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Abstract. General relativity manifests very similar equations in different regimes, notably
in large scale cosmological perturbation theory, non-linear cosmological structure formation,
and in weak field galactic dynamics. The same is not necessarily true in alternative gravity
theories, in particular those that possess MONDian behaviour (“relativistic extensions” of
MOND). In these theories different regimes are typically studied quite separately, sometimes
even with the freedom in the theories chosen differently in different regimes. If we wish to
properly and fully test complete cosmologies containing MOND against the ΛCDM paradigm
then we need to understand cosmological structure formation on all scales, and do so in a
coherent and consistent manner. We propose a method for doing so and apply it to generalised
Einstein-Aether theories as a case study. We derive the equations that govern cosmological
structure formation on all scales in these theories and show that the same free function
(which may contain both Newtonian and MONDian branches) appears in the cosmological
background, linear perturbations, and non-linear cosmological structure formation. We show
that MONDian behaviour on galactic scales does not necessarily result in MONDian behaviour
on cosmological scales, and for MONDian behaviour to arise cosmologically, there will be
no modification to the Friedmann equations governing the evolution of the homogeneous
cosmological background. We comment on how existing N-body simulations relate to complete
and consistent generalised Einstein-Aether cosmologies. The equations derived in this work
allow consistent cosmological N-body simulations to be run in these theories whether or not
MONDian behaviour manifests on cosmological scales.

1Corresponding author.
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1 Introduction

The current cosmological paradigm, ΛCDM is broadly successful [1], although it is has some
ongoing small scale problems and tensions (see e.g. [2–5]). This paradigm contains two hy-
pothesised forms of matter: cold dark matter and dark energy. The existing observational
evidence for these is solely gravitational in nature, so it is natural to consider whether mod-
ified gravitational laws (rather than Einstein’s General Relativity (GR)) could instead be
responsible for these observations, see e.g. [6] for a comprehensive review. A long-running
suggestion to account for some of the phenomenology attributed to dark matter is MOdified
Newtonian Dynamics (MOND) [7–9]. See [10–13] for reviews of the theory and observational
successes and challenges of MOND.

The successes and failures of MOND (and particularly how it fares versus the cold dark
matter of ΛCDM) are an ongoing debate in the literature (see e.g. [14–23] for a non-exhaustive
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list of recent topics and discussions). In this work we do not take a position advocating for
or against MOND. Rather, we take the view that until there is non-gravitational evidence for
dark matter, it is worth testing and developing the different paradigms in an attempt to falsify
each of them. However, to do this we need to understand cosmological structure formation on
all scales1 in a MONDian cosmology and there is as yet no complete and consistent MONDian
cosmology that makes clear predictions on all cosmological scales and that can be fully and
fairly tested against the ΛCDM paradigm. Partly this is difficult because MOND itself is
not a theory of gravity, it is a phenomenological description of how the gravitational laws
might behave in certain limits. To be a complete theory, MONDian behaviour must be
embedded in a “relativistic extension”, several candidates for which have been investigated
[24–29]. See references in [28] for a more comprehensive list of different theories in which
MONDian behaviour can arise in different ways.

An additional difficulty is that studying cosmological structure formation requires look-
ing at several different regimes, none of which are the weak-field galactic dynamics regime for
which MOND was originally proposed. MONDian behaviour is often expressed as a modifi-
cation of the Poisson equation2 in this regime, but here we run into the issue that the Poisson
equation is something that is a little convenient in GR+ΛCDM: a very similar equation arises
in conceptually quite different regimes, notably large scale cosmological perturbation theory,
non-linear cosmological structure formation, and in weak field galactic (and smaller scale)
dynamics. The equations in these regimes are not necessarily so similar in other theories of
gravity, and this particularly applies to the case of relativistic extensions of MOND. These
theories are usually studied piecemeal in different regimes, with different assumptions and
frameworks in each, and sometimes even with the available freedom in the theories being
chosen differently in different regimes. This disjointed approach is theoretically problematic
as it is unclear if the different choices made in different regimes can be simultaneously realised
in the same universe. It is also practically problematic since it means it is unclear how to run
cosmological simulations when the different limits are treated so differently, due to the range
of scales that is being covered by these simulations. In particular these simulations need
to have a cosmological background and large scale perturbations that are consistent with
each other, and with the smaller scale non-linear behaviour. Studying cosmological structure
formation in GR is more straightforward because of its similarity across the different regimes.

Cosmological N-body simulations up to scales of 512h−1Mpc have previously been run
with some form of MONDian Poisson equation [30–36], however due to the issues noted
above it is somewhat unclear how these simulations relate to specific relativistic extensions
of MOND. From the other side, the equations that govern cosmological structure formation
on all scales have not been derived for any relativistic extensions of MOND; in particular,
equations that can be used to run cosmological N-body simulations for a specific theory.
Another use of such equations would be to examine on which scales involved in cosmological
structure formation MONDian behaviour can arise, and if MONDian behaviour on these
scales necessarily arises from having MONDian behaviour on galactic scales.

In order for the MOND paradigm to develop into sufficient maturity to be fully and
consistently compared against ΛCDM, these issues need to be addressed. In this work we

1Note that throughout, we use “cosmological structure formation on all scales” to mean all scales where
a perturbed FLRW metric with weak fields is a reasonable description of the spacetime (a range of scales
from super horizon scales to approximately scales of order Mpc), and by “non-linear scales” we mean scales of
around 10Mpc and below, where the cosmological density contrast δ becomes greater than 1.

2Note that in this paper we consider MOND as a modification of gravity not as modified inertia.
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examine these issues using the post-Friedmann approach [37, 38]; this is a weak field post-
Newtonian-like expansion designed to work in a cosmological setting, so it is ideal for such
a study. In addition to GR+ΛCDM, it has previously been applied to Hu-Sawick [39] f(R)
gravity [40] and used to create a model-independent approach to modified gravity that ap-
plies on all cosmological scales [41, 42]. We create a method for deriving the equations that
govern cosmological structure formation (the evolution of inhomogeneities) on all scales that
is inspired by the observations in [41]. In particular, the process used to derive the all-scales
equations partly draws on the conditions in GR+ΛCDM that cause the simulation situation
to be relatively simple, such as the absence of a regime where neither perturbation theory
or the Newtonian limit apply (as discussed in [41]). We apply this method to generalised
Einstein-Aether (GEA) theories [43–50] as an illustrative example of how a relativistic exten-
sion of MOND can be examined more holistically over the full range of cosmological scales.
This process gives a single set of equations for running consistent cosmological simulations,
including an expansion history, large scale behaviour, and small scale behaviour that are
consistent with each other. We examine how MONDian behaviour can arise in the resulting
structure formation and if and how this relates to MONDian behaviour on galactic scales,
as well as what this means for relating existing cosmological MOND N-body simulations to
GEA cosmologies. We also examine how one can check the assumptions that underly our
derivation.

This paper is laid out as follows: in section 2 we elaborate on the theoretical context
and briefly recap some details of GEA theories and the post-Friedmann approach. In section
3 we apply our approach to GEA theories to construct equations that describe cosmological
structure formation on all scales in these theories. We discuss some features of these equations
in section 4, notably if and how MONDian behaviour can arise cosmologically. We conclude
in section 5.

2 Theoretical context

In this section we discuss some of the issues around MOND N-body simulations, relating
them to relativistic extensions of MOND, and why we need equations for these theories that
apply on all scales. We then briefly recap GEA theories (mostly following [43, 45]), and the
post-Friedmann approach (mostly following [37, 41]), and in the latter we explain the method
that will be used to derive the equations for structure formation that apply on all cosmological
scales.

2.1 (MOND) N-body simulations and the need for coherent and complete cos-
mologies on all scales in relativistic extensions of MOND

The equations governing cosmological structure formation in ΛCDM+GR are very similar
in the linear perturbation limit and in the non-linear Newtonian limit, and there aren’t any
scales where the leading order dynamics are not well described by one of these two limits (see
e.g. the discussion in [41] and references therein). As a result, it is relatively straightforward
(from a physics, if not a computational perspective) to run N-body simulations that cover a
wide range of scales, from super horizon scales all the way down to scales where the density
fluctuations are large.

The situation is typically more complicated in modified gravity theories, where the dif-
ferent assumptions and properties of the different regimes means that the equations can differ
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Figure 1. Schematic showing the different conceptual regimes referred to throughout the paper, the
scales they cover relative to each other, and how this relates to MOND and cosmological simulations.
The Newtonian scale denotes the scale below which the Newtonian limit of a relativistic theory is a
good approximation to the full equations. Note that there is no intermediate regime in ΛCDM: in
this case the perturbation and Newtonian regimes overlap. Similarly, the perturbative quasi-static
regime typically only exists in cosmologies with no intermediate regime.

more between the different regimes. This issue is particularly pronounced for relativistic ex-
tensions of MOND for two reasons. Firstly because different limits of the theories are typically
studied independently, which sometimes even includes choosing the undetermined freedom in
the theories differently in different regimes.3 The second is that the cosmological regimes have
different assumptions to the galactic limit in which MONDian behaviour is shown to arise in
these relativistic theories. To the authors’ knowledge, a single consistent description covering
all of the scales for cosmological structure formation has not previously been derived for a
relativistic extension of MOND. Instead, behaviour is typically extrapolated from galactic
scales into the non-linear regime of cosmological structure formation (as discussed in the next
paragraph); such extrapolations involve moving between regimes in which particular limits
of the theory are studied and the freedom is chosen in a particular way. To aid the reader, a
schematic illustration of the different scales referred to in this work is show in figure 1. This
figure shows the different cosmological and non-cosmological regimes, as well as the range of
regimes spanned by cosmological N-body simulations. In this work for simplicity we assume
that there is a lower limit to the range of scales on which the use of the FLRW metric, and
thus the derivation later in this paper, is valid.4 As such, the backgrounds of the two New-
tonian limits differ, and both the additional time dependence of the FLRW background and
that it is not a vacuum solution (but Minkowski is) could create differences for other theories
of gravity.

From the simulation side, since MOND is often taken to be a modification to the New-
tonian Poisson equation, one common route is to modify N-body simulations to include the

3For the Generalised Einstein Aether theories considered later in this work, this freedom is the function
F (K) and its form for different ranges of K.

4This means that we always work within a cosmological context and do not consider for example whether
one can always move to FLRW co-ordinates even on smaller (e.g. galactic) scales as carried out for example in
[51, 52]). If such transformations are possible in the theories we consider here then this work can be extended
to include galactic behaviour and constrain these theories further from the point of view of requiring consistent
behaviour on all scales.
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MONDian Poisson equation. This is valid on galactic scales where a simple weak field (in
a Minkowski background) derivation of MONDian behaviour can be carried out on a par-
ticular relativistic extension of MOND. Here, we focus on cosmological-type simulations on
larger scales, rather than simulations on smaller scales focused around simulating galaxy for-
mation and evolution. Previous works [30–36] have been run with box sizes varying from
32h−1Mpc to 512h−1Mpc, all of which involve scales that will be evolving according to linear
and non-linear fluctuation behaviour in a cosmological background.

With “cosmological” box sizes such as these, it is less clear cut whether MONDian
behaviour necessarily arises even in theories that have MONDian behaviour on galactic scales,
because cosmological structure formation is a different conceptual regime. Again, just because
the GR equations are similar in the different regimes, doesn’t mean that this will be the
case for other theories. This question has not previously been addressed5. This issue is
compounded by the aforementioned problems about the different cosmological regimes that
are spanned by an N-body simulation. For example, an (effective) modified G in the Poisson
equation on linear cosmological scales is a generic prediction of modified gravity theories
(see e.g. [6]), so such an effect may be required on the larger (linear) scales in MONDian
cosmological simulations. Such a modification in linear theory needs to be understood in
terms of how it relates to the branches of the MOND Poisson equation in non-linear structure
formation, whether it arises in one or both of these branches, and therefore how it should
arise in a cosmological N-body simulation.

For concreteness, when we refer to galactic MONDian behaviour in this work we are
referring to a Poisson equation given by

~∇(p) ·

(
µ

(
|~∇Φ|
a0

)
~∇(p)Φ

)
= 4πGρ (2.1)

µ(x) = 1 (Newtonian branch) (2.2)
µ(x) = x (deep MOND branch), (2.3)

where ρ is the matter density and Φ is the Newtonian potential. Since MOND was proposed
in a galactic context, when applying it cosmologically one has to make a choice about whether
the a0 function is allowed to vary over cosmic history, and whether the quantities that appear
in the MOND Poisson equation (such as ρ, Φ and ∇) are the physical or comoving quantities6.
We make a small generalisation of MONDian behaviour to include an extra function (γ(a))
of the scale factor a to account for these different possibilities and choices

~∇ ·

(
µ

(
|~∇Φ|
γ(a)a0

)
~∇Φ

)
= 4πGa2ρ. (2.4)

Behaviour matching equation 2.4 will be the behaviour we refer to as cosmological MOND
behaviour when examining a specific relativistic extension of MOND later in the paper. We

5Although we note that careful thought is given in [30–36] to the fact that the underlying covariant
cosmology is not known, requiring assumptions such as the validity of the Friedmann equations for the
background expansion, assuming that MONDian effects only apply to the peculiar acceleration, and the
validity of the initial conditions that are typically used in ΛCDM N-body simulations. Since the method in
this paper creates a consistent cosmology on all scales and times, these questions will be effectively answered
by the same framework, although these are not the primary questions we are investigating.

6Note that the subscript p on ~∇ in equation (2.1) denotes that this is a derivative with respect to a physical
co-ordinate; ~∇ throughout the rest of this paper is a derivative with respect to a comoving co-ordinate.
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note that this simple form does not quite encompass all of the possible choices, but it covers
the main ones and is reasonably general whilst maintaining a fairly simple form. This form
is similar to that adopted for cosmological MOND N-body simulations (e.g. [32, 36]).

To summarise, the following are still open questions: what does a complete picture of
cosmological structure formation look like in relativistic extensions of MOND, how do we
run consistent cosmological N-body simulations for these theories, how do said simulations
relate to existing cosmological MOND simulations, and does MONDian behaviour necessarily
arise on cosmological scales if it arises on galactic scales (and if it does appear, then in which
scales, times and locations does it appear)? These issues apply to analytic examinations
of structure formation in MOND as well (e.g [53, 54]): if a particular relativistic extension
of MOND contains MOND on galactic scales but not cosmological scales, then the general
lessons drawn from studying cosmological structure formation in MOND will not apply to
these theories; conversely cosmological structure formation potentially being found to not be
compatible with these studies does not necessarily therefore rule out MOND phenomenology
on galactic scales.

To solve these issues in a particular theory, we need to derive equations that describe the
evolution of cosmological inhomogeneities on all scales. In this work, we propose a method
to do so and illustrate it by applying it to GEA theories as a case study.

2.2 Generalised Einstein Aether theories

GEA theories are theories with an additional timelike vector field, Aµ, with an action given
by

S =

∫ √
−gd4x

(
c4

16πG

[
(R− 2Λ) +M2F (K) + λ (AµAµ + 1)

]
+ Lm

)
(2.5)

where λ is the Lagrange multiplier ensuring that the Aether field Aµ has a timelike unit norm
and the function F (K) is free and can be chosen to get different phenomenology. The scalar
K is given by

K = M−2Kµν
αβ∇µA

α∇νAβ

Kµν
αβ = c1g

µνgαβ + c2δ
µ
αδ

ν
β + c3δ

µ
βδ

ν
α, (2.6)

The ci are constants, and are constrained to be c1 < 0, c2 ≤ 0 and c1 + c2 + c3 ≤ 0. For later
convenience we also define α = c1+3c2+c3. There is also a possible ‘c4’ contribution Kµναβ =
c4A

µAνgαβ , see [49] for a discussion. For simplicity, we drop this term and concentrate on
theories that have been shown to deliver MOND on galactic scales [43, 45]. The method
presented later can accommodate non-zero c4 if required. For these theories, the Einstein
equations are given by

Gµν = 8πGT (m)
µν + T (GEA)

µν

T
(GEA)
αβ =

1

2
∇γ
(
FK

(
J(α

γAβ) − J
γ
(αAβ) − J(αβ)A

γ
))
− FKY(αβ) +

1

2
gαβM

2F + λAαAβ

Yαβ = c1

(
(∇α)(∇βAν)− (∇νAα)(∇νAβ)

)
Jµν =

(
Kµα

νβ +Kαµ
βν

)
∇αAβ ,
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with FK = dF
dK and with T

(m)
µν being the stress energy tensor of matter. The vector field

equation is given by

∇α
(
FKJ

α
β

)
= 2λAβ . (2.7)

GEA theories have been studied extensively in terms of their cosmological background
and linear perturbations [43, 45–50], and also in terms of their gravitational wave propagation
[55, 56]. These theories have also been looked at in the weak field limit [43, 45] that describes
the Solar System and galaxies. Notably, the free function F (K) is usually chosen differently
in these different regimes in order to get MONDian behaviour in galaxies and also get dark-
energy-like cosmological backgrounds. This choice is made on the assumption that there is
a single (complicated) F (K) that has different behaviour for different ranges of K, and the
ranges of values that K takes in the different regimes are disjoint. However, the validity of
this assumption is less clear if we include (non-linear) cosmological structure formation in
which MONDian behaviour may arise on scales that are described by a FLRW background.
This is one of the issues that our approach will resolve.

Note that we are not positing that GEA theories themselves are necessarily strong con-
tenders to ΛCDM, merely using them as a reasonably well-studied example to illustrate how
our method can be used to derive complete and consistent cosmologies in (and insight into)
relativistic extensions of MOND.

2.3 Post-Friedmann formalism

The post-Friedmann formalism is a post-Newtonian-like expansion of the Einstein equations
(or modified Einstein equations) in powers of the speed of light c, altered compared to a
“Solar-System” type expansion in order to apply to a FLRW cosmology [37, 38]. The starting
point of the post-Friedmann approach is the perturbed FLRW metric in Poisson gauge7,
which is expanded up to order c−5,

g00 = −
(

1− 2UN
c2

+
1

c4

(
2U2

N − 4UP
))

(2.8)

g0i = −aB
N
i

c3
− aBP

i

c5
(2.9)

gij = a2

((
1 +

2VN
c2

+
1

c4

(
2V 2

N + 4VP
))

δij +
hij
c4

)
. (2.10)

The two scalar potentials have each been split into their leading order (Newtonian) (UN ,VN )
and higher order (UP ,VP ) components. The gauge freedom is chosen such that the vector
potential appears in the 0i part of the metric, and this has also been split up into BN

i and BP
i .

The three-vectors BN
i and BP

i are both divergence-less, BN
i,i = 0 and BP

i,i = 0. In addition,
the tensor perturbation hij is transverse and trace-free, hii = h,iij = 0. Time derivatives are
associated with a factor of 1

c . The matter content (in addition to a possible cosmological
constant) is taken to be pressure-less dust8, the four-velocity of which is used to construct the
energy-momentum tensor, which is also expanded in powers of c. The parameters describing

7The Poisson gauge is one of the few cosmological gauges that is valid on scales where the density contrast
isn’t small [57].

8This is a sufficient description of baryons on most cosmological scales, and is not broken sufficiently on
small scales to jeopardise the expansion in c.
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the pressure-less dust fluid are the background density ρ̄, the density contrast δ, and the
peculiar velocity vi. Crucially, this setup doesn’t require the density contrast to be small,
unlike standard (linear) cosmological perturbation theory, which allows the approach to be
used on small scales. To obtain the equations that apply on all cosmological scales we will
change variables to the “re-summed potentials” [37, 41]

ψP = −VN −
2

c2
VP (2.11)

φP = −UN −
2

c2
UP (2.12)

~ω = ~BN +
2

c2
~BP . (2.13)

For full details of the post-Friedmann formalism, see [37].

2.3.1 Cosmological structure formation on all scales

The post-Friedmann formalism was used in [37] to construct equations that apply on all cos-
mological scales, including both the large and small scale limits and a possible “intermediate”
regime where neither linear perturbation theory nor the Newtonian limit9 is sufficient for cal-
culating cosmological structure formation. These equations are quite complicated, however
they can be simplified [41] under the assumption that there is no intermediate regime, i.e.
that all scales of interest are described by either linear perturbation theory or the cosmological
Newtonian limit. This assumption holds for ΛCDM and at least some modified gravity theo-
ries [40, 41]. The simplified equations describe the evolution of cosmological homogeneities on
every scale from super-horizon scales to the regime of non-linear cosmological structure forma-
tion as long as the assumption that there is no intermediate regime holds. For a ΛCDM+GR
cosmology, these simple all scales equations are given by equations (3.20a)−(3.20d) in section
IV of [41] .

In this work we build on the idea of [41] to present a method for deriving equations that
apply on all scales in a specific theory of modified gravity. In [41] the simplified all scales
equations are arrived at by expanding to c−5 order, converting to the re-summed potentials,
and then removing certain terms from the equations: specifically the terms that are both
“structurally non-linear” and beyond leading order in the 1

c expansion. These same equations
can be arrived at with a simpler method, namely for each equation derive the two limiting
cases, write them in terms of the re-summed potentials, and then combine the two equations
into a single equation that contains both limits (and no more). This is the method we will
follow here, and it results in a single consistent set of equations that describe the background,
and fluctuations on all cosmological scales in these theories. By definition this is equivalent
to constructing the full set of master equations up to order c−5, converting to the re-summed
potentials, and removing the terms that associated only with an intermediate regime where
neither the linear perturbation theory or Newtonian limit applies, however it is a much easier
computational process. This process amounts to “stitching together” the two limits, which
works because they are both weak field expansions and thus can both be written in terms of
the re-summed potentials.

9Throughout this work we will use “Newtonian limit” to denote the equation of motions in a theory of
gravity that occur at leading order in this 1

c
expansion, and we reserve “Newtonian branch” and “MONDian

branch” for discussions of which limit of the MOND Poisson equation is active in a particular context. I.e.
“Newtonian limit” does not necessarily mean that the equations of motion are those of Newtonian gravity.
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This method is not universally valid for any cosmology or matter content. By construc-
tion, this derivation only applies in a matter or Λ dominated cosmology, i.e. the dominant
clustering component in the universe needs to be pressureless dust. Since the method followed
here yields the same equations as the method laid out in [41], the remaining requirements for
this method to be valid are largely given by the set of criteria in section V.A of [41]. These
requirements can be approximately summarised as follows: only scalar metric potentials are
important for cosmological structure formation, the two limits (linear perturbation and New-
tonian) are valid, and every relevant scale is well-described by one (or both) of the two limits
(in terms of figure 1 this means that there is no “intermediate regime” and thus that the
Newtonian and perturbative limits overlap). The first of these is not required in the GEA
context. We will examine the remaining requirements for the GEA case in section 3.4, here
we just note that in any cosmological N-body simulation, the vector potential ~ω can be used
as a quantitative test of the Newtonian limit assumption [40, 41, 58, 59]. As such, this test is
one of the tests for this method, and the required equation to perform this test is naturally
derived as part of the method; in the GEA case this is equation (3.27).

3 Derivation of all-scales equations in GEA theories

As described in the previous section, this derivation has two parts: finding the leading order
post-Friedmann equations, and then combining them with the linear perturbation equations.

3.1 Applying the post-Friedmann approach to GEA theories

To begin, we need to decide how to expand the vector field Aµ in the post-Friedmann 1
c

expansion. We do this as follows

A0 = 1 +
UN
c2
, Ai =

βi

c3

(3.1)

and for Aµ it follows that:

A0 = −1 +
UN
c2
, Ai = a2βi

c3
− aBi

c3
, (3.2)

where βi = δijβ
j . Hence the homogeneous background part of the aether field is given by

Āµ = (1, 0, 0, 0) as usual. Our choice of expansion for the perturbations is justified by looking
at the Lagrange multiplier equation (ensuring Aµ is timelike) order by order. It is fairly
straightforward to expand the perturbation to A0: it typically behaves like a scalar field,
which are usually expanded in even powers of c and, from the Lagrange multiplier equation,
in the weak field limit it is expected to be equal to UN . Both of these considerations are
satisfied by the leading order perturbation to A0 being of order c−2. Assuming that the
spatial perturbation to the vector field is not of lower order in c than the time perturbation,
then the Lagrange multiplier equation at c−3 order sets any possible c−3 contribution to
the time perturbation to be zero. Then the only question is the spatial perturbation: the
Lagrange multiplier at c−5 order requires

βi(2)
(
aBN

i + 2a2β
(3)
i

)
= 0, (3.3)
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where βi(n) refers to the part of βi that comes with an attached power of cn. If βi(2) 6= 0 then
one would see that the leading order terms of the spatial part of the vector equation force this
term to either be zero or satisfy a strange constraint10, so we choose βi(2) = 0; the equations
derived under this choice are not consistent with aBN

i + 2a2βi(3) = 0. It is not surprising for
the pure vector part of the spatial perturbation that there is a c−3 factor, as the pure vector
metric potential is also c−3.

In order to be as general as possible with the freedom allowed in GEA theories we do
not specify a form of F (K) here, or assign a power of c to M in the derivations. Instead
we initially assume that K, F (K) and FK can be sensibly expanded, and therefore in these
equations M2F (K) and FK terms are taken to represent the leading order part. Terms
denoted F (K̄) or F̄K mean only the homogeneous part of any such leading order term. In
section 3.3 we examine the issue of assigning a power of c to M and what this means for the
expansion and the resulting equations, as well as how this relates to possible choices of F (K).
We then consider specific F (K) that might lead to MONDian behaviour in section 4.

With these choices we can now calculate the leading order equations. We include cal-
culations of some of the intermediate quantities in appendix D for the interested reader and
to ensure that others can reproduce our results if required. The Lagrange multiplier is cal-
culated from the time part of the vector field equation (throughout, both ẋ and ∂Tx denote
differentiation with respect to time)

λ = −3
c2

c2
ḞKH +

c3FK,iUN,i
a2c2

+
Fk
c2

(
c3UN,kk
a2

+ 3αH2 − 6c2H
2 − 3

c2ä

a

)
, (3.4)

and K is given by

K = 3
α

M2c2
H2 + 2

αβi,i
M2c4

H − c1
UN,kU

,k
N

M2a2c4
+ 6

αUN
M2c4

H2 +
6αV̇N
M2c4

H. (3.5)

The homogeneous part of T (GEA)
µν (the GEA contributions to the Einstein equations) at leading

order (up to c−3) is given by

T̄
(GEA)
00 = −1

2
M2F (K̄) + 3F̄K

α

c2
H2

T̄
(GEA)
ij = δij

a2

c2

(
F̄K

(
− ä
a
α− 2H2α

)
+

1

2
a2M2F (K̄)− ˙̄FKaȧα

)
, (3.6)

and the inhomogeneous parts are given by

T
(GEA)
00 = −1

2
M2

(
FK − F̄K

)
+ 3FK

α

c2
H2 + c1FK

U ,iN,i
a2c2

+ c1FK,i
UN,i
a2c2

+
1

c2
UNM

2F

T
(GEA)
0i = FKc1

UN,i
c3

H +
ḞKc1UN,i

c3
+
FKc1U̇N,i

c3
− aBi

2c3
M2F

+
(c1 − c3)

2c3

(
FK

((
β,li − β

l
,i

)
+

1

a

(
Bl
,i −B

,l
i

)))
,l

T
(GEA)
ij = δij

a2

c2

((
FK − F̄K

)(
− ä
a
α− 2H2α

)
+

1

2
M2

(
FK − F̄K

)
− (ḞK − ˙̄FK)Hα

)
+
a2

c2
VNδijM

2F .

(3.7)

10c1β
(2),j
i,j + c2β

(2)j
,ij + c3β

(2)j
,ij = 0
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The homogeneous equations are given by

H2
(
1− αF̄K

)
=

8πGρ

3
+

Λ

3
− 1

6
M2F (K̄)

−2
ä

a
−H2 = −Λ + F̄K

(
− ä
a
α− 2H2α

)
+

1

2
a2M2F (K̄)− ˙̄FKaȧα (3.8)

(3.9)

and the full (inhomogeneous) equations with the homogeneous parts subtracted are given by

−2
∇2VN
c2a2

=
8πGρ̄δ

c2
− M2

2

(
F − F (K̄)

)
+

c1

c2a2
(UN,iFK),i

+ 3
α

c2
H2
(
FK − F̄K

)
+

1

c2
UNM

2F (3.10)

− 1

2ac3

(
4ȧUN,i + 4aV̇N,i −∇2Bi

)
= −8πGaρvi

c3
+ c1FK

UN,i
c3

H +
c1

c3
ḞKUN,i −

aBi
2c3

M2F

+
(c1 − c3)

2c3

(
FK

((
β,li − β

l
,i

)
+

1

a

(
Bl
,i −B

,l
i

)))
,l

+
FKc1U̇N,i

c3
(3.11)

1

c2
δij∇2(VN − UN )− 1

c2
(VN − UN ),ij =

a2

c2
VNδijM

2F +
a2

c2
δij

(
(FK − F̄K)

(
− ä
a
α− 2H2α

)
+
M2

2

(
F − F (K̄)

)
− α(ḞK − ˙̄FK)H

)
. (3.12)

The spatial part of the vector field equation is

0 = 2
c1UN,j
c3

ḞK + FK,i

(
2δij

α

c
H + 2δij

αUN
c3

H +
2αδij V̇N

c3
+ 2δij

c2β
k
,k

c3
+ 2

c1β
,i
j

c3
+ 2

c3β
i
,j

c3

+
1

ac3

(
c1 − c3

)(
Bi
,j −B

,i
j

))
+ FK

(
2
c1U̇N,j
c3

+ 2(α+ c1)
UN,j
c3

H +
2αV̇N,j
c3

+ ∂i

(
2δij

c2β
k
,k

c3
+ 2

c1β
,i
j

c3
+ 2

c3β
i
,j

c3
+

1

ac3
(c1 − c3)

(
Bi
,j −B

,i
j

)))

We can re-write the inhomogeneous equations in terms of the re-summed potentials, split the
spatial perturbation to the vector field into its scalar and vector parts as βi → ∂iξ

S + ξi, and
simplify the equations to get
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2
∇2ψP
c2a2

=
8πGρ̄δ

c2
− M2

2

(
F − F (K̄)

)
− c1

c2a2
(φP,iFK),i

+ 3
α

c2
H2
(
FK − F̄K

)
− 1

c2
φPM

2F (3.13)

1

2ac3

(
4ȧφP,i + 4aψ̇P,i +∇2ωi

)
= −8πGaρvi

c3
− c1FK

φP,iȧ

c3a
− c1

c3
ḞKφP,i −

aωi
2c3

M2F

+
(c1 − c3)

2c3

(
FK

((
ξ,li − ξ

l
,i

)
+

1

a

(
ωl,i − ω

,l
i

)))
,l

−
FKc1φ̇P,i

c3
(3.14)

− 1

c2
δij∇2(ψP − φP ) +

1

c2
(ψP − φP ),ij = −a

2

c2
ψP δijM

2F + δij
1

c2

(
(FK − F̄K)

(
−aäα− 2ȧ2α

)
+
a2M2

2

(
F − F (K̄)

)
− α(ḞK − ˙̄FK)aȧ

)
(3.15)

and

0 = FK,i

(
2δij

α

c
H − 2δij

αφP
c3

H −
2αδijψ̇P

c3
+ 2δij

c2ξ
S,k
,k

c3
+ 2

c1(ξS,i,j + ξ,ij )

c3
+ 2

c3(ξS,i,j + ξi,j)

c3

+
1

ac3
(c1 − c3)

(
ωi,j − ω

,i
j

))
− 2

c1φP,j
c3

ḞK + FK

(
− 2

c1φ̇P,j
c3

− 2(α+ c1)
φP,j
c3

H −
2αψ̇P,j
c3

+ ∂i

(
2δij

c2ξ
S,k
,k

c3
+ 2

c1(ξS,i,j + ξ,ij )

c3
+ 2

c3ξ
S,i
,j

c3
− 1

ac3
(c1 − c3)ω,ij

))
. (3.16)

The scalar K re-written in terms of the same variables is given by

K = 3
α

M2c2
H2 + 2

αβi,i
M2c4

H − c1
φP,kφ

,k
P

M2a2c4
− 6

αφP
M2c4

H2 − 6αψ̇P
M2c4

H (3.17)

Equations (3.13)-(3.17) represent the Newtonian limit of the equations governing cosmological
structure formation, and apply regardless of the size of the density contrast. They can be
compared to both the cosmological perturbation theory equations and galaxy-scale weak-field
equations to understand the phenomenology of these theories and how the different regimes
relate to each other. We will use these equations with the process laid out earlier to derive
equations that govern cosmological structure formation on all scales.

3.2 All scales equations

The leading order 1
c equations and linear perturbation equations (the latter are in appendix

A) can be combined to give
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2
∇2ψP
c2a2

=
8πGρ̄δ

c2
− M2

2

(
F − F (K̄)

)
− c1

c2a2
(φP,iFK),i

+ 3
α

c2
H2
(
FK − F̄K

)
− 1

c2
φPM

2F +
1

c4
LSA (3.18)

1

2c3

(
4HφP,i + 4ψ̇P,i +

1

a
∇2ωi

)
= −8πGaρvi

c3
− c1FK

φP,i
c3

H − c1

c3
ḞKφP,i −

aωi
2c3

M2F

+
(c1 − c3)

2c3

(
FK

((
ξ,li − ξ

l
,i

)
+

1

a

(
ωl,i − ω

,l
i

)))
,l

−
FKc1φ̇P,i

c3
+

1

c5
LSB (3.19)

− 1

c2
δij∇2(ψP − φP ) +

1

c2
(ψP − φP ),ij = −a

2

c2
ψP δijM

2F + δij
a2

c2

(
(FK − F̄K)

(
− ä
a
α− 2H2α

)
+
M2

2

(
F − F (K̄)

)
− (ḞK − ˙̄FK)Hα

)
+

1

c4
LSC

(3.20)

and

0 = FK,i

(
2δij

α

c
H − 2δij

αȧφP
c3a

−
2αδijψ̇P

c3
+ 2δij

c2ξ
S,k
,k

c3
+ 2

c1(ξS,i,j + ξ,ij )

c3
+ 2

c3(ξS,i,j + ξi,j)

c3

+
1

ac3
(c1 − c3)

(
ωi,j − ω

,i
j

))
+ FK

(
− 2

c1φ̇P,j
c3

− 2(α+ c1)
φP,j
c3

H −
2αψ̇P,j
c3

)
+ FK∂i

(
2δij

c2ξ
S,k
,k

c3
+ 2

c1(ξS,i,j + ξ,ij )

c3
+ 2

c3ξ
S,i
,j

c3
− 1

ac3
(c1 − c3)ω,ij

)
− 2

c1φP,j
c3

ḞK +
1

c5
LSD.

(3.21)

We have denoted by LS the large scale terms that only apply on scales close to the horizon,
the explicit form of which are given in Appendix C. These terms can usually be neglected
in N-body simulations (but do not need to be), see discussion in [41]. Their inclusion here
is still important as it ensures that we have a single set of equations that describe structure
formation on all scales, containing the same variables and with the freedom in the theory
chosen consistently. In other words, when examining the possibility of cosmological MONDian
behaviour in section 4, we can ensure that the behaviour in the different cosmological regimes
are all consistent with each other and realisable in the same universe, with the same choice
of F (K) (including any conditions on K for different branches of F (K) to be realised).

3.3 Consistently expanding M2 and F (K)

We now consider the issue of M2 in the expansion in powers of c, and how this relates to
expanding F (K) and FK . By construction, K is dimensionless. However M2 is not, and
dimensionful constants typically need to be considered carefully in 1

c type expansions (see
e.g. [41, 60]). For the original linear EA theory M2K, it makes no difference to the leading
order equations which power of c is assigned to M , however different choices will result in
difference outcomes for the more general case with F (K). The following considerations and
observations will be used to guide our choice
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• The power of c attached to the leading order of FK will differ from that of the leading
order of F (K) by the power of c attached to the leading order of K.

• It makes little sense forM2F (K) and FK to contribute at lower order than the standard
GR and matter terms, thus requiring M2F (K) to be of order c−2 or smaller and FK to
be of order c0 or smaller.

• Considering power laws, F (K) ∝ Kn, the only power of c such thatM →M∗c
m doesn’t

violate the conditions in the previous point for any power law n is m = −1.

• From the vector field equation, if the leading order background and inhomogeneous
parts of FK are at the same order in c, the equation simplifies to δFK,i = 0; otherwise
it should have a power of c at least two lower.

• For any power of c assigned toM , if K̄ = 0 then the choice of the functional form F (K)
is much more constrained in order to deliver sensible results. For example, a power law
F (K) = AKn is problematic for the 1

c expansion if n < 0. The same is probably true
for a Taylor expansion of F (K) and FK as typically performed in perturbation theory:
if K̄ = 0 then this expansion is problematic.

Given all of these, the choice M2 → M2
∗
c2

appears the most sensible, at least as long as there
is a background for K (i.e. α 6= 0). With this choice, the leading order part of K purely
homogeneous (i.e. the leading order K̄ is c2 larger than the leading order of δK), which
makes sense in terms of expanding around a background and the dimensionless nature of K.
It also makes the outcome more similar to a perturbative expansion, so many of the terms
that could exist in principle in the non-linear regime are not present at leading order. The
contributions at leading order become for a powerlaw (Kn)

M2F (K̄) ∝ c−2; M2F −M2F (K̄) ∝ c−4

F̄K ∝ c0; FK − F̄K ∝ c−2

i.e. the homogeneous parts contribute at exactly the expected order for all power laws for
F (K), and the inhomogeneous parts won’t contribute at leading order. There are few explicit
forms for F (K) beyond power laws in the literature that we can use to test our choices further.
One example is [61], which uses F (K) ∼

√
K +

√
K lnK. For the choices we have made, this

function also gives a sensible expansion as long as α 6= 0. With this choice, the equations
become

2
∇2ψP
c2a2

=
8πGρ̄δ

c2
− c1

c2a2
F̄K (φP,i),i +

1

c4
LSA2 (3.22)

1

2c3

(
4HφP,i + 4ψ̇P,i +

1

a
∇2ωi

)
= −8πGaρvi

c3
− c1F̄K

φP,i
c3

H − c1

c3
˙̄FKφP,i −

F̄Kc1φ̇P,i
c3

+
(c1 − c3)

2c3
F̄K

(
ξ,li −

1

a
ω,li

)
,l

+
1

c5
LSB2 (3.23)

− 1

c2
δij∇2(ψP − φP ) + (ψP − φP ),ij =

1

c4
LSC2 (3.24)

and
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0 = F̄K

(
− 2

c1φ̇P,j
c3

− 2(α+ c1)
φP,j ȧ

c3a
−

2αψ̇P,j
c3

)
+ FK∂i

(
2δij

c2ξ
S,k
,k

c3
+ 2

c1(ξS,i,j + ξ,ij )

c3

+ 2
c3ξ

S,i
,j

c3
− 1

ac3
(c1 − c3)ω,ij

)
− 2

c1φP,j
c3

˙̄FK + 2FK,j
α

c
H +

1

c5
LSD2, (3.25)

where the large scale terms are denoted by LS and their explicit form is given in Appendix
C.

Note that not all of the terms that get removed from the leading order equations as a
result of applying this choice for M appear in the revised “large scale terms”, since some of
the removed terms no longer contribute at leading order in either limit, and thus they can
be removed entirely. We also note that when examining MOND phenomenology in section
4 the unusual properties of the specific F (K) that is used necessitates keeping some of the
sub-leading terms that have been neglected in deriving this second set of equations. More
generally, if one is concerned about the properties of a particular F (K) then one can always
insert M2 → M2

∗
c2

into the first set of all-scales equations and check whether any additional
terms should be kept.

Taking the vector part of the spatial vector field and G0i equations (and ignoring the
large scale terms) we find

∇2ξi =
(c1 − c3)

2ac1
∇2ωi (3.26)

1

2ac3
∇2ωi

(
1 + F̄K(c1 − c3)− F̄K

(c1 − c3)2

2c1

)
= −8πGaρvi

c3

∣∣∣∣
V

, (3.27)

which will be used in the next subsection.

3.4 Conditions for the derivation to hold

Here we paraphrase section V.A of [41] to formally lay out the conditions that are required
for this derivation to be valid, and thus have been implicitly assumed above. Since the
quantitative tests require detailed numerical simulations, we do not carry the tests out here,
however we lay out these conditions to give a full picture of how the method works conceptually
and how to test the assumptions that underlie the method. These assumptions are often
explicitly or implicitly in other calculations carried out in modified gravity cosmologies (for
example when using N-body simulations).

As noted earlier, we don’t require the first condition in section V.A of [41] that only
scalar fluctuations are important for structure formation, so the remaining requirements are
equivalent to the two limits (linear perturbation and Newtonian) are valid on the largest and
smallest scales, and every relevant scale is well-described by one (or both) of the two limits,
i.e. there is no intermediate regime (see figure 1) where neither of the limits apply and there
is at least a small region of overlap where both limits apply. As such, these requirements can
be written more concretely as

1. A weak field metric is appropriate on all cosmological scales.

2. Check for the existence of a scale k∗, which is between the horizon scale and the scale at
which the density fluctuations become non-linear, such that on length scales below the
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length scale corresponding to k∗ the only terms that contribute significantly in the linear
perturbation equations are the same terms that are present in the linearised Newtonian
equations.

3. Calculate the metric vector potential ~ω from GEA N-body simulations using equation
3.26, and check that this is small enough on all non-linear scales for the Newtonian
approximation to be valid on all of these scales.

The first of these is assumed to be axiomatic in most cosmologies examined in the
literature (including ΛCDM and modified gravity cosmologies) and there is no evidence to
the contrary (see e.g. the discussion in [41]), so we do not discuss it further. The second
and third conditions on this list are quantitative tests of the validity of this derivation that
require numerically solving the equations.

The second test requires using a modified cosmological Boltzmann code that includes the
GEA modifications to the linear perturbation equations, and in practice this is equivalent to
testing the quasi-static approximation (see discussion in [41]). The quasi-static approximation
is a fairly standard approximation in modified gravity, and is typically assumed to hold in
GEA theories (e.g. [48]), so we assume the same here and leave an in-depth examination of
this to future work.

The hardest condition to test is the third one, namely that the Newtonian limit of the
gravitational equations is a good approximation on all scales below the scale at which density
fluctuations become non-linear. This condition has been checked explicitly for GR+ΛCDM
[58, 59] and f(R) [40], and is implicitly assumed to be true whenever N-body simulations are
run for a particular cosmology, so it can be seen as a formal check of the working assumptions
under which simulations are run, irrespective of the issue we consider in this paper of how to
consistently describe structure formation on all scales. This test requires N-body simulations
for the cosmology in question, which can now be run for GEA theories using the equations
laid out earlier.

4 Discussion and phenomenology of the equations

Equations (3.22)-(3.25) are the GEA equivalent to the ΛCDM+GR equations (3.20) in section
IV of [41]. These gravitational equations should be combined with the matter equations
(3.20c) and (3.20d) from [41] (repeated in appendix B for completeness) in order to provide a
complete and unified set of equations for evolving the density fluctuations in the universe on
any scale in a generalised Einstein-Aether cosmology. Here we examine these equations and
their consequences.

One key point of these equations is that since cosmological structure formation becomes
non-linear in the matter dominated era, and by construction the all-scales equations smoothly
connect to the perturbation theory equations in the matter dominated era, then the combi-
nation of the equations here (describing the matter dominated universe onwards) and the
(well-studied) cosmological perturbation theory for GEA theories comprises a complete and
coherent description of GEA cosmologies. To the authors’ knowledge this is the first complete
and coherent cosmology of a relativistic extension of MOND covering all necessary scales and
regimes. These equations also contain the source equation for the vector potential in the
metric, which can be used to check the validity of the Newtonian limit on all non-linear scales
[41, 58, 59] and can generate novel lensing signals, so it is a useful equation to have derived
for GEA cosmologies irrespective of its uses in the context in this work.
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We note that in these equations the same F (K) (with the same branches and conditions
for the branches to be realised) is present on all cosmological scales, and therefore the chosen
function will govern all of the cosmological dynamics, including the background expansion,
large (linear) scales and non-linear scales where the density contrast is large. For consistency of
the theory and the cosmology, this F (K) cannot be chosen differently in these different regimes
(unless the branch conditions are such that a different part of F (K) applies in each regime,
which is unlikely numerically). As a result, we can see that introducing MONDian behaviour
on non-linear scales is likely to also introduce MONDian behaviour into the cosmological
perturbation equations (as long as the numerical values of a0 and the gravitational potential
are such that the perturbations are in the MONDian regime, or at least in transition regime
between the Newtonian and MONDian branches). In other words these two regimes are
intertwined and one cannot arbitrarily put MONDian behaviour into only one of the two
regimes. We will see this in more detail in subsection 4.2.

In the weak field limit that is present in galaxies, deep MONDian behaviour arises using
lim|∇Φ|�a0 F (K) = − 2

c1
K + BK3/2 [43]. When we apply this F (K) to our cosmological

equations, we find that in general MOND behaviour does not arise, due to the presence of the
background terms in K, so we examine this choice of F (K) separately for the two cases and
α 6= 0 and α = 0. We start by assuming we are in the deep MOND regime in each case, and
then later comment on choosing F (K) for the Newtonian branch and the criteria determining
the different branches for each case.

4.1 α 6= 0

Using K as in equation (3.17) and F (K) = − 2
c1
K + BK3/2, we find that the leading order

(in 1
c ) G00 equation is given by

∇2φP
c2

=
8πGa2ρ̄δ

c2

2aM∗

3c1Bȧ
√

3α
(4.1)

The contributions that are usually responsible for delivering MONDian behaviour are higher
order

(
c−3
)
in this case, so they do not contribute at leading order. There are no issues

performing the perturbative expansion in this case, and the perturbative equations match
the 1

c equations in the overlap regime, so the all scales equations follow from substituting the
appropriate K and FK into the equations in section 3.3. We do not make this substitution
here for brevity.

It is often taken that M∗ ∼ H0; in this case there is an order unity change to Newton’s
constant in the cosmological Poisson equation, with no scale dependence and only simple time
dependence. Thus, GEA theories would not manifest any cosmological MONDian behaviour
if the background expansion is modified from the GR Friedmann equations. These theories
might still have MONDian behaviour on galaxy scales below where the FLRW metric applies.
As MONDian behaviour does not arise for this case, we do not look further into the issue of
defining different branches or choosing different F (K)s in different branches.

4.2 α = 0

We now consider the case α = 0, such that K = −c1
φP,kφ

,k
P

M2
∗a

2c2
. This is a somewhat unusual

K in that K̄ = 0, but FK contains a constant (and thus effectively homogeneous and not
perturbatively small) part for any K. As such, a Taylor expansion of F (K)11 (as sometimes

11I.e. expanding as F (K) → F (K̄) + FK(K̄)δK and FK → FK(K̄) + FKK(K̄)δK.
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used perturbatively) fails. Truncating the G00 equation at order c−2 gives 8πGρ̄δ
c2

= 0, so
the leading order equation (in the c−1 expansion) must be expanded to include additional
terms of order 1

c3
or higher. The K

3
2 part of F (K) does not contribute at order c−2, but it

does contribute at c−3 order through the term − c1
c2a2

(φP,iFK),i in equation (3.18). The other
beyond-leading-order terms arise at c−4 or higher order, or are of order 1

c3
but occur with a

prefactor α, so disappear for this case, leaving

3Bc1

2M∗ac3

(
φP,i

√
−c1φP,kφ

,k
P

)
,i

=
8πGa2ρ̄δ

c2
. (4.2)

As such, the only terms at this order are exactly the terms that give rise to a MONDian
Poisson equation as in the galactic weak field case, therefore in this case it is possible to get
MONDian behaviour on cosmological scales.

The unusual nature of the choice of F (K) is what makes the derivation of MOND
behaviour in this way in a relativistic extension of MOND somewhat strange, in that FK
cancels the leading order term from GR, and replaces it with a term that is nominally not
leading order, but is actually the dominant term that remains after cancelling the usual
leading order terms. An analogous cancellation occurs in the weak field galactic MOND
case. Allowing for this case in the general G00 all-scales equation requires only a very minor
adjustment (reverting one of the terms from equation (3.22) to its form in equation (3.18)),

2
∇2ψP
c2a2

=
8πGρ̄δ

c2
− c1

c2a2
(φP,iFK),i +

1

c4
LSA2. (4.3)

This equation replaces equation (3.22) when it is desired to include GEA theories with cos-
mological MONDian behaviour.

One of the advantages of the all-scales equations we have constructed is that the leading
order (in the c−1 expansion) parts of these equations cover the quasi-static linear and non-
linear regimes consistently and simultaneously. As such, we can see how this MONDian
behaviour manifests on scales that are well below the horizon where the density contrast is
small: this is what is usually referred to as the (perturbative) quasi-static regime. If one
naively applied the quasi static approximation and linear perturbation theory in this regime,
then one would have a nonsenical leading order equation and no MONDian behaviour, despite
the Newtonian limit of the (non-linear) equations suggesting that such a MONDian term
should be present and dominant. The combination of the all-scales equations and the tests
to determine their validity gives a way out of this problem. Firstly one can run simulations
with the leading order 1

c equations and determine what scale these are valid up to (using the
vector potential check described earlier) and what size the density contrast is on those scales.
If the 1

c equations are valid up to a scale where the density contrast is small (linear), then
the problem is the linearisation in perturbation theory preventing the MONDian term. One
can then use the linearised all-scales equations in a Boltzmann code and check that the quasi
static approximation is valid to a larger scale than the non-linear scale (from the perspective
of perturbation theory). If this second test is passed then the all-scales equations are valid,
despite the problem with a naive application of perturbation theory. If either test is failed,
then this means the cosmology in question, unlike ΛCDM, has a range of scales where neither
perturbation theory nor the Newtonian limit is valid. The authors are not aware of any tools
for computing cosmological structure formation in any cosmology that has such a regime.
Relatedly, since the all-scales equations do not apply to a radiation-dominated cosmology, it
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remains unclear if and how cosmological MONDian behaviour might arise in the perturbation
equations during the radiation dominated era.

As deep MOND behaviour can manifest for this case, we now consider how a Newtonian
branch could behave, and what the conditions for being in different branches would be.12 The
condition to be in the deep MONDian branch of equation (2.4) is |∇φP |γ(a)a0

� 1. By comparing
the GEA Poisson equation in this case to the MOND Poisson equation we can identify

γ(a)a0 =
4ac4M

3Bc1
√
−c1

(4.4)

a0 =
4c4M

3Bc1
√
−c1

(4.5)

γ(a) = a, (4.6)

where this identification is independent of any power of c assigned to M . We have observed
from the first equation that for GEA theories manifesting cosmological MOND, γ(a) = a,
however we leave γ(a) in the equations for the rest of this subsection to ease comparison with
the deep MONDian branch of equation (2.4). Interestingly, this form of γ(a) means that
when converted to a physical derivative, the condition to be in the deep MONDian branch,
and thus the effective a0, does not vary with time. This is similar to the behaviour found in
a different relativistic extension of MOND in [62]. We can substitute into the expression for
K and define K∗ = 16c4

9B2c21
to relate K to the definition of the deep MOND branch

K

K∗
=
|∇φ|2

γ2(a)a2
0

. (4.7)

As such, the MONDian and Newtonian regimes are defined by how K compares to the
(constant) critical value K∗, with some explicit time dependence in the relationship. The
MONDian branch and MONDian behaviour occurs when 0 < K � K∗, and the Newtonian
branch occurs when K � K∗.

In principle, the function F (K) can be chosen to have a different form in the Newtonian
branch, however despite this the Newtonian branch is significantly constrained, as the term
that modifies the Poisson equation is proportional to F̄K∇2φP , which will not contribute for
most F (K) if α = 0. As such, requiring cosmological MOND behaviour in GEA theories
means that the Newtonian branch in the quasi-static limit of perturbation theory is the GR
Poisson equation, i.e. there is no modification to gravity and Geff = 1 in this branch, including
in linear perturbation theory.

There is one final technical nuance to consider, which is whether the emergence of
MONDian behaviour, the identification with a0 and the conditions for the different branches
are consistent with how we have derived our equations and the power of c assigned to M .
Assuming no power of c assigned to M , the leading order term that we have neglected is

− a2

2

(
MF (K)−MF (K̄)

)
= −a

2

2

(
2φ,kφ

,k

a2c4
− Bc1

√
−c1

Ma3c6

(
φ,kφ

,k

)3/2
)
. (4.8)

12We assume that these branch conditions are well defined and do not worry about for example whether
different observers see a different ∇Φ, or the issue of whether the background equations should use the
deep MOND branch of F (K) due to having no peculiar acceleration by definition; this latter issue is not so
important anyway given our result that MONDian behaviour only arises when K̄ = 0.
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The second term is always sub-dominant to the MONDian term, as they both scale as M−1

and the MONDian term has fewer powers of the potentials. The first term doesn’t depend
on how we expand M , whereas the MONDian term goes as M−1c4, so if no power of c is
attached to M then in principle both of these terms contribute. For the MONDian term to
dominate we need M = M∗c

m with m negative, i.e. M should have some level of smallness
associated to it. Since M relates to a0 then this is consistent with a0 being small, and is all
consistent with our choice of m = −1.

As an additional consistency check, we can also estimate the effect of the first term in
the galactic weak-field regime by noting that it is akin to adding a term ~∇Φ · ~∇Φ on the left
hand side of 2.1. It can be shown that this modifies the solution Φ in the deep MOND branch
at a = 1 from ∂rΦ =

√
GMa0/r to ∂rΦ = e−a0r

√
GMa0/r so its effect is subdominant for

r � a0. Typical values for a0 correspond to length scales of the order of the Hubble radius
and so the first term is expected to be subdominant for the subhorizon scales of interest.

Since ∇φP is free to vary substantially numerically just as in a usual MOND weak field
expansion, the conditions for the branches of the MOND Poisson equation (|∇φ| >> γ(a)a0

and |∇φ| << γ(a)a0) can both be realised without violating any assumptions in the derivation
presented here (including the power of c assigned to M). Note that in the discussion in this
subsection, we do not comment on the scales and times in the universe where the different
branch conditions would be realised numerically. Rather we are just showing what the branch
conditions are, what the equations are in the limiting case of each branch, and that the
branch conditions and equations are consistent across the different cosmological regimes (so
e.g. the condition to be in the deep MOND regime is not different depending on whether
the cosmological density contrast is non-linear or perturbative). We leave a full numerical
solution of this model to future work, here we just note that the condition for the different
branches is something that needs to be considered within a cosmological Boltzmann code if
one is seeking to calculate predictions for a theory with MOND on cosmological scales.

4.2.1 The G0i equation

If we apply α = 0 and the same ansatz for F (K) (in the deep MOND limit 0 < K � K∗) to
the scalar part of the G0i equation, this equation behaves similarly to the Poisson equation:
the leading order GR terms are again cancelled by the leading order parts of FK . The scalar
part of G0i is given by

1

2c3

(
4HφP,i + 4ψ̇P,i

)
= −8πGaρvi

c3
− c1FK

φP,i
c3

H − c1

c3
ḞKφP,i −

FKc1φ̇P,i
c3

, (4.9)

where any terms that are not pure scalars are considered to have had their pure vector
(divergenceless) parts subtracted. The leading order F (K) term is FK = − 2

c1
, which results

in
2

c3

(
HφP,i + ψ̇P,i

)
= −8πGaρvi

c3
+ 2

φP,i
c3

H +
2φ̇P,i
c3

(4.10)

Since φP = ψP at leading order for any F (K), this means all of the non-matter terms vanish.
In other words, the MONDian function that is designed to cancel the leading order non-matter
part in the GR Poisson equation, also cancels the leading order non-matter part in the GR
G0i equation.

As for the Poisson equation we can go beyond leading order. The subleading terms that
create MONDian behaviour in the Poisson equation will also be the terms of lowest remaining
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order here (these terms are of order c−4, whereas the large scale B2 terms in equation (C.6)
are of order c−5), so the scalar G0i equation in the deep MOND limit is given by

c1

c4

(
3B

2

√
−c1φP,kφ

,k
P

M2
∗a

2

(
HφP,i + φ̇P,i

)
+

3BφP,i
2

∂

∂t

√
−c1φP,kφ

,k
P

M2
∗a

2

)∣∣∣∣
s

= −8πGaρvi
c3

∣∣∣∣
s

(4.11)

To the authors’ knowledge, such an examination of the G0i Einstein equation in the deep
MOND regime has not previously been carried out. It is interesting that a similar cancellation
occurs in both the Poisson equation and the G0i equation for the same choice of F (K) and
α = 0. We leave to future work an investigation of this potential coincidence, its possible
physical significance, and whether it occurs in other relativistic extensions of MOND.

As for the G00 equation, this case can be included in the all-scales G0i equation by
simply returning a few of the terms that were dropped earlier,

1

2c3

(
4HφP,i + 4ψ̇P,i +

1

a
∇2ωi

)
= −8πGaρvi

c3
− c1FK

φP,iȧ

c3a
− c1

c3
ḞKφP,i −

FKc1φ̇P,i
c3

+
(c1 − c3)

2c3
F̄K

(
ξ,li −

1

a
ω,li

)
,l

+
1

c5
LSB2, (4.12)

where again the explicit form of the large scale term LSB2 is given in Appendix C. This
equation replaces equation (3.23) when it is desired to include GEA theories with cosmological
MONDian behaviour.

4.3 N-body simulations

The all-scales equations derived above can be implemented in cosmological N-body simu-
lations to give simulations that represent GEA cosmologies, with a consistent background
expansion, and where the inhomogeneities are evolved correctly no matter whether they are
outside the horizon, around the horizon scale, well inside the horizon, or in the non-linear
regime. In practice, for most cosmological simulations, particularly those with a smaller box
size, the “large scale” terms can be neglected in the equations and this should make little
difference to the output of the simulations. Initial conditions for these simulations can be
calculated from a Boltzmann solver that implements GEA perturbation theory. Due to the
smooth connection during the matter dominated era, these initial conditions and simulations
will form a self-consistent and coherent complete cosmological picture for GEA theories. In
particular, if models with α = 0 (and F (K) as described above for MONDian behaviour)
were run, these simulations would correspond to the first fully consistent N-body simulations
for a relativistic extension of MOND where MONDian behaviour arises cosmologically.

We can also use these equations to examine how GEA cosmologies relate to cosmologi-
cal MOND N-body simulations that have already been run [30–36]. These works themselves
acknowledge the complications of running consistent cosmological MOND simulations, and in
particular include discussions about different choices and options regarding the background
expansion history and the initial conditions. The point we wish to focus on here is a further is-
sue, which was alluded to in [36]: what are the actual equations governing the inhomogeneities
in a consistent cosmology for a relativistic extension of MOND, and does this correspond to
an implementation of MOND as carried out in N-body simulations that have been run so far.

As discussed earlier, when MOND is phrased as a modification to the Poisson equation,
it is perhaps intuitive when one is used to GR to think that this can be applied to the Poisson
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equations that arise in different regimes, however these are not necessarily so similar in a
modified gravity theory, and particularly a relativistic extension of MOND. This is borne out
explicitly by the equations that we have derived above: for α 6= 0, although these models
may still contain MOND on galactic scales, a cosmological N-body simulation should not
contain MONDian behaviour, even if the free function F (K) in these theories is the same
cosmologically as on galactic scales. So, despite having MOND on galactic scales these models
do not relate to cosmological MOND N-body simulations.

For models with α = 0 however, there is a connection between MONDian behaviour on
galactic and cosmological scales. In this case, we have shown that a Poisson equation with
both MONDian and Newtonian branches exists, that the condition to be in either of these
branches matches the usual MOND condition, and that both branches can be realised in
principle. In particular, the Newtonian branch Poisson equation matches that in GR (for the
vast majority of F (K), i.e. unless F (K) in the Newtonian branch is chosen very specifically
to avoid this). In addition, we have shown that in these models the background Friedmann
equations are not modified from those in GR. Combined, these results mean that existing
MOND N-body codes can be used to represent structure formation in these theories, for
a particular choice of matter, as long as the simulation parameters for the matter (for the
background and the particle content) are chosen consistently, as they would be in GR. It may
be however that the initial conditions used in previous works do not match those required to
interpret the output of these simulations as part of a consistent GEA cosmology; determining
this is beyond the scope of the work here. As noted above, the equations in this paper can
be implemented in a Boltzmann code and used to generate initial conditions that would be
consistent with interpreting the output of the N-body codes as representative of structure
formation in these GEA models containing cosmological MOND.

4.4 Implications for GEA theories’ ability to replace cold dark matter

It appears that GEA theories that have cosmological MONDian behaviour are quite limited,
in that the Newtonian branch of the quasi-static (linear and non-linear) Poisson equation and
the Friedmann equations are all essentially restricted to have their GR form. Given the range
of evidence for cold dark matter and the different scales and environments in which cold dark
matter phenomenology appears, these theories are probably too restricted to make for good
alternatives to ΛCDM without themselves adding additional matter species to the universe,
although we do not investigate this issue in detail here.

However, we also see that it is not required for GEA theories to have cosmological
MOND just because it arises on galactic scales. It may be that the GEA theories with only
galactic MOND can keep the successes of the MOND paradigm without some of the problems
(such as galaxy clusters), but determining this will require running cosmological simulations
with the equations derived here and no cosmological MOND behaviour. The same situation
may be true for other relativistic extensions of MOND. It may be that attempts to build a
MOND+sterile neutrino paradigm (see e.g. [33, 63]) can benefit from the finding that MOND
on cosmological scales is not required by having MOND on galactic scales; we leave a detailed
examination of this prospect to future work.

5 Conclusion

To fairly and fully compare MONDian cosmologies against ΛCDM, we need to be able to
examine cosmological structure formation on all scales in relativistic extensions of MOND,
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in a coherent and consistent fashion. In this paper we have laid out a method for deriving
equations that govern the evolution of cosmological inhomogeneities on all scales in these
theories. For any given theory, these equations allow consistent cosmological simulations to
be run, and to examine when and how MONDian behaviour arises cosmologically. We have
illustrated this method using the concrete example of GEA theories, resulting in the set of
equations (3.22)-(3.27) that govern the cosmological background and evolution of cosmological
inhomogeneities on all scales in a unified manner with a single F (K).

These equations show that MONDian behaviour does not necessarily arise cosmologi-
cally, even if the free function F (K) in these theories is the same cosmologically as on galactic
scales. Specifically, cosmological MONDian behaviour requires the model parameter α to be
zero, and thus the background expansion history of the universe and the Newtonian branch
of the cosmological Poisson equation should both be governed by the same equations as in
GR. Although structure formation as carried out in existing MOND N-body simulations can
correspond to these GEA theories, in practice these theories are quite limited, but it seems
difficult to get cosmological MONDian behaviour without these limitations. It may be that
the GEA theories with only galactic MOND can keep the successes of MOND without some of
the problems (such as galaxy clusters), but determining this will require running cosmological
simulations with the equations derived here. These results demonstrate the strengths of our
method for deriving a single set of equations that govern cosmological structure formation on
all scales.

We have also laid out the assumptions and checks required to validate our method for a
given cosmology and commented on these for our case study; notably we derived the source
term for the vector potential in GEA theories, equation (3.27), which can be extracted from
N-body simulations and should be suitably small on all scales. If larger than in GR (but
small enough to not jeopardise the 1

c expansion), this vector potential can also generate novel
lensing phenomenology and thus provide a smoking gun for modified gravity behaviour on
non-linear scales [64].

The process laid out in this manuscript can be applied to any relativistic extension of
MOND, thus paving the way for consistent cosmological simulations of these theories covering
many decades in scale in order to fairly and fully compare them to the ΛCDM paradigm. It
may also be the case that simply by deriving and analysing the equations for other relativistic
extensions, as we have done here, the connection between some of these theories and galactic
MONDian behaviour becomes clearer, potentially highlighting shortcomings in these theories
without the need to run simulations. However, we caution against inferring what conclusions
might be reached by such studies of a specific relativistic extension of MOND from the single
study carried out here. It is clear from this work that the cosmological phenomenology of such
theories is very rich, and trying to understand each of these theories consistently across all
scales, including in which regimes MONDian behaviour can manifest, is not straightforward.

In particular, one recent theory that it would be interesting to apply our method to is the
AeST (Aether Scalar Tensor) theory [28, 29]. This theory satisfies the generic constraint from
the CMB that the additional fields in these theories must behave similarly to the behaviour
of cold dark matter in linear perturbation theory in the conditions that exist in the early
universe [65, 66], but the extra fields in this theory can still behave substantially differently
to cold dark matter in other regimes, potentially giving rise to MONDian behaviour (on
galactic or cosmological scales) or cosmological structure formation that proceeds differently
to GR+CDM structure formation. In this sense, whilst the theory can be argued to possess
dark matter for the purposes of CMB calculations, it doesn’t possess particle dark matter in
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the sense of the “CDM” in ΛCDM, or in the sense of a dark matter particle of the kind that
would be detected in direct, indirect, or collider searches for dark matter. The method laid
out in this paper provides a way to examine cosmological structure formation in this theory
and determine in which regimes the behaviour is similar or different to GR with cold dark
matter. Interestingly, in AeST theory the role of the cosmological dark matter overdensity
involves the time derivative of a scalar field perturbation, which may require careful thought
when defining a Newtonian limit.
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A Linear perturbation equations

In this appendix we present the linear perturbation equations written in terms of the re-
summed potentials. Note that we have split things into their background and perturbative
parts, i.e. FK → F̄K + δFK and M2F →M2F̄ +M2δF .

Homogeneous equations

0 =
1

2
a2(M2F̄ − 16πGρ) + 3a2H2 − 3αa2H2F̄K (A.1)

0 = −3a2δijH
2(1− αF̄K)− 1

2
δija

2(M2F̄ + 16πGP − 2Ḣ(−2 + αF̄K)− 2αH∂T (F̄K))

(A.2)

Time-Time component of the Einstein equations

0 =
1

2
a2M2δF − 3αa2H2δFK − 8πGδρa2 + 2∂i∂

iψP + c1F̄K∂i∂
iφP

+ c1a
2HF̄K∂i∂

iξS − 2αa2HF̄K∂i∂
iξS + c1aF̄K∂i∂

i∂T (aξS) + a2(−6H + 6αHF̄K)ψ̇P

+ a2(M2F̄ − 16πGρ)φP (A.3)

Space-Space components of the Einstein equations

0 = 3αa2δijH
2δFK −

1

2
δija

2M2δF + δija
2αḢδFK + δija

2αH ˙δFK + δija
2(2− αF̄K)ψ̈P

− ∂i∂j(φP − ψP ) + δij∂k∂
k(φP − ψP ) + a2δijM

2F̄ψP − 2aH∂(iωj) − a∂(iω̇j)

+
1

a
(c1 + c3)∂T (a3F̄K∂(iξj)) + (c1 + c3)

1

a
∂T (a3F̄K∂i∂jξ

S)− a2δij(−2 + αF̄K)Hφ̇P

+ a2δijαHF̄K∂k∂
kξS +

c2

a
δij∂T (a3F̄K∂k∂

kξS)

+ 2a2δij(8πGP + 3H2 + Ḣ(2− αF̄K)− αH
a3
∂T (a3F̄K))ψP + a2δij(6H − α

1

a6
∂T (a6F̄K))ψ̇P

+ 2a2δijφP (3H2 + Ḣ(2− αF̄K)− αH
a3
∂T (a3F̄K)) (A.4)
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Time-Space components of the Einstein equations

0 = 2∂iψ̇P + 8πGaviρ+
1

2a
∂j∂

jωi +M2F (
1

2
aωi) + c1∂T

(
F̄K∂iφP

)
+ (2H + c1HF̄K)∂iφP

− 1

2
(c1 − c3)F̄K∂j

(
− 1

a
∂jωi + ∂jξi

)
+ a2

(
2c1H

2F̄K + (c1 − α)∂T (HF̄K)

)
(ξi + ∂iξ

S)

+ c1a∂T

(
F̄K(−ω̇i + aξ̇i + ȧξi + a∂iξ̇

S + ȧ∂iξ
S)

)
+ 3c1aHF̄K(−ω̇i + aξ̇i + ȧξi + a∂iξ̇

S + ȧ∂iξ
S)

− 1

2
aωi(−6H2 − 4Ḣ + 16πGρ+ 4c1H

2F̄K + 6αH2F̄K + 2c1∂T (HF̄K)) (A.5)

Vector equation

0 = −1

a
(c1 − c3)F̄K∂j∂

jωi + 2c1F̄K∂j∂
jξi − 2αF̄K∂iψ̇P − 2αHF̄K∂iφP − 2c1

1

a
∂T (a∂iφP F̄K)

+ 2(c1 + c2 + c3)F̄K∂j∂
j∂iξ

S +
2αȧ

a
∂iδFK − 2c1a∂T (FK(−ω̇i + aξ̇i + ȧξi + a∂iξ̇

S + ȧ∂iξ
S))

− 6c1aHF̄K(a∂iξ̇
S + ȧ∂iξ

S + aξ̇i + ȧξi − ω̇i)− a(2c1 − α)∂T (HF̄K)(a∂iξ
S + aξi − ωi)

− 4c1aH
2F̄K(a∂iξ

S + aξi − ωi) (A.6)

B Matter equations

These are the “all scales” matter equations from [41]

dvi
dt

= −Hvi +
φP,i
a

(B.1)

dδ

dt
= −vi,i

a
(1 + δ) +

3

c2

dψP
dt

(B.2)

C Large scale terms

LSA = −c1HF̄K∂i∂
iξS + 2αHF̄K∂i∂

iξS − c1

a
F̄K∂i∂

i∂T (aξS) + (6H − 6αHF̄K)ψ̇P

+ 16πGρφP (C.1)

LSB = −a2

(
2c1H

2F̄K + (c1 − α)∂T (HF̄K)

)
(ξi + ∂iξ

S)

+
1

2
aωi(−6H2 − 4Ḣ + 16πGρ+ 4c1H

2F̄K + 6αH2FK + 2c1∂T (HF̄K))

− c1a∂T

(
F̄K(−ω̇i + aξ̇i + ȧξi + a∂iξ̇

S + ȧ∂iξ
S)

)
− 3c1aHF̄K(−ω̇i + aξ̇i + ȧξi + a∂iξ̇

S + ȧ∂iξ
S) (C.2)

– 25 –



LSC = −1

a
(c1 + c3)∂T (a3F̄K∂(iξj))− (c1 + c3)

1

a
∂T (a3F̄K∂i∂jξ

S) + a2δij(−2 + αF̄K)Hφ̇P

− a2δijαHF̄K∂k∂
kξS − c2

a
δij∂T (a3F̄K∂k∂

kξS)

− 2a2δijφP (3H2 + Ḣ(2− αF̄K)− αH
a3
∂T (a3F̄K))− δija2(2− αF̄K)ψ̈P

+ 2aH∂(iωj) + a∂(iω̇j) − 2a2δij(8πGP + 3H2 + Ḣ(2− αF̄K)− αH
a3
∂T (a3F̄K))ψP

− a2δij(6H − α
1

a6
∂T (a6F̄K))ψ̇P (C.3)

LSD = −2c1a∂T (F̄K(−ω̇i + aξ̇i + aξ̇i + a∂iξ̇
S + ȧ∂iξ

S))

− 6c1aHF̄K(a∂iξ̇
S + ȧ∂iξ

S + aξ̇i + ȧξi − ω̇i)
− a(2c1 − α)∂T (HF̄K)(a∂iξ

S + aξi − ωi)− 4c1aH
2F̄K(a∂iξ

S + aξi − ωi) (C.4)

LSA2 = −c1HF̄K∂i∂
iξS + 2αHF̄K∂i∂

iξS − c1

a
F̄K∂i∂

i∂T (aξS)

+ (6H − 6αHF̄K)ψ̇P + 16πGρφP −
1

2

(
M2F −M2F (K̄)

)
+ 3αH2

(
FK − F̄K

)
− φPM2F̄ (C.5)

LSB2 = −a2

(
2c1H

2F̄K + (c1 − α)∂T (HF̄K)

)
(ξi + ∂iξ

S)

− 3c1aHF̄K(−ω̇i + aξ̇i + ȧξi + a∂iξ̇
S + ȧ∂iξ

S)− aωi
2
M2F̄

− c1a∂T

(
F̄K(−ω̇i + aξ̇i + ȧξi + a∂iξ̇

S + ȧ∂iξ
S)

)
+

1

2
aωi(−6H2 − 4Ḣ + 16πGρ+ 4c1H

2F̄K + 6αH2F̄K + 2c1∂T (HF̄K)) (C.6)

LSC2 = −1

a
(c1 + c3)∂T (a3F̄K∂(iξj))− (c1 + c3)

1

a
∂T (a3F̄K∂i∂jξ

S)

+ a2δij(−2 + αF̄K)Hφ̇P − a2δijαHF̄K∂k∂
kξS

− c2

a
δij∂T (a3F̄K∂k∂

kξS)− 2a2δijφP (3H2 + Ḣ(2− αF̄K)− αH
a3
∂T (a3F̄K))

− δija2(2− αF̄K)ψ̈P − 2aH∂(iωj) + a∂(iω̇j)

− 2a2δij(8πGP + 3H2 + Ḣ(2− αF̄K) + α
H

a3
∂T (a3F̄K))ψP

− a2δij(6H − α
1

a6
∂T (a6F̄K))ψ̇P − a2ψP δijM

2F̄

+ δij

(
(FK − F̄K)

(
−aäα− 2ȧ2α

)
+

1

2

(
M2F −M2F (K̄)

)
− (ḞK − ˙̄FK)aȧα

)
(C.7)

LSD2 = −2c1a∂T (F̄K(−ω̇i + aξ̇i + aξ̇i + a∂iξ̇
S + ȧ∂iξ

S))

− 6c1aHF̄K(a∂iξ̇
S + ȧ∂iξ

S + aξ̇i + ȧξi − ω̇i)
− a(2c1 − α)∂T (HF̄K)(a∂iξ

S + aξi − ωi)− 4c1aH
2F̄K(a∂iξ

S + aξi − ωi) (C.8)
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D Intermediate quantities in 1
c

calculation

In this appendix we present some intermediate parts of our expansion in powers of c for
readers’ reference, and to aid any attempts at checking, recreating or extending the derivation
we have carried out.

Components of Kαβ
µν

K00
00 = c1 + c2 + c3, K00

0i = ac1
Bi
c3
, K00

i0 = ac1
Bi
c3

K00
ij = a2c1δij

(
− 1− 2

UN
c2
− 2

VN
c2

)
, K0k

00 = c1
Bk

ac3
, K0k

0i = c2δ
k
i

K0k
i0 = c3δ

k
i , K0k

ij = −c1a
Bk

c3
δij , Kk0

00 = c1
Bk

ac3

Kk0
0i = c3δ

k
i , Kk0

i0 = c2δ
k
i , Kk0

ij = −c1a
Bk

c3
δij

K lk
00 =

c1

a2
δlk
(
− 1 + 2

UN
c2

+ 2
VN
c2

)
, K lk

0i = −c1δ
lk Bi
ac3

, K lk
i0 = −c1δ

lk Bi
ac3

K lk
ij = c1δ

lkδij + c2δ
l
iδ
k
j + c3δ

l
jδ
k
i

Components of ∇µAν

∇0A
0 = 0, ∇0A

i = −
U ,iN
a2c2

, ∇iA0 = 0

∇iAj = δji
ȧ

ca

(
1 +

UN
c2

)
+
βj,i
c3

+
B,j
i −B

j
,i

2ac3
+ δij

V̇N
c3

∇0A0 = 0, ∇0Ai = −
UN,i
c2

, ∇jA0 = 0

∇iAj = δij
aȧ

c

(
1 +

UN
c2

+ 2
VN
c2

)
+
a2βj,i
c3

+ a
Bi,j −Bj,i

2c3
+ δija

2 V̇N
c3

∇0A0 = 0, ∇0Ai =
UN,i
c2

, ∇iA0 = 0

∇iAj = δij
ȧ

ca

(
1 +

UN
c2

)
+
β,ij
c3

+
Bi
,j −B

,i
j

2ac3
+ δij

V̇N
c3
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Components of Jµν

J0
0 = 6

c2ȧ

ca
+ 6

c2ȧUN
c3a

+ 2
c2

c3
βi,i +

6c2V̇N
c3

, J0
i = 2

c1UN,i
c2

, J i0 = −2
c3UN,i
a2c2

J ij = 2δij
αȧ

ca
+ 2δij

αȧUN
c3a

+ 2δij
c2β

k
,k

c3
+ 2

c1β
,i
j

c3
+ 2

c3β
i
,j

c3
+

2αδij V̇N

c3
+

1

ac3
(c1 − c3)

(
Bi
,j −B

,i
j

)
J00 = −6

c2ȧ

ca
+ 6

c2ȧUN
c3a

− 2
c2

c3
βk,k −

6c2V̇N
c3

, J0i = −2
c1UN,i
c2

, Ji0 = −2
c3UN,i
c2

Jij = 2δij
αaȧ

c
+ 2δij

αaȧUN
c3

+ 4δij
αaȧVN
c3

+ 2δija
2
c2β

k
,k

c3
+ 2a2c1

βj,i
c3

+
2αa2δij V̇N

c3

+ 2a2c3
βi,j
c3

+
a

c3
(c1 − c3) (Bi,j −Bj,i)

J 0
0 = 6

c2ȧ

ca
+ 6

c2ȧUN
c3a

+ 2
c2

c3
βi,i +

6c2V̇N
c3

, J i
0 = −2

c1UN,i
a2c2

, J 0
i = 2

c3UN,i
c2

J j
i = 2δji

αȧ

ac
+ 2δji

αȧUN
ac3

+ 2δji
c2β

k
,k

c3
+ 2c1

βj,i
c3

+ 2c3
β,ji
c3

+
2αδij V̇N

c3
+

1

ac3
(c1 − c3)

(
B,j
i −B

j
,i

)

The scalars K and λ and the tensor Yµν

K = 3
αȧ2

M2c2a2
+ 2

αȧβi,i
M2ac4

− c1
UN,kU

,k
N

M2a2c4
+ 6

αȧ2UN
M2a2c4

+
6ȧαV̇N
M2ac4

(D.1)

λ = −3
c2ȧ

c2a
ḞK +

c3FK,iUN,i
a2c2

+
Fk
c2

(
c3UN,kk
a2

+ 3
αȧ2

a2
− 6

c2ȧ
2

a2
− 3

c2ä

a

)
(D.2)

Y00 = 0, Y0i = −
c1ȧUN,i
ac3

, Yi0 = −
c1ȧUN,i
ac3

, Yij = 0 (D.3)
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The tensor ∇µJ α
ν

∇σJ σ
0 = 12

c2

c2
H2 + 6

c2

c2

ä

a
− 6

α

c2
H2 − 2

c1

a2c2
U ,iN,i

∇σJ σ
i = 2

c3U̇N,i
c3

+ 2(α+ c3)
UN,iȧ

c3a
+

2αV̇N,i
c3

+ ∂k

(
2δki

c2β
l
,l

c3
+ 2

c1β
k
,i

c3
+ 2

c3β
,k
i

c3
+

(c1 − c3)

ac3

(
B,k
i −B

k
,i

))
∇σJσ0 = 12

c2

c2
H2 + 6

c2

c2

ä

a
− 6

α

c2
H2 − 2

c3

a2c2
U ,iN,i

∇σJσj = 2
c1U̇N,j
c3

+ 2(α+ c1)
UN,j ȧ

c3a
+

2αV̇N,i
c3

+ ∂i

(
2δij

c2β
k
,k

c3
+ 2

c1β
,i
j

c3
+ 2

c3β
i
,j

c3
+

1

ac3
(c1 − c3)

(
Bi
,j −B

,i
j

))
∇0J00 = 6

c2

c2

(
ä

a
−H2

)
∇iJ00 = −6

c2ȧUN,i
ac3

− 2
c2

c3
βk,ki + 2(c1 + c3)

UN,iȧ

c3a
−

6c2V̇N,i
c3

∇0J0i = −2
c1U̇N,i
c3

+ 2 (2c1 + c3)
UN,iȧ

c3a

∇0Ji0 = −2
c3U̇N,i
c3

+ 2 (c1 + 2c3)
UN,iȧ

c3a

∇jJ0i = −2
c1UN,ij
c2

+ δij
ȧ2

c2
(6c2 − 2α)

∇jJi0 = −2
c3UN,ij
c2

+ δij
ȧ2

c2
(6c2 − 2α)

∇0Jij = 2δij
α

c2

(
aä− ȧ2

)
∇iJjk =

2c1aȧδijUN,k
c3

+
2c3aȧδikUN,j

c3
+

2αaȧδjkUN,i
c3

+
2a2c2δjkβ

l
,li

c3

+
2αa2δikV̇N,i

c3
+

2a2c1βk,ij
c3

+
2a2c3βj,ik

c3
+
a (c1 − c3)

c3
(Bj,ki −Bk,ji)
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