2303.00031v2 [cs.AR] 28 Sep 2023

arxXiv

Tiny Classifier Circuits:
Evolving Accelerators for Tabular Data

Konstantinos Tordanou!, Timothy Atkinson?, Emre Ozer?, Jedrzej Kufel?, John Biggs®, Gavin Brown!, and
Mikel Lujén!

'Department of Computer Science, University of Manchester, UK
{firstname.lastname ] @manchester.ac.uk
2NNAISENSE, Switzerland
{firstname.lastname } @nnaisense.com
3Pragmatic Semiconductor, Cambridge, UK
{eozer, jkufel, jbiggs}@pragmaticsemi.com

Abstract

A typical machine learning (ML) development cycle for
edge computing is to maximise the performance during model
training and then minimise the memory/area footprint of the
trained model for deployment on edge devices targeting CPUs,
GPUs, microcontrollers, or custom hardware accelerators.

This paper proposes a methodology for automatically gen-
erating predictor circuits for classification of tabular data
with comparable prediction performance to conventional ML
techniques while using substantially fewer hardware resources
and power. The proposed methodology uses an evolutionary
algorithm to search over the space of logic gates and automat-
ically generates a classifier circuit with maximised training
prediction accuracy. Classifier circuits are so tiny (i.e., con-
sisting of no more than 300 logic gates) that they are called
“Tiny Classifier” circuits, and can efficiently be implemented in
ASIC or on an FPGA.

We empirically evaluate the automatic Tiny Classifier circuit
generation methodology or “Auto Tiny Classifiers” on a wide
range of tabular datasets, and compare it against conventional
ML techniques such as Amazon’s AutoGluon, Google’s TabNet
and a neural search over Multi-Layer Perceptrons. Despite
Tiny Classifiers being constrained to a few hundred logic gates,
we observe no statistically significant difference in prediction
performance in comparison to the best-performing ML base-
line. When synthesised as a Silicon chip, Tiny Classifiers use
8-18x less area and 4-8x less power. When implemented as
an ultra-low cost chip on a flexible substrate (i.e., FlexIC),
they occupy 10-75x less area and consume 13-75x less power
compared to the most hardware-efficient ML baseline. On an
FPGA, Tiny Classifiers consume 3-11x fewer resources.

1. Introduction

The relentless successes of Deep Neural Networks (DNN5), in
achieving near (or better than) human accuracy for important
application domains has created tremendous research and in-
dustrial momentum. Although originally much success was
based on Convolutional Neural Networks and harnessing the
availability of large labelled datasets of images, the successes

have expanded to various other tasks and associated neural
architectures (e.g., recurrent and transformers for Natural Lan-
guage Processing). These large datasets are mainly images,
audio or text. This kind of data can be characterised as homo-
geneous data.

Given the momentum gathered and the existence of com-
mon computational kernels across the different kinds of DNNs,
we are witnessing a myriad of hardware accelerators for in-
ference as well as training of DNNs. In both scenarios, the
most common approach for these accelerators is to be pro-
grammable hardware with specialized datatypes and computa-
tions, rather than being a task-specific circuit. As DNNs have
evolved, their computation has evolved from dense tensor
operations towards increased sparsity.

To sum up, the current status quo separates the development
of the specific DNN for a particular task from the process
of developing the hardware accelerator for the training, or
inference, of the specific DNN. In more general terms, the
current best practice considers a Machine Learning (ML) tech-
nique which generates a model, where the training and the
execution of the model versus the design and optimization of
the hardware accelerator are isolated; at best a co-design hap-
pens. Nonetheless, both development activities intrinsically
involve optimization processes. Thus, a reasonable question to
postulate would be: Could we develop a supervised learning
technique that takes tabular data as input, and generates a
circuit representation for classification behaving like an ML
model?

Our main contribution is to address this question by pre-
senting a methodology to automatically generate classification
circuits directly from tabular data. In contrast to homoge-
neous data (image, text), we focus on tabular data which, for
example, can combine numerical and categorical data (hetero-
geneous). DNNs excel at capturing the spatial or semantic
relationship in images or speech data. However, for tabular
data, the correlation among the features is weaker, and the fea-
tures have no intrinsic positional information. Hence, tabular
data is an active research area for DNNs [10, 62, 63, 41].

Such heterogeneous data are ubiquitous [63], with many



associated real-world applications. The paper describing
Google’s TabNet [10] refers to tabular data as “the most com-
mon type of data in real world AI”. Important use-cases for
tabular data appear, for example, in healthcare [77], where var-
ious numerical and categorical descriptors of patients can be
used to infer suggestions for medication [78, 16] and person-
alised treatments. Of particular relevance, tabular data often
exists in resource-limited scenarios suited to low-power ML
also known as tinyML [45, 55, 47, 44].

The fundamental reason behind the benefits of our method-
ology is two-fold. Firstly, our boolean function representation
is otherwise known as a “decision tree”, in ML, and thus in-
herits favourable properties of this representation. A series
of recent studies has indicated that decision trees outperform
Deep Learning on tabular data, notably Grinsztajn et al. [33]
observe that tree-based models have a natural advantage in
such data. Specifically, they explain:

“This superiority is explained by specific features of
tabular data: irregular patterns in the target func-
tion, uninformative features, and non rotationally-
invariant data where linear combinations of features
misrepresent the information” [33].

A second fundamental benefit of our approach is the method
of learning the boolean function representation. Our proposed
evolutionary scheme has the ability to bypass the local min-
ima which may trap a traditional gradient-based tree boosting
technique.

This paper proposes an alternative methodology to current
ML and Deep Learning methods used in the prior art to make
predictions from tabular data, and makes the following contri-
butions:

1. We establish a connection for the first time between circuit
synthesis and a supervised ML problem via Graph-Based
Genetic Programming, a form of evolutionary computing.
No previous graph-based genetic programming research,
to our knowledge, has considered a hardware circuit repre-
sentation to be an ML predictor.

2. We propose a methodology called “Auto Tiny Classifiers’
to automatically generate hardware circuits from tabular
data for ML classification using graph-based genetic pro-
gramming. Tiny Classifier circuits are composed of a very
small number of logic gates (i.e., a few hundred) and are
capable of matching the prediction accuracy of the state-
of-the-art ML classifiers that are less efficient in area and
power when implemented in hardware.

3. We describe a toolflow that generates Tiny Classifiers as
ASIC blocks. Then, we present the synthesis results of
the Tiny Classifiers and ML baseline designs targeting the
conventional Silicon technology. We also implement the
Tiny Classifiers and ML baselines as FlexICs and fabri-
cate them on flexible substrates (i.e., polyimide) using the
flexible electronics fabrication technology. In addition, our
toolflow generates Tiny Classifiers as Intellectual Property

s

(IP) blocks so that they can be integrated as accelerators

into a System-on-Chip (SoC). We demonstrate this in an

Arm-based SoC with substantial FPGA resources in which

the accelerators are synthesized.

Tiny Classifiers can be used in many scenarios; e.g., trig-
gering circuits within an SoC [32]. A compelling scenario is
to maintain an SoC in a low-power state while Tiny Classi-
fiers are the always-on circuits. Once a situation of interest
is uncovered by the classifier, then the rest (or subset) of the
system would be awakened. Hardwired Tiny Classifiers can
also be useful on their own for emerging Fast Moving Con-
sumer Goods (FMCG) applications such as smart packaging
enabled with flexible electronics (packages of dairy and meat
products, labels of deodorant bottles, etc). Smart packages can
be equipped with integrated circuits (ICs) fabricated on flexi-
ble substrates (e.g., plastic) using low-cost flexible electronics
technology [53, 72, 17].

Flexible ICs are significantly less costly than Silicon-based
ICs, paving the way to low-cost circuit customization [18].
Tiny Classifiers can be implemented as flexible ICs closely
coupled with low-cost printed sensors in a smart package and
can make in-situ real-time predictions. There are recent exam-
ples of proposing and demonstrating ML models as flexible
ICs to make in-situ classifications [54, 56, 55] in emerging
FMCG products. These are typical near-sensor computing
system [79, 39] examples where a compute block is closely
coupled with a sensor, and the sensor data are turned into
knowledge in the form of inference immediately at the source
by low-cost and energy-efficient hardware. The programma-
bility of classifier circuits is not a requirement for smart pack-
ages because of short FMCG product lifetimes (e.g., days
or weeks) where products along with their packages will be
disposed/recycled after use.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a brief introduction to graph-based genetic
programming. Section 3 discusses the adaptation of the evo-
lutionary algorithm used in Auto Tiny Classifiers. Section 4
describes Auto Tiny Classifiers for generating Tiny Classifier
circuits. Section 5 describes the tabular datasets used in the
experimental evaluation and shows the performance, hardware
design and implementation results. Finally, Section 6 presents
the related work, and Section 7 concludes the paper.

2. Background

2.1. Graph-based Genetic Programming

The general graph-based genetic programming approach
[51, 12,21, 59] follows a traditional evolutionary methodology
(see Figure 1). A set of possible solutions (the ‘population’)
are recombined (‘crossover’) and/or perturbed (‘mutation’).
The new, candidate, solutions (the ‘children’) are then evalu-
ated for their performance on the given task (giving a score,
typically referred to as the ‘fitness’). The best-performing
children are selected to form the new population in the next



iteration. Under the assumption that the problem has some sort
of local continuity, such that children generated by perform-
ing crossover or mutation on high-quality solutions are more
likely to be high-quality than randomly generated solutions,
the algorithm tends towards higher-quality solutions over time.
In doing so, it mimics natural Darwinian evolution, with the
fitness acting as a selection pressure on the population, and
mutation and crossover operators introducing variation.
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Figure 1: Overview of the Graph-based Genetic Programming
methodology.

Graph-based genetic programming has been applied directly
to both functional programs [46, 58] and stateful programs
[20]. Graphs representing artificial neural networks have also
been studied [9, 65]. The use of graph-based genetic program-
ming for circuit synthesis has been considered in the literature
[49, 48, 12, 64, 30], where the most prominent technique,
Cartesian Genetic Programming (CGP), rooted in circuit syn-
thesis has remained a relevant benchmark task [71, 36, 38].
Such existing studies typically consider the task of synthesis
against a completely known truth table, even when working
with approximate circuit synthesis [70, 52], where some error
on that known truth table is acceptable in a tradeoff for greater
efficiency.

In contrast, only a fraction of the truth table is known in
our ML setting (tabular data classification), and the population
consists of circuits, represented as graphs, which are evaluated
for their ability to correctly classify the training data. The
final performance is measured with respect to the ability of the
generated circuit to generalise as measured with the unseen
test data.

2.2. AutoML, NAS, NAIS versus Auto Tiny Classifiers

Figures 2, 3, 4 and 5 highlight the differences between current
approaches of AutoML, Neural Architecture Search (NAS),
Neural Architecture and Implementation Search (NAIS), and
our Auto Tiny Classifier Circuits methodology for generating
ML hardware as accelerators.

AutoML in Figure 2 and NAS in Figure 3 generate an ML
model and a Neural Architecture model, respectively, with
maximised prediction performance. However, the ML model
must be translated into RTL, which, in turn, still needs to be
verified. NAIS, in Figure 4, selects a specific Neural Network
and a known Neural Network accelerator to iterate over the
space, identifying the best parameters from the hardware pool
to maximise the prediction accuracy.
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Figure 2: Automated Machine Learning (AutoML).
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Figure 3: Neural Architecture Search (NAS).
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Figure 5: Auto Tiny Classifiers.

On the other hand, our proposed methodology searches the
classifier circuit space automatically using an evolutionary
algorithm, as shown in Figure 5. During circuit evolution, the
generated circuit does not map to any predefined ML model or
known hardware circuit. At the end of the search space cycle,
the output is a sea of gates (a combinational circuit), which
is auto-translated into RTL (i.e., typically as multiple Verilog
assign statements for each classification output bit). These
circuits are already verified during the fitness phase of the
evolutionary algorithm. Our methodology is not a co-design
approach, so there are no assumptions about any ML models
or pre-determined hardware accelerator pools.

3. Automatically Evolving Classifier Circuits

Tabular data is addressed as a partial truth table of a circuit
consisting of a sea of logic gates, where multiple heteroge-
neous features of the table are considered as the inputs to the
circuit, whilst the classifier predictions are considered as its
outputs. The fact that features in the tabular data are weakly
correlated allows the conversion of the input-to-output predic-
tion problem, into a simple representation of logic gates that
can make predictions.



We adapt the Evolving Graphs by Graph Programming
(EGGP) algorithm [12] as the evolutionary algorithm to gen-
erate the classification circuits. EGGP follows the consensus
of using the simple 1+ A evolutionary technique [50], and
particularly for circuit synthesis — a practice reinforced by
recent empirical experiments [64, 30]. The algorithm consists
of the following steps:

1. Generate a random initial parent solution S, and evaluate
its fitness fs.
2. While not terminated do:
(a) Generate A children C ...C, by mutating S.
(b) Evaluate the children’s fitness values fi ... f3.
(c) If any child C; has f; > fs, then replace the parent
S =G, fs = fi. Where multiple children satisfy this
condition, the child with the highest fitness is chosen,
tie-breaks are determined at random.

The presence of the > operator in the selection of a new
parent, rather than just >, plays a pivotal role in the perfor-
mance of the algorithm. In allowing the parent to be replaced
by a child with equal fitness, the algorithm mimics the neutral
drift of DNA as described in [42]. This allows the algorithm
to undergo a ‘random walk’ in the space of equivalent solu-
tions, to the best solution so far, exposing the algorithm to new
neighbourhoods of possible children and thereby allowing it
to escape local optima. This simple modification yields signif-
icant performance gains in practice [75, 76, 67] and may be
augmented for further gains [13, 14, 24, 67], although we do
not use these extensions in this work.

3.1. Solution Representation

In the algorithm, functional programs such as digital circuits

are represented as graphs consisting of:

* A set of input nodes V;, each node of which uniquely repre-
sents an input to the program.

* A set of function nodes Vr, each node of which represents a
specific function applied to its inputs.

* A set of output nodes Vp, each node of which uniquely
represents an output of the program.

* A set of edges E connecting function nodes and output nodes
to their respective inputs.

While in general the edges of each node are ordered so that
they appropriately handle commutative functions [12], in this
case, all considered functions are symmetric.

A crucial property of the EGGP representation is that func-
tion nodes need not be ‘active’. If there exists no path from a
function node to an output node, then that node has no seman-
tic meaning in the graph. This inactive material can be freely
mutated to provide a direct mechanism for neutral drift.

3.2. Genetic Operators

When using the 1 + A evolutionary algorithm there are two
main forms of genetic operator; initialisation and mutation.

Initialisation The initialisation is parameterized by the num-
ber of function nodes n, and the set of possible functions F.
First, the [ input nodes i ...i; are created. Then for each
i € 1...n, afunction node v; is created and associated with a
function chosen uniformly at random from F. v; is then con-
nected uniformly at random to existing nodes iy ...iy, vy ... Vi1
until its degree matches the number of expected inputs to
f. Finally, the O output nodes o;...00 are created, and
each is connected uniformly at random to a single node in
i1...i1,v1...v,. The hyper-parameter n determines the overall
size of the graphs throughout the duration of the evolutionary
run.

Mutation Mutation on solutions is performed via point mu-

tations drawn from binomial distributions. The mutation rate

p parameterises the two binomial distributions B(n, p) and

B(E, p) describing mutations of the functions nodes and edges,

respectively. With m,, ~ B(n, p) and m, ~ B(E, p) as the num-

ber of node and edge mutations to apply to the graph, the total

m, +m, mutations are applied in a randomly shuffled order,

where;

* For node mutations, a random function node v € V¢ is
chosen, and its associated function f is replaced with
f' € F,f' # f chosen uniformly at random. As the func-
tions used here are symmetric and of the same arity, there
is no need for input shuffling or connection modification
procedures as described in [13].

* For edge mutations, a random edge e € E is chosen, where
s is the source of e and ¢ is the target of e. The edge is
redirected such that its new target v € V;|JVF is chosen
uniformly at random where the following conditions hold:
— There is no path v — s as this would introduce a cycle.

— v # 1t as this would not introduce any perturbation of the
solution. In the special (very rare) case that the number
of inputs I = 1 and there is only a single node t = i;
satisfying the first condition, the mutation is abandoned.

3.3. Fitness

For all experiments performed here, the fitness of a circuit C
is its balanced accuracy. In general, other fitness functions
could be supported, including additional objectives such as the
number of gates or power consumption, which could be han-
dled through the use of multi-objective graph-based genetic
programming [37] to search for the Pareto-optimal front of
solutions and characterize the trade-off between the objectives.
In experiments performed here, the evolutionary algorithm
simply attempts to maximize the accuracy for a given dataset
and has no prior knowledge of what the eventual prediction
accuracy of the classifier circuit should be. Our methodology
offers the option to split the data into training and validation
sets (with a 50-50% split by default). During evolution, the fit-
ness of circuits is evaluated on both the training and validation
set separately. The fitness of the training set determines the
selection of children to replace the parent, whereas the fitness



of the validation set ultimately determines the ‘best-discovered
solution’. Effectively, we are maximising performance on the
training set, while using the validation set to attempt to iden-
tify the best-generalised solution. The performance reported
later in this paper is the performance on the reserved (unseen)
testing set, as described in Section 5.

3.4. Termination

In this setting, where the theoretical perfect accuracy of 100%
may never be achieved, we require a termination condition.
We use a simple model, whereby if the validation fitness (com-
puted on the 50% validation set) has not improved by at least
Y within k generations, the algorithm terminates and returns
the best-discovered solution with respect to the validation data.
Additionally, the algorithm will automatically terminate if the
number of generations exceeds the threshold G.

3.5. Hyperparameters

The hyperparameters of the algorithm are as follows:

* The number of children per generation, A.

* The mutation rate, p.

* The function set from which solutions may be constructed,

F.

* The termination threshold 7y.
* The corresponding window of generations to achieve that

threshold and terminate, x.

* The maximum number of generations G.

In Section 5.3 we vary the function set F', number of func-
tion nodes n, termination generations k and maximum number
of generations G to choose hyper-parameters for evaluation in
Section 5.4. The other hyper-parameters use the fixed values:
A=4,p=1y=001

3.6. Classifier Circuits as Accelerators

The system can be thought as a set of classification circuit
block(s) or a single classification circuit unit which lead to
classification “guesses”. The prediction could be a single bit
(binary classification) or a set of bits in the case of multiclass
classification problems which represent the encoding of the
target class. Except for the actual classification circuit, the
design uses buffers to hold the input and output data. The use
of local buffers eliminates the data transfers within the system,
keeping the required data close to the computation block(s).
Figure 6 presents classifier circuits as accelerators within
a system. The inputs of the classifier circuit are single
bits. The number of inputs for one classification circuit can
be defined as the number_of_features_in_one_inference x
encoding_bits_per_input. Each feature of the inference is
transformed into a group of bits based on the input encoding
and the preferred number of bits per input. These parame-
ters are user-defined. Most of the classification circuits use
only a subset of input bits to perform a prediction. As a re-
sult, the above expression is the upper bound for an input size
buffer. The actual size of the local buffer is determined after

Oinpil.t‘s“\

Ogates

Ooutputs -~

\

classifier circuit

number of inferences
output buffer

Figure 6: One instance of a classifier circuit.

the generation of the classification circuit and it holds only the
necessary bits which will be consumed by the classification
circuit for the prediction.

In the case of binary classification where the prediction is
‘0’ or ‘1’ (‘yes’ or ‘no’), the output of the classifier is one bit.
Basically, for each inference, we produce one classification
and the result (single bit) is placed in the output buffer. How-
ever, for multiclass classification problems, the classification
circuits have more than one output, which indicate the encoded
predicted class. As a result, we instantiate bits_per_out put
(user-defined parameter) local output buffers, which hold the
encoded prediction for every inference. Of course, the size
and the number of local input/output buffers increase the “cost”
of the accelerator and this tradeoff should be explored based
on the hardware specifications of the target embedded system.

Figure 6 presents the simplest accelerator which evolves
classification circuits. It is the smallest possible accelera-
tor design which includes a classification circuit. Identical
classification circuits can be combined and process multiple
inferences in parallel. In that case, the number of input local
buffers is the number of parallel classification circuits within
the accelerator. The processing of multiple inferences can be
done in parallel, as long as there are available resources.

4. Auto Tiny Classifiers

Figure 7 shows the methodology of automatically generat-
ing Tiny Classifier circuits as hardware accelerators targeting
ASIC and FPGA platforms.

4.1. From Tabular Data to Circuit Representations

The proposed methodology generates a visual representation
of the classifier circuit directly from the training data and user-
defined input parameters, as shown in Figure 7. The input
parameters can be a subset or full set of the following; the
total gate count of the classifier circuits, the type of the in-
put encoding (binary, one-hot, gray), the number of required
bits per input for the encoding and the quantization strategy
(quantization/quantiles). The EGGP-based evolutionary algo-
rithm crawls on the design space using the training data and
converges on a simple graph of a sea of logic gates as the
output circuit representation on which the test data is used to
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Figure 7: Methodology for generating Tiny Classifier circuits.

measure the final prediction accuracy. The sea of logic gates
is automatically translated into RTL (e.g., Verilog).

4.2. ASIC and FPGA Target

Auto Tiny Classifiers generate Tiny Classifier circuits that can
be implemented in ASIC, as shown in the dotted box inside
the “ASIC flow” of Figure 7. The auto-generated Verilog
representation of a Tiny Classifier is read by the synthesis
tool that generates the netlist for a given technology standard
cell library and constraints, and then produces the synthesized
area, power and timing reports. The full chip implementation
requires steps beyond synthesis such as floorplanning, clock
tree insertion, place & route, and layout rules checking and
generation. The output of the flow is the generation of the chip
layouts in GDS format to complete the tape-out as well as the
area, power and timing reports of the full implementation.

To target FPGAs, we use Xilinx SDSoC which is a soft-
ware/hardware development environment from Xilinx for
Zynq platforms [73] [74]. Xilinx SDSoC offers a complete
software/hardware co-design environment where the designers
develop the system software part along with a C/C++ im-
plementation of the accelerated function, which will then be
compiled by High-Level Synthesis (HLS). All layers between
the host application and the hardware RTL (drivers, Operating
Systems, etc.) are provided through an automated process.
For our experiments, we use Xilinx Zynq Ultrascale+ MPSoC
as a target platform which consists of a low-power process-
ing system (PS) with a quad-core Arm Cortex-A53 coupled
with a user-programmable logic part (PL). The generated Tiny
Classifier circuit is the accelerator IP, which is then translated
into C/C++ code for High-Level Synthesis to target an SoC
platform partitioning the code between an FPGA target and
a CPU !. After the transformation of a classifier circuit to a

't is also possible to use the generated Verilog module from our tool-flow
to create a software/hardware co-design solution. However, all the layers
(drivers, OS, etc.) must be developed manually without the automated process
from Xilinx tools.

C/C++ function, the generated circuit is ready to be synthe-
sized. This process is separated into three main phases: (a)
Composer - gathers information about the generated classifier
circuit and creates the necessary project files for the Xilinx
SDSoC tools, (b) Optimizer - optimizes the Xilinx SDSoC
generated project (#pragma directives for the HLS compiler,
data transfer configuration between the PS and PL part of the
target platform, etc) and (c) HLS Builder - produces a ready
plug-and-play image with an integrated lightweight OS for
the target platform including all the necessary libraries in a
software/hardware co-design environment.

5. Evaluation

The experiments use a comprehensive collection of 33 tabular
datasets, mainly from OpenML [69, 22, 29], UCI [25] and
Kaggle [4]. For the datasets, we select the 17 used by Kadra et
al which serve as a representative benchmark collection for tab-
ular data [41], and in addition, focus on 16 mainly multiclass
classification datasets from UCI, Kaggle and OpenML. For ex-
ample, the dataset higgs contains sensor data from high-energy
physics [15]. The dataset clickpred contains advertisements in
a search engine, and whether or not they were clicked. From
the selected collection, 14 tabular datasets were used by Au-
toGluon Tabular [26], the state-of-the-art AutoML tool for
tabular data.

Table 1 provides the full list of datasets and their main
characteristics. Each dataset is split into 80% training and
20% testing sets. The prediction accuracy results for both Tiny
Classifier circuits and ML baseline models in the following
subsections are based on test datasets.

5.1. Selection of Baseline ML Models

We use Google’s TabNet DNN [10] with the recommended
hyperparameters configuration, and AutoGluon (An AutoML
system developed by Amazon) [26, 27] with explicit support
for tabular data (Tabular Predictor) as well as other baseline



| Dataset (Source) | Classes | Rows Features
tvehicle (OpenML) 2 846 22
tcars (OpenML) 3 406 8
user model data (UCI) 4 403 5
tkcl (OpenML) 2 145 95
Tphoneme (OpenML) 2 5404 6
skin-seg (OpenML) 2 245057 | 4
ecoli-data (UCI) 4 336 8
iris (UCI) 3 150 7
tblood (OpenML) 2 748 4
thiggs (OpenML) 2 98050 29
wifi-localization (UCI) 4 2000 7
tnomao (OpenML) 2 34465 119
olinda-outlier (OpenML) | 4 75 3
taustralian (OpenML) 2 690 15
tsegment (OpenML) 2 2310 20
led (UCD) 10 500 7
tnumerai (OpenML) 2 96320 22
Ftminiboone (OpenML) 2 130064 51
wall-robot (Kaggle) 4 5456 3
tjasmine (OpenML) 2 2984 145
yeast (UCI) 10 1484 8
Fchristine (OpenML) 2 5418 1637
tsylvine (OpenML) 2 5124 21
seismic-bumps (UCI) 3 210 8
ccfraud (OpenML) 2 284807 31
clickpred (OpenML) 2 1496391 | 10
vowel (UCI) 2 528 21
nursery (UCI) 5 12958 9
spectf-data (Kaggle) 2 267 45
teaching assist (UCI) 3 151 7
wisconsin (UCI) 2 194 33
sonar (Kaggle) 2 208 61
ionosphere (UCI) 2 351 35

Note: findicates that the dataset was appeared in the Auto-
Gluon Tabular paper [26].

Table 1: The collection of the datasets.

ML models. Google’s TabNet is one of the first successful
DNNGs addressing tabular data, using sequential attention to se-
lect features for decision-making layers. AutoGluon searches
the design space over three state-of-the-art models (i.e, XG-
Boost, TabNeuralNet and NNFastAITab) for Tabular Data
among others. AutoGluon XGBoost is based on Gradient
Boosting, whereas the other two models are based on DNNs.
In our experiments, AutoGluon Tabular Predictor is configured
with the above three models. Kadra et al. [41] observe that a
Neural Architecture Search (NAS) over Multi-layer Percep-
trons (MLPs) delivers state-of-the-art NN models for tabular
data. Hence, we also use the NAS-based protocol described
by Kadra et al. [41] to generate baseline MLP models.

5.2. Data Encoding and Quantization Strategy

Numerical inputs are automatically handled to encode the fea-
tures of a dataset based on user preferences. The encoding
consists of the encoding strategy and the number of bits per in-
put. The encoding strategy determines the way that numerical
features get translated into binary. Currently, four main en-
coding strategies are supported: (a) quantization, where each
feature is divided into buckets of equal width, (b) quantiles,
where each feature is divided into buckets of width roughly
equal numbers to the number of samples, (c) one-hot and (d)
gray. Additionally, the users can manually tune the number of
bits per input to decide the granularity of the input encoding.
From now onwards, experiments report only the best-achieved
accuracy across the available encoding strategies with two and
four bits per input.

In the comparative analysis with Tiny Classifiers, MLP
models are transformed into 2-bit quantized versions. Since
the hardware requirements of Tiny Classifiers are minimal, a
comparison against the non-quantized MLPs does not provide
a fair baseline when considering latency, area and power. Thus,
we use a 2-bit quantized MLP as the resource-optimized high-
performing baseline.

5.3. Tiny Classifier Design Space

A primary goal is to check whether we can generate accurate
combinational logic for an ML classification problem. We
explore different combinations of the hyperparameters (see
Section 3.5) of the evolutionary algorithm to improve the
accuracy of the generated circuits for all the datasets. Next, we
explore the design space in four main directions: (a) the size of
the generated circuit n (number of gates), (b) the function set
F from which solutions (circuits) may be constructed, (c) the
number of generations for the termination criterion function
K, and (d) the number of iterations to achieve a performance
threshold and terminate G.

The heatmap of Figure 8a presents the achieved accuracy
of the generated Tiny Classifier circuits as we progressively
decrease the target NAND gate count from 300 to 50. At the
same time, we explore the accuracy of the circuits with two
different function sets. Overall, we observe a 14 percentage
points reduction in GEOMEAN across all datasets from 300
gates to 50 gates.

The next step is to study how the number of generations for
the termination criterion function impacts the accuracy of Tiny
Classifiers when we limit the circuit size to a maximum of
300 gates. Figure 8b shows the achieved accuracy for various
generation values of the termination criterion function. No
significant change in prediction performance is observed.

Figure 8c presents the number of termination iterations ver-
sus achieved accuracy. We progressively increase the number
of termination iterations as we set the target gate count and the
number of generations for the termination function to 300. We
observe a 2 percentage points improvement in GEOMEAN
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Figure 8: (a) Accuracy vs. number of gates. Generations for the termination function is 300 and termination iterations is 2000. Full
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function. The number of gates is 300 and the number of termination iterations is 2000. (c) Accuracy vs. the number of termination
iterations. The number of gates and the generations for the termination function are both set to 300.

accuracy across all datasets when increasing the number of
iterations.

5.4. Accuracy Comparison

Figure 9 compares the prediction accuracy of Google TabNet,
AutoGluon and Tiny Classifiers. Based on the analysis in
Section 5.3, the hyperparameters of Tiny Classifiers are set to

300 for both the number of gates and the termination function.
In addition, the maximum number of iterations is set to 8000.

Across all the datasets, the average prediction accuracy of
AutoGluon XGBoost is 81%, which is the overall highest. The
mean accuracy of Tiny Classifiers across all the datasets is
78%, which is the second highest.

We compare the prediction accuracy distribution of Tiny
Classifiers against AutoGluon XGBoost to understand how
robust Tiny Classifiers are with respect to XGBoost. To this
end, we perform a 10-fold cross-validation study and show
the accuracy distributions of Tiny Classifiers and XGBoost in
Figure 10 using a violin plot.

The interquartile range of Tiny Classifiers is comparable to

the interquartile ranges of ML baselines and in some cases,
even slightly shorter. The shape of the distribution in Tiny
Classifiers indicates that the accuracy data are highly con-
centrated around the median. This implies a low variance of
the accuracy distribution and therefore makes Tiny Classifiers
robust to variation.

The best-performing ML model, XGBoost, and Tiny Classi-
fiers from Figure 9 are also compared to the best and smallest
MLP configurations. We first explore the accuracy of a 9-layer
MLP with 512 neurons following the protocol described in
[41] (i.e., best MLP configuration) where the number of lay-
ers refers to the “hidden” layers of the neural network. The
NAS takes this MLP as a starter and reduces the number of
layers and neurons until reaching the smallest possible neural
network size with minimal accuracy loss, which becomes a
3-layer MLP with 64 neurons.

Figure 11 shows the prediction accuracy of six models
(i.e., XGBoost, Tiny Classifiers, non-quantized best MLP,
2-bit quantized best MLP, non-quantized smallest MLP and
2-bit quantized smallest MLP). Across all datasets, the non-
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Figure 9: Prediction Accuracy of Tiny Classifiers, AutoGluon XGBoost, AutoGluon TabularNeuralNet, AutoGluon NNFastAlTabular

and Google TabNet. Note the datasets vehicle to ionosphere (left to right) are binary, and the remainder are multiclass classifica-
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Figure 10: Violin plots showing the accuracy distributions of Tiny Classifiers and AutoGluon XGBoost.
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quantized best MLP model tops the performance by 83% over-  quantized smallest MLP has an overall prediction accuracy
all prediction accuracy whilst its 2-bit quantized version has of 80% whilst its 2-bit version stays at 75%. In summary,
the same performance as Tiny Classifiers. In contrast, the non-  the performance of Tiny Classifiers is no worse than the 2-bit
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Figure 12: Space Exploration for four datasets (vehicle, phoneme, Teachlng Assist and Cars) beyond the limit of 300 logical gates.
The best achieved prediction accuracy of Tiny Classifier Circuits with 400 gates ranges from 76% - 96%.

quantized MLP models.

Figure 12 illustrates the benefit of increasing the circuit size
limit from 300 gates to 400 gates of Tiny Classifiers for four
datasets which present a poor classification accuracy compared
to AutoGluon XGBoost. The prediction accuracy for these
four datasets improves by up to 11 percentage points when
moving the limit from 300 to 400 logical gates.

5.5. ASIC Flow Results

We design Tiny Classifiers in hardware across all datasets.
For a comparison point, we also design the two ML baseline
models in hardware. In addition to XGBoost (best performing
ML baseline), the 2-bit quantized smallest MLP is also chosen
as the second baseline ML model because it is the smallest
MLP baseline (3 layers/64 neurons). As we needed to design
the baseline ML models in hardware manually, we designed
them only for two datasets (i.e., blood and led).

These two datasets are selected based on the number of
classes and the complexity of implementing XGBoost in hard-
ware. blood has one of the smallest numbers of classes (i.e.,
2) and led has one of the largest numbers of classes (i.e., 10).
The default number of estimators (Parallel Decision Trees)
for XGBoost in Python [6] is 100 for a binary classification
problem and 100 x number_of_classes for multi-class clas-
sification. The number of estimators is strongly correlated
with the achieved accuracy of the model. The main reason
why blood is selected among other 2-class datasets is because
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XGBoost in blood has the smallest number of estimators with
the smallest accuracy loss across all the 2-class datasets. A
similar observation is made for /ed that it requires a smaller
number of estimators compared to yeast (i.e., the other dataset
that has also 10 classes) to achieve iso-performance.

One estimator (binary classification) for blood and 10 es-

timators (one estimator for each target class) for led are de-
signed in hardware for XGBoost. For the development and
the verification of the MLP and XGBoost designs, Bluespec
System Verilog is used [2], and the designs are simulated with
Bluesim.
5.5.1. Synthesis Results for Silicon Target: The Verilog
representation of Tiny Classifiers and the two ML baselines
are synthesized using Synopsis Design Compiler targeting
the open 45nm PDK [31] Silicon technology. We present the
synthesis power and area results for each Tiny Classifier circuit
and baseline ML model as standalone hardware blocks, i.e., no
interconnections to other components part of an overall ASIC
design. The required data has been transferred to an input
buffer, and the class predictions are stored in an output buffer
inside the block. Both input and output buffers are included in
the power and area calculations. The operational voltage and
frequency are 1.1V and 1GHz, respectively.

Figures 14 and 15 show the power consumption and the
area in NAND2-equivalent gate count. Tiny Classifier circuits
consume 0.04 - 0.97 mW, and the gate count ranges from
11-426 NAND?2-equivalent gates (combinational logic plus
the I/O buffers). Note that two classifier circuits have just 3
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Figure 14: Power consumption of Tiny Classifier circuits across
all datasets where MLP and AutoGluon XGBoost designs are

shown for blood and led datasets.
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Figure 15: NAND2-equivalent gate count of Tiny Classifier
circuits where MLP and AutoGluon XGBoost are shown for
blood and led datasets.

gates excluding the I/O buffers. The power consumption of
MLP is 34-38 mW (86-118 times greater than that of Tiny
Classifiers), and the area is ~171 and ~278 times larger than
Tiny Classifiers for blood and led. The power consumption of
XGBoost is ~3.9 and ~8 times higher than Tiny Classifiers
for blood and led whilst the area is 8 and 18 times larger than
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Tiny Classifiers, respectively.

5.5.2. Implementation Results for Flexible Chips: As dis-
cussed in Introduction, Tiny Classifiers are ideal for low-cost
flexible chips for smart packages. We pick XGBoost as the
ML baseline for comparison because it is more efficient in
terms of occupied area and power than the MLP. Both Tiny
Classifiers and XGBoost designs for blood and led are imple-
mented with PragmatIC’s 0.8 um FlexIC metal-oxide thin-film
transistor (TFT) process in PragmatIC’s FlexLogIC line [7].
The designs are put through the Cadence implementation flow
to generate chip layouts?.

Figure 13 shows the flexible chip layouts of the four designs.
Table 2 summarizes the power, performance and area results.
Tiny Classifier for blood is 10 times smaller and consumes
about 13 times less power than XGBoost whilst it can run
twice as fast as XGBoost. On the other hand, the comparative
results for led are more prominent as Tiny Classifier is about
75 times smaller & lower power and three times faster than
XGBoost. An important observation is that the area variation
of Tiny Classifiers between a binary and a multi-class classi-
fication problem is negligible. Specifically, our methodology
generates a smaller Tiny Classifier for led (105 NAND2-equiv.
gates) compared to blood (150 NAND2-equiv. gates). In con-
trast, XGBoost implementation for /ed occupies 5 times more
area than blood mainly due to the larger number of mapped
estimators for multi-class classification.

Tiny Classifiers XGBoost

blood led blood led
Cell Area (mm?) 0.54 0.37 54 | 27.74
Power (mW) 0.32 0.25 4.12 18.6
Max. Freq. (kHz) 350 440 165 130
NAND2-equivalent 150 105 1520 | 7780

Table 2: Tiny Classifiers and XGBoost implementation results
in PragmatiC’s 0.8.tm FlexIC TFT process at 3V supply voltage.

2Tiny Classifier and XGBoost designs for blood are sent for fabrication.
They will be fabricated on a 30um thick polyimide substrate and tested.



5.6. FPGA-based Comparison

We also prototype Tiny Classifiers, XGBoost and the 2-bit
quantized smallest MLP for the two datasets on an FPGA
platform to demonstrate the software-hardware co-design en-
vironment. Trained 2-bit quantized MLPs are synthesized on
reconfigurable hardware using Xilinx FINN, the state-of-the-
art tool which generates dataflow-style architectures of neural
networks on FPGAs [19]. After the initial configuration of the
MLPs, we use Brevitas [57] to transform the neural network to
a quantized trained neural network. For the Brevitas training,
we use 2-bit quantized ReLU activation functions and apply
batch normalization between each layer and its activation. The
configuration of Brevitas follows the recommendations of Xil-
inx FINN [68]. Then, Xilinx FINN is used to implement the
trained neural network as a dataflow accelerator on FPGAs.
We set the default configuration settings to build in dataflow
mode.

Figure 16 presents the FPGA resource utilization on a Xilinx
Zynq Ultrascale+ MPSoC. For blood dataset, we observe that
Tiny Classifiers consume 2.43x less FPGA resources in terms
of the number of look-up tables (LUTs) and flip-flops (FFs)
when compared to XGBoost, and 10.7x less FPGA resources
than the Smallest MLP. For led dataset, XGBoost and the
Smallest MLP are 2.92x and 3.87x larger than Tiny Classifiers,
respectively.
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Figure 16: FPGA resource utilization (LUTs and FFs) of the
2-bit quantized Smallest MLP, XGBoost and Tiny Classifiers

hardware implementation for blood and led datasets.

6. Related Work

Several methods have been proposed for supervised classi-
fication on tabular data. Two popular modern approaches
are Gradient Boosted Decision Trees (GBDT), such as XG-
Boost [23] and CatBoost [61], and DNNSs, such as TabNet
by Google [10] and NODE [60]. Recent work on DNN5s
[60, 41] demonstrates that MLPs can be made competitive
with state-of-the-art GBDT when the dimensions of the MLP
architecture are suitably optimized. In addition, these opti-
mized MLPs can also provide better accuracy than Google’s
TabNet [10]. Recall the full MLP exploration/optimization
performed for our evaluation and associated accuracy results
in Figure 11. This exploration ensures that the comparisons
against the best MLP for accuracy, and resource utilization,

12

against the smallest MLP, have optimized state-of-art baselines.
Furthermore, using these baselines, our evaluation also facili-
tates the comparison of tiny classification circuits against their
MLP counterparts on a well-established DNN accelerator.

Figures 2, 3 and 4 highlight the main features of AutoML,
NAS-based and NAIS to generate ML-based hardware acceler-
ators. AutoGluon is a prominent example of AutoML [26] [27]
as well as H20 [3], AutoWeka [43], Auto-Sklearn [28], ML-
JAR [5] and Google Cloud AutoML Tables [1]. The current
tools for AutoML do search the space for possible ML mod-
els (e.g. ensembles, DNNs, random forest) and these can be
deployed for different inference tasks. Our experiments have
used AutoGluon as a way to establish an optimized baseline
for the accuracy of Neural Networks and XGBoost. However,
the ML models generated by AutoML tools for tabular data
do not generate RTL. That complex final step has to be done
manually; see Figure 2. For NAS tools we find a dichotomy.
On one hand, we find NAS tools which can handle tabular
data, but only target standard processors, GPUs, and estab-
lished programmable DNN accelerators (AutoGluon, Google
Cloud AutoML). On the other hand, we can find those that
cannot handle tabular data but can co-design a programmable
Neural Network Accelerator (NAIS approach). These rely on
known ML/NN model pools and known hardware architec-
tures [8] [34] [35] [40]; most cases focusing on FPGAs. In the
experiments, we have shown that a NAS exploration of MLPs
for tabular data (as suggested by Kadra et al. [41]) produces
accuracy results similar to or better than the NN produced by
Amazon’s AutoGluon and Google’s TabNet while having the
advantage of being smaller NNs.

Although our methodology aims to generate classifier cir-
cuits for tabular data, it is not in principle limited to tabular
data. Work on recurrent graph-based genetic programming
[66, 11] indicates the general applicability of the evolution-
ary approach to other forms of data, e.g. time-series data.
Nonetheless, making progress with Graph-Based Genetic Pro-
gramming in different data domains still remains a significant
research challenge in its own right.

7. Conclusions

This paper proposes a methodology called “Auto Tiny Clas-
sifiers” to automatically generate classification circuits from
tabular data. We have identified a connection between Graph-
Based Genetic Programming with the classification problem in
ML and proposed an evolutionary approach to generate Tiny
Classifier circuits composed of a small number of logic gates
(i.e., < 300 gates) and capable of matching the performance of
the state-of-the-art ML techniques for tabular data.

We have evaluated the auto-generated Tiny Classifiers
across 33 datasets and presented the synthesis results of Tiny
Classifiers and ML baselines designed in ASIC in 45nm
Silicon technology providing significant improvements in
area/power. We have further implemented Tiny Classifiers
and XGBoost (smallest ML baseline) as flexible chips using



0.8um FlexIC TFT process technology. The full chip imple-
mentation results have shown that Tiny Classifiers could be
clocked 2-3x faster and were 10-75x smaller and had lower
power than XGBoost. We have also implemented Tiny Clas-
sifiers on an FPGA and demonstrated their area efficiency
(3-11x fewer resources).

Thus, Tiny Classifiers can be integrated as tightly-coupled
functional units or co-processors or become loosely-coupled
hardware accelerators. Their smaller footprint and low power
consumption make them attractive for near-sensor computing
and emerging smart package applications.
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