
Q-Map: Quantum Circuit Implementation of Boolean
Functions

Hassan Hajjdiab1,*, Ashraf Khalil2, Hichem Eleuch3,4,5,

1 Computer Science and Software Engineering Department, Concordia University,
Montreal, Quebec, Canada; Email: hassan.hajjdiab@ieee.org

2 College of Technological Innovation, Zayed University, Abu Dhabi, UAE; Email:
ashraf.khalil@zu.ae

3 Department of applied physics and astronomy, University of Sharjah, Sharjah, UAE;
Email: heleuch@sharjah.ac.ae

4 College of Arts and Sciences, Abu Dhabi University, Abu Dhabi 59911, UAE

5 Institute for Quantum Science and Engineering, Texas A&M University, College
Station, TX 77843, USA

*Author to whom correspondence should be addressed

Abstract

Quantum computing has gained attention in recent years due to the signif-
icant progress in quantum computing technology. Today many companies like
IBM, Google and Microsoft have developed quantum computers and simulators
for research and commercial use. The development of quantum techniques and
algorithms is essential to exploit the full power of quantum computers. In this
paper we propose a simple visual technique (we call Q-Map) for quantum realisation
of classical Boolean logic circuits. The proposed method utilises concepts from
Boolean algebra to produce a quantum circuit with minimal number of quantum
gates.

Introduction

The advancement of quantum computing hardware and software intrigues re-
searchers to develop quantum algorithms in areas such as cryptography, image
processing, algorithms, finance [6, 10, 13, 15] and many other areas. One main
advantage of quantum computers compared to classical computers is the processing
power. The quantum computer can process computationally expensive tasks expo-
nentially faster than the classical computer. While classical algorithms are limited
in complexity to O(n), a quantum search algorithm proposed by Grover [8] uses
O(

√
n) for unsorted list of n items. Shor [23] proposed a quantum algorithm to

factor an integer n in polynomial of log n time complexity. At this point, there is no
classical algorithm that can solve number factorisation in polynomial time.The RSA
cryptographic system [20] is based on prime number factorisation, and thus with
quantum computers an RSA encrypted message can be decrypted in polynomial
time complexity. Hallgen [9] presented a polynomial-time quantum algorithm to
solve the Pell-Fermat equation [3] (also known as the Pells equation 1). In classical

1Pell-Fermat equation is: x2 − dy2 = 1 and the goal is to find pairs of integers (x, y) to satisfy the
equation

1/17

ar
X

iv
:2

30
3.

00
07

5v
2

 [
qu

an
t-

ph
]

 3
 A

ug
 2

02
3

algorithm there is no know polynomial time solution and the problem is know to
be NP complete [4]. Recently, a group of scientists at Google AI Quantum [2] used
53 qubit quantum computer to sample the output of a pseudo-random quantum
circuit [18]. The results were compared with the sate-of-the art super computer
that needs 10,000 years while the 53 qubit quantum computer needs 200 seconds.

Another advantage of quantum computers is low energy consumption. In
computation, energy consumption is correlated with reversibility of the computation.
Irreversibly is equivalent to information erasure. For the case of an AND gate
of output 0, we may say that we cannot uniquely identify the input, the AND
operation resulted in erasure of information and thus consumed energy [14]. As
demonstrated by Landauer [14], classical binary computers mainly dissipate energy
during information erasure at the rate of KT ln 2 per bit erased, where K is the
Boltzmann constant and T is the temperature in Kelvins. At room temperature
(300 Kelvin), each bit erasure will cost around 3×10−21Jouls. This number appears
to be too small, however the digital binary computer is composed of huge number
of Boolean logic gate operations at the hardware level which results in significant
consumption of energy. On the other hand, quantum computers utilise quantum
gates which are all reversible gates and thus quantum computation do not result in
energy consumption.

In this paper we propose a simple visual technique (we call Q-Map) for quantum
realisation of classical Boolean logic circuits. Classical boolean computation can be
described in terms of classical boolean functions. To perform classical computations
using a quantum computer, the classical boolean function need to be synthesised
using reversible functions.

Overview of classical and Quantum gates

A Boolean function with n inputs and m outputs is defined as:

Bn,m
def
= {f |f : Bn → Bm}, where the Boolean values are denoted by B def

= {0, 1}.
A function f ∈ Bn,n is reversible if it is bijective [21], each input map exactly

to one output and the number of inputs is equal to the number of outputs.
Classical Binary computers are, in essence, composed of irreversible logic gates.
Other than the NOT gate, the binary logic gates are irreversible gates (see Figure
1). For example the classic AND gate is irreversible, for an output of 0 the input
could be 00, 01 or 10 and cannot be uniquely identified.

Figure 1. Basic Boolean gates, only the NOT gate is reversible
.

2/17

Figure 2. Commonly used quantum gates

On the other hand, a quantum bit (or qubit) x represents a unit of information
and can be described in a two dimensional quantum system as follows:

|x⟩ =
[

c0
c1

]
where

√
|c0|2 + |c1|2 = 1

The quantum states of |0⟩ and |1⟩ are represented by the vectors |0⟩ =

[
1
0

]
and |1⟩ =

[
0
1

]
The qubit can be in an ”on” or ”off” states as in the classical Boolean com-
puters or in any combination of the ”on-off” states : x = α |0⟩ + β |1⟩ , where√

α2 + β2 = 1. To represent a classical digital system the qubit |0⟩ and |1⟩ are
sufficient. Figure 2 shows the commonly used quantum gates, all quantum gates
are reversible and the input can be reconstructed from the output by applying the
gate twice. Figure 3 shows an example using the Toffoli gate, the input can be
reconstructed by applying the Toffolli gate twice.

3/17

Figure 3. All quantum gates are reversible gates, the input can be recovered by applying
the same gate twice. The figure above shows an example using the Toffoli gate, we can
reconstruct the input by applying the Toffolli gate twice.

In this paper we propose a technique to implement a binary logic circuit using
a quantum gates, and thus only the |0⟩ and |1⟩ states of the qubit are utilised.
In classical Boolean circuits, the NAND gate is a universal gate and all other
Boolean gates could be constructed using one or more NAND gates [27]. Any
Boolean logic circuit can be designed using reversible quantum gates, the logic gates
presented in Figure 1 can be constructed using a combination of the NOT, CNOT
and Toffoli gates, thus the NOT-CNOT-Tofolli gates form a universal basis for
quantum circuit implementation [5,19,31]. Figure 4 shows quantum reconstruction
of the NAND gate using a Toffoli gate, the quantum equivalent requires an extra
bit (i.e ancillary bit).The rest of the boolean gates can be synthesised using the
NOT-CNOT-Tofolli bases.

Figure 4. Reconstruction of the logic NAND gate using the Toffolli gate, all Boolean
logic gates can be reconstructed using quantum gates.

Thus any Boolean function can be synthesised by simply replacing each Boolean
gate by its quantum counterpart. However this approach is hardly efficient and leads
to a significant number of ancillary bits [17,30]. In literature several approaches
have been proposed [7, 12, 24, 25, 28, 29] to synthesise a given Boolean function
with minimal number of ancillary bits. Most of the approaches rely on heuristic
methods to minimise the costs of the resulting circuits using complex function
manipulation [11]. In this paper we present an exact method to realise the quantum
implementation of any classical binary system. The technique (we call Q-Map) is
analogous to the Karnaugh Map [27] for classical logic gate minimisation technique.
The main contribution of this paper is as follows:

• We propose a visual method to synthesise any Boolean functions without
having to resort to complex function decomposition and manipulation.

• We demonstrate the algorithm by implementing the 4-bit Gray Code Encoder
using QISKIT.

4/17

Quantum-Map technique

In our proposed approach, the problem is modelled as a quantum circuit with n
input quantum bits (|q0, q1, ..., qn−1⟩) that represents the initial state of every qubit

and n output quantum bits (|q
′
0, q

′
1, ..., q

′
n−1⟩) that represent the final state of each

bit (see Fig. 5 (a)). The quantum circuit is further decomposed into a series of n
cascaded stages . Each stage is a quantum circuit with n input qubits represented
by the vector Vi and n output qubits represented by the vector V

′
i where qubit

|qi⟩ is altered and the rest of the qubits are unaltered, the stages are presented in
Fig. 5 (b).

(a) Quantum Circuit

(b) The Quantum circuit is decomposed into n stages.

Figure 5. (a) The quantum circuit is composed of the present state vector
|q0q1q2q3 . . . qn−1⟩ and the next state vector |q′

0q
′

1q3
′ . . . q

′

n−1⟩ (b) The circuit is de-
composed into n cascaded stages, for stage Uqi only qubit qi is changed to its next state

q
′

i all other qubits are unaltered.

5/17

The relationship between the input vector and the output qubit at stage i is
defined by a control function Uqi : B

n −→ Bn as follows:

Vi

Uqi−→ V
′
i (1)

Where Uqi is a control function that computes a new value at the target output qi
and leaves all other variables unaltered. Equation 1 can be expanded as:

|q0q1q2q3 . . . qn−1⟩
Uq0−→ |q

′
0q1q2q3 . . . qn−1⟩

|q
′
0q1q2q3 . . . qn−1⟩

Uq1−→ |q
′
0q

′
1q2q3 . . . qn−1⟩

|q
′
0q

′
1q2q3 . . . qn−1⟩

Uq2−→ |q
′
0q

′
1q

′
2q3 . . . qn−1⟩

...
...

...

|q
′
0q

′
1 . . . q

′
n−2qn−1⟩

Uqn−1−→ |q
′
0q

′
1 . . . q

′
n−2q

′
n−1⟩

(2)

As presented in Equation 2, the input vector V0 = |q0q1q2q3 . . . qn−1⟩ includes
all qubits, thus the quantum circuit Uq0 will calculate q

′
0 (i.e the next state of

q0) as a function of n qubits. The output vector V
′
0 = |q

′
0q1q2q3 . . . qn−1⟩ is an n

qubit vector where only qubit q0 is changed to q
′
0 based on value of the control

function Uq0 and the rest of the qubits are unchanged. To calculate q
′
1, the output

qubit from the previous stage will be used. In general, the input vector for any
stage k is the vector Vk = |q

′
0q

′
1 . . . q

′
k−1qk . . . qn−1⟩ and the output is the vector

V
′
k = |q

′
0q

′
1 . . . q

′
k−1q

′
k . . . qn−1⟩.

To calculate Uqi for each stage, we follow a function minimisation approach
inspired by the Karnaugh Map technique [27] for Boolean function minimisation.
Our proposed approach starts by building a logic map for the function to be
minimised we call it the Quantum Map (Q-Map). The Q-Map is a two-dimensional
array of cells used to represent a switching function. The switching function T (qi),
presented in Table 1, represents the toggle state of a qubit from the present state
qi to the next state q

′
i (i.e toggle from |0⟩ to |1⟩ or from |1⟩ to |0⟩). The function

T (qi) can be represented as the logical XOR of the current state qi with the next

state q
′
i as presented in Table 1.

Table 1. Toggle function to represent change of state

Present Sate
qi

Next State

q
′

i

Toggle function

T (qi) = qi ⊕ q
′

i

|0⟩ |0⟩ |0⟩
|0⟩ |1⟩ |1⟩
|1⟩ |0⟩ |1⟩
|1⟩ |1⟩ |0⟩

T (qi) is a function of n qubits denoted by |q0q1 . . . qn−1⟩, the Q-Map of the
stage Uqi is composed of two vectors S1 = |qn−1 . . . qk⟩ and S2 = |qk−1 . . . q0⟩ with
a row for each assignment of S1 for a total of 2n−k−1 and with a column for each
assignment of S2 for a total of 2k columns. Similar to the Karnaugh Map, the
adjacency condition is established by labelling the rows and the columns such
that for any 2r adjacent rows (or columns) differ only in r variables. Fig. 6
shows the Q-Map to find the quantum circuit with four variables. In each cell the
corresponding value of the switching function T (qi) is inscribed. Using the Q-Map,
a minimal expression T (qi) is calculated for each qubit. And finally the quantum
circuit is implemented using the NOT−CNOT−Toffoli quantum gate basis.

6/17

(a) T (q0) = f(q0, q1, q2, q3) (b) T (q1) = f(q
′
0, q1, q2, q3)

(c) T (q2) = f(q
′
0, q

′
1, q2, q3) (d) T (q3) = f(q

′
0, q

′
1, q

′
2, q3)

Figure 6. Quantum maps with four variables. In each cell the corresponding value of
T (qi) is inscribed.

To demonstrate our proposed approach, we present a quantum circuit imple-
mentation of the Gray Code to Binary converter. The details of proposed algorithm
with the reversible circuit implementation are presented in the next section.

7/17

Implementation of the Gray Code Encoder

In this section we demonstrate the technique by implementing the Gray Code to
Binary converter. The Gray Code is used in many applications such as position
control systems, communications and many other areas [16]. The Gray code
provides a binary code that changes by one bit only when it changes from one
state to the next. The Gray code and the corresponding decimal unsigned binary
equivalent is shown in Table 2.

Table 2. Gray code to Binary converter truth table.

Present State Next State

q3 q2 q1 q0 q
′

3 q
′

2 q
′

1 q
′

0

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 1 0 0 1 0
0 0 1 0 0 0 1 1
0 1 1 0 0 1 0 0
0 1 1 1 0 1 0 1
0 1 0 1 0 1 1 0
0 1 0 0 0 1 1 1
1 1 0 0 1 0 0 0
1 1 0 1 1 0 0 1
1 1 1 1 1 0 1 0
1 1 1 0 1 0 1 1
1 0 1 0 1 1 0 0
1 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0
1 0 0 0 1 1 1 1

The first step starts by building the switching function T (qi) for each quantum
bit as described in Table 1. The function T (qi) for each qubit is calculated as:

T (q0) = q0 ⊕ q
′
0 (3)

T (q1) = q1 ⊕ q
′
1 (4)

T (q2) = q2 ⊕ q
′
2 (5)

T (q3) = q3 ⊕ q
′
3 (6)

The result is presented in Table 3

8/17

Table 3. Gray Code to binary converter: Q-Map functions are calculated as the XOR
of the present and next states.

Present State Next State Toggle Functions

q3 q2 q1 q0 q
′

3 q
′

2 q
′

1 q
′

0 T(q3) T(q2) T(q1) T(q0)
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 1
0 0 1 0 0 0 1 1 0 0 0 1
0 1 1 0 0 1 0 0 0 0 1 0
0 1 1 1 0 1 0 1 0 0 1 0
0 1 0 1 0 1 1 0 0 0 1 1
0 1 0 0 0 1 1 1 0 0 1 1
1 1 0 0 1 0 0 0 0 1 0 0
1 1 0 1 1 0 0 1 0 1 0 0
1 1 1 1 1 0 1 0 0 1 0 1
1 1 1 0 1 0 1 1 0 1 0 1
1 0 1 0 1 1 0 0 0 1 1 0
1 0 1 1 1 1 0 1 0 1 1 0
1 0 0 1 1 1 1 0 0 1 1 1
1 0 0 0 1 1 1 1 0 1 1 1

The second step is to establish the Q-Map for each qubit. Figure 7 (a) shows
the Q-Map to evaluate q0 given the values of the input q1, q2 and q3. A value of 1
in the Q-Map represents the state of q1, q2 and q3 when q0 toggles its state. Thus
q0 will toggle its state when the following expression is true:

T (q0) = q3q2q1 ⊕ q3q2q1 ⊕ q3q2q1 ⊕ q3q2q1 (7)

Figure 7 (b) shows the Q-Map to find T (q1). The expression is calculated based

on inputs q3, q2 and q
′
0 as follows:

T (q1) = q3q2 ⊕ q3q2 (8)

Figure 7 (c) shows the Q-Map to find T (q2). The expression is calculated based

on inputs q3, q
′
1 and q

′
0 as follows:

T (q2) = q3 (9)

Finally, figure 7 (d) shows the Q-Map to find T (q3). The expression is calculated

based on the inputs q
′
2, q

′
1 and q

′
0 as follows:

9/17

(a) T (q0) = f(q0, q1, q2, q3) (b) T (q1) = f(q
′
0, q1, q2, q3)

(c) T (q2) = f(q
′
0, q

′
1, q2, q3) (d) T (q3) = f(q

′
0, q

′
1, q

′
2, q3)

Figure 7. Q-Map representing the switching function for qubits q0, q1, q2 and q3, T (qi)
is written in Exclusive-OR Sum-of-Product form (ESOP)

Notice here we use the XOR (⊕) operation and the function T (qi) is represented
in Exclusive-OR Sum-of-Product form (ESOP) form since the qubit will toggle
only if we have an odd number of true terms. For even number of true terms the
qubit will retain its initial state. In classical Boolean function minimisation using
Karnaugh Map the logic OR (+) operation is used and the function is expressed in
Sum of Product (SOP) form since the Boolean function will be true if any of the
terms is true and so group overlap is allowed.

In our proposed Q-Map approach group overlap is not allowed, this makes all
terms in every function T (qi) mutually exclusive and only one term can be true at
one instant of time. Thus the XOR (⊕) operation can be replaced by the OR (+)
operation and the function T (qi) can be represented in the Sum of Product (SOP)
form. Since each Q-Map in Figure 7 contains no overlapping groups, the functions
can be represented in Sum of Product (SOP) form as follows:

T (q0) = q3q2q1 + q3q2q1 + q3q2q1 + q3q2q1
T (q1) = q3q2 + q3q2
T (q2) = q3
T (q3) = 0

(10)

The functions presented in Equation 10 can be realised by a reversible circuit
with only four lines (i.e. O(n) lines) using the NOT-CNOT-Toffoli bases with
Multi-Control Toffolli gates [22]. This means that the implementation is efficient
and no temporary lines (also referred as ancilla) are needed. The quantum circuit
can be implemented using CNOT and two and three input Toffoli gates as shown
in Figure 8.

The quantum circuit is also simulated using QISKIT open-source framework
simulator for quantum circuit [1,26]. In QISKIT, the Toffoli gate is composed of two
control inputs and one output. To implement the circuit in Figure 8, we redesigned
the quantum circuit to include 2-input Toffoli gates; however an additional ancillary
qubit is needed to store the intermediate values. The design with 2-input Toffoli
gates is presented in Figure 9. The code to simulate the qunatum gray to binary
converter is presented in Figure 11.

10/17

The Q-Map algorithm can be summarised as follows:

Step 1: For each qubit qi build the toggle function T (qi) = qi ⊕ q
′
i as the

logical Exclusive-OR of the present state qi and the final state q
′
i .

Step 2 :Establish the Q-Map of the switching function T (qi) as a function of

the n qubits (q
′
0, q

′
1, . . . , q

′
i−1, qi . . . , qn−1) .

Step 3: In each cell inscribe the value of T (qi) in the Q-Map.

Step 4: Find the expression of T (qi) in Sum-Of-Product form using the
Q-Map such that:
1. Groups should be as large as possible
2. Group Overlapping is not allowed

Step 5: For each expression T (qi) use the CNOT-NOT-Toffoli bases to
implement the corresponding quantum circuit.

Figure 8. Implementation of the Quantum circuit using 2 and 3 input Toffoli and
CNOT gates

Figure 9. Implementation of the Quantum circuit using 2-input Toffoli and CNOT
gates

11/17

Figure 10. Implementation of the Quantum circuit using QISKIT

q = QuantumRegister(5)

c = ClassicalRegister(5)

grayEncoder = QuantumCircuit(q,c)

Reset input qbit q[0], q[1], q[2],q[3]

grayEncoder.reset(q[0])

grayEncoder.reset(q[1])

grayEncoder.reset(q[2])

grayEncoder.reset(q[3])

#Reset ancillary qbit q[4]

grayEncoder.reset(q[4])

========== calculate T(q0) =================

grayEncoder.x(q[2]) # NOT gate

grayEncoder.x(q[3]) # NOT gate

grayEncoder.ccx(q[2],q[3],q[4]) # TOFOLLI gate

grayEncoder.ccx(q[1],q[4],q[0])

grayEncoder.ccx(q[2],q[3],q[4]) # TOFOLLI gate

grayEncoder.x(q[2]) # NOT gate

--

grayEncoder.ccx(q[2],q[3],q[4]) # TOFOLLI gate

grayEncoder.x(q[1]) # not

grayEncoder.ccx(q[1],q[4],q[0])

grayEncoder.ccx(q[2],q[3],q[4]) # TOFOLLI gate

grayEncoder.x(q[3]) # not

grayEncoder.x(q[2]) # not

grayEncoder.ccx(q[2],q[3],q[4]) # TOFOLLI gate

grayEncoder.ccx(q[1],q[4],q[0])

grayEncoder.x(q[1]) # not

grayEncoder.ccx(q[2],q[3],q[4]) # TOFOLLI gate

grayEncoder.x(q[2]) # not

grayEncoder.ccx(q[2],q[3],q[4]) # TOFOLLI gate

grayEncoder.ccx(q[1],q[4],q[0])

grayEncoder.ccx(q[2],q[3],q[4]) # TOFOLLI gate

=========== calculate T(q1) =================

grayEncoder.x(q[2]) # not

grayEncoder.ccx(q[2],q[3],q[1]) # TOFOLLI gate

grayEncoder.x(q[2]) # not

grayEncoder.x(q[3]) # not

grayEncoder.ccx(q[2],q[3],q[1]) # TOFOLLI gate

grayEncoder.x(q[3]) # NOT gate

=========== calculate T(q2) =================

grayEncoder.cx(q[3],q[2]) # CNOT gate

Figure 11. Code to implement of the Quantum circuit in Fig. 10

12/17

Q-Map optimisation

In classical boolean function minimsation using the Karnaugh map, the entry in-
scribed in every cell indicates the value of the boolean function at the corresponding
state. However in our proposed approach, the entry inscribed in each cell in the
Q-map indicates change of state of the function. An entry of 1 in th Q-map indicates
that the function must change state (i.e toggle) and a value of 0 indicates the
function must remain in the same state. Thus including the 1′s in the Q-map in an
odd number of groups will result in one change of state and including the 0′s in even
number of groups will result in no change of state. This property of the Q-map could
be used in our advantage to maximise the number of Q-map cells in each group and
produce a more simplified expression that minimises the quantum cost of the design.

The optimised Q-Map algorithm can be summarised as follows:

Step 1: For each qubit qi build the toggle function T (qi) = qi ⊕ q
′
i as the

logical Exclusive-OR of the present state qi and the final state q
′
i .

Step 2 :Establish the Q-Map of the switching function T (qi) as a function of

the n qubits (q
′
0, q

′
1, . . . , q

′
i−1, qi . . . , qn−1) .

Step 3: In each cell inscribe the value of T (qi) in the Q-Map.

Step 4: Find the expression of T (qi) in Sum-Of-Product form using the
Q-Map such that:

1. Groups should be as large as possible and may include 1′s and 0′s.

2. Every 1 must be included in an odd number of groups

3. If a 0 is included, it must be included in an even number of groups

Step 5: For each expression T (qi) use the CNOT-NOT-Toffoli bases to
implement the corresponding quantum circuit.

To demonstrate the idea, we re-evaluate the functions produces in the Q-map of
Figure 7 as shown in Figure 12 and the functions presented in Eq. 10 can be
replaced by :

T (q0) = q3q1 + q3q1 + q2
T (q1) = q3 + q2
T (q2) = q3
T (q3) = 0

(11)

Other alternative designs are possible, for example, T (q1) can be also written
as q̄2 + q̄3.

13/17

(a) T (q0) = f(q0, q1, q2, q3) (b) T (q1) = f(q
′
0, q1, q2, q3)

(c) T (q2) = f(q
′
0, q

′
1, q2, q3) (d) T (q3) = f(q

′
0, q

′
1, q

′
2, q3)

Figure 12. Optimised Q-Map representing the switching function for qubits q0, q1, q2
and q3, T (qi). Every entry of 1 must be included in an odd number of groups and an
entry of 0 must be included in an even number of groups.

Based on the functions in Eq.11, the quantum circuit can be designed as
presented in Figure 13 and the corresponding QISKIT code is shown in Figure 14.
The optimised approach re-designed the quantum circuit with no ancillary bits and
significantly reduced the number of quantum gates.

Figure 13. Implementation of the optimised Quantum circuit using QISKIT

Conclusion

In this paper we propose a visual method for quantum realisation of classical
Boolean logic functions. The proposed method utilise concepts from Boolean
algebra to produce a quantum circuit with minimal number of quantum gates. The
proposed technique is composed of three steps: (1) for each quantum bit qi build
a switching function T (qi), (2) establish the Q-Map for T (qi) and (3) using the
Q-Map find the quantum expression to implement the switching function using the
NOT-CNOT-Toffoli quantum gate basis.The proposed method is demonstrated
by implementing the Gray-Code Encoder.

14/17

q = QuantumRegister(4)

c = ClassicalRegister(4)

grayEncoder = QuantumCircuit(q,c)

Reset input qbit q[0], q[1], q[2],q[3]

grayEncoder.reset(q[0])

grayEncoder.reset(q[1])

grayEncoder.reset(q[2])

grayEncoder.reset(q[3])

========== calculate T(q0) =================

grayEncoder.cx(q[2],q[0]) # CNOT gate (T(q0) = q2)

grayEncoder.x(q[3]) # NOT gate

grayEncoder.ccx(q[1],q[3],q[0]) # TOFOLLI gate (T(q0) = q1.!q3)

grayEncoder.x(q[3]) # NOT gate

grayEncoder.x(q[1]) # NOT gate

grayEncoder.ccx(q[1],q[3],q[0]) # TOFOLLI gate T(q0) = !q1. q3

grayEncoder.x(q[1]) # NOT gate

=========== calculate T(q1) =================

grayEncoder.cx(q[2],q[1]) # TOFOLLI gate T(q1) = q2

grayEncoder.cx(q[3],q[1]) # TOFOLLI gate T(q1) = q3

=========== calculate T(q2) =================

grayEncoder.cx(q[3],q[2]) # CNOT gate

Figure 14. Code to implement of the Quantum circuit in Fig. 13

References

1. Learn quantum computation using qiskit, May 2023.

2. F. Arute et al. Quantum supremacy using a programmable superconducting
processor. Nature, 574:505–510, 2019.

3. E. Barbeau. Pell’s Equation. Problem Books in Mathematics. Springer,
2003.

4. J. Buchmann and H. C. Williams. On the existence of a short proof for the
value of the class number and regulator of a real quadratic field. in: Richard
A. Mollin (ed.), Number Theory and Applications, (NATO — Advanced
Study Institute, Banff, 1988) Dordrecht: Kluwer, pages 327–345, 1989.

5. T. T. E. Fredkin. Conservative logic. International Journal of Theoretical
Physics, 21:219–253, 1982.

6. D. J. Egger, C. Gambella, J. Marecek, S. McFaddin, M. Mevissen, R. Ray-
mond, A. Simonetto, S. Woerner, and E. Yndurain. Quantum computing
for finance: State-of-the-art and future prospects. IEEE Transactions on
Quantum Engineering, 1:1–24, 2020.

7. K. Fazel, M. A. Thornton, and J. E. Rice. Esop-based toffoli gate cas-
cade generation. 2007 IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing, pages 206–209, 2007.

8. L. K. Grover. Quantum mechanics helps in searching for a needle in a
haystack. Phys. Rev. Lett., 79:325–328, Jul 1997.

9. S. Hallgren. Polynomial-time quantum algorithms for pell’s equation and
the principal ideal problem. J. ACM, 54(1):4:1–4:19, Mar. 2007.

10. H. Iqbal and W. O. Krawec. High-dimensional semiquantum cryptography.
IEEE Transactions on Quantum Engineering, 1:1–17, 2020.

11. G. D. James. The representation theory of the symmetric groups, volume
682. Springer, 2006.

15/17

12. P. Kerntopf. A new heuristic algorithm for reversible logic synthesis. In
Proceedings of the 41st Annual Design Automation Conference, DAC ’04, page
834–837, New York, NY, USA, 2004. Association for Computing Machinery.

13. T. Krauss and J. McCollum. Solving the network shortest path problem on
a quantum annealer. IEEE Transactions on Quantum Engineering, 1:1–12,
2020.

14. R. Landauer. Irreversibility and heat generation in the computing process.
IBM Journal of Research and Development, 44(1.2):261–269, Jan 2000.

15. S.-Y. Ma, A. Khalil, H. Hajjdiab, and H. Eleuch. Quantum dilation and
erosion. Applied Sciences, 10(11), 2020.

16. T. K. Moon. Error Correction Coding: Mathematical Methods and Algo-
rithms, 2nd Edition.

17. R. D. Nabila Abdessaied. Reversible and Quantum Circuits.

18. C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyanskiy,
A. Megrant, B. Chiaro, A. Dunsworth, K. Arya, R. Barends, B. Burkett,
Y. Chen, Z. Chen, A. Fowler, B. Foxen, M. Giustina, R. Graff, E. Jeffrey,
T. Huang, J. Kelly, P. Klimov, E. Lucero, J. Mutus, M. Neeley, C. Quin-
tana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, H. Neven, and
J. M. Martinis. A blueprint for demonstrating quantum supremacy with
superconducting qubits. Science, 360(6385):195–199, 2018.

19. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, 2010.

20. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126,
Feb. 1978.

21. K. Rosen. Discrete Mathematics and Its Applications.

22. V. Shende, A. Prasad, I. Markov, and J. Hayes. Synthesis of reversible
logic circuits. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 22(6):710–722, 2003.

23. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509,
Oct. 1997.

24. M. Soeken, L. Tague, G. W. Dueck, and R. Drechsler. Ancilla-free synthesis
of large reversible functions using binary decision diagrams. Journal of
Symbolic Computation, 73:1–26, 2016.

25. M. Soeken, R. Wille, C. Otterstedt, and R. Drechsler. A synthesis flow
for sequential reversible circuits. In Proceedings of the 2012 IEEE 42nd
International Symposium on Multiple-Valued Logic, ISMVL ’12, page 299–304,
USA, 2012. IEEE Computer Society.

26. A. tA v, M. S. ANIS, Abby-Mitchell, H. Abraham, AduOffei, R. Agarwal,
G. Agliardi, M. Aharoni, V. Ajith, I. Y. Akhalwaya, and et. al. Qiskit: An
open-source framework for quantum computing, 2021.

27. R. J. Tocci and N. S. Widmer. Digital systems:. Prentice Hall, Upper Saddle
River, N.J., 9th edition edition, 2004.

28. A. D. Vos and Y. V. Rentergem. Young subgroups for reversible computers.
Advances in Mathematics of Communications, 2(2):183–200, 2008.

29. R. Wille and R. Drechsler. Bdd-based synthesis of reversible logic for
large functions. In Proceedings of the 46th Annual Design Automation
Conference, DAC ’09, page 270–275, New York, NY, USA, 2009. Association
for Computing Machinery.

30. C. P. Williams. Explorations in Quantum Computing, Second Edition. Texts
in Computer Science. Springer, 2011.

16/17

31. N. S. Yanofsky and M. A. Mannucci. Quantum Computing for Computer
Scientists. Cambridge University Press, New York, NY, USA, 1 edition,
2008.

17/17

