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ABSTRACT

We develop a linear perturbative formalism to compute the response of an inhomogeneous stellar disk

embedded in a non-responsive dark matter (DM) halo to various perturbations like bars, spiral arms

and encounters with satellite galaxies. Without self-gravity to reinforce it, the response of a Fourier

mode phase mixes away due to an intrinsic spread in the vertical (Ωz), radial (Ωr) and azimuthal (Ωφ)

frequencies, giving rise to local phase-space spirals. Collisional diffusion due to scattering of stars by

structures like giant molecular clouds causes super-exponential damping of the phase-spiral amplitude.

The z − vz phase-spiral is one-armed (two-armed) for vertically anti-symmetric (symmetric) bending

(breathing) modes. Only transient perturbations with timescales (τP) comparable to the vertical

oscillation period (τz ∼ 1/Ωz) can trigger vertical phase-spirals. Each (n, l,m) mode of the response to

impulsive (τP < τ = 1/(nΩz+lΩr+mΩφ)) perturbations is power law (∼ τP/τ) suppressed, but that to

adiabatic (τP > τ) perturbations, is exponentially weak (∼ exp [− (τP/τ)
α

]) except resonant (τ →∞)

modes. Slower (τP > τz) perturbations, e.g., distant encounters with satellite galaxies, induce stronger

bending modes. Sagittarius dominates the Solar neighborhood response of the Milky Way (MW) disk

to satellite encounters. Thus, if the Gaia phase-spiral was triggered by a MW satellite, Sagittarius is the

leading contender. However, the survival of the phase-spiral against collisional damping necessitates

an impact ∼ 0.6−0.7Gyr ago. We discuss the impact of the detailed galactic potential on the shape of

phase-spirals: phase mixing occurs slower and thus phase-spirals are more loosely wound in the outer

disk and in presence of an ambient DM halo.

Keywords: methods: analytical — Perturbation methods — Gravitational interaction — Galaxy: disk

— Galaxy: kinematics and dynamics — Galaxy stellar disks — galaxies: interactions —

Milky Way dynamics — Milky Way disk

1. INTRODUCTION

Disk galaxies are characterized by large-scale ordered motion and are therefore highly responsive to perturbations.

Following a time-dependent gravitational perturbation, the actions of the disk stars are modified. This in turn causes a

perturbation in the distribution function (DF) of the disk known as the response. Over time the response decays away

as the system ‘relaxes’ towards a new quasi-equilibrium via collisionless processes that include kinematic processes

like phase mixing (loss of coherence in the response due to different oscillation frequencies of stars) and secular/self-

gravitating/collective processes like Landau damping (loss of coherence due to wave-particle interactions, Lynden-Bell

1962). As pointed out by Sridhar (1989) and Maoz (1991), phase mixing is the key ingredient of all collisionless

relaxation and re-equilibration.

The timescale of collisionless equilibration is typically longer than the orbital periods of stars. Therefore disk

galaxies usually harbour prolonged features of incomplete equilibration following a perturbation, e.g., bars, spiral
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arms, warps and other asymmetries. An intriguing example is the one-armed phase-space spiral, or phase-spiral for

short, discovered in the Gaia DR2 data (Gaia Collaboration et al. 2018) by Antoja et al. (2018) and discussed in

more detail in subsequent studies (e.g., Bland-Hawthorn et al. 2019; Laporte et al. 2019; Li & Widrow 2021; Li 2021;

Gandhi et al. 2022). Antoja et al. (2018) plotted the density of stars in the Solar neighborhood in the (z, vz)-plane

of vertical position, z, and vertical velocity, vz, and noticed a faint spiral pattern which became more pronounced

when colour-coding the (z, vz)-‘pixels’ by the median radial or azimuthal velocities. The one-armed spiral shows 2-3

complete wraps like a snail shell, and is interpreted as an indication of vertical phase mixing following a perturbation

that is anti-symmetric about the midplane (bending mode) and occurred ∼ 500 Myr ago. More recently, Hunt et al.

(2022) used the more extensive Gaia DR3 data to study the distributions of stars in z−vz space at different locations in

the MW disk. They found that unlike the one-armed phase-spiral or bending mode at the Solar radius, the inner disk

shows a two-armed phase-spiral that corresponds to a breathing mode or symmetric perturbation about the midplane.

They inferred that while the one-armed spiral in the Solar neighborhood might have been caused by the impact of a

satellite galaxy such as the Sagittarius dwarf, the two-armed spiral in the inner disk could not have been induced by

the same since almost all satellite impacts are far too slow/adiabatic from the perspective of the inner disk. Rather,

they suggested that the two-armed phase-spiral might haven been triggered by a transient spiral arm or bar.

The phase-spiral holds information about the perturbative history and gravitational potential of the disk and can

therefore serve as an essential tool for galacto-seismology (Widrow et al. 2014; Johnston et al. 2017). For a given

potential, the winding of the spiral is an indication of the time elapsed since the perturbation occurred with older

spirals revealing more wraps. A one-armed (two-armed) phase-spiral corresponds to a bending (breathing) mode.

Which mode dominates, in turn, depends on the time-scale of the perturbation, with temporally shorter (longer)

perturbations (e.g., a fast or slow encounter with a satellite) predominantly triggering breathing (bending) modes

(Widrow et al. 2014; Banik et al. 2022).

In addition to depending on the nature of the perturbation, the phase-spiral also encodes information about the

oscillation frequencies of stars and thus the detailed potential. In particular, the shape of the spiral depends on how

the vertical frequencies, Ωz, vary as a function of the vertical action, Iz, which in turn depends on the underlying

potential. In (Banik et al. 2022, hereafter Paper I) we showed that the amplitude of the phase-spiral can damp away

due to lateral mixing, with a damping rate that depends on both the spatio-temporal nature of the perturbation and

the frequency structure of the galaxy. This damping, though, only affects the response in the coarse-grained sense, i.e.,

upon marginalization of the response over the lateral degrees of freedom (the action-angle variables). Damping at the

fine-grained level requires collisional diffusion, such as that arising from the gravitational scattering of stars against

giant molecular clouds (GMCs), or dark matter (DM) substructure (Tremaine et al. 2022).

Paper I addresses the problem of inferring the nature of the perturbation from the amplitude and structure of

the phase-spiral using a model of an infinite, isothermal slab for the unperturbed disk. This simple, yet insightful,

model provides us with essential physical understanding of the perturbative response of disks without the complexity

of modelling a realistic, inhomogeneous disk. However it suffers from certain glaring caveats: (i) lateral uniformity

leading to an incorrect global structure of the response in the lateral direction, (ii) Maxwellian distribution of velocities

in the lateral direction that overpredicts lateral mixing and thereby the rate at which the amplitude of the phase-spiral

damps out, (iii) absence of a DM halo and (iv) absence of self-gravity of the response. In this paper we relax the first

three assumptions. We consider an inhomogeneous disk characterized by a realistic DF similar to the pseudo-isothermal

DF (Binney 2010), that properly captures the orbital dynamics of the disk stars in 3D. In addition, we consider the

effect of an underlying DM halo which for the sake of simplicity we consider to be non-responsive. This ambient DM

halo alters the potential and thus the frequencies of stars, which can in turn affect the shape of the phase-spiral and

its coarse-grained survival. We also consider the impact of small-scale collisionality on the fine-grained survival of the

phase-spiral. Since in this paper we are primarily interested in the phase mixing of the disk response that gives rise to

phase-spirals, we ignore the self-gravity of the response, which to linear order spawns coherent point mode oscillations

of the disk as a whole (for treatments of the self-gravitating response of isothermal slabs, see Mathur 1990; Weinberg

1991) and somewhat enhances the amplitude of phase-spirals.

This paper is organized as follows. Section 2 describes the standard linear perturbation theory for collisionless systems

and its application to a realistic disk galaxy embedded in a DM halo that is exposed to a general perturbation. Sections 3

and 4 are concerned with computing the disk response for different perturber models. In Section 3 we compute the

disk response and phase-spirals induced by bars and spiral arms. We also discuss the impact of collisional diffusion on

the fine-grained survivability of the phase-spiral. In Section 4 we compute the response to encounters with satellite
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galaxies. Section 5 describes how phase-spirals can be used to constrain the galactic potential. We summarize our

findings in Section 6.

2. LINEAR PERTURBATION THEORY FOR GALAXIES

2.1. Linear perturbative formalism

A galaxy, to very good approximation, is devoid of star-star collisions. However, there are other potential sources

of collisions such as scatterings due to gravitational interactions of stars with giant molecular clouds (GMCs) or DM

substructure. The dynamics of stars in such a system is governed by the Boltzmann equation:

∂f

∂t
+ [f,H] = C[f ], (1)

where f denotes the DF, H denotes the Hamiltonian, square brackets denote the Poisson bracket, and C[f ] denotes

the collision operator due to small-scale fluctuations, which can be approximated by a Fokker-Planck operator (see

Appendix A of Tremaine et al. 2022):

C[f ] =
1

2

∂

∂ξi

(
Dij

∂f

∂ξj

)
, (2)

where ξ = (q,p) with q and p denoting the canonically conjugate position and momentum variables, and Dij denotes

the diffusion coefficient tensor.

Let the unperturbed steady state Hamiltonian of the galaxy be H0 and the corresponding DF be given by f0, which

satisfies the unperturbed Fokker-Planck equation (FPE),

[f0, H0] = C[f0]. (3)

In presence of a small time-dependent perturbation in the potential, ΦP(t), the perturbed Hamiltonian can be written

as

H = H0 + ΦP(t) + Φ1(t), (4)

where Φ1 is the gravitational potential related to the response density, ρ1 =
∫
f1d3v, via the Poisson equation,

∇2Φ1 = 4πGρ1. (5)

The perturbed DF can be written as

f = f0 + f1, (6)

where f1 is the linear order perturbation in the DF. In the weak perturbation limit where linear perturbation theory
holds, the time-evolution of f1 is dictated by the following linearized form of the FPE:

∂f1

∂t
+ [f1, H0] + [f0,ΦP] + [f0,Φ1] = C[f1]. (7)

Throughout this paper we neglect the self-gravity of the disk response, which implies that we set the polarization term,

[f0,Φ1] = 0. The implications of including self-gravity are discussed in Paper I.

2.2. Response of a Galactic Disk to a realistic perturbation

The dynamics of a realistic disk galaxy like the Milky Way (MW) is quasi-periodic, i.e., can be characterized by

oscillations in the azimuthal, radial and vertical directions. In close proximity to the mid-plane and under radial

epicyclic approximation, the Hamilton-Jacobi equation becomes separable, implying that all stars confined within a

few vertical scale heights from the mid-plane of the disk are on regular, quasi-periodic orbits that are characterized by

a radial action, IR, an azimuthal action Iφ, and a vertical action Iz. Hence, the motion of each star is characterized

by three frequencies:

ΩR =
∂H0

∂IR
, Ωφ =

∂H0

∂Iφ
, Ωz =

∂H0

∂Iz
. (8)
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This quasi-periodic nature of the orbits near the mid-plane is approximately preserved even in the presence of a (non-

triaxial) DM halo since this preserves the axi-symmetry of the potential. Typically, as discussed in section 5, the

presence of a halo increases the oscillation frequencies of the disk stars.

In terms of these canonical conjugate action-angle variables, using equation (8), the linearized form of the FPE given

in Equation (7) becomes

∂f1

∂t
+ Ωz

∂f1

∂wz
+ ΩR

∂f1

∂wR
+ Ωφ

∂f1

∂wφ
− ∂ΦP

∂wz

∂f0

∂Iz
− ∂ΦP

∂wR

∂f0

∂IR
− ∂ΦP

∂wφ

∂f0

∂Iφ
= Dz

∂

∂Iz

(
Iz
∂f1

∂Iz

)
+
Dz

4Iz

∂2f1

∂w2
z

+
DR

4IR

∂2f1

∂w2
R

(9)

Here we have performed certain simplifications of the Fokker-Planck operator. Firstly, following Binney & Lacey

(1988), we have assumed that Dzz = DzIz and DRR = DRIR, since this preserves the pseudo-isothermal form of

the unperturbed DF (equation [15]) of the disk. Secondly, the IR diffusion of the response f1 is negligible. This is

because the frequencies do not depend on IR under the radial epicyclic approximation (and only mildly depend on

IR without it) and therefore the response does not develop IR gradients. Thirdly, following Binney & Lacey (1988),

we have neglected diffusion in Iφ and wφ since the terms involving Dφφ, Drφ and Dφz are smaller than the Iz and

IR diffusion terms by factors of at least σR/vc or σz/vc, which are typically much smaller than unity (σR and σz are

radial and vertical velocity dispersions respectively, and vc is the circular velocity along φ). We have retained the wz
and wR diffusion terms for the sake of completeness, but as we point out later, the diffusion in angles typically occurs

over much longer timescales than that in actions and hence is comparatively less important.

Since the stars move along quasi-periodic orbits characterized by actions and angles, we can expand the perturbations,

ΦP and f1, as discrete Fourier series in the angles as follows

ΦP (w, I, t) =

∞∑
n=−∞

∞∑
l=−∞

∞∑
m=−∞

exp [i(nwz + lwR +mwφ)] Φnlm (I, t) ,

f1 (w, I, t) =

∞∑
n=−∞

∞∑
l=−∞

∞∑
m=−∞

exp [i(nwz + lwR +mwφ)] f1nlm(I, t), (10)

where w = (wz, wR, wφ) and I = (Iz, IR, Iφ). Substituting these Fourier expansions in equation (9) yields the following

differential equation for the evolution of f1nlm:

∂f1nlm

∂t
+ i(nΩz + lΩR +mΩφ)f1nlm = i

(
n
∂f0

∂Iz
+ l

∂f0

∂IR
+m

∂f0

∂Iφ

)
Φnlm

+Dz
∂

∂Iz

(
Iz
∂f1nlm

∂Iz

)
−
[
n2Dz

4Iz
+
l2DR

4IR

]
f1nlm. (11)

This can be solved using the Green’s function technique, with the initial condition, f1nlm(ti) = 0, to yield the following

closed integral form for f1nlm:

f1nlm(I, t) = i

(
n
∂f0

∂Iz
+ l

∂f0

∂IR
+m

∂f0

∂Iφ

)
Inlm(I, t). (12)

Here, for Dz � σ2
z (σz is the vertical velocity dispersion), which is typically the case, Inlm(I, t) can be approximately

expressed as

Inlm(I, t) ≈
∫ t

ti

dτ Gnlm(I, t− τ) Φnlm(I, τ). (13)

Here Gnlm(t− τ) is the Green’s function (see Appendix A of Tremaine et al. (2022) for derivation), given by

Gnlm(I, t− τ) ≈ exp [−i(nΩz + lΩR +mΩφ)(t− τ)]

× exp

[
−
(
n2Dz

4Iz
+
l2DR

4IR

)
(t− τ)

]
exp

[
− (nΩz1)

2
DzIz

3
(t− τ)

3

]
, (14)
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where Ωz1 = ∂Ωz/∂Iz. The sinusoidal factor represents the oscillations of stars at their natural frequencies which vary

with actions, leading to the formation of phase-spirals (see section 3.1.1 for details). The first exponential damping

factor indicates the damping of the response due to diffusion in angles while the second damping factor manifests the

damping of the Iz gradients of the response by diffusion in Iz. As discussed in section 3.1.2, the diffusion in actions is

much more efficient than that in angles.

Each (n, l,m) Fourier coefficient of the response acts as a forced damped oscillator with three different natural

frequencies, nΩz, lΩR and mΩφ, which is being driven by an external time-dependent perturber potential, Φnlm,

and damped due to collisional diffusion. A similar expression, albeit without allowing for collisionality, for the DF

perturbation has been derived by Carlberg & Sellwood (1985) in the context of spiral arm induced perturbations and

radial migrations in the galactic disk, and by other previous studies (e.g., Lynden-Bell & Kalnajs 1972; Tremaine &

Weinberg 1984; Carlberg & Sellwood 1985; Weinberg 1989, 1991, 2004; Kaur & Sridhar 2018; Banik & van den Bosch

2021a; Kaur & Stone 2022) in the context of dynamical friction in spherical systems. To obtain the final expression

for f1nlm, we need to specify the DF f0 of the unperturbed galaxy, as well as the spatio-temporal behavior of the

perturber potential, ΦP, which is addressed below.

2.3. The unperturbed galaxy

Under the radial epicyclic approximation (small IR), the unperturbed DF, f0, for a rotating MW-like disk galaxy

can be well approximated as a pseudo-isothermal DF, i.e., written as a nearly isothermal separable function of the

azimuthal, radial and vertical actions. Following Binney (2010), we write

f0 ≈
√

2

π3/2 σzhz

(
ΩφΣ

κσ2
R

)
Rc

exp

[
−κIR
σ2
R

]
exp

[
−Ez(Iz)

σ2
z

]
Θ(Lz) , (15)

The vertical structure of this disk is isothermal, while the radial profile is pseudo-isothermal. Here Σ = Σ(R) =∫∞
−∞ dz ρ(R, z) is the surface density of the disk, Lz is the z-component of the angular momentum, which is equal to

Iφ, Rc = Rc(Lz) is the guiding radius, Ωφ is the circular frequency, and κ = κ(Rc) = limIR→0 ΩR is the radial epicyclic

frequency (Binney & Tremaine 1987). Θ(x) is the Heaviside step function. Thus we assume that the entire galaxy is

composed of prograde stars with Lz > 0.

The density profile, ρ(R, z), of the disk corresponding to the above DF is the product of a radially exponential

profile with scale radius hr and a vertically isothermal (sech2) profile with scale height hz (equation [A3]). As shown

by Smith et al. (2015), this density profile is accurately approximated by a sum of three Miyamoto & Nagai (1975)

disks1, which has a simple, analytical form for the associated potential. Throughout, we therefore use this 3MN

approximation for our disk since this drastically simplifies the computation of orbital frequencies. The disk is assumed

to be embedded in an extended DM halo characterized by a spherical NFW (Navarro et al. 1997) density profile,

with virial mass Mvir, concentration c, scale radius rs and the corresponding potential Φh given by equation (A6).

Throughout, for the purpose of computing the disk response, we assume typical MW like parameters for the various

quantities, i.e., R� = 8 kpc, disk mass Md = 5 × 1010 M�, hR = 2.2 kpc, σR( R�) = σR,� = 35 km/s, hz = 0.4 kpc

and σz( R�) = σz,� =
√

2πGhzΣ(R�) = 23 km/s (McMillan 2011; Bovy & Rix 2013). For the NFW DM halo, we

adopt Mvir = 9.78× 1011 M�, rs = 16 kpc, and c = 15.3 (Bovy 2015).

The combined potential experienced by the disk stars is simply the sum of disk and halo potentials, i.e.,

Φ0(R, z) = Φd(R, z) + Φh(R, z). (16)

The total energy of a disk star under the radial epicyclic approximation is E = L2
z/2R

2
c + Φ0(Rc, 0) + κIR + Ez,

where the vertical part of the energy is given by Ez = v2
z/2 + Φz(Rc, z), with Rc(Lz) the guiding radius given by

L2
z/R

3
c = ∂Φ0/∂R|R=Rc

. The vertical potential, Φz(Rc, z), is given by

Φz(Rc, z) = Φ0(Rc, z)− Φ0(Rc, 0). (17)

The vertical action, Iz, can be obtained from Ez as follows

Iz =
1

2π

∮
vz dz =

2

π

∫ zmax

0

√
2[Ez − Φz(Rc, z)] dz, (18)

1 the 3MN profile as implemented in the Gala Python package (Price-Whelan 2017; Price-Whelan et al. 2020).
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where Φz(Rc, zmax) = Ez. This implicit equation can be inverted to obtain Ez(Rc, Iz). The time period of vertical

oscillation can then be obtained using

Tz(Rc, Iz) =

∮
dz

vz
= 4

∫ zmax

0

dz√
2 [Ez(Rc, Iz)− Φz(Rc, z)]

, (19)

which yields the vertical frequency, Ωz(Rc, Iz) = 2π/Tz(Rc, Iz).

Substituting the expression for f0 given by Equation (15) in Equation (12), we obtain the following integral form

for f1nlm,

f1nlm(I, t) ≈ − 2i

πσ2
R

1√
2πhzσz

exp

[
−κIR
σ2
R

]
exp

[
−Ez(Iz)

σ2
z

]

×
[{(

nΩz
σ2
z

+
lκ

σ2
R

)(
ΩφΣ

κ

)
−m d

dLz

(
ΩφΣ

κ

)}
Θ(Lz)−m

ΩφΣ

κ
δ(Lz)

]
Inlm(I, t). (20)

As we shall see, the first order disk response expressed above phase mixes away and gives rise to phase-spirals due

to oscillations of stars with different frequencies except when they are resonant with the frequency of the perturber.

However this ‘direct’ response of the disk does not include certain effects. First of all, we ignore the self-gravity of the

response. As discussed in Paper I, to linear order self-gravity gives rise to point mode oscillations of the disk that are

decoupled from the phase mixing component of the response which is what we are interested in. Secondly, for the sake

of simplicity, we consider the ambient DM halo to be non-responsive and therefore ignore the indirect effect of the

halo response on disk oscillations. We leave the inclusion of these two effects in the computation of the disk response

for future work.

The spatio-temporal nature of the perturbing potential dictates the disk response. In this paper we explore two dif-

ferent types of perturbation to which realistic disc galaxies can be exposed, and which are thus of general astrophysical

interest. The first is an in-plane spiral/bar perturbation with a vertical structure, either formed as a consequence of

secular evolution, or triggered by an external perturbation. We consider both short-lived (transient) and persistent

spirals. The second type of perturbation that we consider is that due to an encounter with a massive object, e.g., a

satellite galaxy or DM subhalo.

3. DISK RESPONSE TO SPIRAL ARMS AND BARS

We model the potential of a spiral arm perturbation as one with a vertical profile and a sinusoidal variation along

radial and azimuthal directions,

ΦP(R,φ, z) = −2πGΣP

kR
[αMo(t)Fo(z) +Me(t)Fe(z)]

∑
mφ=0,2

sin [kRR+mφ (φ− ΩPt)] . (21)

Here ΩP is the pattern speed and kR is the horizontal wave number of the spiral perturbation. The long wavelength

limit, kR → 0, corresponds to a bar. We consider the in-plane part of ΦP to be a combination of an axisymmetric

(mφ = 0) and a 2-armed spiral mode (mφ = 2), and the vertical part to be a combination of anti-symmetric/odd and

symmetric/even perturbations respectively denoted by Fo and Fe, that are modulated by growth functions, Mo(t)

and Me(t), capturing the growth and/or decay of the spiral strength over time. The ratio of the maximum strengths

of the anti-symmetric and symmetric parts of the perturbation is α. We consider the following two functional forms

for Mj(t) (where the subscript j = o or e):

Mj(t) =

 1√
π

exp
[
−ω2

j t
2
]
, Transient spiral/bar

exp [γjt] + (1− exp [γjt]) Θ(t), Persistent spiral/bar.
(22)

The first option describes a transient spiral/bar that grows and decays like a Gaussian pulse with a characteristic

life-time τPj ∼ 1/ωj (Banik et al. 2022). The second form describes a persistent spiral perturbation that grows

exponentially on a timescale τGj ∼ 1/γj and then saturates to a constant amplitude. We shall see shortly that these

two kinds of spiral perturbations perturb the disk in very different ways.
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Figure 1: MW disk response to transient bars/2-armed spirals with Gaussian temporal modulation in absence of

collisional diffusion: Left panel shows the steady state (t → ∞) amplitude of the disk response, f1,nlm/f0, in the

Solar neighborhood, computed using equations (24) and (27) in presence of an ambient DM halo, as a function of

the pulse frequency, ωj , where the subscript j = o and e for vertically anti-symmetric (odd n) and symmetric (even

n) perturbations. Solid (dashed) lines indicate the n = 1 bending (n = 2 breathing) modes and different colors

denote (l,m) = (0,−2), (0, 0) and (0, 2) respectively. We consider Iz = Iz,� ≡ hzσz,� and marginalize the response

over IR. Note that the response peaks at intermediate values of ωj , which is different for different modes, and is

suppressed like a power law in the impulsive (large ωj) limit and super-exponentially in the adiabatic (small ωj) limit.

Right panel shows the breathing-to-bending ratio, f1,200/f1,100, as a function of ωe and ωo, the pulse frequencies

of the bending and breathing mode perturbations respectively. The dashed, solid, dot-dashed and dotted contours

correspond to breathing-to-bending ratios of 0.1, 1, 5 and 10 respectively. The breathing-to-bending ratio rises and

falls with increasing ωe at fixed ωo, while the reverse occurs with increasing ωo at fixed ωe, leading to a saddle point

at (ωe, ωo) ≈ (9, 7).

The vertical part of the perturbation consists of an anti-symmetric function, Fo(z), and a symmetric function, Fe(z),

which, for the sake of simplicity, we take to be the following trigonometric functions:

Fo(z) = sin
(
k(o)
z z

)
,

Fe(z) = cos
(
k(e)
z z
)
. (23)

Here k
(o)
z and k

(e)
z denote the vertical wave-numbers of the anti-symmetric and symmetric perturbations, respectively.

Since the above functions form a complete Fourier basis in z, any (vertical) perturber profile can be expressed as a

linear superposition of Fo and Fe. The disk response involves the Fourier coefficients of the perturbing potential,

Φnlm, which can be obtained by taking the Fourier transform of ΦP given in Equation (21) with respect to the angles,

wR, wφ and wz, as detailed in Appendix B.

3.1. Computing the disk response

The expression for the disk response to bars or spiral arms can be obtained by substituting the Fourier coefficient

of the perturber potential given in Equation (B12) in Equation (20) and performing the τ integration with the initial

time, ti → −∞. This yields the modal response, f1nlm (Equation [20]), with Inlm(I, t) given by

Inlm(I, t) = αΨ
(o)
nlm(I)P(o)

nlm(I, t) + Ψ
(e)
nlm(I)P(e)

nlm(I, t), (24)
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where Ψ
(o)
nlm and Ψ

(e)
nlm respectively denote the time-independent parts of the odd and even terms in the expression for

Φnlm, and

P(j)
nlm(I, t) = exp [−imΩP t]

×
∫ ∞

0

dτ exp [−iΩres τ ] exp

[
−
(
n2Dz

4Iz
+
l2DR

4IR

)
τ

]
exp

[
− (nΩz1)

2
DzIz

3
τ3

]
Mj(t− τ), (25)

which characterizes the temporal evolution of the response. Here the subscript j = o or e, and the resonance frequency,

Ωres, is given by

Ωres = nΩz + lκ+m(Ωφ − ΩP). (26)

3.1.1. Collisionless limit

First we examine the response in the limit of zero diffusion, i.e., Dz = 0, where each star acts as a forced oscillator.

Transient spirals and bars—First we consider the case of transient spiral arm or bar perturbations that grow and decay

in strength over time, i.e., the temporal modulation Mj(t) is given by the first of equations (22). In this case,

P(j)
nlm(I, t) =

1

2ωj
exp

[
−Ω2

res

4ω2
j

] [
1 + erf

(
ωjt− i

Ωres

2ωj

)]
exp [−i(nΩz + lκ+mΩφ)t]

t→∞−−−→ 1

ωj
exp

[
−Ω2

res

4ω2
j

]
exp [−i(nΩz + lκ+mΩφ)t]. (27)

The error function describes the growth and transient oscillations of the response amplitude; over time the transients

die away, and in the limit t→∞ the response saturates to a constant amplitude (in the absence of collisional diffusion).

The left-hand panel of Fig. 1 plots the amplitude of the steady state disk response to transient spiral/bar per-

turbations, relative to the unperturbed DF, as a function of the modulation/pulse frequency, ωj (j = o and e for

bending and breathing modes respectively), for different modes indicated in different colors. Solid and dashed lines

correspond to the n = 1 bending modes and the n = 2 breathing modes, respectively. We adopt ΣP = 5.5 M� pc−2,

ΩP = 12 km s−1 kpc−1, k
(o)
z = k

(e)
z = 1 kpc, kR = 10 kpc, and Iz = Iz,� ≡ hzσz,� = 9.2 km s−1, and marginalize

the response over IR. We set α = 1, implying equal maximum strengths for the bending and breathing modes. As

evident from this figure, and also from equation (27), the long-term strength of the disk response (after the initial

transients have died out like e−ω
2
j t

2

) scales as ∼ 1/ωj in the impulsive (large ωj) limit, but is super-exponentially

suppressed (∼ exp
[
−Ω2

res/4ω
2
j

]
) in the adiabatic (small ωj) limit away from resonances, i.e., for Ωres 6= 0. The adi-

abatic suppression scales differently with ωj for other functional forms of Mj(t), e.g., for Mj(t) = 1/
√

1 + ω2
j t

2 the

response strength is exponentially suppressed (∼ exp[−Ωres/ωj ]). The response of resonant modes (Ωres = 0) however

does not undergo adiabatic suppression and scales as ∼ 1/ωj throughout, becoming non-linear in the adiabatic regime.

Since there are many resonance modes, the cumulative response in the adiabatic limit of all modes combined is only

suppressed as a power-law, rather than an exponential, in ωj (Weinberg 1994a,b).

The sinusoidal factor, exp [−i(nΩz + lκ+mΩφ)t], in P(j)
nlm describes the oscillations of stars with three different

frequencies, Ωz, κ and Ωφ, along the vertical, radial and azimuthal directions, respectively. Due to the dependence of

these frequencies on the actions, that of Ωz on Iz and of κ and Ωφ on Iφ = Lz, the response integrated over actions

eventually phase mixes away. This manifests as phase-spirals in the Iz coswz − Iz sinwz and Iφ cosφ− Iφ sinφ phase-

spaces, which are proxies for the z− vz and φ− φ̇ phase-spaces, respectively. As is evident from equation (25), P(j)
nlm ∼

exp [−imΩPt] in the adiabatic limit (ωj → 0); hence, in this limit the sinusoidal factor, exp [−i(nΩz + lκ+mΩφ)t]

is absent from the response, which implies that phase-spirals only occur for sufficiently impulsive perturbations. As

shown in Paper I, n = 1 bending modes involve a dipolar perturbation in the vertical phase-space (Iz coswz −
Iz sinwz) distribution immediately after the perturbing pulse reaches its maximum strength. This dipolar distortion

is subsequently wound up into a one-armed phase-spiral since Ωz is a function of Iz. Breathing modes, on the other

hand, involve an initial quadrupolar perturbation in the phase-space distribution which is subsequently wrapped up

into a two-armed phase-spiral. Since Ωz, Ωφ and ΩR all depend on Lz, the amplitude of the Iz coswz − Iz sinwz
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phase-spiral damps out over time due to mixing between stars with different Lz. The modal response, f1nlm, when

marginalized in a narrow bin of size ∆Lz around Lz, damps out as follows:

〈f1nlm〉 (I, t) =
1

∆Lz

∫ Lz+∆Lz/2

Lz−∆Lz/2

dLz f1nlm(I, t)

≈
sin

[(
∂

∂Lz
(nΩz + lκ+mΩφ)

)
∆Lz

2
t

]
(

∂

∂Lz
(nΩz + lκ+mΩφ)

)
∆Lz

2
t

f1nlm(I, t). (28)

Since the frequencies vary with Lz, marginalizing over Lz mixes phase-spirals that differ slightly in phases, giving way

to a ∼ 1/t damping accompanied by a beat-like modulation with a characteristic lateral mixing timescale,

τ
(LM)
D =

1(
∂

∂Lz
(nΩz + lκ+mΩφ)

)
∆Lz

2

. (29)

This explains why the density-contrast of the Gaia phase-spiral is enhanced upon color-coding by vφ or, equivalently,

Lz (Antoja et al. 2018; Bland-Hawthorn et al. 2019). Radial phase mixing is also present, but is typically much weaker

because none of the frequencies depend on IR under the radial epicyclic approximation and only mildly depend on

IR without it. Hence, due to ordered motion, the phase-spiral amplitude in a realistic disk galaxy damps out at a

much slower rate, as ∼ 1/t (in absence of collisional diffusion), than the lateral mixing damping in the isothermal slab

case considered in Paper I, which arises from the unconstrained lateral velocities of the stars and exhibits a Gaussian

temporal behavior.

It is worth emphasizing that not all frequencies undergo phase mixing. In fact the resonant frequencies, for which

Ωres = nΩz + lκ+m(Ωφ − ΩP) = 0, (30)

do not phase mix away. Hence, parts of the phase-space closer to a resonance take longer to phase-mix away. Moreover,

as manifest from the adiabatic suppression factor, exp[−Ω2
res/4ω

2
j ], the near-resonant modes with Ωres � 2ωj have

much larger amplitude than those with Ωres � 2ωj that are far from resonance. Therefore the long-term disk response

consists of stars in (near) resonance with the perturbing bar or spiral arm. Most of the strong resonances are confined

to the disk-plane, including the co-rotation resonance (n, l,m) = (0, 0,m), the Lindblad resonances (0,±1,±2), the

ultraharmonic resonances (0,±1,±4), and so on. For thin disks with hz � hR , the vertical degrees of freedom are

generally not in resonance with the radial or azimuthal ones since Ωz is much larger than Ωφ or κ. Hence the vertical

oscillation modes (n 6= 0) such as the n = 1 bending or n = 2 breathing modes undergo phase mixing and give rise to

phase-spirals. However, if the disk has significant thickness, then the vertical degrees of freedom can be in resonance

with the horizontal ones, e.g., banana orbits (Ωz = 2Ωr) in barred disks.

The excitability of the bending and breathing modes is dictated by the perturbation timescale, or more precisely by

the ratio of the pulse frequency, ωj , and the resonant frequency, Ωres. The right panel of Fig. 1 shows the breathing-

to-bending ratio, f1,200/f1,100, as a function of ωe and ωo, with blue (yellow) shades indicating low (high) values. In

general, the breathing-to-bending ratio rises steeply and falls gradually with ωe at fixed ωo while the trend is reversed

as a function of ωo at fixed ωe, resulting in a saddle point at (ωe, ωo) ≈ (9, 7). This owes to the super-exponential

suppression in the adiabatic (ωj � Ωres) limit and the power-law suppression in the impulsive (ωj � Ωres) limit. Along

the ωo = ωe line, the bending (breathing) modes dominate in the adiabatic (impulsive) limit, as evident from the left

panel of Fig. 1. All this suggests that bending modes dominate over breathing modes when (i) the anti-symmetric

perturbation is more impulsive, i.e., evolves faster than the symmetric one, or (ii) both symmetric and anti-symmetric

perturbations occur over comparable timescales but slower than the stellar vertical oscillation period.

Persistent spirals and bars—Next we consider perturbations caused by a persistent spiral arm or bar that grows

exponentially until it saturates at a constant strength. The corresponding temporal modulationMj(t) is given by the
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second of equations (22). In this case, as shown by equation (19) of Banik & van den Bosch (2021a),

P(j)
nlm(I, t) =

exp [γjt] exp [−imΩPt]

γj + iΩres
[1−Θ(t)] + i

[
γj exp [−i(nΩz + lκ+mΩφ)t]

Ωres(γj + iΩres)
− exp [−imΩPt]

Ωres

]
Θ(t). (31)

Up to t = 0 when the perturber amplitude stops growing, the response from all modes oscillates with the pattern

speed ΩP and grows hand in hand with the perturber. Subsequently, as the perturbation attains a steady strength,

the disk response undergoes temporary phase mixing due to the oscillations of stars at different frequencies, giving

rise to phase-spirals. These transients, however, are quickly taken over by long term oscillations driven at the forcing

frequency ΩP.

For a slowly growing spiral/bar, i.e., in the ‘adiabatic growth’ limit (γ → 0), the entire disk oscillates at the driving

frequency, ΩP, i.e.,

P(j)
nlm(I, t)

γj→0−−−→ exp [−imΩPt]

[
πδ(Ωres)−

i

Ωres

]
. (32)

This has two major implications. First of all, since all stars, both resonant and non-resonant, are driven at the pattern

speed of the perturbing spiral/bar, transient phase mixing does not occur and thus no phase-spiral arises. Secondly,

the response is dominated by the resonances, Ωres = 0. In fact the resonant response diverges, reflecting the failure

of (standard) linear perturbation theory near resonances. The adiabatic invariance of actions is partially broken near

these resonances, causing the stars to get trapped in librating near-resonant orbits. A proper treatment of the near-

resonant response can be performed by working with ‘slow’ and ‘fast’ action-angle variables (Tremaine & Weinberg

1984; Lichtenberg & Lieberman 1992; Chiba & Schönrich 2022; Banik & van den Bosch 2022; Hamilton et al. 2022),

which are uniquely defined for each resonance as linear combinations of the original action-angle variables. The fast

actions remain nearly invariant while the fast angles oscillate with periods comparable to the unperturbed orbital

periods of stars. The slow action-angle variables, on the other hand, undergo large amplitude oscillations about their

resonance values over a libration timescale that is typically much longer than the orbital periods. For example, at

co-rotation resonance (n = l = 0), angular momentum behaves as the slow action while the radial and vertical actions

behave as the fast ones.

Based on the above discussion, we infer that phase-spirals can only be excited in the galactic disk by transient

spiral/bar perturbations whose amplitude changes over a timescale comparable to the vertical oscillation periods of

stars. Persistent spirals or bars rotating with a fixed pattern speed cannot give rise to phase-spirals. Rather they

trigger stellar oscillations at the pattern speed itself, which manifests in phase-space as a steadily rotating dipole or

quadrupole depending on whether the n = 1 or 2 mode dominates the response. Thus, a phase-spiral is necessarily

always triggered by a transient perturbation.

3.1.2. Impact of collisions on the disk response

In the above section we discussed the characteristics of the disk response in the absence of collisions. However, in a real

galaxy like the MW disk, small-scale collisionality can potentially damp away any coherent response to a perturbation.

Collisional diffusion arises not from star-star collisions, which is typically negligible, but from gravitational scattering

with other objects, such as GMCs, DM substructure, etc. As discussed in Section 2.2, the impact of collisional diffusion

is mainly captured by the diffusion coefficients Dz and DR. Following Tremaine et al. (2022) we assume that the disk

stars have gained their mean vertical and radial actions over the age of the disk, Tdisk = 10 Gyr, due to collisional

heating, which implies that Da = 〈Ia〉 /Tdisk where a is either z or R and 〈Ia〉 =
∫

dIa Ia f0 /
∫

dIa f0.

For a transient bar/spiral with pulse frequency ωj , P(j)
nlm is given by equation (25). In the impulsive limit (ωj →∞),

we have that Mj(t− τ)→ ωjδ(t− τ). Upon absorbing ωj in the prefactor, the expression for P(j)
nlm then simplifies to

(c.f. Appendix A of Tremaine et al. 2022)

P(j)
nlm(I, t) ≈ Θ(t) exp [−i (nΩz + lκ+mΩφ) t] exp

[
−
(
n2Dz

4Iz
+
l2DR

4IR

)
t

]
exp

[
− (nΩz1)

2
DzIz

3
t3

]
. (33)

This demonstrates that, in the impulsive limit, the disk response instantaneously grows and spawns phase-spirals

whose amplitude decays due to collisional diffusion, manifest in the exponential damping terms. The first and second
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Figure 2: Timescale at which the disk response damps away due to collisional diffusion, i.e., small-scale scatterings

of stars with structures like GMCs, is plotted as a function of Iz (Rc) for three different values of Rc (Iz) as indicated,

in the left (right) panel. Typically, collisional diffusion occurs faster for smaller Iz and smaller Rc.

exponential factors, respectively, characterize the diffusion in vertical angle and action, which occur over the following

timescales:

τ
(w)
D =

[
n2Dz

4Iz
+
l2DR

4IR

]−1

, τ
(I)
D =

[
3

(nΩz1)
2
DzIz

]1/3

. (34)

Of these, the timescale for the diffusion in angles, τ
(w)
D , typically exceeds that for the diffusion in actions, τ

(I)
D , by

at least an order of magnitude, implying that angle diffusion is negligible. Hence collisional diffusion mainly causes

the abatement of action gradients in the phase-space structure of the response (arising from the action dependence

of the frequencies, i.e., Ωz1 6= 0). The left (right) panel of Fig. 2 plots the diffusion timescale, τ
(I)
D , as a function

of Iz (Rc) for three different values of Rc (Iz) as indicated. Note that τ
(I)
D diverges in the small Iz limit, attains a

minimum around Iz ∼ 0.2 − 0.5hzσz,�, and increases as Iβz with β < 1 at large Iz. As a function of Rc, τ
(I)
D shows

an approximately exponential rise. This owes to the fact that 〈Dz〉 ∼ hz σz(Rc)/Tdisk ∼ exp [−Rc/2hR]/Tdisk for the

3MN profile adopted for the MW disk. At Rc = R� = 8 kpc, τ
(I)
D ∼ 0.6 − 0.7 Gyr, in agreement with Tremaine

et al. (2022). Hence, we see that collisional diffusion in action space is fairly efficient, and thus that phase-spirals are

short-lived features.

Fig. 3 plots the amplitude of the disk response (for IR = 0) to a transient spiral of pulse frequency, ωo = ωe =

0.5σz,�/hz, computed using equations (20), (24) and (25), as a function of time. Dashed and solid lines show the

results with and without collisional diffusion, respectively. The rows correspond to different values of Rc while the

columns denote different values of Iz/(hzσz,�) as indicated. The blue and red lines denote the response for the

(n, l,m) = (1, 0, 0) and (2, 0, 0) modes, respectively, and the dotted grey line represents the Gaussian pulse strength.

The response for both bending and breathing modes initially grows hand in hand with the perturbing pulse. Following

the point of maximum pulse strength, the response follows the decaying pulse strength before saturating to the steady

state amplitude given in equation (27) in the collisionless limit. In the presence of collisional diffusion, however, the

response continues to damp out as ∼ exp [−(t/τ
(I)
D )3] after temporarily saturating at the collisionless steady state.

Note that the collisional damping is faster for smaller Rc and smaller Iz. In addition, n = 2 breathing modes damp

out faster than the n = 1 bending modes due to the n−2/3 dependence of τ
(I)
D .

To summarize, we have shown that phase-spirals can be triggered by impulsive perturbations resulting from transient

spiral arms or bars, but are subject to super-exponential damping due to collisional diffusion that is likely to be
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Figure 3: MW disk response to transient bars/2-armed spirals with Gaussian temporal modulation of pulse frequency,

ωo = ωe = 0.5σz,�/hz: the amplitude of the disk response, f1n00/f0, is plotted as a function of time. The rows and

columns respectively denote different values of Rc and Iz as indicated. Blue and red lines indicate the n = 1 and 2

modes, while the solid and dashed lines respectively denote the cases with and without collisional diffusion (due to

interactions of stars with structures like GMCs). The disk response initially rises and falls hand in hand with the

perturbing pulse (indicated by the grey dotted line), before saturating to a steady state in the collisionless case and

undergoing super-exponential damping in the collisional case. Note that collisional damping is faster for smaller Iz,

smaller Rc and larger n modes.

dominated by scattering against GMCs. This collisional damping is more efficient in the inner disk, for stars with

smaller Iz, and for modes of larger n.

4. DISK RESPONSE TO SATELLITE ENCOUNTER

In addition to the spiral arm/bar perturbations considered above, we also consider disk perturbations triggered by

encounters with a satellite galaxy. For the sake of brevity, we only compute the disk response in the collisionless
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limit. In the case of impulsive encounters, the impact of collisional diffusion is simply expressed by multiplying the

collisionless response by the collisional damping factor exp[−(t/τ
(I)
D )3], with τ

(I)
D given by equation (34).

For simplicity, we assume that the satellite is moving with uniform velocity vP along a straight line, impacting

the disk at a galactocentric distance Rd with an arbitrary orientation, specified by the angles, θP and φP, which are

respectively defined as the angles between vP and the z-axis, and between the projection of vP on the mid-plane and

the x-axis (see Fig. 4). Thus the position vector of the satellite with respect to the galactic center can be written as

rP = (Rd + vP sin θP cosφP t) x̂ + vP sin θP sinφP t ŷ + vP cos θP t ẑ, (35)

while that of a star is given by

r = R(cosφ x̂ + sinφ ŷ) + z ẑ. (36)

We consider the satellite to be a Plummer sphere of mass MP and size ε, such that its gravitational potential at

location r is given by

ΦP = GMP

− 1√
|r− rP|2 + ε2

+
r · rP

(r2
P + ε2)

3/2

 . (37)

Here the first term is the ‘direct’ term and the second is the ‘indirect’ term that accounts for the reflex motion of the

disk and the fact that the disk center is accelerated by the satellite and is thus non-inertial. Typically, the first one

dominates over the second.

In order to compute the disk response to this external perturbation, we need to compute its Fourier coefficients,

which is challenging. Rather, we first evaluate the τ -integral in Equation (20), setting ti → −∞, and then compute

the Fourier transform of the result, as worked out in Appendix C.1. For IR ≈ 0 (this is justified since we adopt the

radial epicyclic approximation in this paper), this yields a modal response, f1nlm (Equation [20]), with Inlm(I, t) given

by

Inlm(I, t) ≈ −2GMP

vP
exp [−iΩt]× exp

[
−iΩ sin θP cosφP

vP
Rd

]
× 1

(2π)
2

∫ 2π

0

dwz exp [−inwz] exp

[
i
Ω cos θP

vP
z

] ∫ 2π

0

dφ exp [−imφ] exp

[
i
Ω sin θP cos (φ− φP)

vP
Rc

]
×K0i

(
Ω
√
R2

c + ε2

vP
,
vPt− Sc√
R2

c + ε2

)
, (38)

where Ω is given by

Ω = nΩz + lκ+mΩφ. (39)

Here Rc = R(Rc) and Sc = S(Rc) with R and S given by equation (C21). K0i is given by equation (C19), which

asymptotes to the modified Bessel function of the second kind, K0

(
|Ω|
√
R2

c + ε2/vP

)
, in the large time limit. A more

precise expression for Inlm that is valid for higher values of IR is given by equation (C23) of Appendix C.1.

The expression for Inlm given in equation (38) exhibits several key features of the disk response to satellite encounters.

The exp [−iΩt] factor encodes the phase mixing of the response due to oscillations at different frequencies, giving rise

to phase-spirals. The exp [i (Ω cos θP/vP) z] and exp [i (Ω sin θP cos (φ− φP)/vP)Rc] factors respectively indicate that

the satellite induces wave-like perturbations in the disk with two characteristic wave-numbers: the vertical wave-

number, kz ≈ Ω cos θP/vP and the horizontal wave-number, kR ≈ Ω sin θP/vP. Therefore, the disk response will be

vertically (horizontally) stratified in case of a perpendicular (planar) impact of the satellite. As shown in Appendix C.2,

expressions (20) and (38), which are complicated to compute, yield the correct response in the impulsive limit of a

satellite having a face-on, perpendicular encounter through the center of the disk.
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Figure 4: Illustration of the geometry of a satellite galaxy

with mass MP impacting a disk galaxy with uniform ve-

locity vP along a straight line. The impact occurs at a

galactocentric distance Rd. The orientation of vP is spec-

ified by θP, the angle between vP and the z-axis, and φP,

the angle between the projection of vP on the mid-plane

and the x-axis.

4.1. Asymptotic behaviour of the response

It is instructive to study the two extreme cases of encounter speed, the impulsive limit (large vP) and the adiabatic

limit (small vP). Using the asymptotic form of the K0 Bessel function that appears in equation (38), we obtain the

following approximate asymptotic behaviour of f1nlm at large time:

f1nlm ∼
GMP

vP
exp [−iΩt]×


1, vP →∞

√
vP/Ωb exp [−Ωb/vP], vP → 0,

(40)

where b is the impact parameter of the encounter, defined as the perpendicular distance of the nearest star on the

mid-plane from the satellite’s (straight) orbit, and expressed as

b = |Rd −Rc|
√

1− sin2 θP cos2 φP. (41)

It is clear from these limits that the disk response is most pronounced for intermediate velocities, vP ∼ Ωb. For

impulsive encounters, the response is suppressed as a power law in vP, whereas in the adiabatic limit the response is

exponentially suppressed, except at resonances, Ω = nΩz + lκ+mΩφ = 0. In this limit, far from the resonances, the

perturbation timescale, b/vP, is much larger than Ω−1, and the net response is washed away due to many oscillations

during the perturbation (i.e., the actions are adiabatically invariant), a phenomenon known as adiabatic shielding

(Weinberg 1994a,b; Gnedin & Ostriker 1999).

4.2. Response of the MW disk to satellites

The MW halo harbors several fairly massive satellite galaxies that repeatedly perturb the MW disk. Here we use

existing data on the phase-space coordinates of those MW satellites to compute the disk response of satellite encounters

that occurred in the past few hundred Myr, which are those for which we may expect phase-spirals that were triggered

to have survived to the present day.

To compute the disk response to the MW satellites, we proceed as follows. As in Paper I, we adopt the galactocentric

coordinates and velocities computed and documented by Riley et al. (2019) (table A.2, see also Li et al. 2020) and

Vasiliev & Belokurov (2020) as initial conditions for the MW satellites. We then simulate their orbits in the combined

gravitational potential of the MW halo, disk plus bulge2 using a second order leap-frog integrator. For each individual

orbit, we record the times, tcross, and the galactocentric radii, Rd, corresponding to disk crossings. We also register

the corresponding impact velocities, vP =
√
v2
z + v2

R + v2
φ, and the angles of impact, θP = cos−1 (vz/vP) and φP =

tan−1 (vφ/vR). We substitute these quantities in equation (C23) and compute the disk response (integrated over IR)

following the satellite encounter, using equations (20) and (38). Results are summarized in Table 1 of Appendix C.1.

Fig. 5 plots the amplitude of the Solar neighborhood (for which Rc(Lz) = R� = 8 kpc) bending mode response,

f1,n=1/f0 (top panel), and breathing-to-bending ratio, f1,n=2/f1,n=1 (bottom panel), as a function of tcross. Here we

only show the responses for (l,m) = (0, 0) modes, and consider stars with Iz = Iz,� = 9.2 kpc km s−1.

2 The bulge is modelled as a spherical Hernquist (1990) profile with mass Mb = 6.5 × 109 M� and scale radius rb = 0.6 kpc.
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Figure 5: Steady state MW disk response to satellite encounter in the collisionless limit: bending mode strength,

f1,n=1/f0 (upper panel), and the corresponding breathing vs bending ratio, f1,n=2/f1,n=1 (lower panel) for the (l,m) =

(0, 0) modes, in the Solar neighborhood for the MW satellites, as a function of the disk crossing time, tcross, in Gyr,

where tcross = 0 marks today. The previous two and the next impacts are shown. Here we consider Iz = hzσz,�, with

fiducial MW parameters, and marginalize over IR. The effect of the (non-responsive) ambient DM halo on the stellar

frequencies is taken into account. The estimates of tcross are very sensitive to the detailed potential of the MW system,

while the response estimates are fairly robust (see text for details). In the upper panel, the region with bending mode

response, f1,n=1/f0 < 10−4, has been grey-scaled, indicating that the response from the satellites in this region is far

too weak and adiabatic to be detected by Gaia. Note that the response is dominated by that due to Sgr, followed by

Hercules, Leo II, Segue 2 and the Large Magellanic Cloud (LMC). Also note that the previous two and next impacts
of all the satellites excite bending modes in the Solar neighborhood.

It is noteworthy that the responses in the realistic MW disk computed here are ∼ 1− 2 orders of magnitude larger

than those evaluated for the isothermal slab model shown in Fig. 7 of Paper I. This owes to the reduced damping of

the phase-spiral amplitude due to lateral mixing, which is more pronounced in the isothermal slab with unconstrained

lateral velocities than in the realistic disk with constrained, ordered motion. From the lower panel of Fig. 5 it is evident

that, as in the isothermal slab case, almost all satellites trigger a bending mode response in the Solar neighborhood,

resulting in a one-armed phase-spiral in qualitative agreement with the Gaia snail. However, as is evident from the

upper panel, only five of the satellites trigger a detectable response in the disk, with f1,n=1/f0 > δmin ≡ 10−4 (see

Appendix C of Paper I for a derivation of this approximate detectability criterion for Gaia). The response to encounters

with the other satellites is weak either because they have too low mass or because the encounter with respect to the

Sun is too slow and adiabatically suppressed. Sgr excites the strongest response by far; its bending mode response,

f1,n=1/f0, is at least 1 − 2 orders of magnitude above that for any other satellite. Its penultimate disk crossing,

about the same time as its last pericentric passage ∼ 1 Gyr ago, triggered a strong response of f1,n=1/f0 ∼ 0.3 in

the Solar neighborhood. For comparison, the response from its last disk crossing, which nearly coincides with its last

apocentric passage about 350 Myr ago, triggered a very weak, adiabatically suppressed response (∼ 5 × 10−8) that

falls below the lower limit of Fig. 5. Its next disk crossing in about 30 Myr is estimated to trigger a strong response
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Figure 6: Steady state MW disk response to satellite encounter in the collisionless limit: each panel shows the

behaviour of the disk response amplitude, f1,n00/f0 (evaluated using equations [20] and [C23]) and marginalized over

IR), as a function of the impact velocity, vP, in the Solar neighborhood, i.e., Rc = R� = 8 kpc, in presence of an

ambient DM halo. The left and right columns respectively indicate the response for the n = 1 bending and n = 2

breathing modes. The top, middle and bottom rows show the same for different values of Iz (in units of Iz,�), θP and

φP respectively as indicated, with the fiducial parameters corresponding to Iz,� and the parameters for Sgr impact, the

response amplitude for which is indicated by the red circle. Note that the response is suppressed as v−1
P in the impulsive

(large vP) limit but exponentially suppressed in the adiabatic (small vP) regime, and peaks at an intermediate velocity,

vP ∼ 2− 3 vcirc(R�) (which is very similar to the encounter speed of Sgr). The peak of the response shifts to smaller
vP for larger Iz, since Ωz decreases with Iz. The response depends only very weakly on φP but is quite sensitive to

θP; more planar encounters, i.e., increasing θP triggers stronger responses.
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with f1,n=1/f0 ∼ 0.1. Besides Sgr, the satellites that excite a detectable response, f1,n=1/f0 > δmin are Hercules,

Segue 2, Leo II and the LMC. The imminent crossing of LMC is estimated to trigger f1,n=1/f0 ∼ 2× 10−2, which is

an order of magnitude below Sgr. Only for Iz/Iz,� & 4.5 (zmax & 3.4hz), the LMC response dominates over Sgr. This

exercise therefore suggests that Sgr is the leading contender, among the MW satellites considered here, for triggering

the Gaia snail in the Solar neighborhood, in agreement with several previous studies (Antoja et al. 2018; Binney &

Schönrich 2018; Laporte et al. 2018, 2019; Darling & Widrow 2019a; Bland-Hawthorn et al. 2019; Hunt et al. 2021;

Bland-Hawthorn & Tepper-Garćıa 2021; Bennett et al. 2022).

We caution that the estimates of the disk response computed above ignore dynamical friction. Moreover, the disk

crossing times are sensitive to the satellite orbits and therefore to the detailed MW potential and the current phase-

space coordinates of the satellites. For example, a heavier MW model with a total mass of 1.5 × 1012 M� leaves the

relative amplitudes of the satellite responses (in the collisionless limit) nearly unchanged, but makes the satellites

more bound, bringing most of the disk crossing times closer to the present day. In particular, the last disk passage

of Sgr that triggers a significant response now occurs ∼ 600 Myr ago (as opposed to 1 Gyr ago in the fiducial case)

which is closer to the winding time of ∼ 500 Myr inferred from the phase-spiral observed in the Solar neighborhood

(Bland-Hawthorn et al. 2019).

In this section, we have computed the responses in the collisionless limit. In reality, collisional diffusion due to

interactions of stars with GMCs, etc. would damp away the response super-exponentially over a timescale that is

∼ 0.6− 0.7 Gyr in the Solar neighborhood (see section 3.1.2). This would almost completely wash away the response

to any satellite encounter that occurred & 1 Gyr ago. For example, the present day response to the last pericentric

passage of Leo II that occurred ∼ 1.8 Gyr ago would be completely erased. If the last disk crossing of Sgr that

induced a strong response occurred ∼ 1 Gyr ago as in the fiducial MW model, the response would have been damped

out by ∼ 2 orders of magnitude by today, deeming Sgr unlikely to be the agent behind the Gaia snail. However, as

discussed above, the disk crossing times are sensitive to the satellite orbits. The heavier MW model with a total mass

of 1.5× 1012 M� implies a Sgr crossing time of ∼ 0.6 Gyr instead of 1 Gyr. In this case the response would only have

been damped by a factor of ∼ 0.4. Therefore, the collisionality argument suggests that if the Gaia snail was indeed

triggered by Sgr, the impact causing it must have happened within ∼ 0.6− 0.7 Gyr from the present day.

4.3. Exploring parameter space

Having computed the MW disk response to its satellites, we now investigate the sensitivity of the response to

the various encounter parameters. In Fig. 6 we plot the amplitude of the Solar neighborhood response, f1,nlm/f0

(marginalized over IR), as a function of the impact velocity, vP (in units of the circular velocity at Rc = R�), for the

(n, l,m) = (1, 0, 0) bending and (n, l,m) = (2, 0, 0) breathing modes, shown in the left and right columns respectively.

The top, middle and bottom rows show the results for varying Iz, θP and φP respectively, assuming the fiducial

parameters to be those for Sgr (mass MP = 109 M�, scale radius ε = 1.6 kpc) during its penultimate disk crossing

(most relevant for the Gaia snail), i.e., impact radius Rd = 17 kpc, impact velocity vP = 340 km/s, and angles of

impact, θP = 21◦ and φP = 150◦. In Fig. 7 we plot the bending and breathing mode response amplitudes (in the Solar

neighborhood) as a function of vP for different (l,m) modes, with the fiducial parameters again corresponding to Sgr.

The left and right columns respectively indicate the n = 1 bending and n = 2 breathing modes, while the top and

bottom rows correspond to l = 1 and l = 2 respectively. The different lines in each panel denote the responses for

m = −2,−1, 0, 1 and 2. Fig. 8 shows the ratio of the bending and breathing response amplitudes as a function of vP

for the dominant mode (l,m) = (0,−2). Different lines indicate breathing-to-bending ratios for different values of θP,

while the left and right columns respectively indicate the ratios observed at Rc = 8 and 12 kpc.

From Figs. 6 and 7 it is evident that, as shown in equation (40), the disk response is suppressed like a power law (∼
v−1

P ) in the high velocity/impulsive limit and exponentially (∼ exp [−Ωb/vP]) suppressed in the low velocity/adiabatic

limit. The response is the strongest for intermediate velocities, vP ∼ 2 − 3 vcirc( R�), where the time periods of

the vertical, radial and azimuthal oscillations of the stars are nearly commensurate with the encounter timescale,√
b2 + ε2/vP. The v−1

P and K0i factors in equation (38) conspire to provide the near-resonance condition for maximum

response,

nΩz + lκ+mΩφ ≈
0.6 vP√
b2 + ε2

, (42)
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Figure 7: Steady state MW disk response to satellite encounter in the collisionless limit: each panel shows the

behaviour of the disk response amplitude, f1,nlm/f0 (marginalized over IR), as a function of the impact velocity, vP,

in the Solar neighborhood, in presence of an ambient DM halo. Different lines correspond to different m modes as

indicated. The top and bottom rows show the response for l = 0 and 1 while the left and right columns indicate

it for the n = 1 bending and n = 2 breathing modes. The fiducial parameters correspond to Iz = Iz,� and the

parameters for Sgr impact, the response amplitudes for which are indicated by the red circles in each panel. The

response is dominated by the (n, l,m) = (1, 0,−2) mode or the two-armed warp at small vP and the (2, 0,−2) mode

or the two-armed spiral at large vP. Typically, the m = −2 and −1 responses dominate over m = 0, 1 and 2, while the

l = 0 response is more pronounced than l = 1.

where b is the impact parameter of the encounter, given by equation (41). From the top panels of Fig. 6, it is clear

that the peak response shifts to smaller vP with increasing Iz. This is easy to understand from the fact that the

corresponding vertical frequency, Ωz, decreases with increasing Iz, making the encounter more impulsive for larger

actions. The middle and bottom panels show that the response depends strongly on the polar angle of the encounter,

θP, but very mildly on the azimuthal angle, φP. Moreover, the middle panels indicate that more planar encounters

(larger θP) induce stronger responses.

The in-plane structure of the disk response depends on the relative contribution of the different (l,m) modes. From

Fig. 7 it is evident that a typical Sgr-like encounter predominantly excites (l,m) = (0,−1) and (l,m) = (0,−2) in the

Solar neighborhood. The dominant mode for slower encounters is (n, l,m) = (1, 0,−2) while that for faster ones is
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Figure 8: MW disk response to satellite encounter: breathing-to-bending ratio or the relative strength of the n = 2 and

n = 1 modes of disk response to a Sgr-like impact is plotted as a function of the impact velocity, vP, at Rc = R� = 8kpc

and Rc = 1.5R� = 12kpc shown in the left and right columns respectively, for the (l,m) = (0,−2) mode which typically

dominates the response. Different lines correspond to different values of θP as indicated. We consider Iz = Iz,� and the

fiducial parameters to correspond to those for Sgr encounter, for which the breathing-to-bending ratio is denoted by

the red circle. Bending modes dominate over breathing modes at small vP and vice versa at large vP. Breathing modes

are relatively more pronounced than bending modes in the outer disk, closer to the Sgr impact radius, Rd = 17 kpc.

More planar (perpendicular) encounters trigger larger breathing-to-bending ratios farther away from (closer to) the

impact radius.

(n, l,m) = (2, 0,−2). Since f1,nlm/f0 & 1 in these cases, the response to the impact by Sgr is in fact non-linear in the

Solar neighborhood. Either way, a satellite encounter is typically found to excite strong m = −2 modes, i.e., 2-armed

warps (n = 1) and spirals (n = 2). This is due to a quadrupolar tidal distortion of the disk by the satellite, which

manifests as a stretching of the disk in the direction of the impact and a compression perpendicular to it.

Fig. 8 elucidates that the bending mode response dominates for slower encounters, i.e., smaller vP, and at guiding

radii far from the impact radius, Rd. More planar impacts trigger larger breathing-to-bending ratios farther away

from the impact radius while this trend reverses closer to it. This is because more planar encounters cause more

vertically symmetric perturbations farther away from the impact radius. The predominance of bending modes for low

vP encounters while that of breathing modes for high vP ones has been observed by Widrow et al. (2014) and Hunt

et al. (2021) in their N-body simulations of satellite-disk encounters. As demonstrated by Widrow et al. (2014), slower

encounters provide energy to the stars near one of the vertical turning points while drain energy from those near the

other turning point, thereby driving bending wave perturbations that are asymmetric about the mid-plane. On the

other hand, fast satellite passages are impulsive and impart energy to the stars near both the turning points, thus

triggering symmetric breathing waves.

The predominance of breathing (bending) modes closer to (farther away from) the impact radius is qualitatively

similar to the observation by Hunt et al. (2021) in their simulations of MW-Sgr encounter that the outer part of the

MW disk which is closer to the impact radius shows a preponderance of two-armed phase-spirals or breathing modes.

This can be understood within the framework of our formalism by noting that the impact parameter, b, and therefore

the encounter timescale ∼
√
b2 + ε2/vP decreases with increasing proximity to the point of impact; hence the impact

is faster than the vertical oscillations of stars near the point of impact, driving stronger breathing mode perturbations.

However, contrary to these predictions for the MW-Sgr encounter, Hunt et al. (2022), using Gaia DR3 data, revealed

two-armed phase-spirals, and therefore breathing modes, in the inner disk (Rc ∼ 6 − 7 kpc). Our analysis suggests

that none of the MW satellites could have caused this. Using N-body simulations of an isolated MW system, Hunt

et al. (2022) suggested that a transient spiral arm or bar could be a potential trigger for breathing modes in the inner

disk. However, such a transient perturbation would have to be sufficiently impulsive, i.e., occur over a timescale that

is comparable to or smaller than the vertical oscillation timescale in the inner disk (see section 3.1.1), in order to

produce two-armed phase-spirals with density contrast as strong as in the data. Such short timescales are unlikely to
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Figure 9: Impact of DM halo on vertical phase mixing: the panels from left to right respectively indicate the vertical

frequency, Ωz (units of σz,�/hz), the vertical phase mixing timescale, τφ (given by equation [44]), and the wz = 0 cuts

of the phase-spirals shown in Fig. 10 as a function of the vertical action, Iz (units of hzσz,�). The solid and dashed

red lines denote the cases with and without a halo for Rc = R� = 8 kpc while the dot-dashed and dotted blue lines

show the same for Rc = 12 kpc. The vertical dashed line indicates roughly the maximum Iz for which a phase-spiral

is discernible in the Gaia data. Note that phase mixing occurs the fastest for Iz ∼ 1 and that the inner disk phase

mixes faster than the outer disk. Also note that the presence of a DM halo increases Ωz as well as τφ, leading to slower

phase mixing and therefore slower wrapping of the phase-spiral. This effect is more pronounced in the outer disk.

arise from the secular evolution of the disk alone and may instead require forcing of the inner disk by perturbations in

the MW halo. Another possible trigger of this feature is the recent passage of dark satellite(s) through the inner disk.

The true origin of this feature is however unclear. Hence, we conclude that the presence of two-armed phase-spirals in

the inner disk is rather unexpected, and that its origin poses an intriguing conundrum.

5. PHASE-SPIRALS AND THE GALACTIC POTENTIAL

Thus far we mainly focused on how the nature of the perturbation dictates the vertical (i.e., bending and breathing

modes) as well as the in-plane (various (l,m) modes) structure of the disk response. However, the detailed structure, in

particular the winding, of the phase-spiral not only depends on the triggering agent but also holds crucial information

about the underlying potential in which the stars move, and can thus be used to constrain the potential of the combined

disk plus halo system (see also Widmark et al. 2022a,b).

The winding of the vertical phase-spiral can be characterized by the pitch-angle, φI, along the ridge of maximum

density. It is defined as the angle between the azimuthal direction and the tangent to the line of constant density

(Binney & Tremaine 1987). It is related to the local dependence of the vertical frequency on the vertical action

according to:

φI = cot−1

[∣∣∣∣Iz dΩz
dIz

∣∣∣∣ t] = cot−1

[∣∣∣∣ dΩz
d ln Iz

∣∣∣∣ t]. (43)

Following a perturbation, the pitch angle decreases with time, asymptoting towards zero, as the spiral winds up as a

consequence of the ongoing phase mixing. Based on the above expression for φI, we can define the following timescale

of phase mixing:

τφ =

∣∣∣∣d ln Iz
dΩz

∣∣∣∣ . (44)

This timescale, which determines the rate of winding of the spiral, is a function of both the guiding radius, Rc, and

the action, Iz, and is ultimately dictated by the (unperturbed) potential of the disk+halo system, which sets dΩz/dIz.

Hence, the detailed shape of the phase-spiral at a given location in the disk is sensitive to the local disk+halo potential,

thereby opening up interesting avenues for constraining the detailed potential of the MW by examining phase-spirals

throughout the disk.

The left panel of Fig. 9 plots the vertical frequency, Ωz, as a function of the logarithm of the action, Iz, for the MW

potential with and without the halo and at guiding radii, Rc = 8 (red) and 12 kpc (blue). The middle panel shows the
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Figure 10: Vertical phase mixing: one-armed phase-spiral corresponding to n = 1 bending mode excited by the

encounter with Sgr for MW disk+halo and MW disk models (rows) at Rc = 8 kpc and 12 kpc (columns). The presence

of DM halo slows down the rate of phase mixing, leading to more loosely wrapped phase-spirals. Phase mixing occurs

more rapidly in the inner disk than in the outer disk.

behaviour of the corresponding phase mixing timescale, τφ, as a function of Iz. Fig. 10 shows the (n, l,m) = (1, 0, 0)

phase-spirals 400 Myr after the penultimate disk crossing of Sagittarius, color coded by the MW disk response, f1,100,

with blue (red) indicating higher (lower) phase-space density. Results for the cases with and without the halo are

shown in rows and for Rc = 8 and 12 kpc are shown in columns. Finally, the right panel of Fig. 9 shows the wz = 0

cuts of the normalized response, f1,100/f0, as a function of Iz, for the four different phase-spirals shown in Fig. 10. The

vertical frequency, Ωz, is a decreasing function of ln Iz in all cases, indicating that stars with larger actions (i.e., larger

vertical excursion amplitudes) oscillate slower. Note that |dΩz/d ln Iz| is an increasing (decreasing) function of Iz at

small (large) Iz, reaching a maximum at intermediate Iz. Consequently, the phase mixing timescale, τφ, which is the
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inverse of |dΩz/d ln Iz|, attains its minimum at Iz/(hzσz) ∼ 1. Thus phase mixing occurs the fastest at intermediate

actions and slows down at larger actions, causing the spiral to become more loosely wound (larger pitch angle) farther

away from its origin.

The rate of phase mixing is different in the four different cases. Closer to the galactic center where the potential is

deeper and steeper, stars have a larger range of Ωz, or in other words Ωz falls off more steeply with ln Iz in the inner

disk than in the outskirts. This leads to faster phase mixing and therefore a much more tightly wound phase-spiral in

the inner disk (left panels of Fig. 10) as opposed to the outer disk (right panels). The difference in the phase mixing

rates is also manifest in the wz = 0 response shown in the right panel of Fig. 9; note the longer oscillation wavelengths

of the blue lines (outer disk) as opposed to the red lines (inner disk). Hence, in agreement with expectations, the inner

part of the disk equilibrates much faster than the outer part.

The presence of a DM halo deepens the potential well and thus boosts the oscillation frequencies. But the halo also

steepens the potential such that the range of frequencies is reduced, i.e., Ωz falls off more mildly with ln Iz than in

the disk only case. This leads to slower phase mixing and therefore more loosely wound phase-spirals in the presence

of the halo (upper panels of Fig. 10) than in its absence (lower panels), the effect being more pronounced in the outer

(right panels) than in the inner (left panels) disk. Equivalently, the wz = 0 response in the right panel of Fig. 9 shows

longer wavelength wiggles in presence of the halo.

The above sensitivity of the phase mixing timescale to the detailed galaxy potential implies that one can use phase-

spirals to constrain it. One can unwind the observed phase-spiral by adopting a form for the galactic potential.

Only for the correct potential will the spiral be properly unwound, i.e., the pitch-angle, φI, go to zero for all Iz
(modulo measurement errors) at the same time, t0, in the past. This t0 then corresponds to the time elapsed since

the maximum strength of the perturbation that triggered the phase-spiral. However, this method to constrain the

total potential (disk plus dark matter) of the MW relies on the assumption of a single, impulsive perturbation as

the trigger. In reality, the phase-spirals may have been impacted by multiple, overlapping perturbations and/or by

large-scale temporal fluctuations in the overall potential, which would severely hamper this technique (Tremaine et al.

2022). We intend to investigate the promise of phase-spirals as probes of the galactic potential for different kinds of

perturbation in future work.

6. CONCLUSION

In this paper, we have developed a linear perturbative formalism to analyze the response of a realistic disk galaxy

(characterized by a pseudo-isothermal DF) embedded in an ambient spherical DM halo (modelled by an NFW profile)

to perturbations of diverse spatiotemporal nature: bars, spiral arms, and encounters with satellite galaxies. Adopting

the radial epicyclic approximation, we perturb the FPE up to linear order (in action-angle space) in presence of a

perturbing potential, ΦP, to compute the post-perturbation linear response in the DF, f1. Without self-gravity to

reinforce the response, the oscillations in the response phase mix away due to an intrinsic spread in the frequencies of

stars, giving rise to spiral features in the phase-space distribution known as phase-spirals. Depending on the timescale

of ΦP, different modes of disk oscillation, corresponding to different phase-spiral structures, are excited. We summarize

our conclusions as follows:

• Following an impulsive perturbation, the (n, l,m) mode of the disk response consists of stars oscillating with

frequencies, nΩz, lΩr ≈ lκ and mΩφ, along vertical, radial and azimuthal directions respectively. Since the

frequencies depend on the actions, primarily on the vertical action Iz and the angular momentum Lz, the

response phase mixes away, spawning phase-spirals. The dominant modes of vertical oscillation are the anti-

symmetric bending (n = 1) and symmetric breathing (n = 2) modes, which induce initial dipolar and quadrupolar

perturbations in the z− vz or Iz coswz − Iz sinwz phase-space. Over time these features are phase-wrapped into

one- and two-armed phase-spirals, respectively, due to the variation of Ωz with Iz.

• Since Ωz and Ωφ both depend on Lz, the amplitude of the Iz coswz − Iz sinwz phase-spiral damps away over

time, typically as ∼ 1/t (equation 28), at a coarse-grained level, i.e., upon marginalization over Lz. Therefore,

in a realistic disk with ordered motion, lateral mixing causes phase-spirals to damp out much slower than in

the isothermal slab with unconstrained lateral velocities discussed in Paper I, where it occurs like a Gaussian in

time.

• Collisional diffusion due to scatterings of stars by GMCs, DM substructure, etc. damps away the disk response

to a perturbation, and therefore the phase-spiral amplitude, at a fine-grained level. Typically, the diffusion in
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actions is much more efficient than that in angles. The action gradients of the response, which predominantly

arise from the action dependence of the oscillation frequencies, are erased by collisional diffusion, causing a super-

exponential damping of the response over a timescale, τ
(I)
D , which is ∼ 0.6− 0.7 Gyr in the Solar neighborhood.

The diffusion timescale is shorter in the inner disk, for stars with smaller Iz, and for higher-n modes.

• The response to a bar or spiral arm with a fixed pattern speed, ΩP, is dominated by the near-resonant stars

(Ωres = nΩz + lκ+m(Ωφ − ΩP) ≈ 0), especially in the adiabatic regime (slowly evolving perturber amplitude).

Moreover, phase-mixing occurs gradually in the near-resonant parts of phase-space. Most of the strong resonances

are confined to the disk-plane, such as the co-rotation (n = l = 0) and Lindblad (n = 0, l = ±1,m = ±2)

resonances. For a transient bar or spiral arm whose amplitude varies over time as ∼ exp
[
−ω2

0t
2
]
, the response

is maximal when ω0 ∼ Ωres. In the impulsive limit (ω0 � Ωres), the response is power-law suppressed, while in

the adiabatic limit (ω0 � Ωres) it is suppressed (super)-exponentially.

• For a thin disk, since Ωz is very different from Ωφ and κ, the vertical modes (n 6= 0) are generally not resonant

with the radial and azimuthal ones and thus undergo phase mixing. The strength of a vertical mode primarily

depends on the nature of the perturbing potential, most importantly its timescale. Slower pulses trigger mainly

bending (n = 1) modes, while faster pulses excite more pronounced breathing (n = 2) modes. Therefore, a

transient bar or spiral arm with amplitude ∼ exp
[
−ω2

0t
2
]

triggers a bending (breathing) mode when the pulse-

frequency, ω0, is smaller (larger) than Ωz. The response to very slow perturbations (ω0 � Ωz) is however heavily

suppressed (adiabatic shielding).

• For a persistent bar or spiral arm with a fixed pattern speed, ΩP, that grows and saturates over time, the response

initially develops a phase-spiral. However, this transient response is quickly taken over by coherent oscillations

at the driving frequency, ΩP, which manifest in phase-space as a steadily rotating dipole (quadrupole) for the

bending (breathing) mode. Therefore, a transient (pulse-like) perturbation, such as a bar or spiral arm whose

amplitude varies over a timescale comparable to the vertical oscillation period, Tz ∼ hz/σz, is essential for the

formation of a phase-spiral in z-vz space.

• The above analysis suggests that if the recently discovered two-armed Gaia phase-spiral (breathing mode) in the

inner disk of the MW was indeed induced by a spiral arm/bar as suggested by Hunt et al. (2022) using N-body

simulations, the spiral arm/bar was probably a transient one with a predominantly symmetric vertical profile

whose amplitude varied over a timescale comparable to the vertical oscillation period. However, it remains to be

seen whether such a rapid excitation and decay of a spiral arm/bar perturbation is realistic.

• We have computed the response of the MW disk, embedded in an extended DM halo, to disk-crossing pertur-

bations by several of its satellite galaxies. We find that the response in the Solar neighborhood is dominated by

the perturbations due to Sgr, followed by those due to the LMC, Hercules and Leo II. This implies that, if the

Gaia snail near the Solar radius was indeed triggered by a MW satellite (which is still subject to debate), Sgr is

the leading contender (see also Banik et al. 2022). However, if that is the case, then the impact (disk crossing)

must have happened within the last ∼ 0.6− 0.7 Gyr in order for the response to have survived damping due to

collisional diffusion.

• The amplitude of the response (at a fixed guiding radius Rc) to satellite encounters scales as v−1
P in the impulsive

(large vP) limit, but is exponentially suppressed in the adiabatic (small vP) limit, a phenomenon known as

adiabatic shielding. The resonant modes with nΩz + lκ + mΩφ = 0 are not suppressed but rather become

non-linear in the adiabatic regime. The peak response of a mode (with nΩz + lκ + mΩφ 6= 0) is achieved at

intermediate velocities for which the encounter frequency is commensurate with the oscillation frequencies of the

stars, i.e., the near-resonance condition given by equation (42) is satisfied.

• The response of a disk to an encounter with a satellite galaxy depends primarily on three parameters: (i) impact

velocity vP, (ii) polar angle of impact θP, and (iii) position on the disk relative to the point of impact where

the satellite crossed the disk. Slower (faster) encounters excite predominantly n = 1 bending (n = 2 breathing)

modes. More planar encounters (those with larger θP) typically result in larger breathing-to-bending ratios

farther away from the impact radius while this trend gets reversed closer to it. In general, breathing modes
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dominate over bending modes closer to the point of impact, in agreement with N -body simulations of the MW-

Sgr encounter (Hunt et al. 2021). Since the impact velocities of the MW satellites are all fairly similar to the

local circular velocity, the decisive factor for breathing vs. bending modes is not so much the impact velocity,

but rather the distance from the point of impact.

• The (n,m) = (1,−2) and (−1, 2) modes generally dominate the response for slower satellite encounters, e.g.,

that of Sgr with respect to the Solar neighborhood, due to the tidal distortion of the disk by the satellite. The

in-plane spatial structure of the disk response therefore generally resembles a two-armed warp (n = 1) or spiral

(n = 2).

• The presence of an extended DM halo causes phase mixing to occur slower, and modifies the structural appearance

of the phase-spirals (i.e., the pitch angle as function of vertical action). Hence, provided that the phase-spiral

was triggered by a single, impulsive perturbation, the detailed shape of the phase-spiral can in principle be

used to constrain not only the time elapsed since the perturbation (Darragh-Ford et al. 2023) but also the

total (disk+halo) potential. If the phase-spiral has been triggered and/or impacted by multiple, overlapping

perturbations the situation is less clear. In future work we intend to investigate the constraining power of

phase-spirals for different kinds of perturbation.

This paper focused on the analysis of the phase mixing component (phase-spirals) of the ‘direct’ disk response to

various perturbations such as bars, spiral arms and satellite galaxies. However this leaves out some other potentially

important features of the disk response. First of all, we considered the ambient DM halo to be non-responsive. In

reality, the DM halo will also be perturbed, for example by an impacting satellite, and this halo response, which

can be enhanced by self-gravity, can indirectly perturb the disk. A preliminary, perturbative analysis based on the

N -body simulation of the MW-Sgr encounter by Hunt et al. (2021) suggests that the indirect disk response to halo

perturbations (triggered by Sgr) is comparable, but sub-dominant, to the direct response to Sgr. However, a more

detailed analysis is warranted, which we leave for future work. Secondly, we have neglected the self-gravity of the

disk response. As discussed in Paper I, the dominant effect of self-gravity is to cause coherent point mode oscillations

(Mathur 1990; Weinberg 1991; Darling & Widrow 2019b) of the disk, which in linear theory are decoupled from the

phase-spirals. However, self-gravity can enhance the amplitude of the phase-spiral. Although recent developments

(Dootson & Magorrian 2022) have shed some light on the self-gravitating response of razor-thin disks to bar perturba-

tions, a more generic theoretical description of the self-gravitating response of inhomogeneous, thick disks to general

perturbations (bars, spiral arms, satellite galaxies, etc) is still lacking. We hope to include the effects of self-gravity

on disk perturbations in future work.

ACKNOWLEDGMENTS

The authors are grateful to Kathryn Johnston, Jason Hunt, Adrian Price-Whelan, Chris Hamilton, Elise Darragh-
Ford, James Binney, John Magorrian and Elena D’Onghia for insightful discussions and valuable suggestions. FCvdB

is supported by the National Aeronautics and Space Administration through Grant No. 19-ATP19-0059 issued as

part of the Astrophysics Theory Program. MDW is supported by the National Science Foundation through Grant No.

AST-1812689.

REFERENCES

Antoja, T., Helmi, A., Romero-Gómez, M., et al. 2018,

Nature, 561, 360, doi: 10.1038/s41586-018-0510-7

Banik, U., & van den Bosch, F. C. 2021a, ApJ, 912, 43,

doi: 10.3847/1538-4357/abeb6d

—. 2021b, MNRAS, 502, 1441, doi: 10.1093/mnras/stab092

—. 2022, ApJ, 926, 215, doi: 10.3847/1538-4357/ac4242

Banik, U., Weinberg, M. D., & van den Bosch, F. C. 2022,

ApJ, 935, 135, doi: 10.3847/1538-4357/ac7ff9
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APPENDIX

A. THE UNPERTURBED GALAXY

Under the radial epicyclic approximation (small IR), the unperturbed DF, f0, for a rotating MW-like disk galaxy

can be well approximated as a pseudo-isothermal DF, i.e., written as a nearly isothermal separable function of the

azimuthal, radial and vertical actions. Following Binney (2010), we write

f0 =
1

π

(
ΩφΣ

κσ2
R

)
Rc

(
1 + tanh

Lz
L0

)
× exp

[
−κIR
σ2
R

]
× 1√

2πhzσz
exp

[
−Ez(Iz)

σ2
z

]
. (A1)

The vertical structure of this disk is isothermal, while the radial profile is pseudo-isothermal. Here Σ = Σ(R) is the

surface density of the disk, Lz is the z-component of the angular momentum, which is equal to Iφ, Rc = Rc(Lz) is the

guiding radius, Ωφ is the circular frequency, and κ = κ(Rc) = limIR→0 ΩR is the radial epicyclic frequency (Binney &

Tremaine 1987). If L0 is sufficiently small, then we can further approximate the above form for f0 as

f0 ≈
√

2

π3/2 σzhz

(
ΩφΣ

κσ2
R

)
Rc

exp

[
−κIR
σ2
R

]
exp

[
−Ez(Iz)

σ2
z

]
Θ(Lz) , (A2)

where Θ(x) is the Heaviside step function. Thus we assume that the entire galaxy is composed of prograde stars with

Lz > 0.

The corresponding density profile can be written as a product of an exponential radial profile and an isothermal

(sech2) vertical profile, i.e.,

ρ(R, z) = ρc exp

[
− R

hR

]
sech2

(
z

hz

)
, (A3)

where hR and hz are the radial and vertical scale heights, respectively. Throughout we adopt the thin disk limit, i.e.,

hz � hR. The surface density profile is given by

Σ(R) =

∫ ∞
−∞

dz ρ(R, z) = Σc exp

[
− R

hR

]
, (A4)

where Σc = ρchz is the central surface density of the disk. We assume a radially varying vertical velocity dispersion,

σz, satisfying σ2
z(R) = 2πGhzΣ(R) (Binney & Tremaine 2008). We assume a similar profile for σ2

R such that the ratio,

σR/σz is constant throughout the disk (Binney 2010) and equal to the value at the Solar vicinity.

Throughout this paper, for the ease of computation of the frequencies (because of a simple analytic form of the

potential), we approximate the above density profile by a combination of three Miyamoto & Nagai (1975) disk profiles

(Smith et al. 2015), i.e., the 3MN profile as implemented in the Gala Python package (Price-Whelan 2017; Price-Whelan

et al. 2020). The corresponding disk potential is given by

Φd(R, z) = −
3∑
i=1

GMi√
R2 +

(
ai +

√
z2 + b2i

)2
, (A5)

where Mi, ai and bi, with i = 1, 2, 3, are the mass, scale radius and scale height corresponding to each of the MN

profiles.

The MW disk is believed to be embedded in a much more extended DM halo, which we model using a spherical

NFW (Navarro et al. 1997) profile with potential

Φh(R, z) = −GMvir

Rvir

c

f(c)

ln(1 + r/rs)

r/rs
. (A6)

Here Mvir is the virial mass of the halo, rs is the scale radius, c = Rvir/rs is the concentration (Rvir is the virial

radius), and f(c) = ln (1 + c)− c/(1 + c). The combined potential experienced by the disk stars is thus given by

Φ0(R, z) = Φd(R, z) + Φh(R, z). (A7)
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B. FOURIER COEFFICIENTS OF SPIRAL ARM OR BAR PERTURBING POTENTIAL

An essential ingredient of the disk response to spiral arm or bar perturbations is the Fourier component of the

perturber potential, Φnlm. This can be computed as follows:

Φnlm(I, t) =
1

(2π)
3

∫ 2π

0

dwz

∫ 2π

0

dwR

∫ 2π

0

dwφ exp [−i(nwz + lwR +mwφ)] ΦP (r, t) . (B8)

To evaluate this first we need to calculate r = (z,R, φ) as a function of (w, I) = (wz, wφ, wR, I) where Iφ = Lz, the

angular momentum. Under the epicyclic approximation, R can be expressed as a sum of the guiding radius and an

oscillating epicyclic term, i.e.,

R ≈ Rc(Lz) +

√
2IR
κ

sinwR, (B9)

and the azimuthal angle, wφ, is given by

wφ ≈ φ−
2 Ωφ
Rcκ

√
2IR
κ

cos θR. (B10)

The vertical distance z from the mid-plane is related to Rc(Lz) and (wz, Iz), according to

wz = Ωz(Rc, Iz)

∫ z

0

dz′√
2 [Ez(Rc, Iz)− Φz(Rc, z′)]

, (B11)

where Ωz(Rc, Iz) = 2π/Tz(Rc, Iz), with Tz(Rc, Iz) given by Equation (19). The above equation can be numerically

inverted to obtain z(Rc, wz, Iz).

Upon substituting the above expressions for R, φ and z in terms of (w, I) in the expression for ΦP given in equa-

tion (21), we obtain

Φnlm (I, t) = −2πGΣP

kR

 ∑
mφ=0,2,−2

δm,mφ

 sgn(m) exp [i sgn(m)kRRc(Iφ)]

2i

× exp

[
i l tan−1 2mΩφ

Rcκ

√
2IR
κ

]
Jl

√k2
R +

(
2mΩφ
Rcκ

)2
√

2IR
κ


×
[
αMo(t)Φ(o)

n (Iz) +Me(t)Φ(e)
n (Iz)

]
exp [−imΩPt], (B12)

where Jl is the lth order Bessel function of the first kind,

sgn(m) =

1, m ≥ 0,

−1, m < 0,
(B13)

and Φ
(o)
n (Iz) and Φ

(e)
n (Iz) are given by

Φ(o)
n (Iz) =

1

2π

∫ 2π

0

dwz sinnwz Fo

(
z, k(o)

z

)
,

Φ(e)
n (Iz) =

1

2π

∫ 2π

0

dwz cosnwz Fe

(
z, k(e)

z

)
. (B14)

In deriving equation (B12) we have used the Hansen-Bessel formula which provides the following integral representation

for Bessel functions of the first kind, ∫ 2π

0

dx exp [−ilx] exp [iα sinx] = 2πJl (α) , (B15)
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and the identity for expansion in products of Bessel functions given in equation (8.530.2) of Gradshteyn & Ryzhik

(1965, see also section 6.1 of Binney & Lacey (1988)). We have also used the identity,

∫ 2π

0

dφ exp [−imφ] = 2π δm,0. (B16)

C. PERTURBATION BY ENCOUNTER WITH SATELLITE GALAXY

C.1. Computation of the disk response

To evaluate the disk response to satellite encounters using equation (20) we first evaluate the τ integral (with

ti → −∞) of the satellite potential given in equation (37) and then compute the Fourier transform of the result. This

yields the expression for the response in equation (20) with

Inlm(I, t) = exp [−iΩt]
∫ t

−∞
dτ exp [iΩτ ] Φnlm (I, τ)

=
exp [−iΩt]

(2π)
3

∫ 2π

0

dwz exp [−inwz]
∫ 2π

0

dwR exp [−ilwR]

∫ 2π

0

dwφ exp [−imwφ]

∫ t

−∞
dτ exp [iΩτ ] ΦP(z,R, φ, τ),

(C17)

where

Ω = nΩz + lΩR +mΩφ. (C18)

We perform the inner τ integral of ΦP to obtain

∫ t

−∞
dτ exp [iΩτ ] ΦP(z,R, φ, τ) = −GMP

vP
exp

[
i
ΩS
vP

] ∫ t−S/vP

−∞
dτ

exp [iΩτ ]√
τ2 + (R2 + ε2)/v2

P

= −GMP

vP
exp

[
i
ΩS
vP

] ∫ (vPt−S)/
√
R2+ε2

−∞
dx

exp
[
i
(
Ω
√
R2 + ε2/vP

)
x
]

√
x2 + 1

= −2GMP

vP
exp

[
i
ΩS
vP

]
K0i

(
Ω
√
R2 + ε2

vP
,
vPt− S√
R2 + ε2

)
. (C19)

Here K0i is defined as

K0i(α, β) =
1

2

∫ β

−∞
dx

exp [iαx]√
x2 + 1

, (C20)

which asymptotes to the zero-th order modified Bessel function of the second kind, K0 (|α|), in the limit β → ∞. R
and S are respectively the projections perpendicular and parallel to the direction of vP of the vector connecting the

point of observation, (z,R, φ), with the point of impact, and are given by

R2 = [R sin (φ− φP) +Rd sinφP]
2

+ [(R cos (φ− φP)−Rd cosφP) cos θP − z sin θP]
2

S = (R cos (φ− φP)−Rd cosφP) sin θP + z cos θP. (C21)

In deriving equation (C19), we have only considered the direct term in the expression for ΦP given in equation (37);

the indirect term turns out to be sub-dominant.

In the large time limit, i.e., t� S/vP, K0i asymptotes to K0

(
|Ω|
√
R2 + ε2/vP

)
. We substitute the expressions for R

and z in terms of (w, I) given in equations (B9) and (B11) in the above expressions for R and S. Further substituting

the resultant τ integral from equation (C19) in equation (C17), substituting wφ in terms of φ using equation (B10),
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adopting the small IR limit, and performing the wR integral, we obtain

Inlm(I, t) ≈ −2GMP

vP
exp [−iΩt]× exp

[
−iΩ sin θP cosφP

vP
Rd

]
× exp

[
i l tan−1 2mΩφ

Rcκ

√
2IR
κ

]

× 1

(2π)
2

∫ 2π

0

dwz exp [−inwz] exp

[
i
Ω cos θP

vP
z

] ∫ 2π

0

dφ exp [−imφ] exp

[
i
Ω sin θP cos (φ− φP)

vP
Rc

]

× Jl

√(Ω sin θP

vP

)2

cos2 (φ− φP) +

(
2mΩφ
Rcκ

)2
√

2IR
κ

K0i

(
Ω
√
R2

c + ε2

vP
,
vPt− Sc√
R2

c + ε2

)
, (C22)

where Rc = R(R = Rc) and Sc = S(R = Rc). Here we have used the integral representation of Bessel functions of the

first kind given in equation (B15) and the identity given in equation (8.530.2) of Gradshteyn & Ryzhik (1965).

The expression for Inlm given in equation (C22) consists of the leading order expansion in
√

2IR/κ. A more precise

expression that is accurate up to second order in
√

2IR/κ is given, in the large time limit, as

Inlm(I, t)
t→∞
≈ −2GMP

vP
exp [−iΩt]× exp

[
−iΩ sin θP cosφP

vP
Rd

]
× 1

(2π)
2

∫ 2π

0

dwz exp [−inwz] exp

[
i
Ω cos θP

vP
z

] ∫ 2π

0

dφ exp [−imφ] exp

[
i
Ω sin θP cos (φ− φP)

vP
Rc

]
× exp

[
i l tan−1 2mΩφ

Rcκ

√
2IR
κ

] [
ζ(0)Jl (χ)− iζ(1)J ′l (χ)− 1

2
ζ(2)J ′′l (χ)

]
, (C23)

where

χ =

√(
Ω sin θP

vP

)2

cos2 (φ− φP) +

(
2mΩφ
Rcκ

)2
√

2IR
κ
, (C24)

and

ζ(0) = K0 (η) ,

ζ(1) =

√
2IR
κ

∂Rc

∂Rc

Rc√
R2

c + ε2

|Ω|
vP
K ′0 (η) ,

ζ(2) =
2IR
κ

[(
∂Rc

∂Rc

)2 R2
c

R2
c + ε2

Ω2

v2
P

K ′′0 (η) +

{
∂2Rc

∂R2
c

Rc√
R2

c + ε2
+

(
∂Rc

∂Rc

)2
ε2

(R2
c + ε2)

3/2

}
|Ω|
vP
K ′0(η)

]
, (C25)

with

η =
|Ω|
√
R2

c + ε2

vP
. (C26)

Here each prime denotes a single derivative of the function with respect to its argument.

Substituting the expression for Inlm given in equation (C23) in the expression for the disk response given in equa-

tion (20), and adopting the fiducial parameters for the MW galaxy and those corresponding to satellite encounters (as

detailed in section 4.2), we compute the response of the MW disk to past and future encounters with its satellite galax-

ies. Results for the steady state disk response (in the collisionless limit) of the (n, l,m) = (1, 0, 0) mode, corresponding

to Iz = Iz,� = hzσz,� and Rc(Lz) = 8 kpc and marginalized over IR, are summarised in Table 1.

C.2. Special case: disk response for face-on impulsive encounters

The disk response in the general case, expressed by equation (38), depends on several encounter parameters: Rd, θP,

φP, and is complicated to evaluate. Therefore, as a sanity check, here we compute the response as well as corresponding

energy change for the special case of a satellite undergoing an impulsive, perpendicular passage through the center of

the disk.
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MW satellite Mass f1,n=1/f0 tcross f1,n=1/f0 tcross f1,n=1/f0 tcross

name ( M�) ( Gyr) ( Gyr) ( Gyr)

Penultimate Penultimate Last Last Next Next

(1) (2) (3) (4) (5) (6) (7) (8)

Sagittarius 109 2.7 × 10−1 −1.01 4.9 × 10−8 −0.35 1.3 × 10−1 0.03

Hercules 7.1 × 106 8.4 × 10−8 −3.78 2.4 × 10−3 −0.5 2.4 × 10−3 3.18

Leo II 8.2 × 106 – −3.86 1.6 × 10−3 −1.78 3.2 × 10−3 2.31

Segue 2 5.5 × 105 6.2 × 10−4 −0.84 8.5 × 10−4 −0.25 6.3 × 10−5 0.28

LMC 1.4 × 1011 5.1 × 10−2 −7.63 – −2.67 2.3 × 10−2 0.11

SMC 6.5 × 109 2.8 × 10−5 −3.32 – −1.44 8.7 × 10−6 0.22

Draco I 2.2 × 107 – −2.46 9.9 × 10−5 −1.24 7.1 × 10−6 0.24

Bootes I 107 1.8 × 10−7 −1.67 3.7 × 10−5 −0.35 – 0.88

Willman I 4 × 105 1.6 × 10−8 −0.66 1.2 × 10−6 −0.21 9.3 × 10−6 0.41

Ursa Minor 2 × 107 – −2.28 1.7 × 10−5 −1.17 2.6 × 10−6 0.29

Ursa Major II 4.9 × 106 5.8 × 10−6 −2.12 2.5 × 10−6 −0.09 – 0.97

Coma Berenices I 1.2 × 106 9.2 × 10−7 −2.58 3.7 × 10−8 −0.25 – 0.71

Sculptor 3.1 × 107 – −2.74 3.4 × 10−8 −0.46 – 1.48

Table 1: Steady state response of the MW disk to encounters with satellites in the collisionless limit, for the (n, l,m) =

(1, 0, 0) mode and for stars with Iz = Iz,� = hzσz,� in the Solar neighborhood. We have marginalized the response

over IR. Columns (1) and (2) list the name and dynamical mass of each satellite. The latter is taken from the literature

(Simon & Geha 2007; Bekki & Stanimirović 2009;  Lokas 2009; Erkal et al. 2019; Vasiliev & Belokurov 2020), except

for Sagittarius for which we adopt a mass of 109 M�. Note that there is a discrepancy between its estimated mass of

∼ 4× 108 M� (Vasiliev & Belokurov 2020) and the mass required (109 − 1010 M�) to produce detectable phase-spiral

signatures in N-body simulations (see for example Bennett et al. 2022). Columns (3) and (4) respectively denote the

bending mode response assuming our fiducial MW parameters and the penultimate disk-crossing time. Columns (5)

and (6) indicate the same for the last disk-crossing, while columns (7) and (8) show it for the next one. Only satellites

that induce a bending mode response, f1,n=1/f0 ≥ 10−8, in at least one of the three cases are shown. Any response

weaker than 10−8 is considered negligible and is indicated with a horizontal dash.

As shown in van den Bosch et al. (2018) (see also Banik & van den Bosch 2021b), the total energy change due to a

head-on encounter of velocity vP with a Plummer sphere of mass MP and size ε is given by:

∆E = 4π

(
GMp

vP

)2 ∫ ∞
0

I2
0 (R)Σ(R)

dR

R
(C27)

where

I0(R) =

∫ ∞
1

MP(ζR)

Mp

dζ

ζ2(ζ2 − 1)1/2
(C28)

Using that the enclosed mass profile of a Plummer sphere is given by MP(R) = MPR
3(R2 + ε2)−3/2, we have that

I0(R) = R2/(R2 + ε2), which yields

∆E = 4π

(
GMp

vP

)2 ∫ ∞
0

Σ(R)
R3dR

(R2 + ε2)2
. (C29)

Now we compute the disk response to the face-on satellite encounter using equations (20) and (C23-C26). For a

perpendicular face-on impact through the center of the disk we have Rd = 0 and θP = 0, implying that Rc becomes

Rc. The corresponding response is greatly simplified. In the large time and small IR limit, it is given by equation (20)

with



32

Inlm(I, t) ≈ −2GMP

vP
exp [−iΩt] δm,0 ×

1

2π

∫ 2π

0

dwz exp [−inwz] exp

[
i
Ωz

vP

]

× 1

2π

∫ 2π

0

dwR exp [−ilwR]K0

 |Ω|
vP

√√√√ε2 +

(
Rc +

√
2IR
κ

sinwR

)2
 , (C30)

where the φ integral only leaves contribution from the axisymmetric m = 0 mode. The wR integrand can be expanded

as a Taylor series and the wR integral can be performed to yield the following leading order expression for Inlm:

Inlm(I, t) ≈ iGMP

vP
exp [−iΩt] δm,0 (δl,1 − δl,−1)× 1

2π

∫ 2π

0

dwz exp [−inwz] exp

[
i
Ωz

vP

]
×
√

2IR
κ

Rc√
ε2 +R2

c

|Ω|
vP
K ′0

[
|Ω|
vP

√
ε2 +R2

c

]
. (C31)

In the impulsive limit, vP →∞, this becomes

Inlm(I, t) ≈ i δn,0δm,0 (δl,1 − δl,−1)
GMP

vP

√
2IR
κ

Rc

ε2 +R2
c

exp [−i lκ t], (C32)

which can be substituted in equation (20) to yield

f1nlm (I, t) = f0(I)× δn,0δm,0 (δl,1 − δl,−1)
GMP

vP

lκ

σ2
R

√
2IR
κ

Rc

ε2 +R2
c

exp [−i lκ t], (C33)

with f0 given by equation (15). Hence, the response is given by

f1 (w, I, t) =

∞∑
n=−∞

∞∑
l=−∞

∞∑
m=−∞

exp [i(nwz + lwR +mwφ)] f1nlm(I, t)

= f0(I)× 2GMP

vP

√
2κIR
σ2
R

Rc

ε2 +R2
c

cos (wR − κt) , (C34)

which shows that the satellite passage introduces a relative overdensity, f1 (w, I, t) /f0(I), that scales as ∼
Rc/

(
ε2 +R2

c

)
, which increases from zero at the center, peaks at Rc = ε, and asymptotes to zero again at large

Rc. The cos(wR − κt)-term describes the radial epicyclic oscillations in the response.

To compute the energy change due to the impact, we note that dE/dt = ∂E/∂I · dI/dt, where ∂E/∂I = Ω =

(Ωz,ΩR,Ωφ) and dI/dt = −∂ΦP/∂w from Hamilton’s equations of motion. Thus the total phase-averaged energy

injected per unit phase-space can be obtained as follows:

〈∆E (I)〉 =
1

(2π)
3

∫
dw

∫ ∞
−∞

dt
dE

dt
f1(I, t) = − 1

(2π)
3

∫
dw

∫ ∞
−∞

dt Ω · ∂ΦP

∂w
f1(I, t). (C35)

We can substitute the Fourier series expansions of ΦP and f1 given in equations (10) in the above expression and

integrate over w to obtain (Weinberg 1994a,b)

〈∆E (I)〉 = i
∑
nlm

(nΩz + lκ+mΩφ)

∫ ∞
−∞

dtΦ∗nlm(I, t)f1nlm(I, t). (C36)

We can now substitute the form of ΦP for a Plummer perturber given in equation (37), with rP and r given by

equations (35) and (36). The time integral can thus be written as∫ ∞
−∞

dtΦ∗nlm(I, t)f1nlm(I, t) = − 1

(2π)
3

∫ 2π

0

dwz exp [inwz]

∫ 2π

0

dwR exp [ilwR]

∫ 2π

0

dwφ exp [imwφ]

×
∫ ∞
−∞

dt
GMP√

(vPt− z)2
+R2 + ε2

f1nlm(I, t). (C37)
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Using equations (B9) and (B11) to express R and z in terms of (w, I), and substituting the form for f1nlm(I, t) from

equation (C33), we can perform the above integrals over w and t. Substituting the result in equation (C36) we obtain

〈∆E (I)〉 =

(
GMP

vP

)2

f0(I)
2κIR
σ2
R

R2
c

(ε2 +R2
c)

2 . (C38)

The total energy, ∆Etot, imparted into the disk by the impulsive satellite passage can be computed by integrating

the above expression over I and w (which simply introduces a factor of (2π)
3

since 〈∆E (I)〉 is already phase-averaged),

using equation (15) and transforming from Lz to Rc using the Jacobian dLz/dRc = Rcκ
2/2Ωφ. This yields

∆Etot = 4π

(
GMP

vP

)2 ∫ ∞
0

dRcRc Σ(Rc)
R2

c

(ε2 +R2
c)

2 . (C39)

This is indeed the expression for ∆Etot derived under the impulse approximation given by equation (C29).
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