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Percolation theory and the associated conductance networks have provided deep insights into
the flow and transport properties of a vast number of heterogeneous materials and media. In
practically all cases, however, the conductance of the networks’ bonds remains constant throughout
the entire process. There are, however, many important problems in which the conductance of the
bonds evolves over time and does not remain constant. Examples include clogging, dissolution and
precipitation, catalytic processes in porous materials, as well as the deformation of a porous medium
by applying an external pressure or stress to it that reduces the size of its pores. We introduce two
percolation models to study the evolution of the conductivity of such networks. The two models
are related to natural and industrial processes involving clogging, precipitation, and dissolution
processes in porous media and materials. The effective conductivity of the models is shown to
follow known power laws near the percolation threshold, despite radically different behavior both
away from and even close to the percolation threshold. The behavior of the networks close to the
percolation threshold is described by critical exponents, yielding bounds for traditional percolation
exponents. We show that one of the two models belongs to the traditional universality class of
percolation conductivity, while the second model yields non-universal scaling exponents.

I. INTRODUCTION

Percolation theory [1, 2] has provided deep insights into
the flow and transport properties of a vast number of het-
erogeneous materials and media, and has found numerous
applications [3] in a variety of contexts. In many cases the
heterogeneous materials are represented by conductance
networks [4], if a scalar transport process is to be studied;
by a network of elastic elements, such as springs [5–7] or
beams [8], if vector transport processes are investigated,
or by a network of interconnected pores [9] if one is to
examine various fluid flow phenomena in porous materi-
als and media. When representing natural and industrial
heterogeneous materials, the conductance of the bonds or
pores might be distributed according to some probability
distribution function that represents the morphology of
the materials [10, 11]. In practically all cases, however,
the conductance of the network elements is modeled as
constant throughout the percolation process under study.

There are, however, many important problems in
which the conductance of the bonds in the networks that
represent the morphology of the system of interest evolves
over time and, therefore, does not remain constant. One
example is non-catalytic gas-solid reactions with solid
products, such as sulphation of calcined limestone parti-
cles that are highly porous and contain a range of pore
sizes,

CaO(s)+SO2(g)+ 1
2O2(g) → CaSO4(s)

∗ carl.f.berg@ntnu.no

Numerous experiments indicate [12, 13] that during the
reaction the solid volume increases, and the pores are
gradually plugged. Another example is the important
problem of catalyst deactivation [14] in which a reactant
reacts within the pore space of the catalyst and produces
products that not only cover the catalyst’s active sites,
but also precipitate on the solid surface of the pores and
plug them, leading to deactivation of the catalyst. A
third example is the transport of colloidal particles and
stable emulsions in flow through a porous medium, dur-
ing which the particles and emulsions precipitate on the
surface of the pores and reduce their flow capacity [15–
17]. The pore space of rock and other natural porous
media evolve due to dissolution or precipitation. The
fourth example is quartz cementation in sandstone that
yields a pore space with a continuous range of various
porosity and the corresponding flow and transport prop-
erties, such as permeability and electrical conductance.
Another example is the evolution of sandstone pore struc-
ture in the near-well region by salt precipitation during
CO2 injection for its sequestration [18, 19], as well as
during evaporation of brine and the resulting salt precip-
itation [20–22]. Pore structure evolution is also observed
in systems where the pore sizes of porous materials and,
hence, their conductances, are reduced mechanically by,
for example, applying an external stress or pressure to
the material [23, 24]. In all such cases, and numerous
other examples, such as clogging of nanopores by trans-
port of DNA [25], one has an evolving network.

Thus, the purpose of the present paper is to study
the transport properties of evolving networks, particu-
larly near their percolation threshold pc. The goal of our
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study is twofold. One is to understand how the trans-
port properties evolve in such networks, and how their
evolution depends on the manner by which the conduc-
tances decrease. The second goal is to see whether the
power-law of percolation theory, according to which the
effective conductivity σe follows the universal power law,

σe ∝ (p− pc)t , (1)

is also satisfied by the effective conductivity of evolving
networks, where p is the fraction of the bonds with a non-
zero conductance, and t is the critical exponent whose
value is largely universal with t ' 1.3 in two dimensions.

The rest of this paper is organized as follows. In the
next section, we introduce the models that we study and
explain how they are employed in our numerical simula-
tions. In Section III, we present the details of the numer-
ical simulations. Section IV presents the results for the
power laws that the effective conductivity of the proposed
models follow near the percolation threshold, and com-
pares them to the traditional models of random conduc-
tance networks. In Sec. V the implications of the results
are discussed in detail, while the last section summarizes
the results.

II. THE MODELS

The main motivation for this work is transport in
evolving porous media, which typically occurs in com-
plex three-dimensional pore networks. For the sake of
more efficient simulations of very large networks, how-
ever, we restrict our study to the square lattice, which
allows us to make precise comparisons with the existing
models.

The simplest network we consider is the traditional
square lattice in which we remove bonds by a probability
p and where the remaining bonds have unit conductance.
For straightforward comparison with models that will be
introduced below, we define these networks in the follow-
ing way [26]: We attribute a random number p(e) ∈ [0, 1]
to each bond e ∈ E, where E is the set of bonds in the
initial graph, in our case the square lattice. This gives
rise to a conductance map go : E → R+ by letting

go(p, e) =

{
1 if p(e) ≤ p
0 if p(e) > p

(2)

Thus, we attribute unit conductance to all the bonds
with a random number smaller than p, and zero conduc-
tance to the remaining bonds. A conductance map g de-
fines a network, i.e., a weighted graph where the weights
represent conductances. To simplify notation we let g
represent both the conductance map and the network
defined by this map. Networks go in which the bonds (or
sites) are removed (make no contribution to transport)
by a certain probability have been widely studied in the
classical percolation theory, and are well covered in the

literature [1–3]. They have many interesting properties
with known behavior close to the percolation threshold
pc.

In the model above all bonds have unit conductance.
Different transport processes have different relations to,
e.g., the cross-sectional area available for transport. For
example, the electrical conductance of a cylindrical pipe
with a constant cross-sectional area and filled with an
electrolyte is proportional to the cross-sectional area,
whereas, according to the Hagen-Poiseuille equation, the
fluid flow rate through the same cylindrical pipe due
to a pressure difference is proportional to the cross-
sectional area squared. If we view a bond as a cylindrical
pipe of unit length and a variable volume Vb, then the
cross-sectional area will be proportional to the volume,
Ab ∝ Vb. If a bond weight is assumed to represent its
volume or mass, then different transport processes can
be represented by raising the weight to a power. In this
article, we use mass, instead of volume. For a porous
medium, this can be thought of as the mass of the elec-
trolyte or a fluid filling the volume, thereby equating the
two through a constant electrolyte of fluid density.

Motivated by evolving porous media, we introduce two
types of evolving networks. The first is similar to the
networks defined by Eq. (2), but where we have a link
weight that is inversely proportional to the probability
that the bond is removed. The link weight is set to be
equal to the mass, and is expressed as

mp(p, e) =

{
1− p(e) if p(e) ≤ p
0 if p(e) > p

(3)

This type of network is related to clogging of a porous
medium, such as a filter or membrane. The model also
has a close correspondence with the aforementioned non-
catalytic gas-solid reactions and catalyst deactivation
when diffusion limits the rate of reaction. As a result,
the sizes of the pores are not reduced uniformly. In all
such processes, the phenomena begin in a fully connected
network, but, over time, the size of the pores gradually
decreases due to either a chemical reaction that produces
solid products (as in diffusion-limited catalytic or non-
catalytic reactions), or by the precipitation of particles
on surface of the pores due to the physical interactions
between the particles and the pore surface, as in the clog-
ging problems.

The initial network before the onset of the closure pro-
cess has a mass distribution where 1 − p(e) is the mass
of bond e, and the blocking of a bond tends to happen
at the least conductive bonds, i.e., the bonds with the
smallest mass, thus the smallest 1− p(e) values. As dis-
cussed above, when the link weight is considered as a
mass (or volume), then the weight can be related to var-
ious types of transport processes through an exponent τ
as, gτp (p, e) = mp(p, e)

τ . As described above, τ = 1 is
related to electrical conductance, while τ = 2 is related
to fluid flow. For this type of network, the values of the
bond conductance have constant value (1 − p(e))τ until



3

removed depending on p. The conductance distribution
for the network evolves, however, with p.

A third type of network is given by the following func-
tion:

ms(p, e) =

{
p− p(e) if p(e) ≤ p
0 if p(e) > p

(4)

which is a simple representation of a precipita-
tion/dissolution process, where the precipitation (or,
equivalently, the dissolution) is similar throughout the
network. This corresponds to the aforementioned cat-
alytic or non-catalytic gas-solid in which diffusion plays
no role, and only the kinetics of the reactions are impor-
tant. For a porous medium, the precipitation reduces the
volume of the pores, thereby reducing the original mass
1− p(e) by the same mass 1− p throughout the network,
resulting in a mass of (1 − p(e)) − (1 − p) = p − p(e).
Once again, we relate the mass to transport through the
exponent τ as gτs (p, e) = ms(p, e)

τ . For this type of net-
work, both the bond conductances and their distribution
evolve with p.

For comparison to the evolving networks that we have
introduced, we also consider more traditional networks
with a uniform mass distribution between endpoints a
and b; U(a, b), with 0 ≤ a < b ≤ 1. Each bond e has two
associated probabilities, one for the probability p(e) ∈
[0, 1] of being removed, and one for the mass m(e) ∈ [a, b]
being a random number between a and b. The model is
then defined by

mr(a, b) =

{
m(e) if p(e) ≤ p
0 if p(e) > p

(5)

Here, we only keep the end-points from the distribution
U(a, b) in our notation. This mass model then gives rise
to the conductance model gτr (a, b) = mr(a, b)

τ , so that
the mass distribution stays equal to U(a, b) for all p and,
as a consequence, the conductance distribution does not
evolve with p. Later in this paper, we will demonstrate
that this type of network is similar to our evolving net-
works for a restricted range of p. As the properties of
the gτr (a, b) models are known in the literature [27–29],
they will be valuable for comparison with our evolving
networks.

Note that the unit conductance in the g0 model means
that we can equate the conductance map gτ0 (p, e) to a
mass model m0(p, e) for all τ . We drop the superscript
τ for the g0 models, as they are all equal.

III. COMPUTER SIMULATIONS

All calculations in this study were carried out using
the Python programming language. The networks were
stored as two lists, one for the vertices, or sites, and one
for the edges, or bonds. The reason for using lists instead
of, e.g., NumPy arrays (a Python library), is that they

are used in several loops, where retrieving values from
lists is faster than from arrays. The vertex list stores for
each vertex the coordinates, the number of edges con-
nected to the vertex, and the edges identification num-
bers. The edge list stores the edge identity, the associ-
ated random number p(e) ∈ [0, 1], and the identification
numbers for the two connected vertices.

Two opposite sides of the networks were considered as
the inlet and outlet. For each network, we first determine
the percolation threshold pc, i.e., the smallest value of p
such that the network go(p) connects the inlet to the
outlet. The threshold was computed by a binary search
algorithm: The links are ordered according to their value
of p(e). We start the binary search by checking if go(p)
is connected when p equals the link value p(e) in the
middle of the stack. If it is connected, we remove the
upper half of the link stack; if not, we remove the lower
half. We then check if go(p) is connected for p equal to
the link value p(e) in the middle of the remaining stack.
This process is continued until there is only one link left
in the stack, yielding the bridging link at the percolating
threshold. In addition, we check during the binary search
whether the network is connected by first performing two
breadth-first searches [30, 31], one from the inlet and one
from the outlet, and then checking the intersection of
the resulting two searches; the network is connected if
the intersection is nonzero.

To calculate the effective conductance of the net-
works, we follow the standard approach, namely, apply-
ing Kirchhoff’s circuit laws. For each node i we have the
equation ∑

j

g(e)(φj − φi) = 0 , (6)

where φi is the potential at node i, and e is the edge (i, j)
for the set of nodes {j} connected to i. The effective con-
ductance is computed by representing the set of equations
given by Eq. 6 in matrix form: MΦ = B [4]. Here, B is
the vector representing the boundary conditions. As the
boundary conditions, we applied a potential difference
between the inlet and outlet. The matrix M represents
the discretized Laplacian matrix for the network with
the conductance values as weights for the bonds, and is
stored in compressed sparse column matrix format us-
ing the SciPy library. The matrix M was inverted using
either the conjugate-gradient or the LU-decomposition
method, both in the SciPy library, depending on the
bandwidth of the matrix. We then obtained the solu-
tion vector Φ = M−1B, which yields the potentials φi in
the nodes, from which the total current through the net-
work and, hence, the effective conductance is computed.
Dividing the effective conductance by the network size
we obtain the effective conductivity σe [1, 3].

For well-connected networks, the approach was effi-
cient and accurate. Close to the percolation threshold,
however, where, due to the tortuous and constricted na-
ture of the conducting paths, the current is very unevenly
distributed in the network, the matrix inversion is sus-
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ceptible to numerical errors. To reduce such numerical
issues, we construct the Laplacian matrix M of the back-
bone, where we identify the backbone of the network by
a method similar to Tarjan’s strongly connected compo-
nents algorithm [30, 31], but with a non-recursive imple-
mentation in order to avoid stack overflow problems for
large network sizes. For each network size, we generated
at least 100 realizations and averaged the results.

IV. RESULTS AND DISCUSSION

We now investigate the evolving networks introduced
in Section II, both theoretically and numerically. We
carried out extensive simulations in order to observe and
study the behavior of the effective conductivity of the
networks as they evolve.

A. Conductance functions go and gτp

As is well-known, near the percolation threshold pc, the
effective conductivity of the network go (i.e., the network
resulting from the conductance map go) follows the power
law given in Eq. (1) with a critical exponent t ' 1.3. Fig-
ure 1(a) presents the dependence of the average of the
effective conductivity σoe(p, L) of 100 realizations of the
networks of type go(p), the standard percolation conduc-
tivity model, on both L, the linear size of the network,
and (p−pc). Figure 1(e) shows the numerical derivatives
of the curves in Fig. 1 (a). We see that by increasing the
size of the network the gradient reaches a plateau with a
value close to 1.3 and, thus, go converge to a power law
of type (1) with a slope t ' 1.3, in agreement with the
theoretical expectation.

Next, we investigate the critical exponent for the con-
ductance model gτp by identifying an upper and lower
bound for the exponent value. The individual bond con-
ductances of go are always larger or equal to the bond
conductances of gτp for all τ ≥ 0, i.e., go ≥ gτp for τ ≥ 0.
As a consequence of [32, Lemma 11.4], go ≥ gτp implies
that σoe(p, L) ≥ σpe (p, L). If gτp follows a universal power
law of type (1) with exponent tp, then σpe (p, L) ≤ σoe(p, L)
implies that tp ≥ t = 1.3. Thus, we have identified a
lower bound for the exponent tp.

We now derive an upper bound for tp. For all p > 0,
the smallest bond conductance value in gτp is (1− p)τ . If
we let pgo denote the network with all bond conductances
equal to p, then gτp (p, L) > (1 − p)τgo(p, L) for all pc ≤
p < 1. For each τ , since σpe (1, L) > 0, there exists an
ε > 0 such that gτp (p, L) > εgo(p, L) for all pc ≤ p ≤ 1.
The effective conductivity of εgo is εσoe , where σoe is the
effective conductivity of go. As the effective conductivity
of εgo and go are equal up to a scaling with ε, then εgo has
the same power law exponent in Eq. (1) as go, namely,
t ' 1.3. Using the same argument that was utilized for
the lower bound, σpe (p, L) ≥ εσoe(p, L) implies that tp ≤
t = 1.3. Since we then have the same lower and upper

bound for tp, namely, t ≤ tp ≤ t, we have tp = t ' 1.3.
Thus, networks of type gτp follow the traditional critical
behavior when p→ pc.

Next, we consider an alternative method for estimating
tp. As p → pc, the mass distribution of gτp will converge
towards the distribution pc−p(e), where p(e) ∈ U(pc, 1).
Thus, the mass distribution of gτp converges towards the
mass distribution of a network of type gτr (pc, 1), i.e., a gτr
function with m(e) ∈ U(pc, 1). The networks gτr (pc, 1)
and gτp are therefore expected to have the same prop-
erties when p → pc, including similar critical exponent
(this will be substantiated further in the discussion on gs
below). We have conducted simulations to confirm such
a convergence.

We now use gτr (pc, 1) to obtain the power law descrip-
tion for gτp . The effective conductivity of gτr (pc, 1) is
bounded from above by go and by pτcgo from below. Since
pτcgo has the same critical exponent t ' 1.3 as go, then,
the critical exponent for gτr (pc, 1) is bounded from both
above and below by t ' 1.3 and, thus, the exponent for
gτr (pc, 1) is also t ' 1.3. As gτp and gτr (pc, 1) converge
when p → pc, they have the same critical exponents,
which provides an alternative proof that tp ' 1.3.

The results for tp were verified by the simulations. Fig-
ure 1(b) and (f) present the average effective conductiv-
ity σpe (p, L) and its gradients for the model g1p. Sim-
ilarly, we show the average effective conductivity and
gradients for g2p in Fig. 2(b) and (f). The inequality
σoe(p, L) ≥ σpe (p, L) used to obtain the lower bound for
tp can be verified by comparing Fig. 1(a) with Fig. 1(b)
and Fig. 2(b). The slope of the σpe (p, L) curves, both for
τ = 1 in Fig. 1(f) and for τ = 2 in Fig. 2(f), converge
towards a plateau. While the σoe and σpe curves have dif-
ferent heights, the plateaus of their gradients have similar
heights. It is seen that the plateau values for g1p and g2p
are in good agreement with the theoretical value of 1.3.
Note that the plots of the derivatives for the go and gτp
models have clear similarities, both for τ = 1 and 2, as we
use the same p(e) distribution for the go and gτp networks.

To further investigate the power laws for the various
g functions, and in particular gp, we consider finite-size

scaling at pc [1, 3], namely, ge(pc) ∝ L−t/ν , where ge(pc)
is the average effective conductivity σe(pc) at the per-
colation threshold pc of a large number of network re-
alizations, and ν is the critical exponent of percolation
correlation length with ν = 4/3 in 2D. We tested lin-
ear regression using both L−ζ and curves with three free
parameters of types suggested in [33]. The curve type
yielding the best fit is of the form L−ζ(a1 − a2/L), and
is the plot type included in Fig. 3. Note that the other
curve types, including L−ζ , yielded similar ζ-exponents.

Figure 3 indicates that finite-size scaling yields an ex-
ponent of ζ = t/ν ' 0.982 for the standard percola-
tion conductivity, corresponding to go, close to the ex-
pected value of t/ν ' 0.975. Note that m1

p > m2
p since

1 − p(e) < 1 (see Eq. 3) and, thus, go > g1p > g2p, as
observed in Fig. 3. As discussed above, we expect the
same critical exponent for gτp as for go. The models asso-
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FIG. 1. Average effective conductivity σe for 100 realizations for each conductance map g1 in (a)-(d), with the corresponding
derivatives in (e)-(f). Note that for each of the 100 realizations we have used the same p(e) distribution for the four different
conductance maps. The slope is estimated in the range marked by the dotted line in the derivative plots, with the error
estimates for the slopes being simply the difference between the minimal and maximal derivative value inside the given range.
There is no plateau for the g1s model, and the dashed line range for model g1s in (g) was chosen to obtain a slope similar to the
slope for model g1r .

ciated with gτp yield slopes similar to that of go, and the
computed ζ ≈ 0.982 are consistent with this expectation,
yielding t = ζν ' 1.31 ' 1.3.

B. Conductance function gτs

A critical difference between models gs and gp is that
the conductance distribution of the bonds in gs diverge,
which can cause non-universal behavior [27, 29]. Con-
ductance distributions and non-universal behavior will
be discussed in the next section. As in the alternative
derivation of tp, we will use functions of type gτr to iden-
tify the critical exponents ts for gτs .

Let pic be the individual percolation threshold for a
given network (one realization of p(e) values). The link
with p(e) = pic is the bridging link, eb, which becomes

a single connection that keeps the network connected
when approaching the individual percolation threshold
pic. When eb is removed at p = pic, the remaining net-
work will be disconnected. The conductance of the bridg-
ing link will be (p− pic)τ → 0 when p → pic, whereas for
all other links the conductance (p − p(e))τ converges to
a positive constant. Since the remainder of the network
has finite conductance when p → pic, the resistance of
the bridging link will dominate the resistance of the full
network in the limit p → pic. Thus, the effective con-
ductivity scales as σe ∝ (p− pic)τL2−d, when p → pic for
networks of spatial dimension d. In Fig. 4a) we present
the effective conductivity of both g1s and g1r(0, pc), indi-
cating that the conductivity of gτs converges to the slope
given by τ , as expected from the derivation above.

If we consider a two-dimensional network g′ in which
all other links than eb in gs are replaced by supercon-
ductors, then the network g′ will have a conductivity
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FIG. 2. Average effective conductivity σe for 100 realizations for each conductance map g2 in (a)-(d), with the corresponding
derivatives in (e) and (f). The slope is estimated in the range marked by the dotted line in the derivative plots, with the error
estimates for the slopes being simply the difference between the minimal and maximal derivative value inside the given range.
Note that the plots for go, in (a) and (e), are equal to the corresponding ones in Figure 1; however, their y-scales differ. As
with g1s , there is no plateau for the g2s model, and the dashed line range for model g2s was chosen to obtain a slope similar to
the slope for model g2r .

σ′e ∝ (p − pic)
τ when p → pic. Thus, the development

of the conductivity is of the power-law type Eq. (1) with
critical exponent τ . Since the effective conductivity of g′

is larger than the conductivity of gτs , i.e., σ′e > σse , we
see that the critical exponent ts must be bounded below
as ts ≥ τ . Note that, as the conductivity of gτs is always
smaller than the conductivity of go when τ > 0, σoe > σse ,
we also have ts ≥ t = 1.3. Thus, in general, we have,
ts ≥ max(t, τ), giving a lower bound for ts.

Consider the situation in which L � ξ, i.e., one in
which L is large compared to the correlation length ξ of
percolation. In this limit there are no singly-connected
bonds; according to [1] the minimum cut contains ap-
proximately L/ξ bonds. As the network is well connected
when L � ξ, we can disregard the effect of the conduc-
tance of eb vanishing when p → pic, as eb is then on one
of many connected paths in the infinite percolation clus-
ter. The network will have a mass distribution equivalent

to that in gτr (0, pic) when p → pic. To compare our net-
work to gτr (0, pc), we need p ' pc for the distribution of
bond conductances in gτs to be similar to that in gτr (0, pc).
This requirement does not, however, scale with L, so that
we can expect the two conductance distributions gτs and
gτr (0, pc) to converge at the same values of p, indepen-
dent of the size L. Therefore, for large L we can expect a
region of p values where gτs ' gτr (0, pc), i.e., where L� ξ
and p ' pc.

In Fig. 4 we present the results for both g1s and
g1r(0, pc). As seen in the figure, g1s and g1r(0, pc) differ
for both large and small values of p− pic; they are, how-
ever, similar for a range of intermediate values that cor-
respond to the region in which L � ξ and p ' pc. We
also observe that the two curves diverge when p → pic:
In this case, we have L � ξ and, thus, the link eb
will become the single bridging link. Since the weight
gτs (p, eb) → 0 when p → pic, this conductance will be-
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FIG. 3. Average effective conductivity σe at the theoretical
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of each network size L. Note that the curve for gτr is covered
by the curve for gτs , as they are basically indistinguishable.

gin dominating the overall conductance of the network
as described above, and the conductance will vanish by
the power law, σse ∝ (p − pic)

τ , as p → pic. This is in
contrast to the gτr network, for which the bridging link
eb has a finite conductance, gτr (p, eb) > 0 and, thus, σre
converges to a finite value when p → pic. The two con-
ductance descriptions gτs and gτr must, therefore, begin
to diverge when p → pic, and Fig. 4 indicates that they
do.

While the conductivities have clearly different tra-
jectories when plotted versus their individual percola-
tion thresholds pic, the difference becomes insignificant
when one uses instead the traditional averaging p − pc,
where pc is the percolation threshold for an infinite net-
work. Let pav =

〈
pic
〉

be the average of the perco-
lation thresholds for the individual networks, and let

∆ =

√
〈(pic)2〉 − 〈pic〉

2
be the standard deviation of the

individual percolation thresholds. The two values are
known to scale as pav − pc ∝ L−1/ν and ∆ ∝ L−1/ν [1,
p. 73]. The standard deviation of the individual perco-
lation thresholds ∆ is larger than the difference between
pav and pc; thus, the ∆ ∝ L−1/ν correspondence will be
of importance to us. The difference between the gτs and
gτr (0, pc) models when p→ pic is expected to be reflected
in the p− pc curves only if ∆ is smaller than the onset of
divergence between the gs and gr curves. In Fig. 4(c) we
have plotted the results for p − pc. There is no evident
difference between the curves, indicating that ∆ is larger
than the onset of the divergence observed in Fig. 4(a)
and (b).

Based on the above derivations, the power laws for

gs and gr are expected to be the same, and should be
bounded from below by max(t, τ). This is corroborated
by the results in Fig. 3, where the results for gτr (0, pc)
and gτs are almost identical for both values of τ . For
τ = 1 they indicate ζ = ts/ν ' 1.034, which yields a non-
universal scaling exponent of ts ' 1.38 ≥ t = max(t, τ).
For τ = 2 we have ζ ' 1.535, yielding ts ' 2.05 ≥ τ =
max(t, τ).

The results for g1s are presented in Figs. 1(c) and (g),
and those for g2s are shown in Figs. 2 (c) and (g). Since
go > gτp > gτr , we have σoe > σpe > σre(0, pc). It is evident
from Fig. 1g) that even the largest network size, L =
2048, does not produce a plateau for the gradient. We
thus plot g1r(0, pc) in Figs. 1(d) and (h). The derivative
indicates a plateau, however, at a value around ts ' 1.43.
This is higher than, ts = 1.38, obtained from the finite-
size scaling above. For τ = 2, as seen in Figs. 1(d) and
(h), we obtain a slope of ts ' 2.05, which is in agreement
with the finite-size scaling above. These results will be
discussed further in the next section.

V. DISCUSSION

In the previous section, we investigated the power laws
for the effective conductivity of evolving networks, gτp and
gτs , introduced in this paper. We argued that the effective
conductivities of these networks follow the same power
laws as the networks gτr (pc, 1) and gτr (0, pc), respectively.

Non-universality has been observed for networks whose
distribution of bond conductances diverges when the con-
ductance values go to zero [27, 29]. For gτr (0, pc) we
have a uniform distribution of bond mass values in the
range [0, pc], and the conductance for a bond of mass m
is g = mτ . The probability of having a mass smaller
than m is m/pc. Thus, the probability of having a con-
ductance smaller than g = mτ becomes m/pc = g1/τ/pc,
and the cumulative conductance distribution is given by

H(g) = g1/τ/pc , (7)

for g ∈ (0, pτc ). In Fig. 5 we present the conductance
distribution in gτs for the backbone at p = pc, together
with the distribution function in Eq. (7). We observe an
equivalent distribution for gτs as gτr (0, pc).

If we scale the conductances in the range (0, pτc = 2−τ )
to the range (0, 1) (with the above notation, we, thus,
consider p−τc gτr (0, pc)), we have the cumulative probabil-
ity H(g) = g1/τ , which yields the probability distribution

h(g) =
1

τ
g1/τ−1 = (1− α)g−α , (8)

where the last term is on the form used in [27], obtained
from α = 1 − 1/τ . For τ > 1 we have a negative ex-
ponent for g in Eq. (8), making h(g) diverge when the
conductance g → 0. According to [27], we then have
σe ∝ (p − pc)tr , where tr = t + α/(1 − α) = t + τ − 1,
with t being the standard conductivity exponent, with
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t ' 1.3 for two-dimensional networks, as mentioned
above. Note also that other authors reported different
values for tr, with 0 < tr − t < 3/2 for τ = 2 according
to [29]. In [28] the non-universal exponent is given as
tr = max(t, (1− α)−1) = max(t, τ), which is exactly the
lower bound we obtained for gs above.

For τ = 1 the literature indicates that for the gτr model
tr = t ' 1.3. Our derivations above should have yielded
ts = tr = t, but our numerically computed values for ts
are higher than this, with ts ' 1.38 by finite-size scaling
and ts ' 1.43 through investigating the gradient of the
curves gs(L, p). It has been reported that the univer-
sality constant for tr is difficult to obtain as logarithmic
corrections set in for τ = 1 [28]. Our computed values

are, however, in excellent agreement with estimates from
similar numerical simulations for the gτr model [34].

For τ = 2, the literature differs on the value of tr, with
1.3 < tr < 2.8; according to [29], tr ' 2.3; according
to [27], and tr = 2 according to [28]. Our estimate of
ts ' 2.05 is within the spread of the tr values for the gτr
model, as indicated by the aforementioned authors.

VI. SUMMARY

We introduced two types of evolving networks that are
related to natural and industrial processes, such as clog-
ging, precipitation, and dissolution. One model, gτp , rep-
resents clogging processes that tend to block the lowest
conducting bonds. The second model, gτs , represents pre-
cipitation processes that reduce the conductance of all
bonds similarly. The mass distribution is linked to the
conductance by the exponent τ , where τ = 1 represents
electrical conductance or diffusion, while τ = 2 represents
fluid flow.

The effective conductivity of the models that we intro-
duced behaves differently from that of the traditional net-
works go with constant bond conductance. We showed,
however, that the power laws σpe ∝ (p− pc)tp for gτp still
belong to the standard universality class with exponent
tp = t ' 1.3.

The effective conductivity of the gτs model follows a
power law similar to gτr (0, pc). The effective conductivity
of the gτr (0, pc) model is known in the literature to have
non-universal power laws near the percolation threshold,
and we have the same non-universality for gτs . The con-
ductivity of the gτs model has, however, a radically dif-
ferent behavior than gτr (0, pc), when we consider conver-
gence towards individual percolation thresholds, p→ pic.
In this limit the gτs conductivity scales as σse ∝ (p− pic)τ ,
which leads to a lower bound ts ≥ max(t, τ) for the power
law, σse ∝ (p−pc)ts . As the effective conductivity of both
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gs and gr(0, pc) follow the same power laws, this yields
the same lower bound for gτr (0, pc), namely, the lower
bound tr ≥ max(t, τ).
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conductivity exponents in continuum percolating Gaus-
sian fractures, Physical Review E 77, 047101 (2008), pub-
lisher: APS.


	Percolation and conductivity in evolving disordered media
	Abstract
	I Introduction
	II The models
	III Computer simulations
	IV Results and discussion
	A Conductance functions go and gp
	B Conductance function gs

	V Discussion
	VI Summary
	 Acknowledgments
	 References


