, τ) do not vanish, but we observe that these are quantitatively moderate. To avoid these
deviations one could calculate the correlation functions in perturbation theory and include them in the
variance calculation, as we briefly discuss in section 6.

Now we look at the two-time quantities. We start with the response function and plot R(τ, τ ′) in fig. 5
for fixed values of the time τ ′ at which the perturbation is created and as a function of the lag time
τ − τ ′ between perturbation and response. Since we are running our dynamics until the final time t,
we can only calculate the response till τ − τ ′ = t − τ ′. From left to right the response functions from
the master equation (appendix A.8) and MAK and SBR methods are plotted. In the response from the
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master equation, the curves for different τ ′ do not overlap, consistent with the fact that we have transient
dynamics that breaks time translation invariance: it matters when in absolute terms a perturbation is
created, not just how long ago. SBR is able to capture this effect but MAK, which uses the bare response
function and so is time translation invariant, does not.

From the response function, we can calculate the two time connected number number correlator 〈δn(τ)δn(τ ′)〉
using eq. (2.31). Both SBR and MAK replace the field correlation function C by its bare counterpart
C0. This is zero, giving 〈δn(τ)δn(τ ′)〉/〈δn(τ ′)δn(τ ′)〉 = R(τ, τ ′). In fig. 6 we plot the response and
normalized correlator again as a function of the time lag, but now comparing the different methods at
each fixed perturbation time. The procedure for calculating the correlator from the master equation is
explained in appendix A.8. The resulting true copy number correlator and response are slightly different
due to non-Poissonian effects. SBR ignores these but nonetheless captures very closely the true response
and correlation, demonstrating that the approximation of keeping only the bare field correlation C0 is
rather accurate. MAK, on the other hand, deviates substantially, giving decays in time that are too
slow. The LNA also predicts identical response and correlation functions in the case of a single react-
ing chemical species, and underestimates these quantities when compared to their true values from the
master equation.

4.8 Inverse reaction volume expansion

The propensity function in eq. (2.2) uses rates kβ of physical dimension of inverse time, 1/t, as so far we
have worked with absolute molecule numbers. In chemical reaction kinetics when molecule numbers are
large one typically works with concentrations, i.e. number densities. We now translate our formalism into
this framework and make contact with earlier work on expansions using 1/V as a small parameter, where
V is the reaction volume. One such work by Thomas et al. [33] also used diagrammatic perturbation
theory, expanding in orders of 1/V around the (time translation invariant) steady state predicted by
mass action kinetics.

Starting with the binary reaction A + B → C as an example, the mass action description in terms of
densities ρ = n/V would be ∂τρA = jβρAρB . Converting to an equation for the change in particle

number n = ρV we get ∂τnA =
jβ
V nAnB . In the general case one would accordingly write the propensity

function as originally defined in eq. (2.2) as

fβ(n) = jβV
∏
i

ni!

(ni − rβi )!V r
β
i

(4.44)

with the rate constant jβ having dimension 1/(V
∑
i r
β
i −1t). This is again easiest to understand from

examples:

1. For a creation reaction such as ∅ → A, fβ(n) = jβV

2. For a unary destruction reaction such as A→ ∅, fβ(n) = jβnA

3. For a binary reaction such as A+B → C, fβ(n) =
jβ
V nAnB

With this change in notation to standard rate constants jβ , the MAK equation for ρ in the A+A→ A
system together with the baseline creation and destruction reactions is

∂τρ = j1 − j2ρ− j3ρ2 (4.45)

with j1 = k1/V , j2 = k2 and j3 = k3V . On the r.h.s. we have here the terms up to O(α) from our
expansion but we do not write powers of α explicitly. The next correction, of O(α2), was of the form
(−αk3)2

∫ τ
0
dτ ′R2

0(τ, τ ′)µ2(τ ′), giving in terms of density

∂τρ = j1 − j2ρ− j3ρ2 +
2j2

3

V

∫ τ

0

dτ ′R2(τ, τ ′)ρ2(τ ′) (4.46)

Viewed as the beginning of an expansion in terms of 1/V , the correction terms is O(1/V ) because the
response function is of order unity. All further corrections like the two bubble diagram in eq. (4.9) have
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additional V −1 factors and thus give smaller corrections for large V . One could then be tempted to stop
after the first correction in the equation for µ or equivalently density ρ, which is the one loop diagram
in eq. (4.9). However, as we have seen, that correction only works for small values of k3 = j3/V , i.e.
large volumes; the SBR approach can be viewed as “dressing” the leading order correction by including
all delayed two particle interactions. The final form of the SBR, eqs. (4.36) and (4.38), is then stable
even for large values of k3. Notice that the SBR method is not a straightforward expansion in 1/V as
there are diagrams that we have neglected that are of the same order as some that we have considered.
For example, the two loop diagram that is included in SBR, of the form k3

3µ
2 in eq. (4.29), makes a

contribution of order V −2 to the equation for the density. The diagram that we have neglected such as
the first diagram of eq. (4.40), of the form k4

3µ
3, is also of order V −2. Thus SBR does include corrections

of all orders in V −1, but is not a systematic way to capture all corrections at each order.

We note finally that there are subtleties regarding the interpretation of the Doi-Peliti path integral in
terms of density fluctuations [54]. The φ field cannot be directly interpreted as a density. Nonetheless,
performing a Cole-Hopf transformation on the φ, φ̃ in the action and terminating the expansion of the
transformed action at O(1/V ) leads to a Langevin equation for the density [47] that matches the system
size expansion result by van Kampen [28]. In our approach, on the other hand, we calculate µ = 〈φ〉
directly and the mean density can be obtained afterwards simply by dividing by system volume V .

4.9 Adding a back reaction: A+ A 
 A

So far we have illustrated our approach with a system with baseline particle creation and destruction
as well as coagulation A + A → A. To generalize, we now add the back reaction of particle branching,

A
k′3−→ A+A. We then have the following additional vertices in the interacting action:

Sint = · · ·+ ∆t
∑
τ

 φ̃ φ
k′3, τ

+

φ̃

φ̃

φ
k′3, τ

 (4.47)

The first vertex is quadratic and could be absorbed in S0, but we prefer to keep it in Sint to avoid
modifying the baseline. We now get non-vanishing contributions to the self-energy Σ at zero mean,
which without the back reaction was zero:

Σ = + + + . . .

(4.48)

This self-energy features in eq. (3.22) for the mean copy number. To O(α) it gives a correction term to
eq. (4.13), namely

∂τµ(τ) = · · ·+ αk′3µ(τ) (4.49)

This is the MAK level of approximation and simply reflects the increase in particle number from each
branching reaction. Going to O(α2), where previously we had eq. (4.16), we have the above MAK term
and in addition

∂τµ(τ) = · · · − 2α2k3k
′
3

∫ τ

0

dτ ′R2
0(τ, τ ′)µ(τ ′) (4.50)

Continuing to higher orders one again has a geometric series that can be summed similarly to that in
eq. (4.34), giving

Σ(τ, τ ′) = (αk′3)
(
δ(τ − τ ′) + 2αk3R

2
0(τ, τ ′)

)−1
(4.51)

and the overall additional term in the equation of motion (4.35,4.36)

∂τµ(τ) = · · ·+ (αk′3)

∫ τ

0

dτ ′
(
δ(τ − τ ′) + 2αk3R

2(τ, τ ′)
)−1

µ(τ ′) (4.52)

Here we have again performed the self-consistent replacement of the bare response R0 by the physical
dressed response R. This implicitly includes diagrams that in principle contribute to the vertex functions
Γ1,m with m ≥ 2 but are not contained in our bubble diagram series.
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For the physical self-energy Σ∗ we use the same approximation, i.e. we add to eq. (4.38) the sum of the
diagrams in eq. (4.48) with R0 replaced by R, giving

Σ∗(τ, τ ′) = (−2αk3µ(τ ′) + αk′3)
(
δ(τ − τ ′) + 2αk3R

2(τ, τ ′)
)−1

(4.53)

From this self-energy the physical dressed response is then determined by eq. (4.39).

Note that even with the self-consistency, there are some new Ω1,m≥2 made from the three legged vertex
in eq. (4.47) and other vertices of eq. (4.3) that are not accounted for within SBR.

We now consider the above reaction system for the parameters k1 = 1, k2 = 1, k3 = 1, k′3 = 1, with time
step ∆t = 0.004, total integration time t = 4 and µ(0) = 4/3. As in section 4.7 we plot in fig. 7 the mean
copy number dynamics as obtained from different approximation methods, and their respective relative
deviations from the solution of the master equation. SBR again outperforms the other methods including
MAK; normal moment closure diverges, and BR without self-consistency is second best to SBR. EMRE
(at unit volume) has a similar performance as the SBR. These trends are confirmed in fig. 8 where we
again change the perturbation parameter k3, keeping k3 = k′3, across four orders of magnitude, and
plot the time-averaged absolute relative deviation as defined in eq. (4.43) of the different approximation
methods. Fig. 8(left) shows the corresponding exact mean copy number dynamics as calculated from
the master equation. Times and time ranges have been scaled as in fig. 3 and, as there, SBR and BR
still perform well for large k3 and k′3 where the coagulation and branching reactions are dominant rather
than small perturbations.

Figure 7: Dynamics of mean copy numbers µ, µ̂ for the system with added branching reaction A→ A+A (left);
relative deviation (right) of different approximation methods µ̂ from the master equation solution µ (grey dashed
line). SBR has a significantly lower error in the transient compared to the other methods. The normal moment
closure method very quickly becomes unstable and predicts negative copy numbers. System parameters are given
in section 4.9.

Figure 8: System with added branching reaction A → A + A for a range of coagulation and branching rates
k3 = k′3. Mean copy number dynamics from the master equation (left) and time-averaged absolute relative
deviation as defined in eq. (4.43) of different approximation methods (right). Times and time ranges are scaled
as in fig. 3. The bubble resummed approaches (SBR and BR) perform similarly to EMRE and outperform all
other methods over a large range of k3 and k′3.
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5 Multiple species interactions: A+B → C

Having illustrated our approach so far for systems with a single molecular species, we now extend our
considerations to multiple species. Unary reactions with conversion of one molecule to another like
A→ B will only produce two-legged vertices with one φ̃ and one φ legs, like the first vertex of eq. (4.47).
These cannot appear in any vertex functions Γ1,m with m ≥ 2 and just give rise to mean field (O(α))
corrections that are straightforward to include. Binary reactions where two different molecules react,
like A+B → A, A+B → C or A+B → C +D require additional analysis that we will now present.

Focussing on the example A + B → C from now on, the interacting action as obtained from eq. (2.11)
after applying the Doi-Shift is

Sint = ∆t

t∑
τ=∆t

{
k1Aφ̃A(τ) + k1Bφ̃B(τ) + k1C φ̃C(τ)+

φA(τ−)φB(τ−)
[
k3φ̃C(τ)− k3φ̃A(τ)− k3φ̃B(τ)− k3φ̃A(τ)φ̃B(τ)

]} (5.1)

where the first line contains the particle creation reactions with rates k1A, k1B and k1C , respectively,
and the second line the reaction A + B → C with rate k3. Note that as in section 4 we treat the
initial condition implicitly by considering a creation rate k1i(τ) = k1i + n̄0iδ(τ). Diagrammatically we
can represent the interacting action similarly to the previous single species case, but now using different
colours to represent the field legs for different species, specifically A→ blue, B → green, C → red:

Sint = ∆t
∑
τ

 k1A, τ
+

k1B , τ
+

k1C , τ
+

k3, τ
+

−k3, τ
+

−k3, τ
+

−k3, τ


(5.2)

The vertex functions Γl,m and their contractions Ωl,m are now defined with extra lower indices that
indicate which species the legs are associated with. For example, Γl,mi1i2...il,j1j2...jm denotes that the vertex

function Γ has l amputated φ̃ legs associated with species i1, i2, . . . , il and m amputated φ legs associated
with species j1, j2, . . . , jm. Ωl,mi1i2...il,j1j2...jm is similarly defined with the φ legs replaced by µj1 , µj2 , . . . µjm
and summed over internal times.

5.1 Vertex functions and equations of motion

We begin with the bare propagator version of the theory. The baseline Hamiltonian H0 decouples across
species, so the bare response function R0,ij = 0 when the two species indices i and j are different. This

implies that in this flavour of approximation there are no mixed response functions, and φ and φ̃ legs
can connect only if they belong to the same species. We abbreviate the self-responses R0,ii as R0i below.

The 1-point vertex function Γ1,0 is the same as before, just for the different species, given by

Γ1,0
A =

k1A
Γ1,0
B =

k1B
Γ1,0
C =

k1C
(5.3)

The next vertex function Γ1,2 is given by the following diagrams up to O(α3):

Γ1,2
A,AB =

−k3
+

−k3 −k3
+

−k3 −k3−k3
+ . . . (5.4)

Γ1,2
B,AB =

−k3
+

−k3 −k3
+

−k3 −k3−k3
+ . . . (5.5)
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Γ1,2
C,AB =

k3
+

k3 −k3
+

k3 −k3−k3
+ . . . (5.6)

Using these we can construct the elements of Ω1,2. For example Ω1,2
A,AB is to leading order

Ω1,2
A,AB(τ)

∣∣∣
α

= −αk3µA(τ−)µB(τ−) (5.7)

and Ω1,2
B,AB , Ω1,2

C,AB are obtained analogously. Neglecting Ω1,m with m ≥ 3, we have the mean copy
number equation of motion

(∂τ + k2i)µi(τ) = αk1i + Ω1,2
i,AB(τ) (5.8)

for each species i = A,B,C. To O(α) this gives the MAK equations as expected:

∂τµA(τ) = αk1A − k2AµA(τ)− αk3µA(τ)µB(τ)

∂τµB(τ) = αk1B − k2BµB(τ)− αk3µA(τ)µB(τ)

∂τµC(τ) = αk1C − k2CµC(τ) + αk3µA(τ)µB(τ)

(5.9)

Looking then at the first non-trivial corrections, of O(α2), we have from the one loop diagram of eq. (5.4)

Ω1,2
A,AB(τ)

∣∣∣
α2

= (−αk3)2∆t
∑
τ ′

R0A(τ−, τ
′)R0B(τ−, τ

′)µA(τ ′−)µB(τ ′−) (5.10)

Together with the analogous results for other species this yields the continuous time equations for the
means to O(α2) as

∂τµA(τ) = αk1A − k2AµA(τ)− αk3µA(τ)µB(τ) + (−αk3)2

∫ τ

0

dτ ′R0A(τ, τ ′)R0B(τ, τ ′)µA(τ ′)µB(τ ′)

∂τµB(τ) = αk1B − k2BµB(τ)− αk3µA(τ)µB(τ) + (−αk3)2

∫ τ

0

dτ ′R0A(τ, τ ′)R0B(τ, τ ′)µA(τ ′)µB(τ ′)

∂τµC(τ) = αk1C − k2CµC(τ) + αk3µA(τ)µB(τ)− (αk3)2

∫ τ

0

dτ ′R0A(τ, τ ′)R0B(τ, τ ′)µA(τ ′)µB(τ ′)

(5.11)

Following our approach for the single species A + A → A system, we will not explicitly include Ω1,m

terms with m ≥ 3 and concentrate instead on the bubble series and its resummation.

5.2 Self-consistent response function approximation

5.2.1 Using single species response functions

The above expansion to O(α2) can be improved following our previous strategy: we sum an infinite
series of bubble diagrams, and we self-consistently replace the bare responses R0i by the physical dressed
responses Ri. For Ω1,2

A,AB this means

Ω1,2
A,AB = + + + . . . (5.12)

and summing the geometric series gives

Ω1,2
A,AB(τ) = (−αk3)

∫ τ

0

dτ ′ (δ(τ − τ ′) + αk3RA(τ, τ ′)RB(τ, τ ′))
−1
µA(τ ′)µB(τ ′) (5.13)

The equation of motion for the mean copy number µA of species A is then obtained by inserting this
into eq. (5.8), with analogous expressions for the other species.
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The dressed response functions at the nonzero, physical means are determined as before from the
Feynman-Dyson equation using the self-energy Σ∗ij . This now also carries two species indices. Since
we are considering only single species response functions, we only use Σ∗ij with i = j and expand

Ri = R0i +R0iΣ
∗
iiR0i +R0iΣ

∗
iiR0iΣ

∗
iiR0i + . . . (5.14)

which yields in continuous time

∂τRi(τ, τ
′) = δ(τ − τ ′)− k2iRi(τ, τ

′) +

∫
dτ ′′Σ∗ii(τ, τ

′′)Ri(τ
′′, τ ′) (5.15)

If we then express e.g. Σ∗AA using again self-consistently replaced dressed responses R we obtain to O(α3),

Σ∗AA = Σ∗ = + +

+ + +

+ + . . .

(5.16)

Note that because in the expansion eq. (5.14) we have only included response function factors for the
same species i, we have to include here diagrams like the second and fourth that contain single response
function links for other species. In other words, in the present approach a 1PI diagram for Σ∗ii has to be
defined as one that cannot be split in two by cutting a response line of the same species i. The values of
the first four diagrams of the above series term by term are

Σ∗AA(τ, τ ′) = −
δτ−,τ ′

∆t
αk3µB(τ ′) + (−αk3)2µA(τ−)RB(τ−, τ

′
+)µB(τ ′) + (−αk3)2RA(τ−, τ

′
+)RB(τ−, τ

′
+)µB(τ ′)

+ (−αk3)3
∑
τ ′′

µA(τ−)RB(τ−, τ
′′)µA(τ ′′−)RB(τ ′′−, τ

′
+)µB(τ ′) + . . . (5.17)

Following the approach in section 4.5 this series can again be summed to all orders to obtain

Σ∗AA(τ, τ ′) = (−αk3) [δ(τ − τ ′) + αk3(µA(τ)RB(τ, τ ′) +RA(τ, τ ′))RB(τ, τ ′)]
−1
µB(τ ′) (5.18)

Together with the corresponding expressions for Σ∗BB and Σ∗CC we then have a closed system of self-
consistent equations for the means µi(τ) and physical response functions Ri(τ, τ

′) of all species i. For
e.g. species A one integrates eq. (5.8) and eq. (5.15) with Ω and Σ given by eqs. (5.13) and (5.18). We
call this approximation SBR-S where the additional S indicates that we are using single species responses
only. Note that the Ω1,2 contribution is again a memory term: it integrates past values of the product
µAµB , which is exactly the MAK term for the reaction A + B → C, weighted by a self-consistently
determined memory function.
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5.2.2 Including mixed response functions

The SBR-S approximation can be improved further by including mixed response functions, Rij for i 6= j.

The resulting diagrammatic series for Ω1,2
A,AB is, to O(α3):

Ω1,2
A,AB = + + +

+ + + + . . .

(5.19)

Here the half blue and half green double lines represent the mixed dressed response functions RAB and
RBA, with the species indices being in the same order as the colours of the double lines. The first
additional term compared to the treatment in the previous section occurs at O(α2) and is

Ω1,2
A,AB(τ)

∣∣∣
α2

= · · ·+ (−αk3)2∆t
∑
τ ′

RAB(τ−, τ
′)RBA(τ−, τ

′)µA(τ ′−)µB(τ ′−) (5.20)

As before we can resum all higher orders in α to get, in continuous time,

Ω1,2
A,AB(τ) = (−αk3)

∫ τ

0

dτ ′ {δ(τ − τ ′) + αk3 [RAA(τ, τ ′)RBB(τ, τ ′) +RAB(τ, τ ′)RBA(τ, τ ′)]}−1
µA(τ ′)µB(τ ′)

(5.21)
which has to be inserted into eq. (5.8) to get the final equation of motion for the mean copy number of
species A; the other species B,C can be treated in exactly the same manner.

To find the mixed response functions RAB and RBA that appear above, we now also need the gen-
eral version of the Feynman-Dyson equation eq. (4.24). This is obtained by treating the species index
analogously to the time indices, giving

(∂τ + k2i)Rij(τ, τ
′) = δ(τ − τ ′)δij +

∫
dτ ′′

∑
k

Σ∗ik(τ, τ ′′)Rkj(τ
′′, τ ′) (5.22)

Looking at the diagrammatic expansion of the self-energies Σ∗ij one realizes that, because no internal
vertex has an incoming φC leg (C is not consumed in any reaction, only produced), ΣAC , ΣBC and ΣCC
are all zero. Of the remaining self-energy entries we only draw the diagrams for Σ∗AA and Σ∗AB below as
the diagrams for Σ∗BA, Σ∗BB , Σ∗CA and Σ∗CB are analogous. To O(α2) we have then

Σ∗AA = Σ∗ = + + + . . .

(5.23)

which corresponds term by term to

Σ∗AA(τ, τ ′) = −
δτ−,τ ′

∆t
αk3µB(τ ′) + (−αk3)2RAA(τ−, τ

′
+)RBB(τ−, τ

′
+)µB(τ ′)

+ (−αk3)2RAB(τ−, τ
′
+)RBA(τ−, τ

′
+)µB(τ ′)

(5.24)

Similarly one has

Σ∗AB = Σ∗ = + + + . . .

(5.25)

or

Σ∗AB(τ, τ ′) = −
δτ−,τ ′

∆t
αk3µA(τ ′) + (−αk3)2RAA(τ−, τ

′
+)RBB(τ−, τ

′
+)µA(τ ′)

+ (−αk3)2RAB(τ−, τ
′
+)RBA(τ−, τ

′
+)µA(τ ′)

(5.26)
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Figure 9: Dynamics of average copy numbers (left) for the three species A (blue), B (orange) and C (green).
Results are shown for the numerically exact solution of the master equation (ME, solid translucent lines), MAK
(dash-dotted lines) and SBR-M (dashed lines). Absolute relative deviation (right) from the master equation
solution averaged over the N = 3 species, εN (τ) as defined in eq. (5.29). SBR-M and SBR-S have significantly
lower errors than most other methods. Standard system parameters are used as given in section 5.3.

These series can again be summed geometrically to all orders in α as we did in section 4.5 to obtain

Σ∗AA(τ, τ ′) = (−αk3) {δ(τ − τ ′) + αk3 [RAA(τ, τ ′)RBB(τ, τ ′) +RAB(τ, τ ′)RBA(τ, τ ′)]}−1
µB(τ ′) (5.27)

Σ∗AB(τ, τ ′) = (−αk3) {δ(τ − τ ′) + αk3 [RAA(τ, τ ′)RBB(τ, τ ′) +RAB(τ, τ ′)RBA(τ, τ ′)]}−1
µA(τ ′) (5.28)

The resulting overall system of equations for copy number means µi and responses Rij defines the SBR-M
approximation, where M indicates the inclusion of mixed responses. For e.g. species A, one integrates
eq. (5.8) and eq. (5.22) with Ω and Σ given by eqs. (5.21), (5.27) and (5.28).

5.3 Numerical results

For numerical tests of the above two approximation methods we again focus on the regime of small copy
numbers. We call that we are considering the A + B → C reaction system, with baseline creation and
destruction reactions with rates k1i and k2i, respectively. Unless otherwise stated we use the standard
parameter set k1A = 4, k1B = 4, k1C = 3, k2A = 3, k2B = 2, k2C = 3, k3 = 1, α = 1, with time step
∆t = 0.001 and total integration time t = 1. The initial condition is a product of independent Poisson
distributions for each species, with means µi(0) = k1i/k2i for i = A,B,C.

In fig. 9 (left) we plot the time courses of the mean copy numbers for the three species. As we start
the system in what would be the steady state without the A + B → C reaction, it makes sense that
the copy numbers of A and B decrease in time, while those of C increase. All mean copy numbers are
below 2 so we clearly are in the strongly fluctuating regime. We plot the time courses as obtained by
numerical integration of the master equation (ME) (with an appropriately truncated state space) and
by the MAK and SBR-M methods. The deviations of MAK from the true dynamics are evident, while
the SBR-M predictions are essentially identical with the ground truth on the scale of the plot. For a
more quantitative assessment we plot in fig. 9 (right) the absolute value of the relative deviations from
the ground truth, averaged over the N = 3 species, i.e.

εN (τ) =
1

N

∑
i

∣∣∣∣ µ̂i(τ)− µi(τ)

µi(τ)

∣∣∣∣ (5.29)

SBR-M is seen to perform best, followed closely by SBR-S, i.e. SBR with only single species response
functions, and then EMRE. Normal moment closure is stable for this system and the next accurate
method, followed by BR; the latter is obtained by integrating eq. (5.8) with Ω given by eq. (5.13) but
using the bare response functions. If we only keep the O(α2) term in the dynamics with bare propagators
(integrating eq. (5.11)), we get the next best approximation.

We next consider two-time quantities. In fig. 10 we show the single species response function Rii(τ, τ
′) for

several fixed values of τ ′, the time at which the perturbation is applied, against time lag τ − τ ′ between
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perturbation and response. The SBR-S method and the EMRE closely reproduce the true response
functions calculated from the master equation, while MAK shows appreciable deviations. RCC is the
same for all methods because the concentration of species C does not appear in any propensity function
and hence changing the creation rate of C temporarily trivially changes its concentration, with the effect
decaying exponentially only because of the baseline destruction reaction C → ∅.

Figure 10: Single species response functions for the A + B → C system with the standard parameter set:
RAA (top), RBB (middle) and RCC (bottom) as obtained from the master equation, and the MAK, LNA and
SBR-S approximations. The response functions are plotted at fixed values of the second time argument τ ′ at
τ ′ = 0.8, 0.6, 0.4, 0.2 from left to the right, as a function of the lag τ − τ ′. SBR-S and LNA very closely reproduce
the true response function as obtained from the master equation across the whole temporal range while the
exponentially decaying MAK response drops off too slowly. RCC is the same from all methods because the
dynamics of the mean copy number 〈nC〉 of C is not dependent on higher moments involving nC .

With the more sophisticated SBR-M method we have access to all response functions, including the mixed
responses. In fig. 11 we plot these in the same format as in fig. 10, comparing to the ground truth from
the solution of the master equation. The single species responses (top row) are quite accurately predicted
by SBR-M and LNA. These responses decay from an initial value of unity as expected. In the middle and
bottom rows the mixed responses Rij , i 6= j are plotted. RBC and RAC are zero throughout the dynamics
in SBR-M, LNA and the master equation solution because perturbations of species C affect neither A
nor B. In the middle row, RAB and RBA start from zero and become negative because increasing the
creation rate of either A or B enables more A + B → C reactions to take place, thus decreasing the
concentration of the other species. In the bottom row RCA and RCB start from zero and then take
positive values because increasing the creation rate of either A or B increases the concentration of C,
again because more A+B → C reactions take place. The non-trivial non-monotonic behaviour of these
response functions is reproduced by SBR-M for the whole time range, while such cross-responses would
be identically zero within e.g. MAK. Predictions for the mixed responses are possible only by including
the corresponding mixed self-energies, and are stabilized by the bubble resummation procedure. This
behaviour is also captured by the LNA, but deviates quantitatively from the true values at larger lag
times.

Finally in fig. 12 we compare the performance of different methods as we change the rate of the non-trivial
reaction A+B → C perturbation parameter k3, that is changing the interaction rate while keeping the
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Figure 11: Analog of fig. 10 for single species and mixed response functions R as obtained from the numerically
exact master equation (dashed lines), the LNA (dashed-dotted lines) and the SBR-M approximation (solid lines).
Single species responses RAA, RBB and RCC are quite accurately reproduced by SBR-M and LNA (top). Mixed
responses RAB , RBA and RBC (middle) and RCA, RCB and RAC (bottom) are all reproduced by SBR-M
including their non-monotonic behaviour, while in simpler approximations like MAK all mixed responses would
be predicted as identically zero. The LNA also reproduces the correct trends but has quantitative deviations at
large time lags.

baseline rates constant. On the left we plot the numerically exact mean copy number time courses for
the three species for different values of k3. For k3 = 1 we use total time t = 2 and time step ∆t = 0.002;
for other k3 we scale these as in fig. 3 keeping the number of time steps the same, and accordingly
plot the results against k3τ . On the right we plot the absolute relative error of the different methods
from the master equation averaged over species and over time, i.e. ε = 1

B

∑
τ εN (τ) as a function of α;

B = t/∆t = 1000 is the total number of time steps as before. We observe that the SBR-M and SBR-S
methods outperform all others across four orders of magnitude in k3. In this multispecies case, it is
worthy to note that the SBR methods have a clear advantage over the EMRE, thus highlighting the
power and accuracy of the SBR to capture the dynamics of multispecies reaction networks with binary
reactions in the challenging regime of small copy numbers.

6 Conclusions and discussion

We have used Doi-Peliti field theory methods in this paper to construct accurate approximations for the
dynamics of chemical reaction networks in the challenging regime of large fluctuations. This approach
leads to equations of motion for the mean copy numbers that involve memory to past (mean) copy
numbers, and we determine this memory self-consistently via appropriate response functions.

Technically, we work with diagrammatic perturbation theory around a baseline that only has response
(φφ̃) lines in the bare propagator, while the bare field correlations (φφ) are zero. By focussing on only
means and response functions, we have managed to construct diagrams with a consistent flow of time.
This significantly restricts the class of diagrams in the expansion for the n-point and vertex functions, and
often the diagrams have simple physical interpretations. (One can of course also calculate the correlation
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Figure 12: Time courses of mean copy numbers µA, µB and µC (left) for different values of the interaction
rate k3 as calculated from the master equation, and absolute relative deviation of the predictions from different
methods (right) averaged over the three species and over time plotted against k3. The total time and the time
step have been rescaled analogously to fig. 3. Both our SBR-M and SBR-S methods outperform every other
approach over the entire range of k3 shown.

function in this formalism and it does not vanish in general, but it also does not change the dynamics
of the mean nor of the response.) By self-consistently replacing the bare response functions with the
physical dressed responses in the vertex functions, even fewer diagrams need to be considered. We finally
approximate by summing up a carefully chosen infinite sub-series of the diagrams for vertex functions
and self-energies, giving overall what we call the “self-consistent bubble resummation” method (SBR).

As an alternative we could have, in the diagrams, kept the bare (φφ) correlator, which is zero, and
then self-consistently replaced it by its non-zero dressed counterpart. But this approach, which would
be more analogous to the traditional diagrammatic approach for MSRJD path integrals where the bare
(φφ) correlator is non-zero, would involve many more diagrams. These diagrams also would not have a
consistent flow of time, would contain self-loops, and offer no obvious route to resummation.

For the binary reactions we consider, the SBR provides all O(µ) and O(µ2) terms in the equations of
motion for the mean copy numbers, which can be interpreted as time-delayed analogues of the terms
appearing in standard mass-action kinetics. Higher order corrections in µ are included implicitly via the
memory functions that weight these time-delayed terms.

We give explicitly the diagrammatic Feynman rules for a single-species example system but, as we
demonstrate, these generalize to multi-species cases. In such cases one has a choice of whether or not to
include (dressed, physical) mixed response functions between different species. If one does, then for N
species one has to consider N2 response functions and their corresponding equations of motion, which for
large N becomes computationally expensive. As an alternative we propose a method where only dressed
single species response functions are considered; in our numerical examples this is slightly less accurate,
but of course also computationally less expensive as only N response functions need to be tracked.

We numerically demonstrate the superior performance of our SBR method in calculating mean copy
numbers compared to other methods, over a very large range of parameter values and over the whole
time range we consider. We also calculate the two-time response and correlation functions. Within our
SBR approximation these quantities can easily be estimated and in numerical tests also prove to be rather
accurate. The fact that we neglect field-field correlators implicitly means that all copy number variances
are taken as equal to the corresponding means, as would be the case for Poisson statistics. Our results
suggest that this is a reasonable approximation to the actual underlying copy number distributions, but
of course it remains an approximation nonetheless.

A key equation we derive and use extensively in this paper is eq. (3.22), which gives the corrections to
the mean coming from the past, i.e. the memory effects. Of course the underlying microscopic dynamics
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we consider is Markovian, with the rate for each chemical reaction depending only on the current state of
the system via the propensity function. Nonetheless the equations for copy number means and responses
do contain memory terms, and this is a natural consequence of the fact that a representation in terms
of means and responses is effectively a lower-dimensional projection of the full microscopic dynamics of
the system as specified by the joint distribution of the copy numbers for all species and times.

A number of interesting research perspectives arise from our work. Considering first numerical questions,
the straightforwardly time-discretized implementation of the SBR method that we have used in this paper
has a computational complexity (see appendix A.6) of O(B3) where B is the number of time steps. This
can become expensive when long trajectories need to be simulated with small time steps, as could be
the case when reaction rates in a system vary widely. More sophisticated techniques including adaptive
time steps or integration order [51], or low rank compression [55] could be explored to address this.

We have also implicitly assumed that our reaction systems are well mixed rather than diffusion-limited, so
that only overall copy numbers of each species affect the reaction rates. This assumption does not always
hold, e.g. the binding and unbinding of transcription factors to DNA in gene regulation networks can be
significantly influenced by the spatial arrangement of the DNA [56, 57]. It is, however, straightforward
to include space in our analysis by considering a spatial grid of compartments, with molecules in different
compartments treated effectively as different species. Diffusion is then just a unary conversion reaction
from a species in one compartment to one in a neighbour compartment. This introduces terms quadratic
in φ̃, φ in the Hamiltonian and does not give rise to memory corrections. In the continuous time and
space limit, the Hamiltonian simply acquires an additional term −Dφ̃∇2φ, with D the diffusion coefficient
and φ, φ̃ now also dependent on position. Doi-Peliti field theory with diffusing particles preserves their
discrete particle identities [58], i.e. the field theory maintains the particle nature of the degrees of freedom.
This approach is therefore well suited to the study of chemical reactions especially at low copy numbers,
because it does not require any prior spatial coarse graining.

Our formalism also allows us to consider time-dependent reaction rates such as k1(t), k2(t) or k3(t).
These modify the equations of motion in relatively simple ways, with corrections from integrals over the
past then constructed with reaction rates at the corresponding times, see e.g. eqs. (A.40) and (A.45).
This extension could be deployed in situations where the relaxation time scale of the system is comparable
to that of any variation in the interactions or the time period of periodic driving, as in time-dependent
branching processes [59]. It is also straightforward to treat non-Poisson initial conditions using our
method. This will change the initial overlap from eq. (A.16) and introduce different t = 0 boundary
terms in the action in eq. (2.19).

At the more technical level, it will be interesting to explore whether our approach can be used also for
Martin-Siggia-Rose-Jansen-de Dominicis (MSRJD) [41–43] path integrals for classical interacting particle
systems with Langevin dynamics. These share some similarities with the Doi-Peliti approach and a
diagrammatic expansion can be constructed with only response functions if noise sources are treated as
perturbations [60] so that approaches analogous to the ones developed here should be applicable. We also
intend to investigate the connections between the formalism we have presented here and the two-particle
irreducible (2PI) effective action known from field theory [61].

Finally, since our method predicts marginal Poisson distributions for all species, we have access to the
entire time trajectory of the copy number distribution. It will be interesting to deploy this for inference,
by extending it to approximations for the likelihood of a time series of observed copy numbers of molecular
species, especially in biochemical reaction networks. This inference problem becomes more challenging in
the not uncommon situation when not all species can be observed, and one then expects further memory
effects from the projection onto the observable part of the reaction network [62–68].
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critiques. Le Journal de Physique Colloques 37, C1–253 (C1 1976).

44. Hertz, J. A., Roudi, Y. & Sollich, P. Path integral methods for the dynamics of stochastic and
disordered systems. Journal of Physics A: Mathematical and Theoretical 50, 033001 (2017).

45. Kleinert, H. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial
Markets 5th ed. (World Scientific, 2009).

46. Bellac, M. L. & Bellac, P. o. P. M. L. Quantum and Statistical Field Theory 616 pp. (Clarendon
Press, 1991).

47. Itakura, K., Ohkubo, J. & Sasa, S.-i. Two Langevin equations in the Doi–Peliti formalism. Journal
of Physics A: Mathematical and Theoretical 43, 125001 (2010).

48. Kuester, J. & Muenster, G. Tadpole Summation by Dyson-Schwinger Equations. Zeitschrift für
Physik C 73, 551 (1997).

37



49. Baym, G. & Kadanoff, L. P. Conservation Laws and Correlation Functions. Physical Review 124,
287–299 (1961).

50. Stan, A., Dahlen, N. E. & van Leeuwen, R. Time propagation of the Kadanoff–Baym equations for
inhomogeneous systems. The Journal of Chemical Physics 130, 224101 (2009).

51. Meirinhos, F., Kajan, M., Kroha, J. & Bode, T. Adaptive numerical solution of Kadanoff-Baym
equations. SciPost Physics Core 5, 030 (2022).

52. Munsky, B. & Khammash, M. The finite state projection algorithm for the solution of the chemical
master equation. The Journal of Chemical Physics 124, 044104 (2006).

53. Sukys, A. & Grima, R. MomentClosure.jl: automated moment closure approximations in Julia.
Bioinformatics (Oxford, England) (2021).

54. Lefevre, A. & Biroli, G. Dynamics of interacting particle systems: stochastic process and field theory.
Journal of Statistical Mechanics: Theory and Experiment 2007, P07024–P07024 (2007).
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A Appendix

A.1 Time step dependence of errors

Numerically, an important parameter to consider is the time step ∆t we use to evaluate predictions of
the various approximations. We plot the dependence of the absolute value of the relative deviation from
the ground truth (master equation solution) as a function of time for different step sizes for k3 = 1 and
k3 = 10 in fig. A.1. Different step sizes lead to the same error in the steady state while in the transient the
errors decrease with decreasing step size. Note that the scaling in the limit ∆t→ 0 is not as simple here
as for a standard Euler integration scheme for a differential equation: as ∆t is decreased, the number of
time steps and thus the size of the response matrix increases, which increases the potential for numerical
errors in the matrix inversion required in eqs. (4.36) and (4.38).

Figure A.1: Dependence on time step ∆t of the prediction error of SBR for the A + A → A system for k3 = 1
(left) and k3 = 10 (right), with the standard parameter set otherwise (see section 4.7). Smaller step sizes and
a smaller time range are used on the right because of the larger k3. A limit is approached for small ∆t, with
convergence significantly faster near the steady state regime.

A.2 Bare response functions

As briefly touched upon in section 4.7, including only the O(α2) correction to the diagrammatic expansion
for the mean copy number leads to instabilities in the predicted time evolution, especially at larger values
of k3, because the response functions do not decay fast enough; they are not sensitive to the relaxation
from the binary reaction and its rate k3. In fig. A.2(left) we plot the mean copy number obtained by this
method as a function of k3τ (i.e. with time rescaling as before, see fig. 3) for different k3. For k3 > 1, the
mean copy numbers quickly separate from the ground truth and would diverge if we ran the dynamics
to longer times. In fig. A.2(right) we plot the response function R0(τ, τ ′) for τ ′ = 0 as a function of k3τ .
This measures the change in µ at time k3τ from a small perturbation in the creation rate k1 at time
τ ′ = 0. For large k3 this effect should decay rapidly because of the fast A + A → A reaction, but the
approximation does not capture this because the bare response always decays on a timescale of O(1).

A.3 Long time behaviour of SBR

In fig. A.3 we show some additional information regarding the long-time behaviour of the dynamics of the
A+A→ A system with the baseline reactions, for the standard parameter set but with larger rates k3 =
10 and k3 = 100 for the coagulation reaction. We show the predictions of SBR and compare to the solution
of the master equation. The initial decay in the trajectories is driven by the fast coagulation reaction
with rate k3 and the second decay by the baseline destruction rate k2, which is of O(1). From these plots
we see that, for short times of the order of 1/k3, the SBR closely reproduces the ME trajectories. After
that time, there are deviations between SBR and ME driven by the fact that SBR leaves out Ω1,m terms
with m > 2, so SBR does not predict the correct steady state and after times of O(1), its deviation from
the master equation solution is constant.

39



Figure A.2: Mean copy numbers (left) and response functions (right) obtained by including only O(α2) terms
in the diagrammatic expansion. Proceeding as in fig. 3, we scale down integration time t and time step ∆t as we
increase k3. The bare response functions R0(τ, τ ′ = 0) used in this method are plotted as a function of k3τ for
different k3. We see that the method is unstable at large k3 because the bare response functions do not decay
fast enough at large k3, that is a perturbation created at τ ′ = 0 in the system has an apparent effect for a time
that is much longer than the timescale of the A+A→ A reaction.

A.4 Construction of the path integral

We want to be able to express averages in terms of the formalism introduced in the main text. The
construction of the path integral is closely inspired by [39].

We define the associated bra states of the kets defined earlier, namely 〈n| = 〈n1, . . . , nN | which is
generated by the action of ai on the state 〈0|:

〈n| = 〈0|
∏
i

anii
ni!

(A.1)

The difference from the standard quantum mechanics normalization is explicit here and comes from
demanding that the bra states are orthonormal to the ket states, 〈n|n′〉 = δn,n′ .

We now define a uniform state or “sum state”,

〈1| =
∑
n

〈n| = 〈0|e
∑
i âi (A.2)

where the second expression follows from eq. (A.1). Because bra and ket states are orthonormal we have
then 〈1|n〉 = 1, and so

〈1|P (τ)〉 =
∑
n

P (n, τ) = 1 ∀ 0 < τ < t (A.3)

which expresses conservation of probability. More generally, the mean value of any observable A at time
τ , denoted by Ā(τ), is given by

Ā(τ) =
∑
n

P (n, τ)A(n)

=
∑
n

P (n, τ)〈1|Â|n〉

= 〈1|Â|P (τ)〉

(A.4)

where Â is obtained by replacing ni → â†i âi in A(n). Using the explicit expression for |P (τ)〉 we can
also write

Ā(τ) = 〈1|ÂeĤτ |P (0)〉 (A.5)

where the initial state |P (0)〉 is the Poisson mixture of species with initial means n̄0i as defined in
eq. (2.14).
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Figure A.3: (Top) Relative deviations as a function of time τ between the self-consistent bubble resummed
(SBR) approximation and the master equation (ME) for the A+A→ A system with baseline reactions, with the
standard parameter set but larger k3 as shown. These results are calculated for a longer total time t = 2.5 (with
time step ∆t = 0.001) to show the approach to the final steady state where the copy numbers and deviations
become constant. (Bottom) Corresponding dynamics of the mean copy numbers, plotted on a logarithmic time
scale to show the fast O(1/k3) and slow O(1) time regimes.

We introduce the coherent states |ψ〉, 〈ψ|, which are eigenstates of the creation and annihilation operators
â and â† with eigenvalues ψ and ψ∗, respectively:

â|ψ〉 = ψ|ψ〉 〈ψ|â† = 〈ψ|ψ∗ (A.6)

(For simplicity we treat a single species for now and so omit the species index i.) Explicitly, these
eigenstates can be written as

|ψ〉 = exp

(
−1

2
|ψ|2 + ψâ†

)
|0〉, 〈ψ| = 〈0| exp

(
−1

2
|ψ|2 + ψ∗â

)
(A.7)

with overlap given by

〈ψ1|ψ2〉 = exp

(
−1

2
|ψ1|2 −

1

2
|ψ2|2 + ψ∗1ψ2

)
(A.8)

From these states one can construct an overcomplete resolution of the identity,

I =

∫
dφ∗dφ

π
|φ〉〈φ| with dφ∗dφ = d(Reφ)d(Imφ) (A.9)

We now insert such a resolution of the identity after every time step ∆t, using one field for each species,
i.e. φ(τ) ≡ φτ = (φ1(τ), φ2(τ), . . . , φN (τ)). Doing this in the normalization eq. (A.3) at time t gives

1 = N−1 lim
∆t→0

∫ t∏
τ=0

dφ∗τdφτ 〈1|φt〉〈φt|eĤ∆t|φt−∆t〉 . . . 〈φτ |eĤ∆t|φτ−∆t〉 . . . 〈φ0|P (0)〉 (A.10)

with a normalization factor N = π(t/∆t)+1 that will not play a role in the following. The matrix element
factors can be evaluated to O(∆t) as

〈φτ |eĤ∆t|φτ−∆t〉 = 〈φτ |φτ−∆t〉 = 〈φτ |φτ−∆t〉eH(φ∗τ ,φτ−∆t)∆t (A.11)

because the Hamiltonian in eq. (2.11) is normal ordered, i.e. with creation operators â†i always to the left
of annihilation operators âi; these operators then simply act on their eigenvectors to the left and right,
respectively, giving the relevant factors of φ∗i (τ) or φi(τ):

H(φ∗τ ,φτ−∆t) = 〈φτ |Ĥ|φτ−∆t〉 (A.12)
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Note that the conjugate field φ∗ is always a time step ∆t ahead of φ. The remaining overlap factor in
eq. (A.11) is

〈φτ |φτ−〉 = exp
[
−(φ∗τ )T(φτ − φτ−)

]
exp

(
1

2
|φτ |2 −

1

2
|φτ− |2

)
(A.13)

After multiplication across τ = 0,∆t, . . . t the second exponential cancels for all times other than the
initial and the final ones. The first exponential can be expressed in terms of the discrete derivative
∆τφi(τ) = 1

∆t (φi(τ)− φ(τ−)):

exp
[
−(φ∗τ )T(φτ − φτ−)

]
= exp

[
−(φ∗τ )T∆τφ(τ)∆t

]
(A.14)

The final term in eq. (A.10) including the final surviving squared exponential can be evaluated by noticing
that the sum state 〈1| is, up to normalization, a coherent state with eigenvalue 1, such that

〈1|φt〉 exp

(
1

2
|φt|2

)
= exp

(∑
i

φi(t)

)
(A.15)

For the initial term one has similarly, using that |P (0)〉 is proportional to an eigenvector of ai with
eigenvalue n̄0i,

〈φ0|P (0)〉 exp

(
−1

2
|φ0|2

)
= exp

(∑
i

[
n̄0i(φ

∗
i (0)− 1)− |φi(0)|2

])
(A.16)

We now generalize the above construction by inserting instead of an identity I, a factor

e
∑
i θi(τ)∆t âi I e

∑
i θ̃i(τ)∆t (â†i−1) (A.17)

at each discretized time τ . Differentiation w.r.t. the generating fields θi(τ), θ̃i(τ), defined for each species
at each time step, then allows us to generate averages such as mean copy numbers, correlation functions
etc. as explained in the main text. This leads to following path integral representation of the generating
function:

Z(θ̃, θ) = lim
∆t→0

N−1

∫ ∏
τ

dφ∗τdφτ 〈1|φt〉
t∏

τ=∆t

〈φτ |e
∑
i(â
†
i−1)θ̃i(τ)∆teĤ∆te

∑
i âiθi(τ−∆t)∆t|φτ−∆t〉〈φ0|P (0)〉

(A.18)
The matrix element for the propagation is then given by

〈φτ |e
∑
i(â
†
i−1)θ̃i(τ)∆teĤ∆te

∑
i âiθi(τ−∆t)∆t|φτ−∆t〉 =

eH(φ∗τ ,φτ−∆t)∆t〈φτ |φτ−∆t〉
∏
i

{
eθ̃i(τ)(φ∗i (τ)−1)∆t+θi(τ−∆t)φi(τ−∆t)∆t

} (A.19)

Putting all the elements together with the initial and final overlap, that is eqs. (A.13), (A.15) and (A.16),
the partitition function can be written in terms of an action, S, as

Z(θ̃, θ) = lim
∆t→0

N−1

∫ ∏
τ

dφ∗τdφτe
S(φ∗,φ) (A.20)

where S and its subsequent forms are given in the main text in eq. (2.17) and below.

A.5 Matrix form of baseline action and discrete time response function

In this section we cast the baseline action in a matrix form for a multivariate Gaussian distribution and
obtain the response function by inverting the precision matrix of the Gaussian. We start by defining the
following vectors,

φi = (φi(0), φi(∆t), . . . , φi(t−∆t), φi(t))

φ̃i = (φ̃i(0), φ̃i(∆t), . . . , φ̃i(t−∆t), φ̃i(t))

bi = (θi(0), θi(∆t), . . . , θi(t−∆t), θi(t))∆t

b̃i = (θ̃i(0) + k1i, θ̃i(∆t) + k1i, . . . , θ̃i(t−∆t) + k1i, θ̃i(t) + k1i)∆t

(A.21)
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Then one has the quadratic action,

S0

(
φ̃, φ

)
=
∑
i

[
φ̃T
i b̃i + φT

i bi − φT
i J

T
i φ̃i

]
+ const. (A.22)

where Ji is a lower triangular matrix defined as

Ji =



1 0 0 0 . . . 0
k2i∆t− 1 1 0 0 . . . 0

0 k2i∆t− 1 1 0 . . . 0
0 0 k2i∆t− 1 1 . . . 0
...

...
...

... . . . 0
0 0 . . . 0 k2i∆t− 1 1


(A.23)

The corresponding path integral is Gaussian and decoupled across molecular species.

To find the response and correlation functions one writes the quadratic part of the action (for one species)
as

− 1

2

(
φi
φ̃i

)T(
0 JT

i

Ji 0

)(
φi
φ̃i

)
(A.24)

Because the fields have a Gaussian distribution, the matrix that appears here is the inverse covariance
or precision matrix. Inverting gives the covariance matrix in block form:(

〈δφiδφT
i 〉 〈δφiδφ̃T

i 〉
〈δφ̃iδφT

i 〉 〈δφ̃iδφ̃T
i 〉

)
=

(
0 JT

i

Ji 0

)−1

=

(
0 J−1

i

(JT
i )−1 0

)
(A.25)

As expected on general grounds of causality, the bottom right block with its averages of products of
φ̃-factors vanishes. The correlation block (top left) also vanishes because the precision matrix has no
φ̃φ̃-couplings. The only nonzero covariance block is the response function matrix 〈δφiδφ̃T

i 〉 = J−1
i ,

with entries R0i(τ, τ
′) = 〈δφi(τ)δφ̃i(τ

′)〉. As Ji is lower triangular with unit diagonal entries, it follows
directly that the response function matrix has the same structure: the equal-time response (diagonal
elements) is R0i(τ, τ) = 1 and the response is causal in that the elements above the diagonal vanish,

R0i(τ, τ
′) = 0 if τ < τ ′ (A.26)

This is of course consistent with the interpretation discussed in the main text, of φ̃i(τ
′) representing a

perturbation (increase in creation rate of species i) and R0i(τ, τ
′) measuring the response of the “real”

field φi(τ) at τ ≥ τ ′.

The non-trivial elements of the response can be found from the condition for it to be the inverse of Ji:∑
τ ′′

Ji(τ, τ
′′)R0i(τ

′′, τ ′) = δτ,τ ′ (A.27)

which for τ > τ ′ implies

R0i(τ, τ
′)−R0i(τ −∆t, τ ′) = −k2iR0i(τ −∆t, τ ′) (A.28)

Solving iteratively starting from R(τ ′, τ ′) = 1 gives

R0i(τ, τ
′) = (1− k2i∆t)

(τ−τ ′)/∆t (A.29)

For reference, we give the corresponding result in the continuous time limit ∆t→ 0:

R0i(τ, τ
′) = e−k2i(τ−τ ′)Θ(τ − τ ′) (A.30)

where Θ(·) is the Heaviside step function. This is the solution of the inversion condition, which in
continuous time becomes a differential equation:

∂τR0i(τ, τ
′) = −k2iR0i(τ, τ

′) for τ > τ ′ (A.31)

Writing Ji in continuous time form also shows that

R−1
0i (τ, τ ′) = (∂τ + k2i)δ(τ − τ ′) (A.32)

which as expected is the same result as eq. (2.46) in the main text.
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A.6 Resumming bubble diagrams as a geometric series

In this section we show how to perform the bubble summation of section 4.5 in discrete time by considering
the series of matrix products as a geometric series. We start by summing the series in eq. (4.33) To do
so we define a new matrix χ(τ, τ ′) such that

χ(τ, τ ′) = R2
0(τ, τ ′) element-wise (A.33)

and a column vector M(τ) as M(τ) = µ2(τ). The matrix χ is a lower triangular matrix because of the
causality of the response function, with all entries equal to unity on the diagonal. This matrix is thus not
diagonalizable and powers of the matrix χ2, χ3, χ4, . . . need to be explicitly calculated. The dimension
of the matrix χ (as for R0) is (B + 1, B + 1), where B = t/∆t is the number of time steps.

For the following we include a factor ∆t in each matrix product, i.e. we define the matrix product PQ to
have (τ, τ ′) entry ∆t

∑
τ ′′ P (τ, τ ′′)Q(τ ′′, τ ′). This is useful because such matrix products become operator

products in the limit ∆t → 0. We also define a lower shift matrix L with entries L(τ, τ ′) = δτ−,τ ′/∆t.
Multiplying this from the left with a matrix shifts the first time index, e.g. Lχ has (τ, τ ′) entry

∆t
∑
τ ′′

L(τ, τ ′′)χ(τ ′′, τ ′) = χ(τ−, τ
′) (A.34)

In the continuous time limit this will become a delta function, L(τ, τ ′) = δ(τ − τ ′), and so drop out of
the expressions. The first sum in eq. (4.33) is then

∆t
∑
τ ′

R2
0(τ−, τ

′)µ2(τ ′−) = ∆t
∑
τ ′

(Lχ)(τ, τ ′)(LM)(τ ′) = (LχLM)(τ) (A.35)

and the second one similarly

(∆t)2
∑
τ ′

R2
0(τ−, τ

′)R2
0(τ ′−, τ

′′)µ2(τ ′′−) = (∆t)2
∑
τ ′

(Lχ)(τ, τ ′)(Lχ)(τ ′, τ ′′)(LM)(τ ′′) = (LχLχLM)(τ)

(A.36)

We can then write the full sum eq. (4.33) for Ω1,2, the column vector with entries Ω1,2(τ), as

Ω1,2 =

B+1∑
n=1

2n−1(−αk3)n(Lχ)n−1LM (A.37)

Note that for finite ∆t we in principle only have a finite number of terms in the bubble diagram series
that contribute as shown because Lχ is strictly lower triangular (i.e. has zeros on the diagonal), but
for the same reason the sum is unchanged if we extend it to all n ≥ 1. We can perform the resulting
geometric summation to obtain

Ω1,2 = (−αk3) (I− (−2αk3Lχ))
−1
LM (A.38)

In continuous time this gives eq. (4.34) of the main text

Ω1,2(τ) = (−αk3)

∫ τ

0

dτ ′
(
δ(τ − τ ′) + 2αk3R

2
0(τ, τ ′)

)−1
µ2(τ ′) (A.39)

where the inverse is now in the operator sense. Self-consistent replacement of the bare propagator, R0,
by the dressed propagator, R, leads to eq. (4.36) of the main text. If k3 is a function of time k3(τ), then
this can be easily generalized to obtain

Ω1,2(τ) = −α
∫ τ

0

dτ ′k3(τ ′)
(
δ(τ − τ ′) + 2αk3(τ ′)R2(τ, τ ′)

)−1
µ2(τ ′) (A.40)

In the following, we directly start with the dressed response, instead of R0. To sum up the series of
diagrams in eq. (4.37) one can proceed similarly. We define a new diagonal matrix ζ with elements
ζ(τ, τ ′) as

ζ(τ, τ ′) = µ(τ)δτ,τ ′/(∆t) (A.41)
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Then we can express the self-energy Σ∗ with entries Σ∗(τ, τ ′) as

Σ∗ =

B+1∑
n=1

(−2αk3)n(Lχ)n−1Lζ (A.42)

with χ now understood as the element-wise square of R rather than R0. This can be summed up to give

Σ∗ = lim
∆t→0

(−2αk3) (I− (−2αk3Lχ))
−1
Lζ (A.43)

In continuous time this gives eq. (4.38) of the main text

Σ∗(τ, τ ′) = (−2αk3)
(
δ(τ − τ ′) + 2αk3R

2(τ, τ ′)
)−1

µ(τ ′) (A.44)

which for time-dependent rates k3(τ) would generalize to

Σ∗(τ, τ ′) = −2αk3(τ)
(
δ(τ − τ ′) + 2αk3(τ ′)R2(τ, τ ′)

)−1
µ(τ ′) (A.45)

In the simplest discrete-time implementation with B = t/∆t time steps, the above relations lead to a
computational complexity for getting all copy number means and response functions of O(B3). This
comes from an O(B2) effort for the inversion of the triangular matrices; since this needs to be done for
every one of the B time steps, we have O(B3) complexity overall.

A.7 Poisson copy number distribution

Following the same line of arguments as in section 2.3 we will now show that the our path integral as
defined in eq. (2.16) or more explicitly in eq. (A.18) describes marginal Poisson copy number distributions
for each species if the path integral is Gaussian, i.e. the action only has has linear and quadratic terms,
and if the field correlation functions Ci vanish. We start by taking the k derivatives w.r.t θ̃ and θ such
that the operators are normal ordered,

1

(∆t)2k

(
∂

∂θ̃i(τ+)
+ 1

)k
∂k

∂θki (τ)
Z

∣∣∣∣∣
θ,θ̃=0

= 〈1|(â†i )
k(âi)

k|φτ 〉

= 〈ni(τ)(ni(τ)− 1) . . . (ni(τ)− k + 1)〉
= 〈{ni(τ)}k〉

(A.46)

where we acted on the state by the annihilation operator to lower it, then used the creation operator
and finally exploited probability conservation as defined in eq. (A.3). 〈{ni}k〉 ≡ 〈ni!/(ni− k)!〉 is the kth

factorial moment.

Calculating the same derivatives from the path integral we have

1

(∆t)2k

(
∂

∂θ̃i(τ+)
+ 1

)k
∂k

∂θki (τ)
Z

∣∣∣∣∣
θ,θ̃=0

= 〈(φ̃i(τ+) + 1)kφki (τ)〉

= 〈φki (τ)〉
= 〈[δφi(τ) + 〈ni(τ)〉]k〉

(A.47)

where we have used the causality property discussed in section 2.3 in going from the first to the second
line.

The final average can now be expanded and evaluated using Wick’s theorem if, as assumed, we have a
Gaussian path integral. All terms involving δφi then reduce to powers of Ci(τ, τ) = 〈δφi(τ)δφi(τ)〉, so if
the latter vanishes one has simply

1

(∆t)2k

(
∂

∂θ̃i(τ+)
+ 1

)k
∂k

∂θki (τ)
Z

∣∣∣∣∣
θ,θ̃=0

= 〈ni(τ)〉k (A.48)

Comparing with eq. (A.46) we obtain that the kth factorial moment of the copy number distribution is
equal to the mean to the power k, that is 〈{ni}k〉 = 〈ni〉k for all times, which uniquely characterizes a
Poisson distribution [69] as claimed. Note that even though the marginal distributions are Poisson, there
can still be correlations between species.
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A.8 Numerical solution of master equation

In this appendix we explain how we construct numerical solutions of the master equation, using the single

species system with the A + A
k3−→ A reaction and the baseline reactions ∅

k1−⇀↽−
k2

A as an example. For

the particular case of single species and single step master equations – where only one molecule can be
created or destroyed in one time step – a more efficient method [70] is available that relies on calculating
only the eigenvalues (analytically or numerically) of the master operator. We stick to the significantly
more general finite space projection method [52] here.

The master equation for the time evolution of the probabilities P (n, τ) of having n number of molecules
of A in the reaction volume is given by

∂τP (n, τ) = k1P (n−1, τ)+ [k2(n+1)+k3(n+1)n]P (n+1, τ)− [k1 + nk2 + k3n(n− 1)]P (n, τ) (A.49)

The state of the system is completely described by n, the number of molecules of A. To make the state
space finite and thus allow a numerical approach to the problem, we impose an upper bound on the
maximum copy number, calling this nmax. The state-space of the system is thus of size κ = nmax + 1.
This has to be chosen large enough to cover the bulk of the probability throughout the dynamics. The
errors of this method are well controlled and its convergence to the true solution can be shown for many
cases [52]. For the simulations for A + A → A, for example, we use nmax = 20. Calling the vector of
state probabilities |P (τ)〉 = |P (0, τ), P (1, τ), . . . , P (nmax, τ)〉, the master equation can then be written
in matrix-vector form as

∂τ |P (τ)〉 = M |P (τ)〉 (A.50)

with an appropriately defined master operator M , a matrix with elements Mnn′ ; the off-diagonal entries
give the rates for transitions from n′ to n. To ensure probability conservation, any reactions that would
violate the upper bound n ≤ nmax are removed; in the concrete example, this applies to the particle
creation reaction ∅ → A from n = nmax to n = nmax + 1.

The initial distribution over the state space is a Poisson distribution with mean n̄0

P (n, 0) = N−1e−n̄0
n̄n0
n!

(A.51)

Due to the truncation of the state space an additional normalization factor N =
∑nmax

n=0 P (n, 0) is in
principle necessary here, though for sensibly chosen nmax this will be very close to unity; e.g. for the
concrete system considered here one finds, with n̄0 = 4/3 as in the main text and nmax = 20, that 1−N
is of the order of 10−18. (For the multispecies case, the initial is constructed analogously as a product
of such truncated Poisson distributions.)

Given the initial condition, |P (τ)〉 can be found by integrating the system eq. (A.50) of linear differential
equations using any standard algorithm, in the simplest case Euler integration with fixed time step
∆t. Alternatively, and this is the approach we use throughout, one can write the solution as |P (τ)〉 =
eMτ |P (0)〉 and evaluate the matrix exponential by diagonalizing M . To do this one decomposes

M = RΛLT (A.52)

where the columns of the matrices R and L are the right and left eigenvectors, respectively, normalized
as RLT = I, and Λ is a diagonal matrix collecting the corresponding eigenvalues. We perform this
diagonalization using standard numpy linear algebra packages for singular value decomposition. The
matrix exponential is then eMτ = ReΛτLT and accordingly

|P (τ)〉 = ReΛτLT|P (0)〉 (A.53)

Once |P (τ)〉 is known, averages of one-time observables such as the mean copy number or its second
moment can be evaluated straightforwardly as

〈n(τ)〉 =
∑
n

nP (n, τ), 〈n2(τ)〉 =
∑
n

n2P (n, τ) (A.54)
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To measure two-time quantities such as the connected number correlator, 〈δn(τ)δn(τ ′)〉 we use

〈δn(τ)δn(τ ′)〉 = 〈1|n̂ eM(τ−τ ′)n̂ eMτ ′ |P (0)〉 − 〈n(τ)〉〈n(τ ′)〉 (A.55)

where n̂ is the number operator, a diagonal matrix with the number of particles for each state (n =
0, 1, . . . nmax) on the diagonal.

To find the response function R(τ, τ ′), finally, we use the following procedure. Going back to the
definition of the response as caused by temporary perturbations in the creation rate k1, we perturb
k1 to k′1 = k1 + ∆k1 at time τ ′ for a time ∆t and call M ′ = M + ∆M the perturbed master operator.
The response function for τ > τ ′ is then

∆t∆k1R(τ, τ ′) = 〈1|n̂ eM(τ−(τ ′+∆t))eM
′∆teMτ ′ |P (0)〉 − 〈1|n̂ eM(τ−(τ ′+∆τ))eM∆τeMτ ′ |P (0)〉 (A.56)

In the limit ∆t→ 0 this simplifies to

R(τ, τ ′) = 〈1|n̂ eM(τ−τ ′) ∆M

∆k1
eMτ ′ |P (0)〉 (A.57)

The result is independent of ∆k1 as it should be because ∆M is directly proportional to ∆k1.
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