
NEURAL NONNEGATIVE MATRIX FACTORIZATION FOR HIERARCHICAL MULTILAYER TOPIC
MODELING

TYLER WILL, RUNYU ZHANG, ELI SADOVNIK, MENGDI GAO, JOSHUA VENDROW, JAMIE HADDOCK,
DENALI MOLITOR, AND DEANNA NEEDELL

ABSTRACT. We introduce a new method based on nonnegative matrix factorization, Neural NMF, for
detecting latent hierarchical structure in data. Datasets with hierarchical structure arise in a wide va-
riety of fields, such as document classification, image processing, and bioinformatics. Neural NMF re-
cursively applies NMF in layers to discover overarching topics encompassing the lower-level features.
We derive a backpropagation optimization scheme that allows us to frame hierarchical NMF as a neural
network. We test Neural NMF on a synthetic hierarchical dataset, the 20 Newsgroups dataset, and the
MyLymeData symptoms dataset. Numerical results demonstrate that Neural NMF outperforms other
hierarchical NMF methods on these data sets and offers better learned hierarchical structure and inter-
pretability of topics.

1. INTRODUCTION

As the size of available data continues to grow, scalable approaches for extracting meaningful la-
tent trends within large-scale data, or reducing redundant information within the data have become
active and important focuses of research. Within this flourishing area of research, topic modeling
approaches have received particular interest; topic modeling is a popular class of machine learning
techniques that cluster and classify observations to reveal latent themes in a dataset. Algorithms
for topic modeling often find application in the domain of document classification and cluster-
ing [5, 16, 38, 41, 3, 35], but more recently have found use in applications such as image processing
[20, 24, 29, 12], financial data mining [10], audio processing [7, 17], genetics [32], and bioinformat-
ics [33]. An approach related to, but distinct from, topic modeling is feature extraction. While topic
modeling seeks to abstract the dataset and represent data points by these topics, feature extraction
aims to find a few key, representative features that best represent the data set for the task at hand
(e.g., classification) [21]. Many of the most popular models for these tasks are built upon, or are sim-
ply, dimension-reduction techniques which aim to reduce the dimension of the representation of the
data; see e.g., [4].

Nonnegative matrix factorization (NMF) is a popular method in machine learning because it is
able to both perform feature extraction and generate topic models [6, 9]. Users of NMF specify the
number of topics believed to be in the dataset; the model then identifies representative dictionary
elements (topics) and coefficients which represent each element of the data set in terms of the topics
(thereby lowering the representative dimension of the data). Users often explore topics at different
resolutions (number of topics) and seek relationships between the topics learned at various levels of
granularity. NMF, however, does not inherently discover the relationships between topics learned at
these different levels. A popular alternative, known as hierarchical NMF (HNMF), is to sequentially
apply NMF to learn the relationship between NMF topics at different levels of granularity.

Borrowing techniques from neural networks, we seek to modify HNMF to
illustrate the relationships between topics learned at differing levels of granularity, and to specifi-

cally provide a hierarchical representation of how topics at finer granularity relate to topics at courser

DN, JH, ES, JV, and DM are grateful to and were partially supported by NSF CAREER DMS #1348721 and NSF BIGDATA
#1740325. This work is based upon work completed at the UCLA CAM REU during Summer 2018 which was funded by NSF
DMS #1659676. JH is additionally grateful to and was partially supported by NSF DMS #2211318.

1

ar
X

iv
:2

30
3.

00
05

8v
1

 [
cs

.L
G

]
 2

8
Fe

b
20

23

granularity, while avoiding the often high approximation error of naive application of HNMF. An ad-
vantage of methods which illustrate hierarchical relationships among the topics over classical NMF
is that practitioners can examine the results for multiple numbers of topics without running NMF
multiple times. Additionally, while the recovery error increases as the number of layers in a hierar-
chical model increases, these models have the desirable property that they immediately illustrate the
hierarchical structure of the latent topics. In applications in which the learned sub-topics represent
known data clusters, the learned hierarchy could provide unknown cluster-level relationships within
the data.

We propose a new hierarchical NMF method, which we denote Neural NMF, and illustrate its
promise on a synthetic hierarchical data set, the 20 Newsgroups dataset, and MyLymeData, a real
dataset containing survey data of Lyme disease patients collected by Lymedisease.org.1 On the syn-
thtic data set, Neural NMF outerperforms other hierarchical NMF methods in both reconstruction
error and classification accuracy. On the 20 Newsgroups dataset, Neural NMF outperforms other
methods in classification accuracy and offers a better hierarchical structure and interpretability of
the topics. We also illustrate the ability of Neural NMF to identify meaningful, and even surprising,
hierarchical topic structure on real world data with the MyLymeData set. These initial results indicate
that the Neural NMF method can vastly improve both the reconstruction of the overall hierarchical
NMF model as well as improving the learned inter-layer hierarchical structure and interpretability of
topics at each layer.

1.1. Organization. The remainder of our paper is organized as follows. In the remainder of the intro-
duction, we briefly introduce notations and conventions in Section 1.2; introduce the foundational
models which inspired our own: NMF in Section 1.3, semi-supervised NMF in Section 1.4, hierar-
chical NMF in Section 1.5, and Deep NMF in Section 1.6; and finally review briefly some further
related work in Section 1.7. In Section 2, we introduce our approach which consists of a forward-
propogation process and a backward-propogation process (detailed in Section 2.1; here we also in-
clude the statements of our main theoretical results that derive the necessary gradient information
for backpropagation). In Section 3, we empirically test Neural NMF on a small, synthetic dataset, the
20 Newsgroups dataset, and the MyLymeData dataset. Finally, in Section 4 we offer some conclu-
sions and future directions. The proofs of our main theoretical results are left to Appendix 5 so as to
not distract from the main focus of the paper: the promise of Neural NMF in applications.

1.2. Notation. We distinguish matrices and vectors from scalar quantities using bold font. For a ma-
trix F, the notations Fi ,: and F:, j denote row i and column j , respectively. For sets of indices T and S,
we take FT,: and F:,S to mean the matrix obtained by restricting to the rows of F in T or the columns
of F in S, respectively. By extension, vT is the vector v restricted to the entries with indices in T. We
denote the Moore-Penrose pseudoinverse of F as F†. Entrywise (Hadamard) multiplication and divi-
sion between F and G are denoted by F¯G and F

G , respectively. The vector of length k with all entries
equal to one is denoted 1k , while I indicates the identity matrix of compatible dimensions in all cir-
cumstances. We perform subscript (indicial) operations before superscript (e.g., pseudoinversion,
transposition) operations whenever applicable. The set [0,∞)k is denoted Rk+. In methods with L

layers, we use F(`) to mean the value of matrix F at layer `. We similarly use k(`) as the number of top-
ics at layer `. In any supervised setting, we use P as the number of total classes. Finally, we denote
the set of integers {1,2, . . . ,m} as [m]. We let ‖ · ‖ denote the Frobenius norm (`2 norm in the case of
vector input) throughout, unless otherwise noted.

1An extended abstract of this work appeared in Proc. Interational Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP) 2019 [15].

2

1.3. NMF. For a given data matrix X ∈ RN×M+ and model rank k, nonnegative matrix factorization
(NMF) seeks A ∈RN×k+ and S ∈Rk×M+ such that X ≈ AS. To find A and S, we wish to solve the optimiza-
tion problem

(1.1) min
A≥0,S≥0

||X−AS||2.

The nonnegativity restriction on X, A, and S differentiates NMF from other topic modeling and fea-
ture extraction techniques, including principal component analysis (PCA) and autoencoding. Since
all values are nonnegative, only additive combinations are allowed to approximate every data point
in X. This allows for a natural and intuitive ‘parts-based’ representation [29]; there are no topics that
contribute in a negative manner. We can view the columns of the A matrix as vectors of important
features of X, or from a topic modeling perspective, as k hidden themes in our data. In this view, the S
matrix provides the coefficients to represent each data point of X as a linear combination of the hid-
den themes (the columns of A). Moreover, we can view the product AS as a low-rank approximation
of X, since

(1.2) rank(AS) ≤ min(rank(A), rank(S)) ≤ k.

The problem (1.1) is convex in A and S separately (holding the other fixed), but nonconvex in
both. We therefore cannot expect to consistently find a global minimum as a solution. Several tech-
niques exist for finding local minima; most schemes alternate fixing A and S while updating the other
variable in order to iteratively decrease (1.1). One of the most popular of these methods is the mul-
tiplicative updates methods [30]. Other algorithms for approximating the solution to (1.1) include
the alternating least squares and rank-one residue iteration (RRI) methods [23]. Although these offer
potential advantages over a multiplicative updates scheme, the latter can be readily extended to deal
with more complex cost functions, such as that of semisupervised NMF, which is discussed in the
next section.

1.4. Semisupervised NMF (SSNMF). A natural extension of NMF is to take advantage of any known
label information in the factorization [31]. Suppose Y ∈RP×M is a matrix containing label information
for M objects in P classes. Let W ∈RN×M be the binary indicator matrix for the data, that is

Wn,m =
{

1 Xn,m is known

0 otherwise,

and let Z ∈RP×M be the binary indicator matrix for the labels, with

Z:,m =
{

1P label for object m is known

0 otherwise.

We can incorporate label information and manage missing data by adjusting our problem to

(1.3) min
A≥0,S≥0,B≥0

‖W¯ (X−AS)‖2
F︸ ︷︷ ︸

Reconstruction Error

+λ‖Z¯ (Y−BS)‖2
F︸ ︷︷ ︸

Classification Error

.

The resulting B ∈ RP×k is a linear classification matrix, with Bi ,: indicating the association between
class i and each of the learned topics. The error (1.3) balances the reconstruction error on the data
that are known with the classification error on the labels that are known. The relative importance
of the classification error is controlled by the user-defined hyperparameter λ. The multiplicative
update minimization strategy discussed in Section 1.3 can be extended to handle this setting [31].
Generalizations of this SSNMF model have been recently proposed in [2].

3

1.5. Hierarchical NMF (HNMF). A further extension of both NMF and semisupervised NMF seeks to
illuminate hierarchical structure by recursively factorizing the S matrices. By performing NMF with
k = k(0), we reveal k(0) hidden topics in the data; by repeating the factorization on the S matrix with
k = k(1), we further collect the data into k(1) supertopics among the k(0) topics. This process for L

layers approximately factors the data matrix as

X ≈ A(0)S(0),

X ≈ A(0)A(1)S(1),

...

X ≈ A(0)A(1) · · ·A(L)S(L).

(1.4)

The A(i) matrix represents the how the subtopics at layer i collect into the supertopics at layer i +1.
Note that as L increases, the error

(1.5) ‖X−A(0)A(1) · · ·A(L)S(L)‖F

necessarily increases as error propagates with each step. As a result, significant error is introduced
when L is large. Choosing k(0),k(1), ...k(L) in practice proves difficult when the number of topics at
each layer is unknown, as the number of possibilities grow combinatorially. Additionally, large differ-
ences between the number of topics for adjacent layers introduces large error into the factorization.
To alleviate the error propagation between layers, HNMF can be endowed with the structure of a
neural network. The next sections focus on developing those extensions, inspired by [13].

Finally, as the NMF problem is ill-posed and has an infinite number of global minima (e.g., one
may appropriately rescale each of the factors), this ill-posedness is exacerbated in HNMF. There are
unicity results for NMF when the matrix X satisfies specific constraints (see e.g., [11, 25, 18, 14, 27]),
but we do not know of such results for the HNMF model; this is an important theoretical direction
for future investigation.

1.6. Deep NMF (DNMF). In [13], the authors make a first step toward bridging the gap between
HNMF and neural networks. Their method achieves a considerable performance improvement over
standard NMF in classification. The forward process for DNMF is HNMF with pooling operator, p,
applied after each layer of decomposition to introduce nonlinearity and minimize overfitting. With-
out the pooling operation, the DNMF model is identical to HNMF. The other major contribution of
[13] is a proposed backpropagation algorithm meant to refine the result obtained from the forward
process. However, the backpropagation technique introduced in [13] differs from backpropagation
techniques in neural network settings, as it only propagates one layer at a time and uses multiplica-
tive updates instead of gradient descent to update the values of A and S.

1.7. Other Related Work. Similar ideas were explored in [40], [28], and [39]. In [40], the authors de-
velop a hierarchical model in which some of the nonnegativity constraints are relaxed; however, this
lacks our proposed backpropagation algorithm for training the model. In [28], the authors propose
a NMF backpropagation algorithm using an “unfolding" approach; however, their method does not
allow for hierarchy. Finally, a method similar to ours was developed in [39], but differs in that it lacks
the nonnegativity constraints that makes our method applicable in topic modeling and feature ex-
traction.

2. PROPOSED METHOD: NEURAL NMF

The proposed backpropagation of DNMF [13] behaves differently than the backpropagation tech-
nique typically employed by neural networks. Traditional backpropagation determines the gradient
of a cost function with respect to all the weights in the network, so that all the weights in the network
may be updated at once. In [13], the update for S(`) only depends on A(`+1) and S(`+1). One of the
barriers to formulating a proper backpropagation step for DNMF is that in optimization methods like

4

multiplicative updates [30] or alternating least squares [34], the A and S matrices take turns acting
as the independent and dependent variables in the updates. This is in contrast to neural networks,
where the weights connecting neurons between layers are always the independent variables, while
the activations of the neurons are dependent on the weights. This separation of independent and
dependent variables allows for calculation of the derivatives of the dependent variables with respect
to the independent variables in a relatively simple way.

Algorithm 1 Neural NMF

Input: data matrix X ∈RN×M , number of layers L , step size
γ, cost function L, initial matrices A(i) for i = 0, ...,L
while not converged do

ForwardPropagation(A(0), ...,A(`))
for i := 0, ...,L do

A(i) ← A(i) −γ∗ ∂L
∂A(i)

A(i) ← A(i)
+

To proceed, we choose to regard
the A matrices as the independent
variables in our model. This is nat-
ural since the S matrix at one layer
is “passed” to the next layer for fac-
torization, analogous to the neurons’
activations in a neural network being
passed to the next layer. In this anal-
ogy, the entries of the A matrix now
act as the weights between the neu-
rons.

Since we choose to regard the A
matrices as the independent variables, we need to determine the S matrices from the A matrices.
The natural way to do this is to always require the S matrices to solve the nonnegative least squares
problem (2.1). Suppose A(0), . . . ,A(L) are given and define S(−1) = X. Then we let

(2.1) S(`) = argmin
S≥0

‖S(`−1) −A(`)S‖, `= 0,1,2, · · · ,L .

We define the forward-propagation function q(A,X), for any nonnegative matrices X and A with
the same number of rows, as the solution to the nonnegative least-squares problem between X and
A; that is,

(2.2) q(A,X) = argmin
S≥0

‖X−AS‖.

We note that this problem is ill-posed if A does not have full column rank. In what follows, we make
the assumption that every A matrix has full column rank. This assumption is reasonable, as the A
matrices are always tall matrices (i.e., have more rows than columns), and this condition would only
be violated in pathological circumstances. Using this notation, we can define the S matrices as

S(0) = q(A(0),X),

S(`) = q(A(`),S(`−1)), `= 1,2, · · · ,L .

These equations show that S(` j) depends on A(`i) for `i ≤ ` j , but not for `i > ` j and they form the
forward-propogation stage of Neural NMF. In Algorithms 1 and 2 we display the pseudocode for our
proposed method. The partial derivatives ∂L

∂A(i) will be derived in Theorem 2.6.

Algorithm 2 Forward Propagation

procedure FORWARDPROPAGATION(A(0), ...,A(`))
for i := 0, ...,L do

S(i) ← q(A(i),S(i−1))

In the case that partial label infor-
mation is provided for the last layer,
we can perform a semi-supervised
HNMF by additionally calculating the
supervision matrix B as B = (Z ¯
Y)(S(L)† where Y and Z are the label
and indicator matrices, respectively,
defined in Section 1.4. One can in-
clude a term in loss function L encouraging matrix similarity between Y and BS(L), such as ‖Z ¯
(Y−BS(L))‖, which will influence the learned A and S matrices via backpropagation.

5

A(0)

X q(· , ·)
A(1)

q(· , ·) S(L)S(0) · · ·
A(L)

q(· , ·)S(L−1) Lf (·)

FIGURE 1. Computational graph of the forward propagation step of the algorithm
for a cost function L = f (X,S(0), . . . ,S(L),A(0), . . . ,A(L)). We use this graph to guide our
back propagation step by tracing back all paths from each variable to the cost, L.

2.1. Backpropagation. In order to derive a backpropagation update for the matrices A, we differen-
tiate a cost function which depends on both the A and S matrices, L = f (X,S(0), . . . ,S(L),A(0), . . . ,A(L)),
with respect to the A matrices. A natural choice for the cost L is the HNMF error (1.5), however our
method can be employed for other choices of cost functions. To differentiate, we employ the chain
rule, differentiating q(A,X) with respect to both A and X. See Figure 1 for a visualization of the com-
putational graph for the forward propagation.

We begin by computing formulas for the derivatives of q(A,X) with respect to A and X. Lemma A.1

(presented in the appendix), shows that ∂q
∂X (A,X) can be computed columnwise (with respect to

columns of X), so we need only determine derivative formulas for q(A,x), where x is a column of
matrix X. We define a space in which differentiation of q(A,X) is relatively simple below.

Definition 2.1. Let Ur,s ⊂ Rr×s+ ×Rr+ (r ≥ s) be the set of all matrix-vector pairs (A,x) such that A has
full (column) rank and the support of q does not change in some neighborhood of (A,x).

Lemma 2.2. The set defined in Definition 2.1, Ur,s is dense, open, and has full (Lebesgue) measure.

Roughly, this lemma says that most pairs A and x encountered in the course of our method will
be such that the support of the computed column of S will not change; that is, we can use supports
learned during forward propagation for backpropagation gradients. We delay the somewhat techni-
cal proof of this lemma to Appendix A. Now we utilize Lemma A.2 to differentiate q(A,x).

Theorem 2.3. Let Ur,s be the set defined in Definition 2.1, and suppose (A,x) ∈Ur,s . Let T = supp q(A,x).
The partial derivative of q with respect to x is given entry-wise as

(2.3)

(
∂q

∂x
(A,x)

)
T,:

= A†
:,T , and

(
∂q

∂x
(A,x)

)
T c ,:

= 0.

The partial derivative of q with respect to row i of A for i ∈ [r] is given entry-wise as

(2.4)

(
∂q

∂Ai ,:
(A,x)

)
T,T

=−
(
A†

:,T

)
:,i

(
A†

:,T x
)>+((

I−A:,T A†
:,T

)
x
)

i
A†

:,T

(
A†

:,T

)>
, and

(
∂q

∂Ai ,:
(A,x)

)
(T×T)c

= 0.

These formulas for the derivatives of q are sufficient for implementing a backwards propagation
algorithm in a machine learning library, such as PyTorch or TensorFlow. We summarize in Theo-
rem 2.6 how these partial derivatives are applied via the chain rule for an arbitrary differentiable cost
function L. Assume there are given values for the variables A(0), · · · ,A(L) and the dependent (matrix)
variables S(`) are defined as functions of the independent (matrix) variables A(`) recursively as

(2.5) S(0) = q(A(0),X), and S(`) = q(A(`),S(`−1)),

for ` ∈ [L], where L is the number of layers.
6

This calculation requires one to collect derivatives along all paths between L and the variable of in-
terest in the computational graph in Figure 1. We achieve this via the use of several auxiliary variables
which collect partial derivatives along different segments of the paths. First, the variable Φ collects
(column-wise) derivatives along the central path between S(`2) and S(`1).

Definition 2.4. Let T (`)
m = suppS(`)

:,m where m ∈ [k(`−1)] is a column index of S(`) which has k(`−1)

columns. DefineΦ(`1,`2),m for L ≥ `2 ≥ `1 ≥ 0 by

Φ(`1,`2),m =
(

A(`2)

:,T
(`2)
m

†
)

:,T
(`2−1)
m

(
A(`2−1)

:,T
(`2−1)
m

†
)

:,T
(`2−2)
m

. . .

(
A(`1+1)

:,T
(`1+1)
m

†
)

:,T
(`1)
m

(
A(`1)

:,T
(`1)
m

†
)

.

The variable d utilizes Φ to collect (column-wise) derivatives along the path that follows the edge
from L back to S(`2), and along the central path between S(`2) to S(`1). Finally, the variable U adds to
this path the edge between S(`1) and A(`1), which is the variable of interest.

Definition 2.5. Suppose L is a cost function depending on all the variables S(`) and A(`). Let
(

∂L
∂S(`2)

)*

denote the derivative of L with respect to S(`2) holding S(`2+1), . . . , S(L) constant. We define

d(`1,`2),m =
(
Φ(`1,`2),m

)> (
∂L

∂S(`2)

)*

T
(`2)
m ,m

,

and U(`1,`2),m with

U(`1,`2),m

:,T
(`1)
m

=−d(`1,`2),m
(

S(`1)

T
(`1)
m ,m

)>
+

(
S(`1−1) −A(`1)S(`1)

)
:,m

(
d(`1,`2,),m

)> (
A(`1)

:,T
(`1)
m

†
)>

, and U(`1,`2),m

:,T
(`1)
m

c = 0.

The final desired derivative, ∂L
∂A(`1) , then sums these collected derivatives over all paths between L

and A(`1), including the direct edge.

Theorem 2.6. Let the dependent (matrix) variables S(`) be defined as functions of the independent
(matrix) variables A(`) recursively as

(2.6) S(0) = q(A(0),X), and S(`) = q(A(`),S(`−1)),

for ` ∈ [L], where L is the number of layers. Let T (`)
m and Φ(`1,`2),m for L ≥ `2 ≥ `1 ≥ 0 be as de-

fined in Definition 2.4. Fixing a point in the space of A-matrices, suppose that for all 0 ≤ ` ≤ L and
m ∈ [k(`−1)], (A(`),S(`−1)

:,m) is in the set Uk(`−1),k(`) defined in Definition 2.1. Suppose L is a cost function

depending on all the variables S(`) and A(`). Let
(

∂L
∂S(`2)

)*
, d(`1,`2),m , and U(`1,`2),m be as defined in Def-

inition 2.5. Then, if we let
(

∂L
∂A(`1)

)S
be the derivative of L with respect to A(`1), holding the S matrices

constant, we have
∂L

∂A(`1)
=

(
∂L

∂A(`1)

)S

+ ∑
`1≤`2≤L
1≤m≤M

U(`1,`2),m .

That is, if the matrices A and S are such that (A(`),S(`−1)
:,m) ∈Uk(`−1),k(`) of Definition 2.1 then we can

compute the derivative of differentiable cost function L with respect to the independent variables A
using simple matrix operations and the support information calculated during forward propagation.

3. EXPERIMENTAL RESULTS

We test Neural NMF on three datasets: a small, synthetic dataset, the 20 Newsgroups dataset, and
the MyLymeData dataset. The synthetic dataset is a small block matrix, with three different levels of
hierarchy in the blocks. The 20 Newsgroups dataset is a common benchmark dataset in which hier-
archy between the topics of the dataset is known. Meanwhile, the MyLymeData dataset represents
the symptoms experienced by a group of Lyme disease patients, and hierarchy in this dataset is not

7

known a priori. Our implementation is available in the indexed Python package NeuralNMF and the
code for experiments is provided on Github [22].

On the synthetic dataset, we compare Neural NMF to HNMF and Deep NMF in the unsupervised,
semi-supervised, and fully supervised settings with 1, 2, and 3 layers, and report classification accu-
racy and reconstruction loss. We see that in each of these settings, Neural NMF outperforms HNMF
and Deep NMF in both classification and reconstruction, and forms a better low rank representation
of the data set that appears to preserve more of the coarser block structure.

On the 20 Newsgroups dataset, we compare Neural NMF to HNMF in the unsupervised and semi-
supervised settings for 2 layer experiments, and report classification accuracy at each layer. We focus
on classification and qualitative analysis rather than reconstruction because on this data set, one
cannot ask to produce a highly accurate low-rank reconstruction of the data but instead seek to form
meaningful and class-discriminatory topics that form a hierarchical structure. Our experimental re-
sults show that for both the unsupervised and supervised settings, Neural NMF attains a higher clas-
sification accuracy than HNMF at each layer, and the topics formed by Neural NMF have significantly
better interpretability and hierarchical structure. We also see that despite only being provided partial
label information at the second layer, Neural NMF is able to improve the classification accuracy at
the first layer with the additional of this label information, demonstrating that unlike HNMF, Neural
NMF is able to propagate information provided at the last layer to earlier layers.

On the MyLymeData set, we see the potential for Neural NMF to produce hierarchical topic struc-
ture on a real-world large-scale survey dataset. While the ground truth hierarchical structure is un-
known for this real, messy dataset, we note that the results produced by Neural NMF yield inter-
pretable results that reflect both what is well-known and unknown about Lyme disease patients and
the manifestation of their symptoms.

3.1. Synthetic Data. We first test the reconstruction and classification ability of Neural NMF in an
idealized setting: on a 90×87 noisy toy dataset with a clear three-layer hierarchical structure. Starting
with two large blocks, we overlay increasingly smaller and more intense asymmetric regions along
the diagonal of a matrix, and finally add a uniform(0,1) noise to the entire matrix; see the left plot
of Figure 2. We know the optimal model rank sequence to be k(0) = 9,k(1) = 4,k(2) = 2 a priori. We
test HNMF, Deep NMF, and Neural NMF with one, two, or three layer structure, and various levels
of supervision. The labels representing to which of the nine classes the data points belong (grouped
by the highest intensity blocks) are given for 40% of the data (semisupervised) or 100% of the data
(supervised). For each level of supervision and depth, the results are averaged over 25 trials. We
present the recovery error and classification accuracy measuring the discrepancy between Y and the
computed matrices B and S for these experiments in Table 1. The reconstruction error is computed
relative to the norm of the original matrix as ‖X−A(0)A(1) · · ·A(L)S(L)‖/‖X‖. Object m is predicted to
have label p if (BS(L))pm = max (BS(L)):m , and classification accuracy is the proportion of predicted
labels that match the true labels. Noteworthy improvements of Neural NMF over HNMF and Deep
NMF are bolded. We comment that we expect the advantage Neural NMF enjoys over HNMF and
Deep NMF is due to the backpropagation method allowing it to avoid suboptimal local minima found
by HNMF and Deep NMF. Additionally, in this example the classification accuracy is inherently tied
to the reconstruction error (as the labels are generated by entries of the matrix), so Neural NMF is
able to achieve good accuracy even in the unsupervised setting.

While the approximations produced at the `th layer have rank k(`), the rank of the final approxima-
tion produced by the hierarchical model will be k(L). For this reason, we can only seek the k(L) most
representative features (blocks) when qualitatively evaluating the final approximations produced by
hierarchical models.

In Figure 2, we visualize the reconstructions produced by each method with no supervision and
two layer structure (k(0) = 9 and k(1) = 4). We cannot hope to resolve the highest-intensity features
from the original data in our reconstructions, as the NMF approximations have lower than necessary

8

TABLE 1. Reconstruction error / classification accuracy for various supervision levels
and layer structures on the synthetic dataset. Entry marked with ∗ corresponds to
the experiment represented in Figure 2, and entry marked with ∗∗ corresponds to
the experiment represented in Figure 3.

Layers Hier. NMF Deep NMF Neural NMF

Unsuper.
1 0.053 / 0.111 0.031 / 0.111 0.029 / 1
2 0.399 / 0.222 0.414 / 0.222 0.310 / 0.995 ∗

3 0.860 / 0.356 0.838 / 0.356 0.492 / 1

Semisuper.
1 0.049 / 0.933 0.031 / 0.947 0.042 / 1
2 0.374 / 0.926 0.394 / 0.911 0.305 / 1
3 0.676 / 0.930 0.733 / 0.930 0.496 / 0.990 ∗∗

Supervised
1 0.052 / 0.960 0.042 / 0.962 0.042 / 1
2 0.311 / 0.984 0.310 / 0.984 0.307 / 1
3 0.495 / 1 0.494 / 1 0.498 / 1

FIGURE 2. Rank 4 approximations of the original dataset when no label information
is provided and a two-layer structure k(0) = 9,k(1) = 4 is specified, constructed by
X ≈ A(0)A(1)S(1). Left to right: original data, HNMF approximation, Deep NMF ap-
proximation, and Neural NMF approximation.

rank. Instead, we consider how accurately the methods reconstruct the two-layer block structure. Al-
though each method is able to capture some of the structure, it is clear that Neural NMF outperforms
HNMF and Deep NMF, resolving sharper blocks.

In Figure 3, we see that Neural NMF similarly outperforms HNMF and Deep NMF in a semisu-
pervised three-layer trial (k(0) = 9,k(1) = 4,k(2) = 2); note that HNMF and Deep NMF produce many
columns with extemely low intensity (HNMF entirely misses the second of the two coarsest blocks),
while Neural NMF produces a rank-2 approximation which correctly reconstructs the coarsest two-
block structure of least intensity (lightest blue). We note that adding label information is expected
to lead to worse reconstruction because the optimization task will focus on improving classification,
often at the detriment of higher reconstruction loss.

3.2. 20 Newsgroups Data. The 20 Newsgroups dataset is a collection of approximately 20,000 text
documents containing the text of messages from 20 different newsgroups on the distributed discus-
sion system Usenet which functioned similarly to current internet discussion forums. The docu-
ments are partitioned nearly evenly across the 20 newsgroups which can be further classified into
six supergroups (computers, for sale, sports/recreation, politics, science, religion) [26]. This clear
hierarchical topic structure makes this an appropriate testing ground for Neural NMF.

9

FIGURE 3. Rank 2 approximations of the original dataset when 40% of the label in-
formation is specified as known and a three-layer structure k(0) = 9,k(1) = 4,k(2) = 2
is specified, constructed by X ≈ A(0)A(1)A(2)S(2). Left to right: original data, HNMF
approximation, Deep NMF approximation, and Neural NMF approximation.

In our experiments, we subsample 100 documents from each of 10 subtopics from the 20 News-
groups dataset. We encode the text data in a word frequency vector representation of the bag-of-
words model. We perform experiments for both the semi-supervised and unsupervised tasks. For
semi-supervision, we provide labels for 75% of the documents and compute classification accuracy
on the 25% of documents without provided labels. We present the keywords from each experiment
(those words which are represented with largest magnitude in each topic) and the classification ac-
curacy measuring the discrepancy between Y and the computed matrices B and S. The reconstruc-
tion error is computed as ‖X − A(0)A(1) · · ·A(L)S(L)‖/‖X‖. Object m is predicted to have label p if
(BS(L))pm = max (BS(L)):m , and classification accuracy is the proportion of predicted labels that
match the true labels.

In Table 2, we display the classifications accuracies for Neural NMF, Deep NMF, and HNMF for the
first and second layers of an unsupervised and semi-supervised 2 layer experiment, where supervi-
sion labels are provided only for the last layer. Each experiments was run for ten trials and we report
the average of the trials. We see that Neural NMF outperforms HMF in all setting, and outerperforms
Deep NMF when supervision information is provided. Comparing the unsupervised and supervised
experiments, we see that even though label information is provided only at the second layer, the
first layer of Neural NMF gains substantial improvement when supervision is added, suggesting that
the classification information at the second layer successfully propagated to the first layer. This is
not possible for HNMF, where each layer’s factorization is computed separately. We also see that for
Deep NMF the first layer does not have significant improvement when supervision information is
added.

In Tables 3 and 4, we display the keywords learned by Neural NMF at the first and second layers,
respectively, for the semi-supervised two layer experiment. We see that the words are meaningful
and representative of the topics within the 20 Newsgroups dataset, and we note that at rank 6, each
of the six topics related directly to one of the six super topics of this dataset. We are also able to
see clear hierarchical structure, such as a medical topic and space topic at the first layer (topics 5
and 7 in Table 3) that combine into a science topic in the second layer (topic 4 in Table 4). This
hierarchical relationship is also evident from Figure 4, where we display a heat map of the A2 matrix
for the 2 layer semi-supervised Neural NMF experiment. We see a clear relationship between topics
at rank 10 and rank 6, which agrees with the known hierarchy. The topic labels at rank 10 were chosen

10

TABLE 2. Classification accuracies of each layer given for a two layer unsupervised
experiment and a two layer semisupervised experiment on the subsampled 20 News-
groups dataset.

Layer Hier. NMF Deep NMF Neural NMF

Unsuper.
1 0.593 0.638 0.604
2 0.507 0.444 0.532

Semisuper.
1 0.593 0.642 0.690
2 0.546 0.536 0.654

qualitatively based on the keywords seen in Tables 3, and the topic labels at rank 6 were determined
by the presence of 20 Newsgroups data set classes in the rows of the S(1) matrix.2

In Tables 5 and 6 we display the keywords learned by HNMF at the first and second layers, respec-
tively, for the semi-supervised two-layer experiment, and in Figure 4 we display a heat map of the A2

matrix for this experiment which shows the relationship between the topics at each layer. We see that
while most of the topics provide salient topic modelling information corresponding to the 20 News-
groups topics, some topics are fairly unclear (e.g., Topic 6, 7 of rank 10) and the learned hierarchical
structure does not adhere well to the expected structure (e.g., baseball and motorcycles do not collect
into the recreation super-topic, medicine and space do not collect into the science super-topic).

TABLE 3. Topic keywords for layer 1 of the subsampled 20 Newsgroups dataset pro-
duced by Neural NMF.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
1 drive new sale bike msg geb space humanist people jesus
2 apple dj offer dod food pitt launch article gun god
3 video following drive motorcycle used banks nasa politics israel people
4 mhz st mb helmet object gordon shuttle omran fbi bible
5 card computer best games dietz n3jxp moon bedouin government christians
6 graphics fm color stadium disease chastity ideas backcountry us israel
7 mac mower software got responses cadre orbit speaking say christian
8 sound sold disks baseball patients skepticism lunar liar arab religion
9 powerbook battery game year diet dsl centaur absood jews order

10 know remains shipping players epilepsy shameful medical john killed rosicrucian

3.3. Lyme Data. We conclude with a real world example using Lyme disease data. The MyLymeData
dataset [1] used in this analysis consists of survey responses of approximately 4000 current and for-
mer Lyme disease patients (which has since grown to over 17,000). The questions cover demograph-
ics, symptoms at various stages of the disease, medical procedures, and more. Responses may take
binary, categorical, or scalar values. Each patient is self-identified as ‘well’ or ‘unwell’ at the time of
the survey. We center our analysis on a subset of the dataset concerning patient symptom informa-
tion shortly after an initial tick bite and at the time of diagnosis. These questions yield binary data
indicating whether or not, for example, a patient observed a ‘bulls-eye rash’ somewhere on his or her
body at the time of possible diagnosis. As we do not know the hierarchy of this data a priori, we sim-
ply run exploratory experiments in this section. We highlight potential advantages of Neural NMF
illustrated in these results.

Figure 6 is an example of the S matrix when NMF is performed with model rank k = 5 alongside the
S matrices at the second layer for HNMF and Neural NMF with full network structure k(0) = 6,k(1) = 5,

2At first glance, the keywords in Topic 6 of layer 1 do not appear to correspond to any 20 Newsgroups document topic,
but all 10 keywords come from the email signature of a prolific user within medicine newsgroups with the name Gordon
Banks, who includes his radio call sign N3JXP, his email geb@cadre.dsl.pitt.edu, and the quote “Skepticism is the
chastity of the intellect, and it is shameful to surrender it too soon" (see e.g., [8, Pg. 259]).

11

TABLE 4. Topic keywords for layer 2 of the subsampled 20 Newsgroups dataset pro-
duced by Neural NMF.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
1 drive sale bike space people jesus
2 apple new dod know gun god
3 video computer motorcycle msg israel people
4 graphics offer helmet launch article bible
5 mhz drive stadium diet fbi israel
6 card shipping got cost government christians
7 sound mb games disease guns christian
8 mac sell baseball heard us religion
9 powerbook color players used mr jews

10 projector best uhhhh centaur dear rosicrucian

FIGURE 4. Heatmap of the A2 matrix for an experiment on the subsampled 20 News-
groups dataset produced by Neural NMF, which illustrates how six supertopics are
formed by linearly combining ten subtopics.

TABLE 5. Topic keywords for layer 1 of the subsampled 20 Newsgroups dataset pro-
duced by HNMF.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
1 mail mb sale team geb know fbi people israel jesus
2 modem drive games runs pitt files space gun arab god
3 mac card offer win gordon program koresh hudson israeli christians
4 keyboard ram shipping games banks motorcycle government us lebanon bible
5 internal vga game year dsl bike fire say soldiers christian
6 apple hard power pitching chastity postscript time guns peace christ
7 computer video best game cadre format launch moral arabs life
8 use floppy system last njxp file handheld morality jews law
9 cable color sound fans skepticism question jmd way lebanese love

10 software mhz super rbi shameful dod com data occupied jews

12

TABLE 6. Topic keywords for layer 2 of the subsampled 20 Newsgroups dataset pro-
duced by Hierarchical.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
1 mb sale team geb israel jesus
2 drive games runs pitt arab god
3 mail offer win gordon israeli christians
4 modem shipping year banks people bible
5 mac game games dsl government christian
6 know power pitching chastity lebanon christ
7 keyboard system game cadre fbi life
8 computer best last njxp soldiers law
9 internal disks fans skepticism peace love

10 apple sound rbi shameful arabs jews

FIGURE 5. Heatmap of the A2 matrix for an experiment on the subsampled 20 News-
groups dataset produced by HNMF, which illustrates how six supertopics are formed
by linearly combining ten subtopics.

and k(2) = 4. First, note in Figure 6 that at the second layer, Neural NMF reveals topics that are ex-
tremely similar to those produced by simple NMF. The Neural NMF topic structure reveals in par-
ticular an interesting observation about the appearance of a bulls eye rash, previously thought to
be a critical element to a Lyme disease diagnosis. However, in the Neural NMF topic structure, this
symptom actually plays very little role in any of the topics, versus appearing fairly strongly in the
other two structures. Further investigation here is critical, as physicians are now beginning to agree
that the prevalence (and thus importance) of the bulls eye rash symptom may be seriously less than
previously believed.

To further hone this observation, we present the results of Neural NMF with k(0) = 6 and k(1) = 5 on
a subset of the data corresponding to symptoms experienced by patients at diagnosis but for unwell
and well patients separately. This is shown in Figure 7, where we see drastically different positioning
of the bulls eye rash symptom. In well patients, it forms a very strong topic indicating a prevalence
in that patient group. However, in unwell patients, it is mildly represented among a topic seeming
to indicate general malaise. This warrants further investigation again, as this rash may play a role in
whether a patient becomes well or not. A final interesting observation is that twitching, a physical

13

FIGURE 6. The resulting S matrices from running unsupervised versions of NMF
(left), HNMF (middle), and Neural NMF (right) on the full Lyme symptom dataset.
The NMF plot has model rank k(0) = 5, while the plots for HNMF and Neural NMF
are the visualizations of the layer with model rank k(1) = 5 after running each method
with layer structure k(0) = 6,k(1) = 5, and k(2) = 4.

FIGURE 7. The resulting S matrices from applying Neural NMF with layer structure
k(0) = 6 and k(1) = 5 to matrices containing data from unwell and well patients about
symptoms at the time of first diagnosis.

symptom, appears in the same topic as cognitive symptoms such as sleep impairment and memory
loss. These are all symptoms of a so-called neurological Lyme disease manifestation that is still not
yet understood. In summary, studying an accurate hierarchical topic structure via Neural NMF leads
to important and interesting directions of further study both mathematically and medically.

14

4. CONCLUSION

We present a novel method for hierarchical multilayer nonnegative matrix factorization which in-
corporates the backwards propagation technique from deep learning to minimize error accumula-
tion. Preliminary tests on toy datasets show this method outperforms existing multilayer NMF algo-
rithms. The forward and backwards propagation steps of Neural NMF may offer decreased recon-
struction and classification error over single-application HNMF. Additionally, it seems that Neural
NMF often better resolves data points into a single topic.

Future directions include to further compare Neural NMF and others on various datasets in or-
der to find precise regimes in which it offers substantial improvement. Furthermore, theoretically
analyzing the convergence of Neural NMF on ideal datasets (those containing latent hierarchy) is an
important future direction of work.

5. ACKNOWLEDGEMENTS

The authors would like to thank LymeDisease.org for the use of data derived from MyLymeData
to conduct our experiments and the patients for their contributions to MyLymeData. They addi-
tionally thank Dr. Anna Ma for her instruction on the MyLymeData dataset, LymeDisease.org CEO
Lorraine Johnson for her collaboration, Dr. Blake Hunter for proposing the project, and Professor
Andrea Bertozzi, Director of Applied Math at UCLA, for organizing the REU program through which
this research was conducted.

REFERENCES

[1] lymedisease.org. lymedisease.org. Accessed: 2018-08-17.
[2] AHN, M., GROTHEER, R., HADDOCK, J., KASSAB, L., KRYSHCHENKO, A., LEONARD, K., LI, S., MADUSHANI, A., MERKH,

T., NEEDELL, D., SIZIKOVA, E., AND WANG, C. Semi-supervised nonnegative matrix factorization models for topic
modeling in learning tasks. In Proc. 53rd Asilomar Conf. on Signals, Systems and Computers (2020).

[3] BERRY, M. W., AND BROWNE, M. Email surveillance using non-negative matrix factorization. Comput. Math. Organ.
Th. 11, 3 (2005), 249–264.

[4] BISHOP, C. M. Pattern recognition and machine learning. Springer, 2006.
[5] BLEI, D. M., NG, A. Y., AND JORDAN, M. I. Latent Dirichlet allocation. J. Mach. Learn. Res. 3 (Mar. 2003), 993–1022.
[6] BUCIU, I. Non-negative matrix factorization, a new tool for feature extraction: Theory and applications, 2008.
[7] CICHOCKI, A., ZDUNEK, R., AND AMARI, S. New algorithms for non-negative matrix factorization in applications to

blind source separation. In Proc. Int. Conf. Acoust. Spe. Sig. Process. (2006), vol. 5, IEEE, pp. V–V.
[8] COELHO, L. P., RICHERT, W., AND BRUCHER, M. Building Machine Learning Systems with Python: Explore machine

learning and deep learning techniques for building intelligent systems using scikit-learn and TensorFlow. Packt Pub-
lishing Ltd, 2018.

[9] DA KUANG, D., CHOO, J., AND PARK, H. Nonnegative matrix factorization for interactive topic modeling and document
clustering. 215–243.

[10] DE FRÉIN, R., DRAKAKIS, K., RICKARD, S., AND CICHOCKI, A. Analysis of financial data using non-negative matrix
factorization. In Proc. Int. Mathematical Forum (2008), vol. 3(38), Hikari, pp. 1853–1870.

[11] DONOHO, D., AND STODDEN, V. When does non-negative matrix factorization give a correct decomposition into parts?
In Adv. Neur. In. (2004), pp. 1141–1148.

[12] FEI-FEI, L., AND PERONA, P. A Bayesian hierarchical model for learning natural scene categories. In 2005 IEEE Comp.
Soc. Conf. on Computer Vision and Pattern Recognition (June 2005), vol. 2, pp. 524–531 vol. 2.

[13] FLENNER, J., AND HUNTER, B. A deep non-negative matrix factorization neural network, 2018. Unpublished.
[14] FU, X., HUANG, K., SIDIROPOULOS, N. D., AND MA, W.-K. Nonnegative matrix factorization for signal and data ana-

lytics: Identifiability, algorithms, and applications. arXiv preprint arXiv:1803.01257 (2018).
[15] GAO, M., HADDOCK, J., MOLITOR, D., NEEDELL, D., SADOVNIK, E., WILL, T., AND ZHANG, R. Neural nonnegative

matrix factorization for hierarchical multilayer topic modeling. In Proc. Interational Workshop on Computational Ad-
vances in Multi-Sensor Adaptive Processing (2019).

[16] GAUSSIER, E., AND GOUTTE, C. Relation between PLSA and NMF and implications. In Proc. ACM SIGIR Conf. on Re-
search and Development in Inform. Retrieval (2005), pp. 601–602.

[17] GEMMEKE, J. F., VUEGEN, L., KARSMAKERS, P., VANRUMSTE, B., ET AL. An exemplar-based NMF approach to audio
event detection. In Proc. IEEE Workshop on Appl. Sig. Process. to Audio and Acoust. (2013), IEEE, pp. 1–4.

[18] GILLIS, N. Sparse and unique nonnegative matrix factorization through data preprocessing. J. Mach. Learn. Res. 13,
Nov (2012), 3349–3386.

15

lymedisease.org

[19] GOLUB, G., AND PEREYRA, V. The differentiation of pseudo-inverses and nonlinear least squares problems whose
variables separate. SIAM J. Numer. Anal. 10, 2 (1973), 413–432.

[20] GUILLAMET, D., AND VITRIA, J. Non-negative matrix factorization for face recognition. In Proc. Catalonian Conf. on
Artif. Intel. (2002), Springer, pp. 336–344.

[21] GUYON, I., AND ELISSEEFF, A. An Introduction to Feature Extraction. Springer Berlin Heidelberg, Berlin, Heidelberg,
2006, pp. 1–25.

[22] HADDOCK, J., AND VENDROW, J. Neural NMF, 2023.
[23] HO, N.-D. Nonnegative matrix factorization algorithms and applications. PhD thesis, Universitè Catholique de Lou-

vain, 2008.
[24] HOYER, P. O. Non-negative sparse coding. In Proc. IEEE Workshop on Neural Networks for Sig. Process. (2002), IEEE,

pp. 557–565.
[25] HUANG, K., SIDIROPOULOS, N. D., AND SWAMI, A. Non-negative matrix factorization revisited: Uniqueness and algo-

rithm for symmetric decomposition. IEEE T. Signal Proces. 62, 1 (2013), 211–224.
[26] LANG, K. 20 newsgroups, Jan 2008.
[27] LAURBERG, H., CHRISTENSEN, M. G., PLUMBLEY, M. D., HANSEN, L. K., AND JENSEN, S. H. Theorems on positive

data: On the uniqueness of NMF. Comput. Intel. Neurosc. 2008 (2008).
[28] LE ROUX, J., HERSHEY, J. R., AND WENINGER, F. Deep NMF for speech separation. In Proc. IEEE Int. Conf. on Acoustics,

Speech and Signal Processing (2015), IEEE, pp. 66–70.
[29] LEE, D. D., AND SEUNG, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401 (1999),

788–791.
[30] LEE, D. D., AND SEUNG, H. S. Algorithms for non-negative matrix factorization. In Adv. Neur. In. (2001), pp. 556–562.
[31] LEE, H., YOO, J., AND CHOI, S. Semi-supervised nonnegative matrix factorization. IEEE Signal Proc. Let. 17, 1 (Jan

2010), 4–7.
[32] LIU, J., WANG, D., GAO, Y., ZHENG, C., XU, Y., AND YU, J. Regularized non-negative matrix factorization for iden-

tifying differentially expressed genes and clustering samples: a survey. IEEE/ACM T. Comput. Bio. Bioin. 15, 3 (2017),
974–987.

[33] LIU, L., TANG, L., DONG, W., YAO, S., AND ZHOU, W. An overview of topic modeling and its current applications in
bioinformatics. In SpringerPlus (2016).

[34] PAATERO, P., AND TAPPER, U. Positive matrix factorization: A non-negative factor model with optimal utilization of
error estimates of data values. Environmetrics 5, 2 (1994), 111–126.

[35] PAUCA, V., SHAHNAZ, F., BERRY, M., AND PLEMMONS, R. Text mining using non-negative matrix factorizations. In
Proc. SIAM Int. Conf. on Data Mining (2004), SIAM, pp. 452–456.

[36] PONOMAREV, S. P. Submersions and preimages of sets of measure zero. Siberian Math. J. 28, 1 (Jan 1987), 153–163.
[37] ROCKAFELLAR, R. T. Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton,

N.J., 1970.
[38] SHAHNAZ, F., BERRY, M., PAUCA, V., AND PLEMMONS, R. Document clustering using nonnegative matrix factorization.

Inform. Process. Manag. 42, 2 (2006), 373–386.
[39] SUN, X., NASRABADI, N. M., AND TRAN, T. D. Supervised multilayer sparse coding networks for image classification.

CoRR abs/1701.08349 (2017).
[40] TRIGEORGIS, G., BOUSMALIS, K., ZAFEIRIOU, S., AND SCHULLER, B. W. A deep matrix factorization method for learn-

ing attribute representations. IEEE T. Pattern Anal. 39, 3 (2016), 417–429.
[41] XU, W., LIU, X., AND GONG, Y. Document clustering based on non-negative matrix factorization. In Proc. ACM SIGIR

Conf. on Research and Development in Inform. Retrieval (2003), pp. 267–273.

APPENDIX A. PROOFS OF LEMMA A.3 AND PROPOSITION 2.2

First, we state two lemmas about q , which will lead to the derivative formula. Our first lemma
demonstrates that q actually acts column-wise on X.

Lemma A.1. Suppose A ∈ RN×k+ and X ∈ RN×M+ are nonnegative matrices (with the same number of
rows), and A has full column rank. Then, for all m,

q:,m(A,X) = q(A,X:,m).

This lemma is a consequence of the column-wise separability of the Frobenius norm objective
and simplifies the problem of finding the derivatives of q(A,X) for general A and X to the problem of
finding the derivatives of q(A,x) where x is a column vector of size N . The following lemma now gives
us a formula for q(A,x), which we will be able to differentiate.

16

Lemma A.2. Suppose A ∈Rr,s
+ has full column rank, and x ∈Rr+. Let T be the support of q(A,x), i.e., the

set of indices on which the vector is strictly positive. Then q(A,x) is given by

qT (A,x) = A†
:,T x, qT c (A,x) = 0.

Proof. Since q(A,x) = argmins≥0 ‖x−As‖, for any nonnegative vector s,

‖x−As‖ ≥ ‖x−Aq(A,x)‖.

Then, using that q(A,x) has support T (and so is zero outside that support), we get

‖x−Aq(A,x)‖ = ‖x−A:,T qT (A,x)−A:,T c qT c (A,x)‖ = ‖x−A:,T qT (A,x)‖,

so

‖x−As‖ ≥ ‖x−A:,T qT (A,x)‖
for any nonnegative vector s. Suppose w is in (0,∞)|T |, i.e., it is a positive vector of length |T |. Let v
be the vector in Rr+ with vT = w and vT c = 0. Then

‖x−A:,T w‖ = ‖x− (A:,T vT +A:,T c vT c)‖ = ‖x−Av‖ ≥ ‖x−A:,T qT (A, x)‖.

This holds for any w in (0,∞)|T |.
Since q(A,x) has support equal to T , all of the entries of qT (A,x) are positive, so it is in (0,∞)|T |. So,

by what we just showed,

qT (A,x) ∈ argmin
w∈(0,∞)|T |

‖x−A:,T w‖.

Thus, since (0,∞)|T | is an open set, we have that qT (A,x) is a local minimum of the function

w 7→ ‖x−A:,T w‖.

Since A has full column rank, A:,T , a matrix whose columns are a subset of those of A, must also have
full column rank. But then we know that this function has only one local minimum, equal to its global
minimum, and is given by A†

:,T x. Thus, we have that

qT (A,x) = A†
:,T x.

Using the fact that, by the definition of support, qT c (A,x) = 0, we arrive at the desired result. �

This result cannot be used to calculate q(A,x) since it requires knowledge a priori of the answer’s
support. However, if the support of q(A,x) is locally constant in (A,x)-space, then once we have
calculated the support of q(A,x) we can use this formula to differentiate q with respect to A and
x. Lemma 2.2 guarantees that we can do this in almost all circumstances. The following lemma will
be used in the proof of Lemma 2.2.

Lemma A.3. Let Vr,s be the set of matrices in Rr×s+ (r ≥ s) with full column rank. Then q is continuous
on Vr,s ×Rn+.

Remark. In the following proof, all matrix norms are taken to be spectral norms, rather than Frobe-
nius norms.

Proof. Fix a point (A,x) in Vr,s ×Rr+; we will show q is continuous there. Let N be a bounded neigh-
borhood of A such that N ⊂ Vr,s . Let pT : Rr×s → Rr×|T | be the projection which maps A 7→ A:,T for

T ⊂ [s]. As a projection map, pT is clearly continuous, and so pT

(
N

)
is compact, since N is compact.

Since A′
:,T must have full column rank if A′ does, and since N ⊂Vr,s , we must have that pT

(
N

)
⊂Vr,|T |.

Since the pseudoinverse operation is continuous on sets of matrices with constant rank, it is contin-

uous on pT

(
N

)
. Additionally, the spectral norm is continuous everywhere, so we get that the map

nT : N →R given by

A′ 7→
∥∥∥A′

:,T
†
∥∥∥

17

is continuous for each nonempty T ⊂ [s]. By the extreme value theorem, for each nonempty T ⊂ [s],
there is a matrix AT in N such that ∥∥∥AT

:,T
†
∥∥∥≥

∥∥∥A′
:,T

†
∥∥∥

for all A′ in N . Then we let
J1 = max

T⊂[s]
T,;

∥∥∥AT
:,T

†
∥∥∥ .

Thus, for all A′ in N , we must have that
∥∥∥A′

:,T
†
∥∥∥ ≤ J1 for any set of indices T ⊂ [s]. In particular,

for any (A′,x′) in N ×Rr+, by Lemma A.2, we have that for T = supp(q(A′,x′)), qT (A′,x′) = A′
:,T

†x′ and
qT c (A′,x′) = 0, so

‖q(A′,x′)‖ = ‖qT (A′,x′)‖ =
∥∥∥A′

:,T
†x′

∥∥∥≤
∥∥∥A′

:,T
†
∥∥∥‖x′‖ ≤ J1‖x′‖,

where the last inequality follows from the definition of J1. Let N ′ be a bounded neighborhood of x in
Rr+. Let J2 = supx ′∈N ′ ‖x ′‖. This finally gives that for all (A′,x′) in N ×N ′,

‖q(A′,x′)‖ ≤ J1‖x′‖ ≤ J1 J2.

Now, suppose (A′,x′) is in N ×N ′. By the definition of q , we have that

(A.1) ‖x−Aq(A,x)‖ ≤ ‖x−Aq(A′,x′)‖,

and

(A.2) ‖x′−A′q(A′,x′)‖ ≤ ‖x ′−A′q(A,x)‖.

We claim that the map ‖x−Aq(·)‖ is continuous at (A,x), i.e., for each ε > 0, there is an open set
W ⊂Rr×s+ ×Rr+ containing (A,x) such that for all (A′,x′) in W we have∣∣‖x−Aq(A′,x′)‖−‖x−Aq(A,x)‖∣∣< ε.

To see this, fix ε> 0. We have that for (A′, x ′) and (A′′,x′′) in N ×N ′, by the reverse triangle inequality,∣∣‖x−Aq(A′′,x′′)‖−‖x′−A′q(A′′,x′′)‖∣∣≤ ∥∥(x−Aq(A′′,x′′))− (x′−A′q(A′′,x′′))
∥∥

= ∥∥(x−x′)− (A−A′)q(A′′,x′′)
∥∥

≤ ‖x−x′‖+‖A−A′‖‖q(A′′,x′′)‖
≤ ‖x−x′‖+ J1 J2‖A−A′‖.

In particular, the above holds for (A′′,x′′) = (A,x) and (A′′,x′′) = (A′,x′), so∣∣‖x−Aq(A′,x′)‖−‖x′−A′q(A′,x′)‖∣∣≤ ‖x−x′‖+ J1 J2‖A−A′‖,∣∣‖x−Aq(A,x)‖−‖x′−A′q(A,x)‖∣∣≤ ‖x−x′‖+ J1 J2‖A−A′‖.

From these, we get

(A.3) ‖x−Aq(A′,x′)‖ ≤ ‖x−x′‖+ J1 J2‖A−A′‖+‖x′−A′q(A′,x′)‖,

(A.4) −‖x−Aq(A,x)‖ ≤ ‖x−x′‖+ J1 J2‖A−A′‖−‖x′−A′q(A,x)‖.

Now, using equation (A.1), we get∣∣‖x−Aq(A′,x′)‖−‖x−Aq(A,x)‖∣∣= ‖x−Aq(A′,x′)‖−‖x−Aq(A,x)‖.

Now, using equations (A.3) and (A.4), we get

‖x−Aq(A′,x′)‖−‖x−Aq(A,x)‖ ≤ 2
(‖x−x′‖+ J1 J2‖A−A′‖)+‖x′−A′q(A′,x′)‖−‖x′−A′q(A,x)‖.

Finally, applying equation (A.2), we have

‖x′−A′q(A′,x′)‖−‖x′−A′q(A,x)‖ ≤ 0.

Putting this all together gives∣∣‖x−Aq(A′,x′)‖−‖x−Aq(A,x)‖∣∣≤ 2
(‖x−x′‖+ J1 J2‖A−A′‖) ,

18

for any (A′,x′) in N ×N ′. Let

δ= ε

8max(J1 J2,1)
.

Then let Bδ(x) be the open `2 ball centered at x inRr of radius δ, and Bδ(A) be the open spectral norm
ball centered at A in Rr×s of radius δ. Then we have that for all (A′,x′) in (Bδ(x)∩N)× (Bδ(A)∩N ′),∣∣‖x−Aq(A′,x′)‖−‖x−Aq(A,x)‖∣∣≤ 2

(‖x−x′‖+ J1 J2‖A−A′‖)≤ 2(δ+ J1 J2δ) < ε.

Thus, setting W = (Bδ(x)∩N)× (Bδ(A)∩N ′) gives what we wanted.
Now we show that q is continuous at (A,x). We fix ε> 0 and attempt to find an open set W of (A,x)

so that ‖q(A,x)−q(A′,x′)‖ < ε for all (A′,x′) in W . Since q(A,x) is the unique global minimum (since
A has full column rank) of the convex function

s 7→ ‖x−As‖
on Rr+, we can apply [37, Theorem 27.2]. Thus, there is a δ> 0 such that, if s is a nonnegative vector,
then

(A.5) ‖x−As‖ < ‖x−Aq(A,x)‖+δ =⇒ ‖s−q(A,x)‖ < ε.

Then since we proved that the function ‖x−Aq(·)‖ is continuous at (A,x), there is a neighborhood W
of (A,x) in Rr×s+ ×Rr+ such that for all (A′,x′) in W ,∣∣‖x−Aq(A′,x′)‖2 −‖x−Aq(A,x)‖2

∣∣< δ.

Then clearly for all (A′,x′) in W ,

‖x−Aq(A′,x′)‖2 < ‖x−Aq(A,x)‖2 +δ,

so by (A.5), we get
‖q(A′,x′)−q(A,x)‖ < ε

for all (A′,x′) in W , making W our desired neighborhood. Thus, q is continuous at (A,x). Since (A,x)
was chosen arbitrarily in Vr,s ×Rr+, we immediately have that q is continuous on this entire set, as
desired.

�

We may now prove Lemma 2.2.

Proof of Lemma 2.2. Since in the regular Lebesgue measure, we have that full-measure sets are dense,
it suffices to show that Ur,s is open and has full-measure. First we show that it is open. We again adopt
the notation Vr,s to denote the set of matrices in Rr×s+ (r ≥ s) with full (column) rank. By its definition,
since q is only defined on Vr,s ×Rn+, we have that (A,x) ∈Ur,s exactly when there is a neighborhood N
of (A,x) contained in Vr,s ×Rr+ such that supp q(A′,x′) is constant on N . For each (A,x) ∈Ur,s , let NA,x

be such a neighborhood. Then for all (A,x) in Ur,s , NA,x ⊂Ur,s , since for each (A′,x′) in NA,x, NA,x is a
neighborhood of (A′,x′) in Vr,s ×Rr+ on which the support of q is constant, so (A′,x′) ∈Ur,s . Thus, we
must have

Ur,s =
⋃

(A,x)∈Ur,s

NA,x,

which demonstrates that Ur,s is open.
We now show that U c

r,s has zero measure. By the definition of Ur,s , we have

U c
r,s =V c

r,s ×Rr
+∪

{
(A,x) ∈Vr,s ×Rr

+
∣∣∣ ∃(Ak ,xk) → (A,x) s.t. supp q(Ak ,xk), q(A,x)

}
.

Since V c
r,s has zero measure, so does V c

r,s ×Rr+, meaning that it suffices to show that

W =
{

(A,x) ∈Vr,s ×Rr
+

∣∣∣ ∃(Ak ,xk) → (A,x) s.t. supp q(Ak ,xk), q(A,x)
}

has zero measure. Suppose that (A,x) is in W . Then there is a sequence (Ak ,xk) in Vr,s ×Rr+ such
that (Ak ,xk) → (A,x) but supp q(Ak ,xk) , supp q(A,x). Since there are only finitely many possible
supports, at least one support must be represented infinitely often in the sequence supp q(Ak ,xk), so,

19

by possibly restricting to a subsequence, we may assume without loss of generality that supp q(Ak ,xk)
is constant. Let T1 = supp(Ak ,xk) and let T0 = supp(A,x). By hypothesis, T0 , T1.

We claim that T0 ⊂ T1. To see this, suppose it were not true. Then there would be an index i in T0

which is not in T1. Then, since i is in T0, qi (A,x) > 0. On the other hand, i is not in T1, so qi (Ak ,xk) = 0.
Since (Ak ,xk) → (A,x), and q is continuous by Lemma A.3, we must have that qi (Ak ,xk) → qi (A,x),
but this would imply that the zero sequence converges to a positive number, which is false. This
contradiction shows that T0 ⊂ T1.

Since T0 ⊂ T1 and T0 , T1, there must be an index i in T1 which is not in T0. Let T1(i) be the index
of i in T1, i.e., so that F:,i and

(
F:,T1

)
:,T1(i) are the same vector. Then we have that, by Lemma A.2,

qi (Ak ,xk) =
(
Ak

:,T1

†
xk

)
T1(i)

,

whereas qi (Ak ,xk) = 0 since i is not in T0. Again, since q is continuous, we must have that qi (Ak ,xk) →
qi (A,x), so (

Ak
:,T1

†
xk

)
T1(i)

→ 0

as k → ∞. Since (A′,x′) 7→
(
A′

:,T1

†x ′
)

T1(i)
is a continuous map on Vr,s ×Rr+ (as the pseudoinversion,

projection, and matrix multiplication operations are all continuous on this set), and (Ak ,xk) → (A,x),
we must have (

Ak
:,T1

†
xk

)
T1(i)

→
(
A:,T1

†x
)

T1(i)
.

Thus, (
A:,T1

†x
)

T1(i)
= 0.

Since (A,x) was chosen arbitrarily in W , we have shown that for every (A,x) in W , there is a set of
indices T and an index i in T such that (

A:,T
†x

)
T (i)

= 0.

Let fT : Vr,s ×Rr+ →R|T | be the map given by

(A.6) (A,x) 7→ A:,T
†x.

Let Zd be the set of all vectors in Rd which have at least one zero entry. Then we have shown that

W ⊂ ⋃
T⊂[s]

f −1
T (Z|T |).

Since the union above is finite, it suffices to show that f −1
T (Z|T |) has zero measure for each T ⊂ [s]. So

we are done if we can show that the preimage of measure zero sets under fT have measure zero, as
Zd is a measure zero subset of Rd (it is just the union of the k codimension-1 coordinate planes, each
of which has measure zero).

By [36, Theorem 2], since fT is a map from a higher dimensional space to a lower dimensional
space, this will be true if we can show that fT is continuous everywhere, differentiable almost every-
where, and has a full (row) rank derivative almost everywhere. Since pseudoinversion is continuous
and differentiable on the full rank matrices, and column projection and matrix multiplication are
differentiable everywhere, we immediately have that fT is continuous and differentiable everywhere
on Vr,s ×Rr+. Thus, we are done if we can show that fT has a full rank derivative almost everywhere.
We write the derivative of fT in block form,

d fT =
(
∂ fT

∂A
∂ fT

∂x

)
,

where we have linearized the indices in A (i.e., ∂ fT

∂A is a |T |×r s dimensional matrix). This will have full

(row) rank if either ∂ fT

∂A or ∂ fT

∂x has full (row) rank. Looking at the formula (A.6), we can immediately
see that

∂ fT

∂x
= A†

:,T .

20

Since every A in Vr,s has full (column) rank, A:,T will also always have full (column) rank, so A†
:,T always

has full (row) rank. Thus, ∂ fT

∂x has full row-rank at every point in Vr,s ×Rr+, meaning d fT does as well,
so we are done.

�

We may now prove Theorem 2.3.

Proof of Theorem 2.3. Since (A,x) is in Ur,s , there is a neighborhood N of (A,x) such that for every
(A′,x′) in N , q(A′,x′) also has support T . Then for any (A′, x ′) in N , by Lemma A.2, we have

(A.7) qT (A′,x′) = A′
:,T

†x′, qT c (A′,x′) = 0.

From this, we can immediately see that differentiating q with respect to x′ and plugging in (A,x) gives
equation (2.3).

On the other hand, by the second equation in (A.7), if α ∉ T , then qα(A′,x′) = 0 for all (A′,x′) in N ,
so

∂qα
∂Ai ,:

(A′,x′) = 0

for all (A′,x′) in N , and therefore for (A,x) in particular. Furthermore, if β ∉ T , then neither A′
:,T

†x′ nor
0 depends on A′

i ,β, so

∂q

∂Ai ,β
(A′,x′) = 0

for all (A′,x′) ∈ N , and therefore for (A,x) in particular. Thus, if either α ∉ T or β ∉ T , then

∂qα
∂Ai ,β

(A,x) = 0.

Equivalently, the above equation holds if (α,β) ∈ (T ×T)c . This gives the second equation in (2.4).
So all that is left is to show is that(

∂q

∂Ai ,:
(A,x)

)
T,T

=−
(
A†

:,T

)
:,i

(
A†

:,T x
)>+

((
I−A:,T A†

:,T

)
x
)

i
A†

:,T

(
A†

:,T

)>
.

We have that (
∂q

∂Ai ,:
(A′,x′)

)
T,T

= ∂qT

∂Ai ,T
(A′,x′) = ∂

∂A′
i ,T

(
A′

:,T
†x′

)
for all (A′,x′) in N by the first equation (A.7). In order to compute the last derivative above, we appeal
to the formula for the derivative of the pseudoinverse operation. Specifically, if B is a matrix, then we
have that

∂(F†)

∂Fi ,α
=−F†Ei ,αF† +F†F†>Ei ,α>(I−FF†)+ (I−F†F)Ei ,α>F†>F†,

where Ei ,α is a matrix of the same size as F, all of whose entries are 0, except for the (i ,α)th entry,
which is 1. See Theorem 4.3 in [19] for a proof of this formula. Eventually, we will plug in A′

:,T in for
F in the formula above, and so since A′ has full column rank (as (A,x) ∈Ur,s), so does A′

:,T , and so we

may assume that F has full column rank. In particular, this means that I−F†F = 0, so the third term
of the equation above drops out, giving

∂(F†)

∂Fi ,α
=−F†Ei ,αF† +F†F†>Ei ,α>(I−FF†).

Note that, by our definition of Ei ,α, we have that for any matrices F and G, we have

(F′Ei ,αG′)β, j = F′
β,i G′

α, j ,

and, by taking transposes,

(F′′Ei ,α>G′′)β, j = F′′
β,αG′′

i , j .
21

Thus,
∂(F†)β, j

∂Fi ,α
=−(F†)β,i (F†)α, j + (F†F†>)β,α(I−FF†)i , j .

Then we get

∂
(
F†x′

)
β

∂Fi ,α
= ∂

(
(F†)β,:x′

)
∂Fi ,α

= ∂(F†)β,:

∂Fi ,α
x′

=
(
−(F†)β,i (F†)α,: + (F†F†>)β,α(I−FF†)i ,:

)
x′

=−(F†)β,i (F†x′)α+
(
(I−FF†)x′

)
i

(F†F†>)β,α.

Now, the matrix (F†):,i (F†x′)> has (β,α)th entry equal to (F†)β,i (F†x′)α, and so we get that

∂(F†x′)
∂Fi ,:

=−(F†):,i (F†x′)>+
(
(I−FF†)x′

)
i

F†F†>.

Setting F = A′
:,T , this gives(

∂q

∂Ai ,:
(A′,x′)

)
T,T

= ∂

∂A′
i ,T

(
A′

:,T
†x′

)
=−

(
A′

:,T
†
)

:,i

(
A′

:,T
†x

)>+
((

I−A′
:,T A′

:,T
†
)

x
)

i
A′

:,T
†
(
A′

:,T
†
)>

,

which holds for all (A′,x′) in N . Plugging in (A,x) for (A′,x′) gives the desired result.
�

We finally can prove Theorem 2.6, which gives the required derivatives to apply backpropagation.

Proof of Theorem 2.6. The chain rule tells us that

∂L

∂A(`1)
=

(
∂L

∂A(`1)

)S

+ ∑
`1≤`2≤L
1≤m≤M

1≤α≤k(`2)

(
∂L

∂S(`2)
α,m

)* (
∂S(`2)

α,m

∂A(`1)

)
,

since S(`2)
α,m for `1 ≤ `2 ≤L are the only variables which C depends on, which themselves depend on

A(`1). Therefore we are done if we can show that

k(`2)∑
α=1

(
∂L

∂S(`2)
α,m

)* (
∂S(`2)

α,m

∂A(`1)

)
= U(`1,`2),m .

Now, we apply Lemma A.1 to the second equation in (2.5) to get

(A.8) S(`)
:,m = q(A(`),S(`−1)

:,m).

By repeated application of the chain rule to this equation, we get that

(A.9)

(
∂S(`2)

:,m

∂S(`1)
:,m

)
=

(
∂S(`2)

:,m

∂S(`2−1)
:,m

)(
∂S(`2−1)

:,m

∂S(`1−2)
:,m

)
. . .

(
∂S(`1+1)

:,m

∂S(`1)
:,m

)
.

Applying Theorem 2.3 to equation A.8 gives

(A.10)

(
∂S(`)

:,m

∂S(`−1)
:,m

)
T (`)

m ,:

= A(`)

:,T (`)
m

†
,

(
∂S(`)

:,m

∂S(`−1)
:,m

)
T (`)

m
c
,:

= 0.

Now we use the following fact: if F and G are compatible matrices, R is a subset of the row indices of
G, and GRc ,: = 0, then

(A.11) FG = F:,R GR,:.
22

Combining equation (A.9) and the second equation in (A.10) with this fact gives(
∂S(`2)

:,m

∂S(`1)
:,m

)
=

(
∂S(`2)

:,m

∂S(`2−1)
:,m

)
:,T

(`2−1)
m

(
∂S(`2−1)

:,m

∂S(`1−2)
:,m

)
T

(`2−1)
m ,T

(`2−2)
m

. . .

(
∂S(`1+1)

:,m

∂S(`1)
:,m

)
T

(`1+1)
m ,:

.

And now we can apply the first equation in (A.10) to get
(A.12)(
∂S(`2)

:,m

∂S(`1)
:,m

)
T

(`2)
m ,:

=
(

A(`2)

:,T
(`2)
m

†
)

:,T
(`2−1)
m

(
A(`2−1)

:,T
(`2−1)
m

†
)

:,T
(`2−2)
m

. . .

(
A(`1+1)

:,T
(`1+1)
m

†
)
=Φ(`1+1,`2),m ,

(
∂S(`2)

:,m

∂S(`1)
:,m

)
T

(`2)
m

c
,:

= 0.

Now, we apply the chain rule again to A.8, giving∂S(`2)
:,m

∂A(`1)
i ,:

=
(
∂S(`2)

:,m

∂S(`1)
:,m

)∂S(`1)
:,m

∂A(`1)
i ,:

 .

On the other hand,

k(`2)∑
α=1

(
∂L

∂S(`2)
α,m

)*
∂S(`2)

α,m

∂A(`1)
i ,:

=
((

∂L

∂S(`2)
:,m

)*)>∂S(`2)
:,m

∂A(`1)
i ,:

 ,

where

(
∂L

∂S
(`2)
:,m

)
is taken to be a column vector. Thus,

k`2∑
α=1

(
∂L

∂S(`2)
α,m

)*
∂S(`2)

α,m

∂A(`1)
i ,:

=
((

∂L

∂S(`2)
:,m

)*)> (
∂S(`2)

:,m

∂S(`1)
:,m

)∂S(`1)
:,m

∂A(`1)
i ,:

 .

We can apply equation (A.11) again, using both parts of A.12, giving

k(`2)∑
α=1

(
∂L

∂S(`2)
α,m

)*
∂S(`2)

α,m

∂A(`1)
i ,:

=
((

∂L

∂S(`2)
:,m

)*)>
:,T

(`2)
m

(
∂S(`2)

:,m

∂S(`1)
:,m

)
T

(`2)
m ,:

∂S(`1)
:,m

∂A(`1)
i ,:

=
((

∂L

∂S(`2)

)*

T
(`2)
m ,m

)>
Φ(`1+1,`2),m

∂S(`1)
:,m

∂A(`1)
i ,:

 .

By Theorem 2.3, the rows of

(
∂S

(`1)
:,m

∂A
(`1)
i ,:

)
with indices outside T (`1)

m , are zero, so we can apply our fact again

to get

k(`2)∑
α=1

(
∂L

∂S(`2)
α,m

)*
∂S(`2)

α,m

∂A(`1)
i ,:

=
((

∂L

∂S(`2)

)*

T
(`2)
m ,m

)>
Φ

(`1+1,`2),m

:,T
(`1)
m

∂S(`1)
:,m

∂A(`1)
i ,:

T

(`1)
m ,:

.

Now, Theorem 2.3 again tells us that the columns of

(
∂S

(`1)
:,m

∂A
(`1)
r,:

)
outside T (`1)

m are zero, so we have

k`2∑
i=1

 ∂L

∂S(`2)
i ,m

* ∂S(`2)
i ,m

∂A(`1)
r,:

:,T

(`1)
m

c

=
((

∂L

∂S(`2)

)*

T
(`2)
m ,m

)>
Φ

(`1+1,`2),m

:,T
(`1)
m

(
∂S(`1)

:,m

∂A(`1)
r,:

)
T

(`1)
m ,T

(`1)
m

c
= 0,

which is what we wanted, since U(`1,`2),m

:,T
(`1)
m

c = 0. Thus, all that is left to show is that k`2∑
α=1

(
∂L

∂S(`2)
α,m

)*
∂S(`2)

α,m

∂A(`1)
i ,:

:,T

(`1)
m

= U(`1,`2),m

i ,T
(`1)
m

,

i.e.,
(A.13)k(`2)∑
α=1

(
∂L

∂S(`2)
α,m

)*
∂S(`2)

α,m

∂A(`1)
i ,:

:,T

(`1)
m

=−d(`1,`2),m
i

(
S(`1)

T
(`1)
m ,m

)>
+

(
S(`1−1) −A(`1)S(`1)

)
i ,m

(
d(`1,`2,),m

)> (
A(`1)

:,T
(`1)
m

†
)>

.

23

Applying Theorem 2.3 once more gives thatk(`2)∑
α=1

(
∂L

∂S(`2)
α,m

)*
∂S(`2)

α,m

∂A(`1)
i ,:

:,T

(`1)
m

=
((

∂L

∂S(`2)

)*

T
(`2)
m ,m

)>
Φ

(`1+1,`2),m

:,T
(`1)
m

∂S(`1)
:,m

∂A(`1)
i ,:

T

(`1)
m ,T

(`1)
m

=
((

∂L

∂S(`2)

)*

T
(`2)
m ,m

)>
Φ

(`1+1,`2),m

:,T
(`1)
m

(
−

(
A(`1)

:,T
(`1)
m

†
)

:,i

(
A(`1)

:,T
(`1)
m

†
S(`1−1)

:,m

)>
(A.14)

+
((

I−A(`1)

:,T
(`1)
m

A(`1)

:,T
(`1)
m

†
)

S(`1−1)
:,m

)
i

A(`1)

:,T
(`1)
m

†
(

A(`1)

:,T
(`1)
m

†
)>)

.(A.15)

Now, using equation (A.8) and Lemma A.2, we get that

(A.16) A(`1)

:,T
(`1)
m

†
S(`1−1)

:,m = S(`1)

T
(`1)
m ,m

.

Thus, we have,((
∂L

∂S(`2)

)*

T
(`2)
m ,m

)>
Φ

(`1+1,`2),m

:,T
(`1)
m

(
−

(
A(`1)

:,T
(`1)
m

†
)

:,i

(
A(`1)

:,T
(`1)
m

†
S(`1−1)

:,m

)>)

=−
(((

∂L

∂S(`2)

)*

T
(`2)
m ,m

)>
Φ

(`1+1,`2),m

:,T
(`1)
m

A(`1)

:,T
(`1)
m

†
)

:,i

(
S(`1)

T
(`1)
m ,m

)>
.(A.17)

From the definition ofΦ, we see that

(A.18) Φ
(`1+1,`2),m

:,T
(`1)
m

A(`1)

:,T
(`1)
m

† =Φ(`1,`2),m ,

so ((
∂L

∂S(`2)

)*

T
(`2)
m ,m

)>
Φ

(`1+1,`2),m

:,T
(`1)
m

A(`1)

:,T
(`1)
m

† =
(
d(`1,`2),m

)>
.

Since d(`1,`2),m is a column vector, we get(((
∂L

∂S(`2)

)*

T
(`2)
m ,m

)>
Φ

(`1+1,`2),m

:,T
(`1)
m

A(`1)

:,T
(`1)
m

†
)

:,i

= d(`1,`2),m
i .

Plugging this into A.17, we get((
∂L

∂S(`2)

)*

T
(`2)
m ,m

)>
Φ

(`1+1,`2),m

:,T
(`1)
m

(
−

(
A(`1)

:,T
(`1)
m

†
)

:,i

(
A(`1)

:,T
(`1)
m

†
S(`1−1)

:,m

)>)
=−d(`1,`2),m

i

(
S(`1)

T
(`1)
m ,m

)>
.

Thus, from equations (A.15) and (A.13), it suffices to show that((
∂L

∂S(`2)

)*

T
(`2)
m ,m

)>
Φ

(`1+1,`2),m

:,T
(`1)
m

((
I−A(`1)

:,T
(`1)
m

A(`1)

:,T
(`1)
m

†
)

S(`1−1)
:,m

)
i

A(`1)

:,T
(`1)
m

†
(

A(`1)

:,T
(`1)
m

†
)>

=
(
S(`1−1) −A(`1)S(`1)

)
i ,m

(
d(`1,`2,),m

)> (
A(`1)

:,T
(`1)
m

†
)>

.

First, we note that, by equation (A.16), we have(
I−A(`1)

:,T
(`1)
m

A(`1)

:,T
(`1)
m

†
)

S(`1−1)
:,m = S`1−1

:,m −A(`1)

:,T
(`1)
m

S(`1)

T
(`1)
m ,m

.

Since S(`1)

T
(`1)
m

c
,m

= 0, we apply equation (A.11) once more to get that

A(`1)

:,T
(`1)
m

S(`1)

T
(`1)
m ,m

= A(`1)S(`1)
:,m .

24

Thus,((
I−A(`1)

:,T
(`1)
m

A(`1)

:,T
(`1)
m

†
)

S(`1−1)
:,m

)
i
=

(
S`1−1

:,m −A(`1)

:,T
(`1)
m

S(`1)

T
(`1)
m ,m

)
i
=

(
S`1−1

:,m −A(`1)S(`1)
:,m

)
i
=

(
S`1−1 −A(`1)S(`1)

)
i ,m

.

This gives((
∂L

∂S(`2)

)*

T
(`2)
m ,m

)>
Φ

(`1+1,`2),m

:,T
(`1)
m

((
I−A(`1)

:,T
(`1)
m

A(`1)

:,T
(`1)
m

†
)

S(`1−1)
:,m

)
i

A(`1)

:,T
(`1)
m

†
(

A(`1)

:,T
(`1)
m

†
)>

=
(
S`1−1 −A(`1)S(`1)

)
i ,m

((
∂L

∂S(`2)

)*

T
(`2)
m ,m

)>
Φ

(`1+1,`2),m

:,T
(`1)
m

A(`1)

:,T
(`1)
m

†
(

A(`1)

:,T
(`1)
m

†
)>

.

Using equation (A.18) and the definition of d, we get that((
∂L

∂S(`2)

)*

T
(`2)
m ,m

)>
Φ

(`1+1,`2),m

:,T
(`1)
m

A(`1)

:,T
(`1)
m

† =
((

∂L

∂S(`2)

)*

T
(`2)
m ,m

)>
Φ(`1,`2),m =

(
d(`1,`2),m

)>
.

Thus, ((
∂L

∂S(`2)

)*

T
(`2)
m ,m

)>
Φ

(`1+1,`2),m

:,T
(`1)
m

((
I−A(`1)

:,T
(`1)
m

A(`1)

:,T
(`1)
m

†
)

S(`1−1)
:,m

)
i

A(`1)

:,T
(`1)
m

†
(

A(`1)

:,T
(`1)
m

†
)>

=
(
S`1−1 −A(`1)S(`1)

)
i ,m

(
d(`1,`2),m

)> (
A(`1)

:,T
(`1)
m

†
)>

,

which is what we wanted.
�

25

	1. Introduction
	1.1. Organization
	1.2. Notation
	1.3. NMF
	1.4. Semisupervised NMF (SSNMF)
	1.5. Hierarchical NMF (HNMF)
	1.6. Deep NMF (DNMF)
	1.7. Other Related Work

	2. Proposed Method: Neural NMF
	2.1. Backpropagation

	3. Experimental Results
	3.1. Synthetic Data
	3.2. 20 Newsgroups Data
	3.3. Lyme Data

	4. Conclusion
	5. Acknowledgements
	References
	Appendix A. Proofs of Lemma A.3 and Proposition 2.2

